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Abstract
A key challenge in using intelligent systems in complex, dynamic, multi-agent environments is the
attainment of robustness in face of uncertainty. In such environments the combinatorial nature of
state-space complexity inhibits any designer’s ability to anticipate all possible states that the agent
might find itself in. Therefore, agents will fail in such environments, as the designer cannot supply
them with full information about the correct response to take at any state. To overcome these
failures, agents must display post-failure robustness, enabling them to autonomously detect,
diagnose and recover from failures as they happen. Our hypothesis is that through agent-modeling
(the ability of an agent to model the intentions, knowledge, and actions of other agents in the
environment) an agent may significantly increase its robustness in a multi-agent environment, by
allowing it to use others in the environment to evaluate and improve its own performance. We
examine this hypothesis in light of two real-world applications in which we improve robustness:
domain-independent teamwork, and target-recognition and identification systems. We discuss the
relation between the ability of an agent-modeling algorithm to represent uncertainty and the
applications, and highlight key lessons learned for real-world applications.

Introduction
A key challenge in using intelligent systems in real-world environments is the attainment of
robustness in face of uncertainty (Toyama and Hager 1997). The explosion of state-space
complexity completely inhibits the ability of any designer, human or machine, to specify in
advance the correct response in each possible state (Atkins et al. 1997).  In addition, an agent in
such environments cannot completely and correctly sense their environment at all times. Examples
of such domains include virtual environments for training (Johnson and Rickel 1997), combat
simulations (Tambe et al. 1995), and automatic target recognition and identification (SPIE 1995).
Robust (fault-tolerant) agents in such environments must be endowed with the capability to
autonomously compensate for the inherent uncertainty of such environments. They must be able to
autonomously detect, diagnose and recover from failure in sensors and communications, using
inference to enhance the knowledge gained from sensors which have limited reliability.

Indeed, the difficulty of agent robustness has emerged as a key lesson learned in our work
in real-world applications. In particular, for the past five years, we have been developing teams of
pilot agents for DARPA’s synthetic theater of war (STOW) combat simulation environment. This
is a real-world, complex, dynamic simulation, commercially developed for the military (Tambe et
al. 1995). Pilot teams in this environment face a range of uncertainties, from unscripted enemy
behaviors, to pilot agents encountering differing, inconsistent or incomplete views of the world, to
unexpected pilot or helicopter failures, to unexpected communication failures. Our first-hand
experience here has been that enabling the pilot teams to perform multiple missions over the
duration of a major simulation exercise requires a very high degree of robustness from participating
agents and agent-teams.

To attack this problem, AI techniques have attempted to provide agents with the capability
to demonstrate post-failure robustness (Toyama and Hager 1997), which allows the agents to
autonomously detect, diagnose, and recover from failures as they occur. Previous approaches



(e.g., Doyle et al. 1986, Williams and Nayak 1996) have attempted to improve the robustness of
agents performance by specifying constraints which essentially allow an agent to compare the
execution of its task to some ideal, specified by the designer in the form of a self-model of the
agent, or monitoring conditions on the agents perceptions and actions. For instance, a common
technique in robotics is to recognize and track objects by their color, which is fast and relatively
reliable. The agent knows that it has lost sight of the object when the color is no longer in view.
Or, as an example of model-based diagnosis, an agent may discover one of its internal components
is faulty when the actions produced do not match the modeled ideal behavior.

While powerful in themselves, these approaches are geared towards use in a single-agent
environment, and have several limitations in multi-agent settings. First, these approaches fail to
take advantage of the opportunities existing in multi-agent settings, in that they do not allow the
agent to compensate for its own sensor readings by utilizing knowledge of other agents’ beliefs
and/or behavior.  For example, a driver of a car may infer the existence of an obstacle in the road
from observing another car swerve. Or, a missile may recognize targets which are only partially
viewed based on their observed behavior, rather than absolute visual identification. These
examples, however, rely on the ability to reason about other agents, rather than the exact visual
scene.

Second, these approaches do not consider the effects that failures in other agents have on
the agent’s own expected behavior. For example, flexible teamwork requires agents to maintain
their coordination in face of unexpected failures in teammates. But this maintenance can only be
carried out if the agents can detect when teammates are miscoordinating. Good teamwork requires
the agents to compensate for distributed failures, where a number of agents may all fail together,
and in different ways. Here again, the agents must reason about other agents involvement in
executing the task.

Our hypothesis is that the key element which is lacking in previous approaches, preventing
them from robust performance, is the ability to reason at a higher level about other agents. We have
therefore extended our agents with agent-modeling capabilities: The ability to model the beliefs,
intentions, and plans of other agents. We have developed several reactive agent-modeling
techniques (for different applications), called RESC (REal-time Situated Commitments) and RESL
(REal-time Situated Least-commitments), which enable an agent to infer the plans and beliefs of
other agents from their observable actions.  This capability enables our agents to improve their
robustness by allowing them to take knowledge of other agents into account, compensating for
some of the uncertainties in the environment. For example, knowledge of other agents allows a
team-member to evaluate its performance, detect failures, diagnose and recover by comparing its
own beliefs and plans to those of its teammates. Such knowledge can also be used to complement
an agent’s sensors by allowing it to indirectly sense the environment, through inference based on
the behavior of other agents. For instance, a group of vehicles may not lend itself to recognition
based on shape or color, but may be recognized by the particular formations used, tactics, etc. We
will introduce the use of RESC and RESL in service of robustness through two applications:
domain-independent  teamwork, and automatic target recognition and identification (ATR ID).

In providing domain-independent teamwork with post-failure robustness capabilities, we
have been developing SAM (Socially Attentive Monitoring), a plan-execution monitoring and
diagnosis technique (Kaminka and Tambe 1998).  In SAM, agents use agent-modeling to infer the
plans and beliefs of teammates, and compare these to their own plans. This allows agents using
SAM to detect failures and diagnose them in coordination by observations alone, and to recover.

In automatic target recognition, we have demonstrated preliminary use of RESL in enabling
identification of groups of moving targets based not on their individual visual characteristics, but
rather on their group behavior as a team. The key idea here is that the behavior of a group as a
whole, while stemming from the individual agents composing it, can be recognized and used to
identify the individuals. Additionally, the use of an agent-modeling technique lends itself to
inferring the intentions of the targets in question, rather than just their identification.

These two applications highlight important lessons which we have learned from our
investigation of real-world environments. One obvious lesson was that agents in such
environments will sometimes fail. A second lesson is that post-failure robustness is greatly



facilitated by explicit reasoning about the agents inhabiting the environment. But a more
generalized lesson that we took from this research is that achieving robust performance may not be
so much a question of coming up with an optimal technique, rather than a question of coming up
with an optimal set of techniques, that complement each other. SAM and the previous approaches
(condition monitoring, model-based diagnosis), for instance, offer complementary coverage of
failure-space, rather than an overlapping one. Similarly, we hypothesize ATR-ID systems will
benefit from incorporating agent-modeling methodology as part of the recognition process.

Motivating Application Domains and Examples
The motivation for our work comes from our two application domains, both of which involve
challenging realistic environments, involving complexity, uncertainty, and multiple interacting
agents. One is the development of synthetic pilot agent teams for a DARPA’s STOW domain -- a
commercially-developed high-fidelity distributed battlefield simulation environment in which up to
thousands of agents (helicopter and aircraft pilots, tank commanders, infantry platoons, etc.) can
all engage in virtual battlefield exercises. This real-world simulation includes uncertainties such as
unscripted behaviors of other agents, unreliable communications and sensors, possibly incomplete
task/mission specifications, etc. (Tambe et al. 1995). The other application domain is an Automatic
Target Recognition and Identification system (ATR-ID). The challenge is to observe groups of
moving vehicles and to recognize and identify the types of targets (e.g., tanks, anti-aircraft
vehicles, etc.).  Currently we are exploring this application within the context of a battlefield
simulation.

The robustness issue in the first application domain (battlefield simulation) may be
illustrated by the following two examples of  failure: The first failure involved a scenario where a
team of three helicopter pilot agents was to fly to a specified landmark position. Having reached
this position, one of the team members, whose role was that of a scout, was to fly forward
towards the enemy, verifying its position. The scout’s two teammates (role: attackers) were to land
and wait for its return to the specified position. All of the pilot agents were explicitly provided
conditions to monitor for the landmark. However, due to an unexpected sensor failure, one of the
attackers failed to sense the landmark marking the waiting position. So while the other attacker
correctly landed, the failing attacker continued to fly forward with the scout, following the original
plan which called for flying in formation! The failing attacker had clearly seen that the other
attacker had landed, but it did not use this information to infer the position of the landmark.
Furthermore, the other attacker and the scout did not complain to the failing attacker about its
failure.  In a second example, a similar team of three helicopters was to take off from the home
base and head towards their battle position. One of the agents unexpectedly did not receive the
correct mission specification, so while two of the agents began to fly out as planned, the failing
agent kept hovering in place at the starting position indefinitely. Again, none of the agents
complained about the unusual performance of the team.

We have collected dozens of such failure reports in this application domain during the last
three years. While it is generally easy for the human designer to correct these failures once they
occur, it is hard to anticipate them in advance. These failures occur despite significant development
and maintenance efforts. Given the complexity of the dynamic environment, predicting all possible
states and all possible interactions is impossible. Furthermore, these failures are not negligible.
Rather, they are very obvious (to the human observer) catastrophic failures, for both individual
agents and the team. In the second example above, not only was the single agent stuck behind
unable to participate in the mission, but the remaining agents were unable to carry out the mission
by themselves.

Furthermore, these failures are not due to a lack of domain expertise, as the domain experts
expect some common sense handling of such failures even in the most structured military
procedure. Indeed, by exercising social common sense, an agent may at least detect that something
may be wrong. Social clues, such as (in the examples above) noticing that teammates are leaving
while the agent is hovering in place, or that a team-member has landed while the team was flying in
formation, would have been sufficient to infer that something may be wrong.



These characteristics underlying the need for robustness are true of ATR-ID systems as
well. Such systems face the requirement to incorporate advanced algorithms that identify targets
from images under an extensive set of operating conditions.  These conditions may span several
categories, from target and sensor related parameters, to sensing geometry and interacting
environmental conditions.  The targets may belong to several classes.  There may be several
variants of the same target, as well as the sensor. There may be external damage to the target. The
sensors themselves may operate with varying degrees of squint, depression, resolution, frequency,
noise levels and anomalies, single or multi look. The sensing geometry itself may include varying
6 degrees of freedom poses of target, squint and depression. The background may have varying
levels of brightness, texture and various materials. In addition, environmental conditions, such as
obscuration and layover, camouflage, revetment, may render the search space combinatorically
explosive. The availability of this data for some sensors that are capable of operating day and night
and for all weather conditions further increases the dimensionality of the problem space.

An ATR-ID system may have to continue to operate in the context of this large
dimensionality, and make inferences on several hypotheses about the identities of the targets, even
when parts of the information is unavailable, or is intermittently available, through uncontrollable
circumstances. It is very important that the system correctly classify the targets, for example to
avoid targeting friendly or neutral entities, and so it must overcome any failure of the visual
recognition algorithms it employs. Current visual recognition algorithms may come to an impasse
under certain conditions, and understanding the behavior of the group of targets as a whole (i.e.,
agent-group modeling) may contribute additional important information for the recognition task.

Agent Modeling for Robust Teamwork
Agent modeling is an important problem that deals with methods allowing an agent to represent
knowledge about other agents, and to effectively reason about them. Plan recognition (Kautz and
Allen 1986) is one aspect of this problem. We have been developing several agent-modeling
techniques, based on the reactive-plan-recognition paradigm, which are all made to operate in real-
time given the real-world environments involved in our application domains.

A common thread in our modeling techniques is that they utilize plans in an “analysis by
synthesis” process (Anderson et al. 1990), effectively running the plans “in reverse” in service of
plan-recognition. Besides eliminating the need for specialized off-line pre-processing (as is
common in other plan-recognition work, e.g., (Kautz and Allen 1986, Huber and Durfee 1996),
this enables uniform representation of the agent’s own plans, beliefs, etc. and those of the modeled
agents. As will be explained in later sections, this uniformity is critical for failure detection
applications.

Execute Mission

Wait at Point

Travelling

Fly Route

Fly Flight Plan

Nap of  the Earth Contour Low-Level

Just  Wait Scout  Forward

Figure 1. An example operator hierarchy.



Our agents’ design is based on reactive plans (operators) (Firby 1987, Newell 1990), which form
a decomposition hierarchy that controls each agent. Figure 1 presents a small portion of such a
hierarchy. Each operator in the hierarchy has preconditions for selecting it, application conditions
to apply it, and termination conditions. The design of the hierarchical plans uses the STEAM
framework (Tambe 1997) for maintaining an explicit model of teamwork. Following this
framework, operators may be team operators (that explicitly represent the joint activities of the
team) or individual (specific to one agent). In Figure 1, boxed operators are team operators, while
other operators are individual. The filled arrows signify the operator hierarchy currently in control,
while dotted arrows point to alternative operators which may be used. In the figure, the agent is
currently executing the execute-mission team operator which is its highest-level team operator, and
has chosen (jointly with its team) to execute the fly-flight-plan operator, for flying with the team
through the different mission-specified locations.

Following the concept of uniform representation, our agent modeling algorithms (RESC
and RESL, explained below) both generate operator hierarchies to explain the observed actions of
other agents. The operator hierarchies are inferred, of course, but are otherwise identical to the
operator hierarchy that is actually in control of the agent doing the modeling1. Thus, the
recognizing agent has uniform access to its own “in-control” hierarchy and the inferred hierarchies
of other agents.

A key problem that haunts plan-recognition system is ambiguity, i.e., as an abductive
process, there could potentially be several plans that match the observations (Kautz and Allen
1986). The two techniques we will show present two different solutions to this problem, which
make them appropriate for different applications.

RESC: REal-time Situated Commitments
Our initial work in agent modeling resulted in the development of a reactive plan recognition
algorithm called RESC. RESC was initially targeted for opponent-modeling applications in which
the agent doing the modeling was to respond in real-time to its opponent’s plans--real-time
adversarial planning. RESC was therefore designed with the key feature of ensuring it had
committed to a single worst-case interpretation of the opponent’s behavior, allowing the agent to
respond to the worst possible threat first. In other words, given several matching interpretations of
the observations, RESC will commit to the one deemed to represent the biggest threat, rather than
most likely explanation. RESC was described in detail elsewhere (Tambe and Rosenbloom 1995)
and will therefore only be described here summarily.

To correctly provide team-modeling (as opposed to single agent-modeling) capabilities,
RESC was extended in (Tambe 1996) to RESCteam, which followed the basic RESC framework
as far as early commitments to recognized plans, but greatly enhanced the capabilities of
recognizing team-plans -- plans that are being executed by teams jointly, rather than by a group of
individuals.  This was done by allowing RESCteam to reason about the role-constraints. In
teamwork, agents are constrained by each other’s role -- this is part of coordination.  RESCteam
attempted to use these constraints in understanding what the team is jointly attempting to achieve.
For example, in air-combat simulation, RESCteam allows recognizing a maneuver in which agents
move to the left and right, resp. as a pincer maneuver.

The recognition works by using the actions specified by operators as expectations for
observable actions of the modeled agents.  For example, the NOE operator sets the speed and
altitude to that of a typical helicopter nap-of-the-earth flight: very low altitude above ground (6-8
meters), and relatively slow speed. RESC uses the operator’s specified actions to create
expectations -- so a helicopter being observed to fly at the appropriate altitude and speed potentially
“matches” the NOE operator. In other words, a possible interpretation of that helicopters chosen
plan is the NOE operator. Successful matches propagate up and down the inferred operator
hierarchy to mark a single path (root-to-leaf) which is the chosen interpretation of the observations.
                                                
1 There is a slight difference in terms of usage.  Although the plans are completely uniform in form, a RESL-inferred
hierarchy may contain multiple hypothesis, while the hierarchy in control of an agent is never ambiguous.



In case of ambiguity in the propagation (for example, two parents of a matching leaf), domain-
specific information determines which interpretations are more significant and should therefore be
preferred. In figure 2 below, the left hierarchy is the hierarchy actually in control of the agent. The
right one is inferred by RESCteam to be currently executed by another team (containing one or more
agents).

Agent's  Hierarchy

Execute Mission

Travelling

Fly  Route

Fly Flight Plan

Execute Mission

Travelling

Fly Route

Fly Flight Plan

Other's (Inferred) Hierarchy

Nap of the Earth Low-Level

Figure 2. Two example hierarchies in the agent’s memory.

In this case, the recognizing agent infers that the other agent is executing the execute-mission
operator, in service of which it executes fly-flight-plan, etc.  The observations in this case were
matched against the leaf operator (low-level), and the successful match was propagated up.

RESC in Service of Teamwork
Teamwork (collaboration) is ubiquitous in multi-agent environments. It is characterized by a group
of coordinating agents who are working together towards a joint goal. Recently, several promising
models of teamwork have been suggested (Jennings 1995, Tambe 1997) which attempt to provide
domain-independent teamwork capabilities. This work has been at least partially motivated by the
constant need to patch ad-hoc domain-dependent coordination plans and replanning capabilities,
and in that regard, can be viewed as an interesting attempt at a mix of pre-and post-failure
robustness, i.e., as techniques for preventing failures in coordination and collaboration, and team-
replanning capabilities upon detection of failure. To carry out this goal, teamwork models often
require the establishment of “common grounds”, a mutual belief shared by all members of the
team.

While teamwork models have generally been successful at improving robustness of
coordination plans by preventing them from happening, failures may still occur.  In particular,
teamwork models often rely of the establishment of mutual belief to make sure the team is
coordinated.  Yet mutual belief may be difficult to achieve in practice (Halpern and Moses 1990),
where it is often achieved via communication (which can get blurred or even lost in realistic
settings), or via common objects in the external environment that are assumed to be sensed by all
agents (a risky assumption, at times, since sensors may fail). Indeed, the examples we have
discussed in the previous section demonstrate that teamwork may breakdown under complex, real-
world settings.



To address these robustness issues, we have developed a technique called SAM (Socially
Attentive Monitoring) which relies on agent modeling to facilitate post-failure, observation-based
robustness capabilities for agents in social settings in general, and teams in particular. SAM is
described in detail elsewhere (Kaminka and Tambe 1998) and will only be introduced here as an
application of agent-modeling for robustness.

Agent Modeling for Failure Detection. SAM is composed of three processes: (i) a failure
detection process, which involves comparison with peers, in particular teammates, to detect the
possibility of failure, (ii) a diagnosis process to confirm the detected failure and perform detailed
diagnosis, and (iii) a recovery process. The key idea in the failure detection process is that agents
can detect failures in their own or their peer’s behavior by noting differences between their own
state (where an agent’s state may include its beliefs, goals, behaviors, etc.) and those of others.
This process therefore relies on knowledge of the other agents’ state, and on a representation that
supports comparison between the agent’s own state and those of others (as they are being
modeled).  This knowledge can, in practice, be acquired through either communications or agent-
modeling techniques which rely on observations.

In many realistic domains, continuous communication incurs significant cost, both in
overhead and risk. For example, in our battlefield simulation domain, the cost of communications
is very high, as the agents operate in a hostile environment and expose themselves to risks by
communicating with each other. In contrast, the cost of plan recognition is relatively low, being
mostly a computational cost rather than a survival risk. In addition, in a team context, plan
recognition is often quite reliable due to assumptions that can be made about the behavior of other
agents, since they are team members. Our estimates of reliability and the cost make plan
recognition an attractive choice for acquiring knowledge of others, and we have chosen RESCteam
as it was readily available and fit the uniform representation requirement.

Using information supplied by RESCteam, SAM compares the agents’ operator hierarchies
by performing a top-down comparison of the operators in equal depths of the hierarchy. For
instance, in figure 2, the difference that would be detected is between the two leaf nodes, since all
operators above them are identical. Any such difference indicates a possible failure, if teammates
were supposed to be executing similar operators in the first place.

Social Diagnosis. While SAM’s detection process indicates possibilities of failures, its
diagnosis process verifies the failure and generates an explanation for it utilizing social knowledge
sources (other agents and the explicit teamwork model). These sources determine the expected
similarity between the agents involved, and thus determine whether, and to what degree, the
difference in operators is truly an indication of failure. In particular, differences can be detected at
the team level (the monitoring agent and its teammates are not executing the same team operator),
or individual level. The extent of the diagnosis and recovery depends on the type of difference
detected.

In the case of team-operator differences, SAM’s failure diagnosis is driven by the
teamwork model. The key idea in SAM is based on the observation that teamwork models specify
how a team should work in general. Thus, tracing back through such a model can help confirm and
diagnose team failures. In our implementation, the agents utilize one such explicit model of
teamwork, STEAM (Tambe 1997), for their collaborative execution of team operators. STEAM
attempts to ensure that team operators are established jointly by the team via attainment of mutual
belief in their preconditions, and terminated jointly by attaining mutual belief in the team-operator’s
termination conditions. In theory, team operators must therefore always be identical for all team
members. However, as discussed before, establishing mutual belief in practice may be difficult.
Furthermore, for security or efficiency, team members sometimes deliberately reduce
communication, and inadvertently contribute to such team-operator differences. For instance,
agents may assume that an external object in team members’ visual range (such as a landmark) is
visible to all, and may not communicate about it.

Given STEAM’s guarantees that the team operator must always be identical, any team-
operator differences detected by SAM therefore imply not only a possibility but a certainty of team



coordination failure. Having established this certainty in the failure, SAM’s team-level diagnosis
next attempts to identify the exact differences between its own beliefs and its teammates’ beliefs
(again, provided by RESCteam) that have led them to execute different team operators--this aspect
of diagnosis is key for recovery, and it proceeds as follows. First, given a difference between the
monitoring agent’s T1 team operator and the other team-members’ T2 team operator, SAM infers
that the entire team was initially executing T1 (since no differences were detected earlier).
However, now teammates have begun executing T2

2

. Therefore, SAM infers that the teammates
believe that one or more of the disjunctive preconditions necessary for selection and execution of
T2 were satisfied. Furthermore, SAM infers that teammates believe that one or more of the
disjunctive termination conditions of T1 have been achieved. Typically, the intersection between
these two sets of possible beliefs determines the actual set of beliefs that the teammates hold that
are different at this point

3

. In addition, the teamwork model guarantees SAM that this is the only
real difference that has led to the teammates’ executing T2. Of course, this intersection idea can be
applied to both team and individual operator differences, but it is of particular importance for team-
level failures given the guarantees provided by the teamwork model.

In the example of the agent’s failure to detect a key landmark, SAM infers that the other
agents are carrying out the wait-at-point operator (one attacker lands, while the scout goes
forward). Once this discrepancy is noted (“I am executing fly-flight-plan, they are executing wait-
at-point”), SAM determines that since the other agents have terminated “fly-flight-plan” they have
either met with an enemy, or reached the landmark. From their current choice of “wait-at-point”
operator (whose preconditions include reaching the landmark), SAM infers that the teammates
believe that they have indeed reached the landmark. Thus, given the guarantees of teamwork
models, the difference in team operators is  elaborated by the diagnosis process to infer specific
differences in team members’ beliefs.

Recovery. Recovery is greatly facilitated by better diagnosis. Currently, SAM’s recovery
assumes that the agent’s perception is incomplete, but not inconsistent. For example, an agent’s
sensors may fail to detect the landmark (a “don’t know” response), but would not erroneously say
it is there when it isn’t. Thus, SAM’s diagnosis that teammates have come to believe in something
which the monitoring agent does not know about (or vice versa) enables the monitoring agent to
recover by adopting this belief  (or in the reverse case, by letting others know about this belief).
The above assumption is made only in the recovery stage, not in the detection or diagnosis stages,
and removing it is a topic for future work.

In the example of the failure to detect the landmark, once the agent diagnoses the problem
that the other agents have detected the landmark (making the “fly-flight-plan” achieved), it recovers
completely by adopting the other agents’ belief. This adoption of belief makes the preconditions for
its own “wait-at-point” operator true, and it re-establishes mutual belief with the team, completely
resolving the problem.

We have conducted a thorough evaluation of SAM, which is described in detail in
(Kaminka and Tambe 1998). We examined SAM’s performance on all possible permutations of the
failure involving the landmark – allowing a single agent running SAM to play either scout or
attacker, and looking at all 8 failure combinations the three helicopters – 16 experiments in all, of
which 14 contained at least one failure. SAM was able to successfully resolve a large portion (11
out of the 14) of failures which cannot be captured at all using previous techniques. In fact, SAM
was able to detect, diagnose, and recover from failures in other agents, which other technique
cannot resolve even in theory. The agent modeling capability is essential in providing the basis for
this type of diagnosis. Without the ability to reason about the knowledge that other agents possess,
the agent cannot evaluate its performance by social means. It cannot detect the failure, and it cannot
diagnose it.
                                                
2 The case where the team did not switch but the monitoring agent did is also possible, but is not described here for
brevity
3 Empty intersection cases are a topic for future work.



Agent Modeling for Improved ATR-ID Robustness
The ATR-ID task is to recognize and classify target based on their observed characteristics--shape,
color, appearance, and other elements of the visual scene. Generally, existing approaches to this
problem use techniques from computer vision, image processing, model-based recognition and
others to attempt to analyze the visual scene. However, key elements of the observed scene remain
unutilized. If we know the targets are agents acting in the environment, we can use agent modeling
techniques to help in the identification task. Different targets, depending on their intended tasks,
will display different behaviors, and so the tasks may be inferred from observation. Thus in
addition to matching a physical model to the observations to recognize targets, we propose
matching a high-level intentional model -- if a target behaves as if it is a tank, it is likely to be one.

Our specific preliminary application involved recognizing groups of unidentified moving
vehicles based on their speed, formation and other behavioral attributes. No visual information
other than their location and movement is known. Here, even though there is still a need for real-
time recognition, there is also critical need for explicit reasoning about the ambiguity in
recognition. An agent-modeling system in service of an ATR-ID system must not return one
interpretation if others exist as well, especially when trying to identify targets which could
potentially be friendly or neutral. It should instead return all matching solutions, possibly ordered
by likelihood, with a measure of confidence in each. This information can then be combined with
other evidence, such as a visual recognition component. Also, unlike the adversarial-planning case,
there is often time to consider the action to be taken based on the recognized targets, and more
information about possible interpretations is useful. Therefore, an ATR-ID application requires an
agent modeling algorithm in which the commitments to interpretations are done on a lazy basis --
only when absolutely necessary.

RESCteam’s quick commitment to an interpretation, so vital for real-time adversarial-
planning applications, proves too quick in this respect. Rather than reporting to the ATR-ID system
that the recognition result is ambiguous, RESCteam comes back with its chosen interpretation,
without providing the recognizing agent complete information about the uncertainty involved. This
disallows the ambiguity to be cleared over a period of time by collecting more observations or other
evidence.

RESL: REal-time Situated Least-commitments
To address this problem, we have been developing RESL (REal-time Situated Least-commitment).
RESL allows multiple possible matching interpretations to be reasoned about at once, in parallel.
The modeling agent therefore has access to all possible interpretations of the other agents’
observable behaviors, and can reason explicitly about the relation between the possibilities and
other source of evidence (for example, communications, visual-based recognition algorithms, etc.

In RESL's implementation, as in RESCteam, each hypotheses is a path through the
operator hierarchy used to model the other agent. The difference is that while RESC and
RESCteam decidedly maintain only a single path active at one time (thus committing to a single
interpretation), RESL maintains all matching paths at the same time. In addition, RESL attempts to
go from plan-recognition to belief ascription. When an operator matches, RESL infers that the
preconditions necessary for the operator must be believed by the modeled agent.  And when
operator stops matching, RESL infers that the operator’s termination conditions are believed by the
modeled agent.

RESL works by first expanding the complete operator hierarchy for the agents being
modeled, initializing all possible operators to a “non-matching” state. The modeled operator’s
preconditions are all flagged as non-matching, as are all termination conditions. All operator’s
action are set to be used as expectations on behavior. This process is described in Algorithm 1
(Init) below.

Init ( modeled agent )
{

current hierarchy <- NIL



for each operator in the hierarchy for modeling others:
1. Add operator to current hierarchy
2. Initialize operator's preconditions as a set of

possible beliefs associated with the agent
3. Initialize operator's termination conditions as a set

of possible beliefs associated with the agent
4. Initialize operator's actions as a set of expected

observations associated with the agent

return current hierarchy as the plan recognition network
}

Algorithm 1 . Init operator-hierarchy for modeling by RESL.

Observations of other agents are continuously matched against the actions expected by the
operators.  Operators whose expectations match observations are tagged as “matching”, and these
flags are propagated along the hierarchy, so that complete paths through the hierarchy are flagged
as matching or not. These paths specify the possible matching interpretations of the observations.
In addition, precondition and termination conditions are flagged as true or not, signifying the
inferred appropriate belief by the modeled agents.  This process is described in Algorithm 2
(RESL) below.

RESL ( plan recognition network, modeled agent )
{

get observations about agent

// primitive matching
for each operator that has a set of expected observations:
1. attempt to match observations to expectations
2. If succeed, flag operator as matching successfully
3. If fail, flag operator as failing to match

// propagate matching
for each operator that is flagged as matching
successfully,
• flag its parents as matching successfully
 for each operator whose children (all of them) are flagged
as failing to match,
• flag it as failing to match
 
 // preconditions
 for each operator that is flagged as matching
successfully,
• flag its associated set of preconditions as possibly

true (the agent possibly believes this set of
preconditions)

 
 // termination conditions
 for each operator that has just stopped matching
successfully,
• flag its associated set of termination conditions as

possibly true
}

Algorithm 2.  RESL’s main loop, matching observation and making inferences.

For example, suppose a group of vehicles is moving in a particular formation, following a tactic
which can be attributed to either opponent tanks or friendly anti-aircraft vehicles.  RESL may
suggest these two hypotheses, rather than committing to one (as RESCteam would) and presenting



it to the ATR-ID system.  This would potentially allow the ATR-ID to combine this information
with other source of evidence before committing to an action.

We have performed preliminary experiments in which a vehicle was identified based on it
speed alone.  The vehicle was traveling at certain speed, but its identity was unknown. RESL
generated paths matching the operators in the hierarchy (Figure 3). These paths enable us to infer
that the vehicle is either a tank or an anti-aircraft vehicles, since those are the preconditions for
selections of the defend and attack operators.  Normally, such inference regarding target ID would
be passed on to the ATR-ID system, which can then combine this information (with the associated
uncertainty) with other sources of evidence.

Execute Mission

Attack

March

Tactical March

Defend

Spread

Vehicles’s (inferred) Hierarchies

Figure 3. RESL-Inferred multiple hypotheses.

Now, as the vehicles slowed down or sped up, the recognized plans were disambiguated, and only
a single path was left matching. This demonstrates the utility of this approach, complementing
other ATR-ID methods, such as model-based recognition and others.

Discussion and Lesson Learned

Lesson 1. The need to face up to robustness as an issue in itself has been discussed before in the
context of large-scale, real-world applications of AI (Toyama and Hager 1997). However, it does
not rise in smaller-scale, simplistic domains. Our experience with both applications has proven
again and again that agents in large-scale domains will fail.  In addressing this issue, AI
researchers must investigate applications in such domains.

Lesson 2. One obvious lesson was that post-failure robustness in multi-agent settings is greatly
facilitated by explicit reasoning about the agents inhabiting the environment. Obviously, none of
the applications described (SAM, and intentional recognition in ATR-ID) would be possible
without an agent-modeling capability.

Lesson 3. Our experience with this issue was that the agent-modeling algorithm needs to be
matched to the application that uses it. For example, RESCteam would be hazardous for use in the
ATR-ID system, since it is overly zealous in ruling out matching hypotheses. In general, an
approach such as RESL, supporting uncertainty and multiple hypothesis is beneficial in
applications that have other sources of evidence.

Lesson 4. A more generalized lesson that we took from this research is that achieving robust
performance may not be so much a question of coming up with an optimal technique, rather than a
question of coming up with an optimal set of techniques, that complement each other. SAM and the
previous approaches to agent robustness, such as condition monitoring and model-based diagnosis
offer complementary coverage of failure-space, rather than overlapping one. In particular, SAM



can diagnose failures that the other approaches can’t, and vice-versa. Similarly, we hypothesize
ATR-ID systems will benefit from incorporating agent-modeling methodology as part of the
recognition process. The information it provides can be used to complement, not replace, the
information received from the visual recognition algorithms regularly used in such tasks.

Related Work
There is generally little work on robustness reported on in the literature.  Toyama and Hager
(1997) discuss post-failure robustness in general, and provide a vision architecture that combines
low-resolution/wide-coverage and high-resolution/low-coverage techniques for face tracking.
Atkins et al. (1997) attack a similar problem of detecting states for which the agent does not have a
plan ready. They offer a classification of these states, and provide planning algorithms that build
tests for these states. However, their approach considers only the individual agent, and so has the
same weaknesses as model-based and condition-monitoring approaches. Our work on using agent-
and agent-team- modeling in service of robustness is thus novel.

SAM is related to work on multi-agent coordination and teamwork, although it generalizes
to also detect failures in execution of individual operators, which are outside the scope of
coordination. Particularly relevant are observation-based methods, which use plan recognition
rather than communications for coordination. Huber and Durfee (1996) do not assume an explicit
model of teamwork, but rather view collaboration as emergent from opportunistic agents, which
coordinate with others when it suits their individual goals. These agents do not have the guarantees
of maximal social similarity at the team level, and while they possibly will find the detected
differences useful, they cannot be certain of failures, nor facilitate team recovery (since the other
agent may simply have left the team opportunistically).

RESC and RESL are of course related to other work in plan recognition in general, and
reactive plan recognition in particular. Specifically, Rao (Rao 94) presents a similar algorithm to
that of RESL. However, the focus there was on task-independent agent modeling, while we are
looking at the relation between a specific algorithm (RESL or RESC) and the applications which it
serves. In addition, Rao’s work does not extend to the belief ascription via inference of
preconditions that we have utilized in both RESC and RESL.

Summary and Future Work
We have presented two applications of agent-modeling in significantly improving the robustness of
agents in large-scale, complex, dynamic environments, involving multiple agents. One application,
SAM, uses the RESCteam agent modeling algorithm in improving the robustness of agent teams,
allowing team-members to detect and diagnose failures based on observations of their teammates.
The other application, and ATR-ID system, utilizes the RESL algorithm, with its support for
pursuing multiple hypotheses, to provide target recognition and identification based on behavior
and high-level intentional models.

We hope to continue this line of research further by examining in greater detail the
relationship between the agent-modeling algorithm and the application which it benefits. Given an
application, we would like to be able to predict the characteristics of the agent modeling algorithm
that is required to supply the information, and vice-versa. In addition, it is important to understand
how to combine the more statistical nature of other evidence with the symbolic nature inherent to
plan-recognition and agent-modeling algorithms.

We are also interested in continuing our development of agent modeling techniques, and
their integration with other AI techniques.  For example, both RESCteam and RESL currently use
a static description of the plans. Making them adaptive, utilizing adaptation and learning technique,
will not only have significant improvement in reduction of failures in recognition (as other agents
may use a different set of plans), but also raises interesting questions regarding the effects of the
learning on the application which uses the modeled information.
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