
Social Comparison for Failure Detection and Recovery

Gal A. Kaminka and Milind Tambe
Computer Science Department and Information Sciences Institute

University of Southern California
4676 Admiralty Way, Marina del Rey, CA 90292

{galk, tambe}@isi.edu

Abstract. Plan execution monitoring in dynamic and uncertain domains is an
important and diff icult problem. Multi -agent environments exacerbate this
problem, given that interacting and coordinated activiti es of multiple agents
are to be monitored. Previous approaches to this problem do not detect certain
classes of failures, are inflexible, and are hard to scale up. We present a novel
approach, SOCFAD, to failure detection and recovery in multi -agent settings.
SOCFAD is inspired by Social Comparison Theory from social psychology and
includes the following key novel concepts: (a) utili zing other agents in the
environment as information sources for failure detection, (b) a detection and
repair method for previously undetectable failures using abductive inference
based on other agents’ beliefs, and (c) a decision-theoretic approach to
selecting the information acquisiti on medium. An analysis of SOCFAD is
presented, showing that the new method is complementary to previous
approaches in terms of classes of failures detected.

1 Introduction
Agent behavior monitoring in complex dynamic environments is an important and
well known problem, e.g., [3], [10]. This problem is exacerbated in multi -agent
environments due to the added requirements for communication and coordination.
The complexity and unpredictabilit y of such dynamic environments causes an
explosion of state space complexity, which inhibits the abilit y of any designer,
human or machine (i.e., planners), to enumerate the correct response in each possible
state. The agents are therefore presented with countless opportunities for failure,
which could not have been anticipated. For instance, it is generall y diff icult to
predict when sensors will return unreliable answers, communication messages get
lost, etc.

The agents must therefore be responsible for autonomously detecting the
failures, and for recovering from them. To this end, an agent must have information
about the ideal behavior expected of it. This ideal can be compared to the agent’s
actual behavior to detect discrepancies indicating possible failures. Previous
approaches to this problem (e.g., [3], [10], [15]) have focused on the designer or
planner supplying the agent with redundant information, either in the form of
explicitl y specified execution-monitoring conditions, or a model of the agent itself
which may be used for comparison. Indeed, monitoring explicit conditions on the
agent’s behavior have proved useful to us in initial stages of failure detection.

However, both of these approaches suffer from limitations which render them
insufficient for failure detection in general:
 1. Information failures. Both approaches fail where relevant information is

unexpectedly unavailable. For instance, if a condition monitor depended
on a sensor to provide verification, a failure of the sensor will render the
monitor useless.

 2. Inflexibility. Monitoring conditions in agent behavior can be too rigid in
highly dynamic environments, as agents in complex environments must
often adjust their behavior flexibly to respond to the actual circumstances
they are in.

 3. Difficulty in scaling up. Both approaches mandate that the designer
supply redundant information, which entails further work for the
designer, and encounters difficulties in scaling up to more complex
domains. Model-based approaches require the designer to specify the
agent design twice, in a sense: Once in designing the agent, and again in
designing a self-model for simulation and comparison.

We propose a complementary novel approach to failure detection and recovery,
which is unique to multi-agent settings. This approach, SOCFAD (Social
Comparison for FAilure Detection), is inspired by ideas from Social Comparison
Theory [9]. The key idea in SOCFAD is that agents use other agents as sources of
information on the situation and the ideal behavior. The agents compare their own
behavior, beliefs, goals, and plans to those of other agents, in order to detect failures
and correct their behavior. The agents do not necessarily adapt the other agents’
beliefs, but can reason about the differences in belief and behavior, and draw useful
conclusions regarding the correctness of their own actions. This approach alleviates
the problems described above:
 1. It allows agents to overcome information failures, as relevant

information may be inferred from other agents’ behavior and used to
replace or complement the agent’s own erroneous perceptions.

 2. It allows for flexibility in detecting failures, since the flexible, dynamic,
behavior of other agents’ is used as an ideal for comparison.

 3. It doesn’t require the designer to provide the agent with redundant
information about itself (in the form of a model or conditions), utilizing
instead other agents as sources of information.

One key general heuristic used in SOCFAD is application in a team context. In
particular, teamwork or collaboration is ubiquitous in multi-agent domains. An
important issue in SOCFAD is that the agents being compared should be socially
similar to yield meaningful differences. By constraining SOCFAD to use team-
members for comparison, we narrow down the search for socially-similar agents.
Furthermore, by exploiting agent modeling (plan-recognition) techniques to infer
team members’ goals, SOCFAD enables efficient comparison without significant
communication overhead. We also allow the agent to explicitly reason about social
roles and status, so that it can compare itself only to agents that can provide it with
meaningful information.

SOCFAD is implemented and discussed within the context of IFDARS
(Integrated Failure Detection And Recovery System), a system provided to our agents
for the purpose of failure detection and recovery. IFDARS integrates different failure
detection and recovery techniques within a unified framework, allowing evidence
from different failure detection modules to be combined and reasoned about
explicitly.

An additional novelty in IFDARS is that it brings forth an assumption that
is implicitly made with the other approaches: The model (or condition) provided by
the designer is always correct (the model-correctness assumption). However, in
social comparison, other agents act as the knowledge sources, and cannot be assumed
to be correct at all times. In detecting failures by social comparison, the agents must
reason not only about the actual differences found, but also about the possibility that
the agent itself is not at fault, but its social role models. By making this assumption
explicit, IFDARS recovery modules can utilize different information sources and
parameterized biases to reason about the differences in a general way.

2 SOCFAD and IFDARS: Motivation
The motivation for our approach comes from our application domain which involves
developing automated pilot agents for participation in synthetic multi-agent
battlefield simulation environments [12]. The environment was commercially
developed for military training, and is highly dynamic, complex, and rich in detail.
In addition to the unpredictability of the environment, communications and sensors
are unreliable, mission and task specifications may be incomplete, etc. These
qualities present the agents with never-ending opportunities for failure, as
anticipation of all possible internal and external states is impossible for the designer.
Two examples may serve to illustrate: In the first, a team of three helicopters takes
off from the home base and heads out towards their battle position. While two of the
agents follow the mission plan, a single agent hovers in place at the starting position
indefinitely, due to an unanticipated miscommunication of the mission specification.
In the second example, a similar team of three agents arrives at a specified landmark
position. One of the team-members, whose role is that of a scout, is to continue
forward towards the enemy, identifying and verifying its position. The scout’s team-
mates are to wait for its return in the specified position, and indeed one agent
correctly lands and waits. Due to unanticipated sensory failure, the remaining agent,
which is also supposed to wait, does not detect the landmark marking the waiting
point. Instead of waiting behind, it continues to fly forward with the scout, following
it into the battlefield.

We have collected dozens of such failure reports over a period of a few
months. While it is generally easy for the human designer to correct these failures
once they occur, it is generally hard to anticipate them in advance. The failures occur
despite significant development and maintenance effort -- given the complexity of
the dynamic environment, predicting all possible states and all possible interactions
is impossible.

These failures are not negligible. Rather, they are very obvious failures,
usually due to unanticipated (by the human designer) circumstances, and generally

catastrophic, completely prohibiting the agent in question from participating in the
simulation. In the first example above, not only is the single agent stuck behind
unable to participate in the simulation, but the remaining agents are unable to carry
out the mission by themselves.

An underlying qualit y of many of these failures is that they are not specific
to military procedures. Indeed, the domain experts expect some level of common
sense handling of failures even in the most structured and strict military procedure.
By exercising social common sense, an agent may at least detect that something may
be wrong, even if it does not have knowledge of the military domains. Social clues,
such as (in the examples above) noticing that team-mates are leaving while the agent
is hovering in place, or that a team-member has landed while the team was flying in
formation, would have been sufficient to infer that something may be wrong.

3 IFDARS
The Integrated Failure Detection And Recovery System (IFDARS) integrates
different failure detection and recovery techniques, and allows for evidence from
multiple sources to be combined and reasoned about explicitly (Figure 1).

C o l le c t o r / In t e g r a t o r

V e r i f y F a i l u r e a n d R e c o v e r

S o c i a l
C o m p a r i s o n
(S O C F A D)

O u t p u t
C o n d i t i o n
M o n i t o r i n g

I d l e
D e t e c t i o n

A g e n t - a n d T e a m -
M o d e l i n g (R E S C)

I n t e r n a l O p e r a to r
H i e r a r c h y

O u t p u t C o m m a n d s

Figure 1. IFDARS Structure.

IFDARS uses three different failure-detection modules which all i nterface in a
unified manner by generating ‘ interesting events’--indications of possible failures
(false positi ves are allowed). Events have specificity--they may be generic, i.e.,
general indications, not locali zed to a specific fault; or they may be specific--
indicating for instance that the aircraft may have a problem with its speed. To allow
the system to reason about specific failure-detection modules, all events are tagged by
the failure-detection module that generated them. Events have weight which
indicates how important they are, and certainty that in fact a failure took place.
Events may also be generated as a response to other events. For example, a
continuing repetition of events is itself a reason to suspect a failure may be
underway, and so if a failure repeats itself too often, an event describing this
repetition is generated.

The events are collected together from the different detection modules in the
collector/integrator component. Given a set of events E1,...,Ek, with corresponding
weights W1,...,Wk and certainties C1,....,Ck, for specificity i, the alarm level Ai is
calculated as follows:

A = i
i=1

k
WCi i∑

Once alarm levels are raised above threshold, the system reasons about the possible
failures, verifying and possibly recovering from the failures. The recovery process
lowers the alarm levels appropriately.

The three current failure-detection modules in IFDARS are: (a) a social
comparison module, implementing SOCFAD, (b) a condition-monitoring module,
and (c) an activity measurement module. The three modules utilize different input
sources for detecting failures. The condition monitoring module monitors the
currently running reactive plans, via designer-supplied conditions. The activity
measurement module attempts to detect when the agent is unreasonably idle (i.e.,
stuck). The social comparison module is the basis for SOCFAD. We have found all
three modules to be useful in detecting failures in the agent’s behavior, but as
condition-monitoring approaches and activity measurement monitoring are already
common techniques in failure detection, we will focus on the social comparison
process in the next section.

4 Social Comparison for Failure Detection: SOCFAD
SOCFAD is inspired by Social Comparison Theory [4], a theory from social
psychology, developed to explain cognitive processes in groups of humans. Newell
[9] presents the first three axioms of this theory as follows (pg. 497):

 1. Every agent has a drive to evaluate its opinions and abilities.
 2. If the agent can’t evaluate its opinions and abilities objectively, then

it compares them against the opinions and abilities of others.
 3. Comparing against others decreases as the difference with others

increases.

The numerous reports of failures we have collected demonstrate the very real need of
agents in dynamic, unpredictable domains to evaluate themselves by monitoring their
execution. This empirically verifies the importance of the first axiom. Approaches
emphasizing the designer as a source of information against which to compare the
agent’s performance fit naturally under the title of objective sources for the agent’s
self-evaluation. SOCFAD focuses on the remaining parts of the axioms - allowing
the agent to compare its own abilities and opinions (i.e., behavior, beliefs, operators,
and goals) to those of others (second axiom), and considering the weight put on the
results of such comparison (third axiom).

Although Social Comparison Theory is descriptive, we have begun to
operationalize it for monitoring (see Algorithm 1). The abstract version of our
algorithm accepts inputs representing the states of agents being compared - their
beliefs, goals, behavior, etc. The agents’ states are then compared by Find-
Difference to detect possible failures, and a social similarity metric is used in the

function Similarity to produce a level of certainty in the detected failure.

Social-Failure-Detect(myself, other-agents) {
1. Difference ← Find-Difference(my-self, other-agents)
2. If Difference = NIL then goto 5
3. Failure-Certainty ← Similarity(Difference)
4. If Failure-Certainty > 0 then return Difference as a detected

failure, with certainty Failure-Certainty.
5. No failure was detected. Return NIL.

}

Algorithm 1. Social Failure Detection (Abstract Version).

The interesting issues in this algorithm are hidden in the two functions Find-
Difference and Similarity. Different capabilities and performance result by changing
the information being compared by Find-Difference, (e.g., internal beliefs and goals
vs. observable behavior). In Find-Difference, it is useful to (i) limit agent states
compared for efficiency, and (ii) use information that captures the control processes
of the agents. Agent’s plan hierarchies usually satisfy both constraints, but
potentially other aspects of states could be used. The Similarity function reasons
about the social similarity of agents being compared, and translates the differences to
a certainty that indeed a failure has occurred. These algorithms will be incrementally
developed through the rest of this section.

Execute Mission

W ait at Poin t

Trave lling

Fly R oute

Fly F l igh t Plan

Nap o f the Earth Contour Low-Leve l

Just W a it Scou t Forward

Figure 2. An Example Operator Hierarchy

Our agents’ design is based on reactive plans (operators) ([5], [9], [11]), which form
a hierarchy that controls each agent (Figure 2). The design implements the Joint
Intention Framework [7]. Following this framework, operators may be team
operators (shared by the team) or individual (specific to one agent). Boxed operator
names signify team operators, which achieve and maintain joint goals, while the
other operators are individual. Team operators require coordination with the other
members of the team as part of their application ([13], [14]). Figure 2 presents a
small portion of the hierarchy. The filled arrows signify the operator hierarchy
currently in control, while dotted arrows point to alternative operators which may be
used. In the figure, the agent is currently executing the execute-mission team

operator as its highest-level team plan, and has chosen to execute the fly-flight-plan
operator, for flying the agent team through the different locations specified in its
mission.

Operator hierarchies form the basic structure of our agent’s reasoning
process, and were natural objects for comparison. To operationalize SOCFAD we
require a way of acquiring knowledge of the operator hierarchies of other agents (so
that we have something to compare against), a definition for Find-Difference (a
procedure for comparing hierarchies), and a definition for Similarity as well.

In theory, knowledge of other agents can be communicated. However, such
communication is often highly impractical given significant communication costs,
risk in communicating in hostile environments, and unreliability in dynamic and
uncertain settings. Instead our implementation of SOCFAD relies on agent modeling
(plan recognition) techniques that infer an agent’s beliefs, goals, and plans from its
observable behavior and surrounding.

We use the RESCteam [13] method in modeling other agents, but different
techniques may be used interchangeably, as long as they provide the needed
information and representation. RESCteam will be briefly described here (see [13] for
more detail). RESCteam represents other agents’ plans by building additional operator
hierarchies in the agent’s memory which correspond to the other agents’ inferred
reactive plans currently executed. Thus, the monitoring agent has unified access not
only to its own original operator hierarchy, but also to the inferred operator
hierarchies of other team members (Figure 3).

E xe c u te M is s io n

T r a v e l l in g

F ly R o u te

F ly F l ig h t P la n

E xe c u te M is s io n

T r a v e l l in g

F ly R o u te

F ly F l ig h t P la n

A gen t ' s H i ea r ch y O t h er ' s H i e ra r ch y

N a p o f t h e E a r th L o w - L e ve l

(In f e r r e d v ia a g e n t m o d e l in g)

Figure 3. An Example of Two Hierarchies in the Agent’s Memory.

Based on the representation of the other agents’ plans by operator hierarchies, the
Find-Difference function can be easily implemented (Algorithm 2) as the simple
process of comparing the chosen operators in equal depths of the hierarchies.
Hierarchies of different lengths are also considered different.

Find-Difference(my-operator-hierarchy, other-hierarchies) {
1. Depth ← 0
2. Compare operators in hierarchies at depth Depth
3. If a difference is found, return it.
4. Else, are the operators leaves of the hierarchies?

4.1 No. Increase Depth. Goto 2.
4.2 Yes. Return NIL.

}

 Algorithm 2. Find-Difference.

As implied by the third axiom of social comparison theory, differences with other
agents are meaningful only to the extent that the other agents are socially similar.
Other agents may not be executing plans that are relevant to the agent’s goals, and
therefore may not be able to contribute relevant information towards the monitoring
of the agents own plans and goals. Worse yet, other agents may intentionally want to
use deception in order to influence the agent’s decision making to advance their own
agendas.

Fortunately, a team context provides an initial solution. Team members tend
to work on joint goals and sub-plans related to the one the agent should be executing,
and can be assumed to be non-hostile (therefore not intentionally deceiving the agent
in question). The comparison process in Find-Difference therefore considers team
members only.

4.1 Team Operator Differences

Our agents use the Joint Intentions framework [7] as the basis for their coordination
of team activities. In this framework, expli cit team operators form the basis for
teamwork, requiring mutual belief (MB) on the part of the team members as a
condition for the establi shment, and termination (based on achievement,
unachieveabilit y, or irrelevancy), of expli cit team operators. Team operators must
therefore be identical for all team members. A difference in team operators is
therefore a certain sign of failure, regardless of its cause.

In one example above, one agent has failed to detect a key landmark
position and continued execution of the “fly-flight-plan” team operator. However, its
teammates correctly detected the landmark and terminated execution of that
operator. They then switched to executing “wait-at-point” team operator, in which
two agents are to land while the scout is to go forward and scout the enemy position.
Through agent modeling, the miscoordinating agent infers the operators the other
agents are executing. It reali zes that they could potentiall y be executing the “wait-at-
point” operator and detects a discrepancy with its own team operator of “ fly flight
plan” . At this point it does not know which side is correct – either itself is at fault or
its teammates. Regardless, the agent can conclude that a failure has occurred with
the team and the coordination among its members.

The purpose of utili zing the joint intentions framework is to benefit from
the domain-independent guarantees it provides for team coordination. As the agents
are designed to follow the framework, it would appear at first that the above failures
of miscoordination cannot occur. However, given the well recognized diff iculty of

establishing mutual belief in practice, differences in team operators do occur. In the
example motivating this discussion, since the landmark that was to signal
termination of the “fly-flight-plan” operator is in the external environment, it was
assumed to be visible to all agents. Thus, mutual belief that the landmark was
detected was assumed by the agent that successfully detected it, and it correctly
abandoned the team operator (this assumption is motivated by the inefficiency of
continuous communications). The second agent, which had missed detection of the
landmark was true to the joint intentions framework as well: It didn’t abandon one
team operator without establishing mutual belief that it was achieved, unachievable,
or irrelevant. The key point is that while both agents have correctly followed the joint
intentions framework, a failure in sensing, coupled with a practical assumption about
establishment of mutual belief caused the joint-goals of both agents to differ. And no
matter which agent is right, a failure has certainly occurred, since the team is no
longer coordinated.

Similarity (Operator-Difference) {
If Operator-Difference is between team operators then

 return maximum certainty
}

Algorithm 3a. Similarity, Version 1.

To operationalize this discussion, we can now define an initial version of the
Similarity function used in the social failure detection algorithm (Algorithm 1). The
key idea is that at the team level, agents have identical team operators, and so are
maximally socially similar.

4.2 Individual Operator Differences

The previous section discussed differences between agents that are maximally
similar--agents that have joint goals and together form a team. However, in service
of team operators different agents may work on different individual operators. These
individual operators do not necessarily carry with them the responsibilities for
mutual belief that team operators do, and so differences in individual operators are
not sure signs of failure, but at best indications of the possibility.

We therefore require additional information about the agents causing the
difference which can help in determining whether the difference is justified or not.
For instance, agents working towards similar goals have similar social roles: For
example, in a soccer game there are field players and a goalie which have different
roles within the team. Agents with similar roles would serve as better sources of
information for plan-execution monitoring than other agents. Related to the social
role is social status, which may also justify differences in individual operators among
team members. For instance, in the military domain agents of different ranks may
follow different individual operators to guide their behavior.

The example where a failing agent was stuck in place while its team-
members have taken off and were flying away serves to illustrate this distinct type of
discrepancy. Here, a comparison of the agent’s own chosen method-of-flight operator
to the methods of flight chosen by its comrades indicates to the agent that it is not

acting like the rest of the team - that in fact a failure may have occurred (see leaf
operators in Figure 3).

We have provided our agent with the means to explicitly utilize the social
similarity of team-members in their reasoning. The agent explicitly considers the
parameter of the social role of other agents within the team in filtering and assigning
weights to the information inferred about them. For example, if the agent is an
attacker, which is one of the roles in a team in our domain, it will assign more
weight to other agents which are attackers. For efficiency, the agent may completely
ignore agents which it decides, based on their role, are not relevant as information
sources.

Even after filtering irrelevant differences with agents of differing social
roles, there remain individual differences which are justifiable and do not constitute
a failure, simply because agents may not necessarily find themselves in identical
external and internal states. For instance, in the real world, no two agents can share
the exact same physical space. We therefore require more techniques which can
raise our confidence that indeed a failure has occurred, when a discrepancy in
individual operators is found.

The above discussion brings us to an updated version of the Similarity
function, incorporating the heuristics discussed above: social role and social status.
The exact definition of role and status, and the weights by which they modify the
certainty (3.1-3.2 in Algorithm 3b below) are domain dependent, as are the default
certainties that a failure has occurred.

Similarity (Operator-Difference) {
1. Certainty ← Default /* or a-priori certainty */
2. If Operator-Difference is between team operators then
 Certainty←Maximum Certainty /* From version 1 */
3. Else /* difference between individual operators */

3.1 If Operator-Difference is between agents with same Role, then increase
Certainty, else decrease it.

3.2 If Operator-Difference is between agents with same Status, then
increase Certainty, else decrease it.

4. Return Certainty.
}

Algorithm 3b. Similarity, Version 2.

4.3 Towards Recovery Based on Social Comparison

In general, to recover from a failure, a process of diagnosis is required. Here again
social comparison raises novel issues. First, it does not make the model-correctness
assumption made in previous approaches. Second, it allows the process of diagnosis
and recovery to utilize social sources of information which were not utilized before.

Model-correctness assumption. In recovering from a failure detected by
social comparison, the agent must reason explicitly about the differences in beliefs
that exist between itself and the other members of the team. From the fact that other
agents are executing a different plan, the agent can infer by abduction that the

preconditions necessary for selection and execution of that plan were satisfied by the
other agents. It can then reason about the relevance of these preconditions to its own
selected plan. For instance, in the example of the agent’s failure to detect a key
landmark, it appears that the other agents are carrying out the wait-at-point operator
(one agent lands, while the other one which is known to be the scout goes forward).
Once this discrepancy is noted (“I am executing fly-flight-plan, they are executing
wait-at-point”), the agents makes an abductive inference that the other agents believe
that the team has indeed reached the landmark. However, the agent does not
necessarily adapt the team-members’ view - it does not assume the model (other
agents) to be correct.

Socially-based recovery. As the model-correctness assumption is made
explicit, social information sources can be utilized for diagnosis and recovery. If the
agent believes it is at fault, it can alter its own beliefs by adopting the preconditions
which it inferred are satisfied for the other agents’ operators. In particular, team
operator’s preconditions require mutual belief, and so by adopting them the agent
allows the correct team plan to be selected, therefore synchronizing itself with the
rest of the team. For example, the agent in the landmark example fixed its own
beliefs regarding the landmark based on this abduction. This fulfills the
preconditions of its own “wait-at-point” operator, which is now selected and allows
the agent to recover gracefully from the failure.

5 Results and Evaluation
Our agent, including IFDARS, is implemented completely in Soar [9].
Approximately 1200 rules are used in the implementation of the agent, which
includes the military procedures, as well as the teamwork and agent-modeling
capabilities. Additional 60 rules implement IFDARS, forming an add-on layer on top
of the procedures making up the agent.

The social comparison approach to failure detection complements the
condition-monitoring detection methods, being able to detect different types of
failures. In general, the condition-monitoring approaches cannot detect failures
where a feature of the environment is not detected, and are limited in their abilities
to detect failures where the inputs to the agent (as perceived by the sensors) are
incorrect. Model-based approaches in particular use the agent’s own inputs to
generate an ideal output which is compared to the actual output to detect problems in
the process converting inputs to outputs. However, failures may occur in the inputs to
the agent due to sensory problems, resulting either in incorrect readings or in
missing perceptions. A model-based approach cannot detect these failures as it uses
the erroneous inputs. However, the social comparison approach can detect such
failures and correct them as demonstrated in the example of the undetected
landmark.

In contrast, social comparison methods will encounter problems in single-
agent situations, or if all team members encounter identical failures simultaneously
(which we hypothesize to occur very infrequently in complex multi-agent settings).
There a process of comparison would not generate any differences if the execution of
the plan is incorrect, as the agents would all display the same incorrect behavior.

Here a model-based or condition-monitoring approach is very suitable for detecting
failures.

Our explicit choice to prefer agent-modeling to communications for
acquiring the information for comparison from the other agent stems from practical
constraints common to many multi-agent domains. However, in general, using the
following decision tree, an agent can decide whether to use agent modeling for
acquiring the information, or to have (by request or by design) the other agents
communicate back their beliefs, plans and goals:

C h a n c e N o d e

D e c is io n N o d e

A g e n t
M o d e lin g

C o m m u n ic a t io n

P K

P K

P R T

1 - P R T

P R T

1 - P R T

P R C

1 - P R C

P R C

1 - P R C

1 - P K

1 - P K

- T C

- T C - E R

B - T C

B - T C - E R

- C C

- C C - E R

B - C C

B - C C - E R

Figure 4. Decision Tree for Information-Acquiring Method.

The purpose of acquiring information about the other agents (by either modeling or
communications) is to detect possible failures. In the decision tree above, the agent
seeks to maximize its expected utility from the process of acquisition. Thus, a bonus
B is rewarded in the decision tree above if the agent indeed acquires new
information. This bonus is not awarded if the information does not differ in any way
from what the agent already knew. TC and CC are the costs for modeling and
communicating, respectively (CC is the total cost incurred by sender and receiver).
PK is the probability that the information is already known (so no difference is
detected), PRT the probability that the modeling process was reliable, and PRC the
probability that communications were reliable (for both modeling and
communication, reliability implies that the information was acquired correctly). ER
is the penalty for making a mistake - for example for incorrect inference made by
modeling, or for receiving an unreliable message.

By following the tree, it is clear that the agent should rely on agent
modeling rather on communications from other agents whenever TC+(1-PRT)*ER <
CC+(1-PRC)*ER. In our domain, the cost of communications is very high, as the
agents operate in a hostile environment and expose themselves by communicating
with each other. On the other hand, the cost of agent modeling is relatively low,
being mostly a computational cost rather than a survival risk. In addition, in a team
context, modeling is often reliable, in contrast to communications, which are
unreliable quite often. Our estimation of reliability and the cost of error make agent
modeling an attractive choice for acquiring knowledge of others. For simplicity, one

may choose to assume reliable communications and agent-modeling, and then the
agent’s choice is dictated solely by the cost of modeling vs. communications.

6 Related Work
Social comparison is related to work on multi-agent coordination and teamwork,
although in general, social comparison generalizes to also detect failures in execution
of individual operators, which are outside the scope of coordination. Particularly
relevant are observation-based methods, which utilize agent modeling rather than
communications for coordination (e.g., [6], [14]). Work on teamwork [14]
concentrates on maintaining identical joint goals to prevent miscoordination, while
the focus of SOCFAD is on detecting when the goals do differ. Indeed, social
comparison can be useful for recovering from failures in teamwork. The recovery
from the undetected landmark failure mentioned earlier can be construed as an
example of active coordination on the part of the team. Huber and Durfee [6] do not
assume joint goals but instead look at coordination as emergent from opportunistic
agents, which coordinate with others when it suits their individual goals. As these
agents do not have team goals, they cannot assume maximal social similarity at the
team coordination level, and so would not be able to detect team failure. Also, while
Huber and Durfee demonstrate the benefits of using plan-recognition rather than
explicit communications in a dynamic domain, they do not discuss the qualities of
the domain which make plan-recognition beneficial. The decision-tree provided in
the previous section presents a first step towards this direction.

Atkins et al. [2] attacks a similar problem of detecting states for which the
agent does not have a plan ready. They offer a classification of these states, and
provide planning algorithms that build tests for these states. However, their approach
considers only the individual agents and not teams. It also suffers from the same
limitations as condition monitoring approaches in not being able to detect modeled
states which have not been sensed correctly. For instance, their approach cannot
detect states which were not planned-for by the planner, but are still “safe” [2] such
as the example of the undetected landmark.

Social comparison is also related to imitation [2]. In fact, imitation can be
shown to be a special case of the general social comparison algorithm (Algorithm 1).
By choosing to compare itself against the observable behavior of other agents, rather
than their internal goals, the social comparison approach leads to imitation. In the
example of the agent failing to detect a landmark and land, a simple imitation of the
scout would be clearly inadequate. Alternatively, imitation of the other attacker
would lead to failure later on as the agent is still executing the wrong team-operator
and follows the wrong sequence of actions.

To illustrate this point further, consider a similar case, where the failing
agent is actually the scout that is supposed to go forward. Upon reaching the
landmark, its two team-members land waiting for it to go forward. Since it didn’t
detect the landmark the agent is still executing the flying-in-formation plan. If it
were to imitate its team-mates, it would simply land or hover near them while they
are waiting for it to go forward. Instead, with SOCFAD the agent would compare the
plan that it is executing with those of its team-mates, and realize that they are now

executing a different plan, based on detecting a landmark which it has failed to
detect. It could thus recover from such an error.

Mataric [8] used socially similar agents (next of kin) to investigate
generation of group behavior from local interactions, while the focus of SOCFAD is
on failure detection. By restricting group members to be socially similar, Mataric
showed little communication is necessary as the agents can make correct predictions
on the behavior of their peers, and this allows coherent group behavior to emerge.
Although SOCFAD emphasizes the importance of social similarity for the
individual, we do not assume it. In fact, a core issue in SOCFAD is the search for
socially similar agents which can be used for comparison among all agents.

7 Summary and Future Work
This paper presents a novel approach to failure detection, an important problem
plaguing multi-agent systems in large-scale, dynamic, complex domains. Existing
approaches often face difficulty in addressing this problem in such domains. The key
novelties of our approach are: (a) a new failure detection method, utilizing other
agents in the environment as information sources for comparison, (b) a general
heuristic for team-based comparison, (c) a detection and repair method for
(previously undetectable) information failures using abductive inference based on
other agents’ beliefs, and (d) a decision-theoretic approach to selecting the
information acquisition medium.

Several issues are open for future work. One important issue is in
techniques and biases useful for deciding which side is correct where a difference is
encountered with another agent, but no information is known to support either side.
Previous approaches have arbitrarily chosen to bias their decision by making the
model correctness assumption implicitly. IFDARS allows to explicitly handle this
state by other biases and heuristics to be used. A simple techniques that may be used
is to follow the majority, so that if a majority of agents agree with one agent, its
beliefs and behavior is taken to be correct. Such a technique has clear limitations, but
initial experiments show it to be quite useful. Another technique is to bias the agent
detecting the failure towards accepting responsibility for the failure (low self-
confidence) or for rejecting it, possibly attributing it to the other agent. This bias can
be easily parameterized, and can result in very different behaviors on the part of the
failure-detecting agent. An additional option enabled by IFDARS is to utilize
evidence supplied by other failure-detection modules to provide additional evidence.

Another important issue left for future work is the integration of learning
into the detection and recovery process, whereby the agent should be able to learn not
only how to respond to detected failures, but also the settings in which they are likely
to arise, how to prevent them from happening, etc. A key object for learning is social
similarity, where the agent would learn which agents are socially similar, or
otherwise serve as good source of information for failure-detection purposes (good
role-models).

References
1. Atkins, E. M.; Durfee, E. H.; and Shin, K. G. 1996. Detecting and reacting to

unplanned-for world states, in Proceedings of the AAAI-96 Fall symposium on
Plan Execution. pp. 1-7.

2. Bakker, P.; and Kuniyoshi, Y. 1996. Robot see, robot do: An overview of robot
imitation. AISB Workshop on Learning in Robots and Animals, Brighton, UK.

3. Doyle R. J., Atkinson D. J., Doshi R. S., Generating perception requests and
expectations to verify the execution of plans, in Proceedings of AAAI-86,
Philadelphia, PA (1986).

4. Festinger, L. 1954. A theory of social comparison processes. Human Relations,
7, pp. 117-140.

5. Firby, J. 1987. An investigation into reactive planning in complex domains. In
Proceedings of the National Conference on Artificial Intelligence (AAAI-87).

6. Huber, M. J.; and Durfee, E. H. 1996. An Initial Assessment of Plan-
Recognition-Based Coordination for Multi-Agent Teams. In Proceedings of the
Second International Conference on Multi-Agent Systems (ICMAS-96). Kyoto,
Japan. pp. 126-133.

7. Levesque, H. J.; Cohen, P. R.; Nunes, J. 1990. On acting together, in
Proceedings of the National Conference on Artificial Intelligence (AAAI-1990),
Menlo Park, California, AAAI Press.

8. Mataric, M. J. 1993. Kin Recognition, Similarity, and Group Behavior. In
Proceedings of the Fifteenth Annual Cognitive Science Society Conference.
Boulder, Colorado. Pp. 705-710.

9. Newell A., 1990. Unified Theories of Cognition. Harvard University Press.
10. Reece, G. A.; and Tate, A. Synthesizing protection monitors from causal

structure, in Proceedings of AIPS-94, Chicago, Illinois (1994).
11. Rao, A. S.; Lucas, A.; Morley, D., Selvestrel, M.; and Murray, G. 1993. Agent-

oriented architecture for air-combat simulation. Technical Report: Technical
Note 42, The Australian Artificial Intelligence Institute.

12. Tambe, M.; Johnson W. L.; Jones, R.; Koss, F.; Laird, J. E.; Rosenbloom, P. S.;
and Schwamb, K. 1995. Intelligent Agents for interactive simulation
environments. AI Magazine, 16(1) (Spring).

13. Tambe, M. 1996. Tracking Dynamic Team Activity, in Proceedings of the
National Conference on Artificial Intelligence (AAAI-96), Portland, Oregon.

14. Tambe, M. 1997. Agent Architectures for Flexible, Practical Teamwork, in
Proceedings of the National Conference on Artificial Intelligence, Providence,
Rhode Island (To appear).

15. Williams, B. C.; and Nayak, P. P. 1996. A Model-Based Approach to Reactive
Self-Configuring Systems. In Proceedings of the Thirteenth National
Conference on Artificial Intelligence (AAAI-96), Portland, Oregon.

