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Robots, and therefore roboticists, have been a part of the
agents community from its auspicious beginnings in the
Autonomous Agents series of conferences, and continu-

ing with the merger into the Autonomous Agents and Multia-
gent Systems (AAMAS) conferences. Today, there is a resurgent
interest and recognition of the importance of robotics research
framed within areas of research familiar to autonomous agents
and multiagent systems researchers.

Robots (and roboticists) increasingly appear at the AAMAS
conferences, and for a good reason. The AAMAS community is
investing efforts to encourage robotics research within itself. An
annual robotics special track, an associated robotics workshop
(Autonomous Robots and Multirobot Systems), and a series of
exciting AAMAS-sponsored plenary speakers and awards over a
number of years are drawing roboticists in. The number of
robotics papers is increasing. There are fruitful interactions with
the other communities within AAMAS, such as virtual agents,
game theory, and machine learning. Robots are being used both
to inspire AAMAS research as well as to conduct it.

I posit that the growing success of robotics at AAMAS is due
not only to the nurturing efforts of the AAMAS community, but
mainly to the increasing recognition of an important, deeper,
truth: robots are agents. In other words, there is growing recog-
nition that it is scientifically useful to roboticists and agenticists
(agent researchers) in other AAMAS areas to think of robots as
agents.
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I Have a Robot, 
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Afraid to Use It!
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n Robots (and roboticists) increasingly appear
at the Autonomous Agents and Multiagent Sys-
tems (AAMAS) conferences because the com-
munity uses robots both to inspire AAMAS
research as well as to conduct it. In this article,
I submit that the growing success of robotics at
AAMAS is due not only to the nurturing efforts
of the AAMAS community, but mainly to the
increasing recognition of an important, deeper,
truth: it is scientifically useful to roboticists and
agent researchers to think of robots as agents.



Indeed, this follows in the footsteps of similar
moves in the past. Some 20 years ago, artificial
intelligence researchers began to recognize that
thinking about agents as such is useful, and this
ultimately lead to the birth of the AAMAS com-
munity. Research in agents raises challenges in
integrated capabilities for intelligence, such as
planning and execution, learning exploration and
exploitation, strategic decision making in multia-
gent settings, and more. It pushes us to close the
loop1 from sensing through thinking to acting and
back to sensing. It requires us to consider deeply
and critically what we mean by calling a system
autonomous. It raises challenges in the software
architectures needed for such capabilities, and as a
result raises challenges involving software engi-
neering and programming languages appropriate
for building agents. It is a field that calls on its
practitioners to invest in thinking (also) about the
system, rather than (only) the component.

This systemwide view is one that many roboti-
cists share. Robotics, by nature of the research,
requires its practitioners to evaluate not only a
component (for example, a new vision system),
but also its use within the system (the robot), and
its contribution toward a design goal. Moreover,
many roboticists are increasingly setting their
goals higher than what we in AI (sometimes arro-
gantly) refer to as low-level control. The cost and
stability of platforms have made it possible for
roboticists to examine complex tasks, in which
there is need for intelligence and knowledge, and
for considering multiple robots. For example, the
use of robots in assisted living, in defense and
homeland security, in automation, all present sig-
nificant challenges to anyone seeking to deploy
robots with even partial autonomy. Agenticists
have a wide variety of tools and techniques that
can be brought to bear in facing both single and
multiple robot challenges.

Similarly, agenticists are increasingly realizing
that it is useful for them to think of robots as agent
exemplars. To agent researchers, working with real
robots (made of plastic, metal, electronics, and the
sweat of graduate students) brings out important
challenges to our current theory and practice.
Robots make us fail in interesting ways and give
opportunity for gaining insights otherwise unat-
tainable. They extend the system perspective to go
beyond the conceptual perception and actuation
to consider sensors and motors (with their uncer-
tainties, faults, and latencies), imperfect commu-
nications, and multiple bodies (each with its two-
or three-dimensional geometry). They challenge us
to understand better the concept of an environ-
ment with which the agent interacts: environ-
ments that obey certain laws (in most robots’ cas-
es, the laws of physics), and often have complex,
unknown structure. Roboticists know much about

these challenges and can greatly influence intel-
lectual development within agents.

To support my argument, I report from the
trenches of ongoing robotics work within the
AAMAS community, highlighting success stories in
which robotics research benefited from AAMAS
research, and vice versa. I therefore admit in
advance to a bias toward work appearing in
AAMAS conferences and journals. This bias is
intended to highlight robotics in the context of
research areas appearing in AAMAS, as was request-
ed of me. However, the unfortunate result of this
bias is that groundbreaking work in AI and robot-
ics appearing elsewhere (for example, Thrun, Bur-
gard, and Fox’s game-changing work on proba-
bilistic robotics [Thrun, Burgard, and Fox 2005])
will not receive proper treatment here. This,
despite such work being excellent evidence for the
generality of my argument as to the usefulness of
AI to robotics, and vice versa.

Building Architectures
Robotics research today must address increasingly
complex missions that the robots should carry out.
Previously the problem of controlling a robot
could be addressed by a carefully designed con-
troller out of the seemingly endless variety that
mechanical engineers have developed over the
years. Relatively basic (and very useful) tasks, such
as finding a path, avoiding obstacles, and navigat-
ing to a goal location, are now mature areas of
research. Instead, robots are now expected to go
beyond reaching a goal to carrying out missions in
which there are multiple (changing) goals and
multiple tasks that should be carried out (some-
times concurrently, sometimes in sequence). Such
complex missions require planning, managing
resources, and in particular making decisions.

Well, this is something that agenticists in par-
ticular, and AI researchers in general, know about.
Beginning with Gat’s ATLANTIS architecture (Gat
1992), AI researchers have begun to integrate plan-
ners into the robot’s control architecture. Follow-
ing ATLANTIS’s three-tier design (affectionally
called 3-T architecture), a standard approach was
to integrate a high-level planner together with
controllers, mediated by an executive module
whose role is to issue plan requests, schedule, and
monitor the controller’s successful execution. The
key idea in such hierarchical layering is that tasks
are planning problems, to be solved by a planner
operating in discrete atomic steps. An executive
module works at a different, finer resolution to car-
ry out the task. Guided by the plan, it translates its
discrete steps into controller instantiations. In a
sense, this is a solution approach based on Newell
and Simon’s problem-space hypothesis (Newell
1990).
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Around the same time, agents researchers have
begun to advocate the idea that agents are not just
planners (Pollack 1990; Pollack and Horty 1999).
Rather, agents should reason about plans, generat-
ing them, adapting them, and contrasting them, to
make decisions about carrying them out in service
of various goals.

Agent researchers developing robots with inte-
grated capabilities have focused on integrating
planning and execution (sometimes also with
learning) in a way that reflects such reasoning
about plans. Here, execution and planning work at
the same temporal and task resolution. The
approach, called plan-based control by Beetz and
colleagues (Beetz et al. 2001), relies on utilizing a
plan representation as a central, first-class object,
which is reasoned about, generated, adapted,
revised, and managed through the lifetime of the
robot. Planners are used not only to generate plans
(and replan), but also to provide predictions
(including of resource use and execution time).
Separate processes estimate the state of the robot
and the world, address perception (symbol ground-
ing, sensor fusion, and so on), and make decisions
as to alternative courses of action.

One approach built on hierarchical layering of a
planner and execution modules. For instance,
Haigh and Veloso (Haigh and Veloso 1997, 1998),
and Simmons and colleagues reported on experi-
ences with an office-delivery robot, Xavier (Sim-
mons et al. 1997a, 1997b). In particular, they
report on a layered architecture (Rogue) for con-
trolling the robot. Somewhat similarly to
ATLANTIS, a planner is used to plan multistep
tasks. Steps are carried out by a path planner and
motion controller executive module, which is also
responsible for triggering replanning when neces-
sary. However, in Rogue, plans are reasoned about
and manipulated using learning. For instance,
Xavier learned to avoid hallways that are crowded
during specific times. Beetz and colleagues  discuss
plan-based control in depth and argue for a specific
implementation called Structured Reactive Con-
trollers (Beetz 2001), which allow for revising plans
as opportunities and failures occur. To discover
such opportunities and failures, the state of the
robot and the environment are estimated using
probabilistic reasoning. Similar robots, cited by
Beetz et al., include Minerva (Thrun et al. 2000)
(museum tour guide), and Remote Agent (Pell et al.
1997) (an experimental autonomous NASA space-
craft agent).

Thus the need to reconsider the design of the
agent architecture was lead both by theorists as
well as robotics researchers working in the context
of agents research. The challenge of how to inte-
grate different capabilities was met, within the
agents community, with an already existing body
of knowledge and significant fascination with gen-

eral agent architectures: with how, in general,
agents should be built. Indeed, one of the early
conferences of the field was Agent Theories, Archi-
tectures, and Languages (ATAL), which focused on
the theory and practice of building agents for var-
ious domains, and allowed researchers working in
very different domains to discuss commonalities
and differences in their designs.

Over the years, research into agent architectures
that work across a wide variety of agent types and
environments (including robots in various appli-
cations) has resulted in greater understanding of
the architecture components and their operation.
Some specific areas of research—still continuing
today—are discussed in this article.

Beliefs, Desires, Intentions, and Other
Mental Attitudes
First, it is by now understood that an agent oper-
ating in a dynamic environment (the settings for
many robot applications) must manage the plan-
ning process. It must decide when to plan and
when to avoid replanning (as it is computational-
ly infeasible to replan with every change). To do
this, the construction of the agents must allow for
explicit representation of beliefs, goals, and plans
(whether preplanned or dynamically generated).
These will be revised, manipulated, contrasted, and
reasoned about by the agents’ action selection and
perception processes. In other words, beliefs, goals,
and plans are all first-class objects.

To a large degree, the huge literature on mental
attitudes of agents, and in particular on BDI (belief
desire intention) theories and architectures (Rao
and Georgeff 1995; Georgeff et al. 1998; Padgham
and Winikoff 2002; Sardiña and Padgham 2011) is
a response to this challenge. Recent years are see-
ing, side by side, developments in both the theory
and practice of plan representation that are
amenable to both planning and execution. A vari-
ety of academic BDI implementations exists; I
mention a few that have been used with robots,
such as PRS (Ingrand, Georgeff, and Rao 1992; Lee
et al. 1994), RPL (Beetz 2001), and RAPs (Earl and
Firby 1997). There are also commercial BDI imple-
mentations specifically targeting robotic applica-
tions (for example, CogniTeam, Ltd. 2009).2

First-Class Plan Representations
In addition to these BDI languages that have been
used in robots, there have been of course many
plan representations (and sometimes program-
ming languages) that have been tried and tested in
robots, but that offer first-class status only to the
plan, rather than also beliefs and goals. Neverthe-
less, they are useful in constructing robots that
employ plan-based control. These include finite-
state representations (Tousignant, Wyk, and Gini
2011; Risler and von Stryk 2008; Lötzsch, Risler,
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and Jüngel 2006), Petri net representations (Costel-
ha and Lima 2008; Ziparo et al. 2010), and tempo-
ral planning and scheduling languages (for exam-
ple, T-REX [Py, Rajan, and McGann 2010], which
allows for multiple-resolution scheduling of tasks).

No single plan representation has emerged thus
far as a clear de facto standard, and in fact the com-
parison of these representations remains an open
challenge. Many of the BDI languages have been
develop to address reported failings in finite-state
machine representations (such as their lack of a
factored state and limited reactivity), but a clear
theoretical contrast is still lacking.

Teams of Robots
Perhaps the area in which agents research has had
the most impact on robotics research, is in multi-
robot systems. As can be expected, AAMAS
research has resulted in a very significant amount
of techniques and tools that are relevant and can
be brought to bear in addressing challenges in mul-
tirobot systems.

An important part of the success of AAMAS
research is due to its principled, domain-indepen-
dent handling of the combinatorial complexity of
multirobot tasks. If multiple robots are to be coor-
dinated in some fashion, the task of making deci-
sions for them is more difficult than that of mak-
ing decisions for a single robot, since in addition to
the individual decisions, one must worry about the
combinations of selected actions.

Most multirobot research to date, within the
robotics community, focuses on a single task at a
time. Some examples of such canonical tasks
include moving while maintaining formations
(Balch and Arkin 1998; Fredslund and Mataric
2002; Desai, Ostrowski, and Kumar 2001; Carpin
and Parker 2002; Inalhan, Busse, and How 2000;
Kaminka, Schechter-Glick, and Sadov 2008;
Elmaliach and Kaminka 2008), multirobot cover-
age (Williams and Burdick 2006; Ferranti, Trigoni,
and Levene 2007; Rekleitis et al. 2004; Zheng et al.
2005; Rekleitis, Dudek, and Milios 2001; Batalin
and Sukhatme 2002; Wagner and Bruckstein 1997;
Butler, Rizzi, and Hollis 2000; Hazon and Kaminka
2008; Agmon, Hazon, and Kaminka 2008), forag-
ing (Goldberg and Mataríc 2001; Rybski et al. 1998;
Rosenfeld et al. 2008; Zuluaga and Vaughan 2005;
Schneider-Fontan and Mataríc 1996; Jager and
Nebel 2002; Ostergaard, Sukhatme, and Mataríc
2001; Kaminka, Erusalimchik, and Kraus 2010),
and patrolling or surveillance (Elmaliach, Shiloni,
and Kaminka 2008; Agmon, Kraus, and Kaminka
2008; Agmon et al. 2008; Jensen et al. 2011; Basil-
ico, Gatti, and Amigoni 2009; Smith, Schwager,
and Rus 2011; Agmon, Urieli, and Stone 2011;
Marino et al. 2009; Delle Fave et al. 2009). Many of
these are approached from the perspective of dis-

tributed control. In other words, a controller is
devised such that when it is operating in each indi-
vidual robot, the total sum behavior is as required.
Such controllers are built anew for each task. But as
future robot applications grow in complexity, such
controllers would need to take into account allo-
cating and scheduling the execution of multiple
tasks, taking place concurrently or in sequence. For
instance, urban search and rescue (Murphy et al.
2008) applications require elements of both cover-
age and foraging and introduce additional novel
tasks. Similarly, soccer (for example, in RoboCup)
requires complex decision making, resource allo-
cation, and task scheduling.

A key insight gained in the AAMAS field in the
last 15 years is that, in fact, multiagent tasks can be
decomposed—conceptually, as well as technical-
ly—into two components. The first, called
taskwork, includes domain-dependent individual
capabilities. The second, called teamwork in teams,
and socialwork in general, includes the capabilities
for collaboration (in teams), or maintaining other
social relations. This socialwork component
includes social choice mechanisms, for instance,
protocols for allocating tasks to different team
members (for example, by bidding), or protocols
for reaching joint decisions (for example, by vot-
ing). The combination of taskwork and socialwork
creates a working multiagent system for a given
domain.

This insight has manifested itself in several dif-
ferent ways in robotics research. I will briefly dis-
cuss some of these areas of cross-fertilization
between agents and robotics research and then
dive in detail into one specific area (teamwork).

Market-Based Task Allocation
In terms of impact on robotics, the use of market-
based methods for allocating tasks to robots enjoys
widespread popularity. It is now being adopted and
investigated by roboticists outside of the AAMAS
community, certainly a positive sign. Starting with
Dias and Stentz’s work (2000) on the use of market
mechanisms for coordinating robots in explo-
ration and mapping tasks, there has been much
work in this area, addressing challenges that are
raised when working with robots (see, for example,
Lin and Zheng [2005]; Gerkey and Mataric [2002];
Zlot and Stentz [2006]; Lagoudakis et al. [2004];
Vig and Adams [2006]; Köse et al. [2003]; Michael
et al. [2008]; Tang and Parker [2007]; Lagoudakis et
al. [2005]; Bererton, Gordon, and Thrun [2003]).
Dias and colleagues (Dias et al. 2006) provide a
comprehensive survey, and Xu and colleagues (Xu,
Scerri, and Lewis 2006) provide a comparison with
other methods.

The key idea in multirobot market-based task
allocation is that robots bid on tasks for execution
using virtual currency, which corresponds to their
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fitness for the tasks. A market mechanism is used
to decide on the winner(s), and the tasks are allo-
cated accordingly. In this way, robots bid rational-
ly based on their individual fitness to the tasks,
while the group as a whole benefits.

Applying markets in multirobot systems is not a
straightforward process of simple implementation.
Just as AAMAS research affects robotics in this
application, so can robotics affect AAMAS research
into markets. For example, several challenges are
raised when considering the nature of the virtual
currency to be used by robots.

A naïve proposal for virtual currency would base
it on the spatiotemporal distances involved, and
energy considerations, that is, each robot would
bid on a task to be executed based on how quickly
it can get to it, and at what cost to its energy
reserves. Such currency, however, is not transfer-
able, and not arbitrarily set. A robot, may report
false estimates of its fitness to the task, because of
its own self-interests. But it can never actually car-
ry out a task at an arbitrary cost. For example, the
duration of travel from point A to point B cannot
be made arbitrarily short. Thus for instance sec-
ond-price auctions cannot be simply used in such
settings, as the winning robot cannot arbitrarily
pay the lower cost of the second price, however
much it may want to.

Moreover, even when robots are not self-inter-
ested, and bid their true valuations, failures in
communications and/or uncertainty in perception
may lead to incorrect bids. Thus there’s a second
challenge of market methods that are robust to
failures, rather than malicious manipulation (Pro-
caccia, Rosenschein, and Kaminka 2007).

Indeed, the issue of uncertainty raises a third
challenge to standard multiagent auctions. Even
under the best of conditions, robots would often
not be able to know their actual cost for carrying
out the task, due to uncertainty in their actuation,
and the dynamic nature of their environments. For
instance, even under pristine laboratory condi-
tions, a robot has significant variance in how
much time it is taking to travel a fixed path, with
no obstacles (Traub, Kaminka, and Agmon 2011).
When some elements of a dynamic environment
are included (for example, the robot may be inter-
mittently blocked by a passing pedestrian), this
variance grows still. Thus the estimation of the cost
for a given task—and calculation of a correspon-
ding bid—is inherently uncertain. Some recent
work is beginning to address this (Spaan,
Gonçalves, and Sequeira 2010), but the challenge
remains open.

Reaching Joint Decisions in Teamwork
More generally, AAMAS researchers have long dis-
covered that teamwork involves more than task
allocation. It also involves agreement on a com-

mon goal, agreement on a plan to reach the com-
mon goal, assisting teammates as necessary, and so
on.

Teamwork has been investigated within the
multiagent systems community for many years.
Grosz, Sidner, and Kraus (Grosz and Sidner 1990;
Grosz and Kraus 1996), and Cohen and Levesque
(Cohen and Levesque 1991; Levesque, Cohen, and
Nunes 1990) have published a series of articles on
teamwork, developing logical models (Shared-
Plans, Joint Intentions Framework, respectively) to
model and prescribe teamwork. Among other
issues, these models describe the conditions under
which an agent must inform its teammates of its
own private beliefs, thus effectively maintaining
synchronization in the team as to specific proposi-
tions. The SharedPlans teamwork model also spec-
ifies conditions for proactive assistance to team-
mates, mutual support, and so on.

The key benefit of this approach is that much of
such teamwork can be algorithmitized. It can be
described by a set of behavioral rules, which, if fol-
lowed, would cause the agent to act appropriately
in the context of a team, regardless of the task it
was assigned, or the application domain. Unfortu-
nately, in general, I think it is safe to say that
roboticists took little notice of these theoretical
frameworks, as groundbreaking as they were.

However, several autonomous agent researchers
picked up on these logical frameworks and began
investigations of how the frameworks might be
applied in practice. Motivated by a seemingly end-
less stream of coordination failures in a distributed
industrial system, Jennings (Jennings 1995) built
on the joint intentions framework to propose the
joint responsibility model, to automate coordina-
tion messages between agents within a distributed
system, thus reducing the number of coordination
failures. A short while later, Tambe (1997) extend-
ed the techniques involved, allowing his system
(called STEAM) to consider the cost of communi-
cations in its decisions, and recover from fails.
STEAM was evaluated empirically in a high-fideli-
ty virtual environment in which synthetic heli-
copter pilots used the system to automate their
coordination decisions.

One of the unique features of the AAMAS con-
ference is that it is a rare forum in which both
researchers of virtual humans (virtual agents) and
roboticists can meet to exchange ideas. This pres-
ents a tremendous opportunity for both sides to
affect each other. The demonstration of automated
teamwork in virtual environments brought team-
work models close enough to robotics to get some
attention from that community, especially when
STEAM was shown to be applicable to the domain
of virtual RoboCup soccer (Tambe et al. 1999). The
benefits of automated explicit teamwork are con-
crete contributions that roboticists, in principle,
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should be very happy to adopt. Currently, many
roboticists do not differentiate teams that collabo-
rate toward shared goals, from loosely coordinat-
ing groups of essentially autistic robots. Relatively
few roboticists (for example, Parker [1998]) have
recognized that robot group interactions are an
independent and specific object of study. Many
others, instead, focus on investigating various
mechanisms through which a group of robots
would appear to act as a team, or in a coordinated
manner, despite the robots’ not having any explic-
it notion of their teamwork (or even of other
robots).

Recognition of the benefits of automated team-
work in virtual environments has thus migrated
into robotics, resulting in the Bar-Ilan teamwork
engine (BITE) architecture (Kaminka and Frenkel
2005, 2007; Kaminka et al. 2007), the Machinetta
framework (Scerri et al. 2003), and the CogniTAO
commercial high-level control SDK.3 All are related
to STEAM, but contain various novel features. In
particular, both BITE and CogniTAO target robotics
specifically by providing specific features impor-
tant in mobile robots: a computationally active
world model, in which sensor readings are pre-
processed to address uncertainty; support for
maintenance goals; and flexible interaction proto-
cols, to match the conditions of the task.

To illustrate the contribution of teamwork—as
understood in state-of-the-art AAMAS—to robot-
ics, I will describe my groups’ utilization of team-
work software as part of an technology-transfer
project, intended to implement a canonical multi-
robot task—formation maintenance—familiar to
many roboticists. Given the space constraints, I
settle here for a relatively high-level description;
details are in Traub (2011).

In formation maintenance, robots must move in
unison along a given path, while maintaining a
given geometric shape. Various formation mainte-
nance methods have been investigated (for exam-
ple, Balch and Arkin [1998]; Desai [2002]; Fred-
slund and Mataric [2002]; Balch and Hybinette
[2000]; Desai, Ostrowski, and Kumar [2001];
Carpin and Parker [2002]; Inalhan, Busse, and How
[2000]; Tabuada, Pappas, and Lima [2005]; Kamin-
ka, Schechter-Glick, and Sadov [2008]; Elmaliach
and Kaminka [2008]). All of these schemes are dis-
tributed; all require each robot to run a local con-
trol process, which executes the controller that fits
the role of the robot. For instance, a left-following
robot in an equilateral triangle formation would
keep the leader in a fixed distance (matching the
distance kept by the right-following robot), such
that the leader robot is at bearing 30 degrees to the
right. A right-following robot would do the same,
but its controller would maintain the leader at a
bearing of 330 degrees (that is, 30 degrees to the
left). Figures 1–4 show a number of formations, the

basis for the work in Kaminka and Frenkel (2005;
2007); Elmaliach and Kaminka (2008); Kaminka,
Schechter-Glick, and Sadov (2008); and Traub
(2011).

The various control schemes differ in the type of
operating conditions they assume, as well as in the
type of performance they provide. For instance,
some control schemes (called SBC for separation-
bearing control) require each follower robot to be
able to identify the distance and angle to a leader
robot in the formation (Fredslund and Mataric
2002), based on sensor readings. In contrast, com-
munication-based formation maintenance can be
used to eliminate the need for perception by rely-
ing on dead-reckoning and communications from
the leader robots (Elmaliach and Kaminka 2008).
Others still use more robust schemes that allow
robots to switch which robots are to be followed
(Desai, Ostrowski, and Kumar 2001).

The goal of the project was to create a robust
controller by tying these different control schemes
together and switching between them as necessary.
This creates a formation-maintenance scheme that
is robust to intermittent perception and commu-
nications failures, as long as they do not coincide.
The key is to switch between the different schemes,
based on availability of the perception and com-
munication processes.

Now suppose we adopt a standard robotics
approach to this problem. This would entail writ-
ing a switching controller that switches between
the different modes. Each such switching con-
troller would operate on a different robot, and thus
we immediately face a challenge: we need to make
sure that when one robot switches, the others do as
well (since mixing up formation maintenance
schemes is not, in general, likely to work well).
This means that we need to add code that manages
communications between robots, so that when
one robot finds it necessary to switch, it automati-
cally lets the other ones know, and awaits confir-
mation of their switching, too. Of course, the con-
ditions under which a robot may want to switch
are not necessarily those that another robot sens-
es, and so we also need code for them to negotiate
and agree as to which control scheme the team
should use. Now we just need to get all of this
working for more than two robots, and more than
two schemes, and across potential communication
errors. And all of this still not taking into account
issues such as changing roles in the formations,
and so on—just a simple matter of programming,
as the expression goes.

Agent researchers have long recognized that the
challenges above are general. Teamwork architec-
tures offer a general solution to cases where agents
must decide on (1) when to communicate (and to
some degree, what to communicate about), (2)
how to come to a joint agreement (in this case,
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which mode mode should be used by the robots),
and (3) how to allocate (and reallocate) tasks to dif-
ferent robots. The need for such decisions comes
up again and again.

Thus my research group used a teamwork archi-
tecture to manage the joint switching of con-
trollers and the allocation of roles and tasks. We
utilized the CogniTAO (CogniTeam, Ltd. 2009)
commercial teamwork architecture to integrate
together robust SBC (Kaminka, Schechter-Glick,

and Sadov 2008) and communication-based for-
mation-maintenance controllers (Elmaliach and
Kaminka 2008). The details of the integration are
well beyond the scope of this article, but the les-
sons are not.

Traub 2011 has carried out an analysis of the
benefits of using a teamwork architecture by using
a standard software engineering model (CoCoMo)
(Boehm 1981) to measure its impact in automating
the coordination processes described above, con-
trasting it with conservative and optimistic esti-
mates of the size of the project given a standard
robotics approach. The results show 50 percent to
68 percent savings in programming effort within
the project, which of course translate into signifi-
cant savings in both development time and num-
ber of programmers. These numbers are compati-
ble with earlier reported results (Tambe 1997) (in
fact, they are more conservative).

Teamwork in robots is a success story for AAMAS
research, with measurable effects as demonstrated
above. But if anyone is looking for a more bottom-
line kind of evaluation, they need not look further
than Kiva System’s use of AI and multiagent tech-
niques in their materials handling systems (Wur-
man, D’Andrea, and Mountz 2008). Kiva System’s
products use robots to automate order fulfillment
in large warehouses. Its commercial success relies
on AAMAS techniques, integrated beautifully with
robotics.

Many challenges remain open in robotic team-
work, beyond those discussed above for market-
based coordination. For example, when we look at
teamwork in soccer, we see that humans coordi-
nate not only based on communications, but also
based on observations of each other, as well as the
shared environment. But with rare exceptions (see,
for instance, Huber and Durfee [1995, 1996]; Gmy-
trasiewicz and Durfee [2000]; Kaminka and Tambe
[2000]; Agogino and Tumer [2008]), there is very
little work on observation-based teamwork; and
certainly no integrated architecture in which
observations are used in an automated fashion.
There are also very few studies that quantitatively
and comprehensively demonstrate the type of soft-
ware engineering improvements that are gained
from using teamwork architectures. Because of
this, it can be difficult to affect engineering and
research outside of AAMAS and outside of the aca-
demic world (Kiva Systems’ being the exception
rather than the rule). Getting complete method-
ologies (such as Padgham and Winikoff’s seminal
work (2002, 2004), with serious case studies,
should be a priority for the field.

A Call to Arms
My argument in this article is that AAMAS has a

lot to offer robotics and also a lot to benefit from
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Figure 1.Triangular AIBO Formation.

From Elmaliach and Kaminka (2008) and Kaminka and Frenkel (2005).

Figure 2. Diamond AIBO Formation.

From Kaminka, Schechter-Glick, and Sadov (2008).



robotics, that as a field of science goes, working
with robots is a useful endeavor. To show this, I
have reported from the trenches of ongoing work
in two specific ares of contribution, where past
contributions and ongoing work are showing sig-
nificant promise, both in robotics as well as in
AAMAS. But there’s quite a bit more; I’ve described
the tip of the iceberg, hoping to convince you, the
reader, to look at the iceberg underneath. There’s a
lot going on. Following are a few sample tastes.

AAMAS papers have been producing theoretical
and empirical results in understanding swarms,
self-organizing systems, and robot ants, all of
which represent different approaches and different
type of systems than the proscribed, orderly, team-
work implemented in teamwork architectures.
Some of these works focus on swarms of robots,
where computationally simple agents can sense
each other only in their local, limited-range sur-
roundings (for example, Turgut et al. [2008]; Gökçe
and Sahin [2009]; Yu, Werfel, and Nagpal [2010]).
Others focus on analyzing self-organization and
theoretical properties (for example, Yu and Nagpal
[2008]; Yamins and Nagpal [2008]; Mermoud,
Brugger, and Martinoli [2009]; Shiloni, Agmon,
and Kaminka [2009]).

While commercial vehicles with some
autonomous driving capabilities are becoming a
serious issue for car companies, AAMAS researchers
have gone beyond the individual navigation and
obstacle avoidance, investigating ways to auto-
mate intersections and traffic lights, to make the
complete flows more efficient (see, for instance,
Bazzan [2004]; Dresner and Stone [2008]; Bazzan
[2009]; Fajardo et al. [2012]).

The use of robots in surveillance and security is
not new to AAMAS roboticists (see, for instance,
Rybski et al. [2000, 2002]). But in the last few years,
AAMAS researchers have begun to approach the
issue with game-theoretical and adversarial rea-
soning notions in mind, which allowed them to
provide guarantees as to the optimality of the algo-
rithms. Recent work in robots for security has
focused on patrolling (Elmaliach, Shiloni, and
Kaminka 2008; Agmon et al. 2008; Jensen et al.
2011; Basilico, Gatti, and Amigoni 2009; Agmon,
Urieli, and Stone 2011). Much remains to be done,
for instance, in integrating with reasoning for
deciding on checkpoints and static security devices
and in addressing motion and perception uncer-
tainties (Agmon et al. 2009; Agmon 2010).

The use of learning as part of an integrated, com-
plete robot has fascinated agenticists and roboti-
cists for many years. There exists vast research on
the use of learning in robots, and certainly I will
not be able to do any justice to the literature in this
single paragraph. Instead, let me highlight recent
surveys in key areas of interest: learning from
demonstration (Argall et al. 2009), multirobot /

multiagent learning (Stone and Veloso 2000; Yang
and Gu 2004; Hoen et al. 2006; Panait and Luke
2005; Busoniu, Babuska, and De Schutter 2008),
and control (Nguyen-Tuong and Peters 2011). The
opportunities and challenges for learning offered
by working with robots are essentially endless, and
given the high cost of manually tweaking code for
robots, the motivation for learning is made crisp
and clear.

Indeed, this article is also intended to be a call to
arms, to invest in robot-based research. The drop
in robot prices and consequent rise of the
machines make robot-based artificial intelligence
research in general, and AAMAS research in partic-
ular, both compelling and practical. One no longer
needs to have an in-house mechanical and elec-
tronics shop to successfully conduct research
involving robots. Stable platforms are now cheap-
ly available, and their commercial maintenance
makes maintaining a robot lab a feasible effort. As
for venues for meeting other like-minded
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Figure 4. Triangular Shrimps-III Formation.

From Traub (2011).

Figure 3. Column Shrimps-III Formation.

From Traub (2011).



researchers, the appropriately named ARMS
(Autonomous Robots and Multirobot Systems)
workshop works hand in hand with the AAMAS
conference to promote robotics research within
the AAMAS community. This is a good place to
start, even if your paper is yet not quite up to
AAMAS’s rigorous standards. Similar workshops
take place on occasion with other AI conferences,
including AAAI.

Comments on earlier drafts of this article have
repeatedly raised the issue of the use of physical
simulations and virtual environments in robotics
research. Many roboticists utilize simulations as
part of the development effort to ease the transi-
tion from theory and ideas to an actual working
system. Paradoxically, however, roboticists often
frown at research ideas that remain proven in sim-
ulation alone. In contrast, agenticists do not
always see the value in taking the extra effort
(which can be significant, even with good simula-
tions) to bring about the transition of the code
from simulation to a real robotics platform. More-
over, since many agenticists focus on virtual envi-
ronments as the target environment (working on
virtual agents), the confusion increases.

There are a number of reasons roboticists assign
significantly higher value to experiments per-
formed on real platforms. First, even with simulat-
ed noise, simulated environments are too clean,
too sterile, to really test the limits of a system. For
instance, the transition from a simulated sensor to
a real sensor is significant and affects the results of
experiments and, thus, the validity of the conclu-
sions. Second, simulations limit the scope of
human-robot interactions that can be effectively
evaluated. Thus much of the work in this exciting
area cannot be done in simulation alone. Finally,
simulations hide the computational effort: they
can run slower than real time, thus obscuring the
responsiveness of the systems. The bottom-line
claim is that evaluating using robots does not relax
the experiment assumptions, while simulations
might.

However, simulations are incredibly important
not only in shortening the development cycle but
also in enabling experiment designs that would
otherwise be too expensive to be feasible. For
instance, simulations are often used in experi-
ments where the number of robots is scaled up
(typically after validating the simulation results on
a smaller number of real robots). Simulations are
also used in running experiments with a wide vari-
ety of physical environments, which in reality
would be too expensive to construct. And yes,
there are agenticists utilizing the fact that virtual
agents are a domain of study in themselves, and
thus affect both virtual agents as well as robotics.
A good example of this is recent work on the recip-
rocal velocity obstacles (RVO) family of algo-

rithms, which has been evaluated in both types of
environments (van den Berg, Lin, and Manocha
2008; Guy, Lin, and Manocha 2010).

There is a great opportunity for AI researchers to
begin exploring essentially philosophical ideas in
real-world bodies. The potential impact that we
can have on the scientific community, and on the
exploding commercial world of robotics, is huge.
The alternative—letting roboticists rediscover and
reinvent decades of AAMAS work—is unforgivable.
Go hug a robot today!

Notes
1.  The use of the phrase in this context is due to
Manuela Veloso.

2. See CogniTeam, Ltd., www.cogniteam.com.

3. See the CogniTAO (Think as One) software develop-
ment kit and run-time kernel (CogniTeam, Ltd. 2009),
www.cogniteam.com/cognitao.
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