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Abstract

Many collaborative multi-robot application domains hawrifed areas of operation that cause spatial con-
flicts between robotic teammates. These spatial confligisceaise the team'’s productivity to drop with the
addition of robots. This phenomenon is impacted by the doatibn methods used by the team-members, as
different coordination methods yield radically differgurbductivity results. However, selecting the best coordi-
nation method to be used by teammates is a formidable taskp@per presents techniques for creating adaptive
coordination methods to address this challenge. We firseptea combined coordination cost measure, CCC, to
quantify the cost of group interactions. Our measure isuldef facilitating comparison between coordination
methods, even when multiple cost factors are consideredcongistently find that as CCC values grow, group
productivity falls. Using the CCC, we create adaptive camtion techniques that are able to dynamically adjust
the efforts spent on coordination to match the number ofgeed coordination conflicts in a group. We present
two adaptation heuristics that are completely distribuited require no communication between robots. Using
these heuristics, robots independently estimate theitbamed coordination cost (CCC), adjust their coordina-
tion methods to minimize it, and increase group produgtiwt/e use simulated robots to perform thousands of
experiment trials to demonstrate the efficacy of our apgro¥ée show that using adaptive coordination methods
create a statistically significant improvement in prodtittiover static methods, regardless of the group size.

Keywords: Multiagent systems, Adaptive Coordination, &lated Decisions
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1 Introduction

Groups of robots are used to enhance performance in many [Bskl, 16, 28]. However,
the physical environment where such groups operate oftea pahallenge for the robots to
properly coordinate their activities. Domains such as ticbeearch and rescue, vacuuming,
and waste cleanup are all characterized by limited operapaces where the robots are likely
to collide [2, 11, 16, 28]. Thus while adding robots can ptitdly improve group performance,
collisions are likely to become more frequent. To addressdhissues, a variety of collision
avoidance and resolution techniques have been previoussepted [2, 10, 11, 26, 29, 32].
However, no one method is best in all domain and group sizmgst

Matching the best coordination method for a given robotartend its operating domain is
a formidable task. To date, several coordination framewbdve been suggested for reasoning
about teamwork and coordination [14, 21, 31]. One possippgaach is to use decision the-
oretic models such as Markov Decision Processes (MDP) [&Rjmany of these formalized
frameworks. This could potentially allow robots to chodse optimal coordination method as
needed during task completion.

However, while each of these frameworks has been shown tdféetiee under certain
conditions, in many real-world applications the problemrmatking the optimal coordination
decision is computationally intractable [27]. The inhémmplexity in using these approaches
demonstrates the necessity of creating novel algorithrdshenristics to effectively deal with
real-world issues in a tractable fashion.

Our approach is to investigate a combined coordinationmestsure, CCC, that quantifies
the production resources spent on coordination conflicts.pyésent this multi-attribute cost
measure to quantify resources such as time and fuel each grember spends in coordination
behaviors during task execution. The CCC measure faeditabmparison between different
group methods. We found a high negative correlation betwldsmimeasure and group produc-
tivity, allowing us to understand why certain groups weraeneffective than others.

This negative correlation between performance and CCditédes development of adap-
tive coordination methods. The key idea is that if robotsaigitally reduce their CCC, group
productivity will be improved. To demonstrate this, we d¢eeeobotic groups which dynami-
cally adapt their coordination techniques based on eaatt’soBCC estimate. Robotic agents
calculate CCC estimates autonomously by noting the frequehevents in which collisions
are possible (and may or may not take place). This is done istabdited fashion and without
any feedback from group members—no communication is napess

We present two adaptive coordination methods suitable dondgeneous robots based on
the CCC estimates. The first method of adaptation works bykimg the parameters of a
given coordination method, adapting them to the frequer@pssible collisions. The second
approach proceeds to dynamically self-select between gerahmutually exclusive coordi-
nation methods. In order to quickly adapt to a changing envirent, we use weight-based
heuristics by which every robot in the group is capable otkjyi modifying its coordination
method to match its estimated CCC.

We use a well-tested multi-robot simulator, Teambots [3p4imulate groups of up to 30
robots engaged in both search and foraging tasks. We petfmusands of experiment trials,
to demonstrate the efficacy of this approach, with varioasteizes and compositions.



Draft: September 25, 2007 2

We find that these adaptive coordination approaches reasaltstatistically significant in-
crease in group productivity in the domains we study, eveenwfaced with dynamically
changing conditions. During task execution, differentatsbin the group engage in varied
coordination resolution behaviors. In fact, we find that Itlest form of coordination changes
over the course of time, or as the task is being completeds, Mawious forms of coordination
are likely to be needed at different times during task exeout

While we cannot guarantee the optimality of these heurggpigroaches, the experiments
demonstrate that this approach is effective in achievingissically significant improvement
in productivity without a prolonged training period. We iegk that this is likely to be needed
in many robotic domains, as environment dynamics and nomleerraditional learning ap-
proaches difficult to implement.

2 Productivity Increases in Robotic Groups

This paper focuses on understanding the interplay betwemipgoordination and productiv-

ity in robot groups. A closely related topic, of the scalapibf labor, has been extensively
studied in the field of economics. According to thaw of Marginal—or Diminishing— Re-

turns as additional production resources are added, the additproductivity yielded as a

result decreases [7]. The highest returns on productiauress are from the first beginning
of the production cycle. They then diminish with additiopabduction expenditure, until a

point where it typically becomes economically impractittahdd more production resources;
the cost of additional production resources outweighs tbduyrtivity they add.

To date, there have been limited—and often conflicting—istiéhto how robotic team
productivity scales with the addition of robots. Rybski kt[28] demonstrated that groups of
identical robots can exhibit marginal returns, with praiuty curves resembling logarithmic
functions. The first several robots in the groups they stlidided the most productivity per
robot, and each robot added successively less. Howevgrdiienot study group sizes larger
than five robots. In contrast, work by Fontan and Matarig f2@nd robotic groups operating
within a robotic foraging domain contained a certain groize,sa point they called “critical
mass”, after which the net productivity of the group dropp®ithilarly, Vaughan et al. [32] also
reported that adding robots decreased performance afetarcgroup size. The motivation for
this work lies in understanding when coordination methodala/be successful in consistently
realizing marginal gains, and when one could expect to emeow “critical mass” in group
size.

2.1 Group Differences in Performance

Our study begins with a simulated foraging domain, in whidah inwvestigate how robot pro-
ductivity is affected as group size is scaled up. Foragirfgrimally defined as locating target
items from a search regid) and delivering them to a goal regi@[12]. The foraging domain

is characterized by a limited area of operation where dpaiialicts between group members
are likely to arise [10, 11, 12, 26, 28, 29, 32]. Many robagisks such as waste cleanup, search
and rescue, planetary exploration, and area coverage tlimteait.
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We used a well tested robotic simulator, Teambots [3, 4],dikect data. We preferred
using a simulator over performing experiments with realotskas it allowed us the ability to
perform thousands of trials of various team sizes and coitipas. The sheer volume of this
data allowed us to make statistical conclusions that woalddrd to duplicate with manually
setting up trials of physical robots. However, it is impaitéo note that code created in the
Teambots simulator has been shown to directly port to NomBEeDNobots; all behaviors and
features found within the simulator can be equally appleabthese physical robots [3].

Using Teambots [4], we simulated a foraging environmentsugag approximately 10 by
10 meters. There were a total of 40 target pucks within thd,f0 of which were stationary
within the search area, and 20 which moved randomly. Eaahntreasured how many pucks
were delivered by groups of 1-30 robots using each of thedooation methods we studied,
within 9 simulated minutes of activity. To overcome any degencies on initial positions, we
averaged the results of 100 trials with the robots beinggulaat random initial positions for
each run. Thus, this experiment simulated a total of 21,088 17 groups< 30 group sizex
100 trials per size) of 9 minute intervals.

We implemented a total of 7 coordination methods based onqugly developed collision
resolution and avoidance algorithms, and variations tferall algorithms operated without
prior knowledge of the domain, nor with communication. Wes# to contrast coordination
methods from this category to focus exclusively on issuksing to coordination resolution
behaviors without needing to consider other factors.

The implementation of thBloisemethod was included in the Teambots [4] package. Balch
and Arkin [2] described this method as a system of using sepulschema any time a robot
projected it was in danger of colliding. These robots thao aldded a noise element into their
direction vectors to prevent them from becoming stuck atallminima.

Vaughan et al. [32] described an algorithm that usggressiono resolve possible collisions
by pushing its teammate(s) out of the way. They posited thasiple collisions can best be
resolved by having the robots compete and having only onet rgdiin access to the resource
in question. In our implementation of this method, for eveygle a robot found itself within 2
radii of a teammate, it selected either an aggressive odtahavior, with probability of 0.5.
If the robot selected to become timid, it backed away for 1¥les (10 simulated seconds).
Otherwise it proceeded forward, executing the aggressiliavior. As robots chose to continue
being “aggressive” or to become “timid” every cycle, the lpbility that two robots would
collide in this implementation was near zero.

Similar to the Aggression group, thepelgroup backtracked for 500 cycles (50 seconds)
but mutually repelled using a direction of 180 degrees awaynfthe closest robot. The
TimeRandgroup contained no repulsion vector to prevent collisioAswever, when robots
sensed that they did not significantly move for 100 cycles &€onds), they proceeded to
move with a random walk for 150 cycles (15 seconds). TineeRepehlso only reacted after
the fact to collisions. Once these robots did not move for dgfles (15 seconds), they then
moved backwards for 50 cycles (5 seconds).

Finally, we created two groups that lacked any coordinati@chanism. Th&othrugroup
was allowed to ignore all obstacles, and as such spent ncetiigaged in coordination behav-
iors. This “robot” could only exist in simulation as it sinygbasses through obstacles and other
robots. This group represented a theoretical group pedooe without any productivity lost
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to collisions. At the other extreme, ti&uckgroup also contained no coordination behaviors
but simulated a real robot. As such, these robots were liteelygecome stuck and lose all
productivity when another robot blocked its path.

Figure 1 graphically represents the foraging results frbesé coordination methods. The
X-axis depicts the various group sizes ranging from 1 to 3bte The Y-axis depicts the
corresponding average number of pucks the group collevedged over 100 trials.
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Figure 1: Motivating results comparing seven foraging gouEach data-point represents the average pucks
returned to the domain’s home-base using that coordinatiethod (Y-Axis) given that group size (X-axis).

According to economic theory, diminishing marginal resiane achieved when one or more
production resources are held in fixed supply, while the tityaof homogeneous labor in-
creases. In the foraging domain, the fixed number of pucksliemting domain area acted
as limiting factors of production. Consequently, one woenghect to find production graphs
consistent with economic marginal returns. However, omdytheoretical Gothru group consis-
tently demonstrated this quality over the full range of greizes. All other groups contained
a critical point where maximal productivity was reachedtehfthe group size exceeded this
point, productivity often dropped precipitously. For exae the Aggression group reached
a maximum of 30.84 pucks collected in groups of 13 robots. i#althlly, the coordination
behaviors had a profound impact on each productivity lef@r example, when examining
foraging groups of 10 robots, the Aggression method averager 30 pucks collected, the

Noise group averaged approximately 20 pucks, and the Stackpgn average collected fewer
than 8 pucks.
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2.2 The Impact of Coordination on Robot Density

We propose that differences between coordination methodpatially constrained domains
can be explained based on robot density. As one adds roliots idomain, the density of
robots, on average, should rise. Within spatially consgdidomains, this can lead to certain
area(s) having a bottleneck condition where robots canifedttevely complete their task, re-
sulting in loss of productivity. However, having too low andéy results in agents not reaching
goal areas within the domain and thus not properly commgeaheir task. As different coordi-
nation methods impact the group’s density, it is criticalttve properly match the coordination
method to the domain conditions to achieve the best prodtyctor the group.

We can model robot density as follows: Let us pick a ppimtithin a spatially constrained
domain where a group a¥ robots must pass to complete their task. Given a radiarsund
this point, we focus on an ared(r) surroundingy. During task completion, robots constantly
move in and out ofi(r) with a certain heading. At any given time, there aré: robots within
any given areal(r), wherek < N. We denote the density,(r) as the total area of thege
robots divided by the total ared(r). The value ofp(r) will impact the group’s performance.
For exampleg(r) = 1 indicatesA(r) contains no free space, and all robots mutually block. In
these instances all productivity of the group will be lostilthe area is cleared, and the density
lowered. Conversely, assumiggr) = 0, no robots are within the area. Assuming this value
remains zero, no robots will complete their task, and thegsoproductivity will be zero until
robots are allowed into the constrained area @ rises.

Figure 2 illustrates an example taken from the Teambotslaboruwith £ = 3 robots within
aradiusr = 1.5 (meters). Note that we study groups of homogeneous robatsandach robot
has a radius of approximately 0.25 meters. We denote theddreach robot asd’, where
A" = 0.25%7 or 0.20. Thus, the density(1.5) as illustrated here would bgA’)/A(r) or
(3 x 0.20)/7.1 0r0.08.

Figure 2: Three robots withid (r) wherer = 1.5. Picture is taken from the Teambots simulator and is drawn to
scale.

Every coordination method impacts the way in which roboevent and resolve collisions,
thus impactingys(r). In general, coordination mechanisms that involve caltisprevention
behaviors well before robots collide will result in lowemdities than methods that only trigger
these behaviors once robots are closer. Similarly, metti@dsnore aggressively space robots
after collisions will result in lower densities than lesgyeegsive methods. For example, a
group whose coordination method requires robots to moveg &wa distance of 5 meters after
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a collision will have a lower density than a method that omguires robots to move away 1
meter.

We claim that as robots are added or taken away from a domanbest coordination
method will change. When the group sizé)(is small, the number of robotg) coming within
the constrained area is also likely to be small. In thesesgcas®rdination methods should
allow robots to complete their task uninhibited, and nottfar reducep(r). As N grows,k
will naturally grow as well, and naive methods will resulttoo high values for)(r). In these
cases, methods that more robustly disperse the robotsewiebded.

Determining the exact optimal value fgi(r) for a given domain and set of robots is a
complex challenge, as many factors must be accounted fost, ile must model the speed
of robots with regard to various domain conditions and bairav For example, the robots we
studied slowed down to pick up objects, deviating from thesximal speed. Such phenomena
must be exactly accounted for. Second, we must model theg'aba@ct positions and headings
throughout task completion. In general, every robot headimvardsp will have a velocity
vectorV; based on its headingfrom its initial positionP; towards its final destination poipt
For an exact model, every coordination method’s respondéferent positions and headings
must be precisely calculated. Finally, a simplified modsuases robots mutually block only
in head on collisions. In fact, even indirect collisionsoatdock robots, and thus the “collision
area” of a robot needs to be modeled/as,, and P ,, instead of the locatio®; the robot
is currently situated in. Given the complexity of modelitgese different factors, we leave
calculation of an optimap(r) for future work.

Nevertheless, we can generally demonstrate two importaatacteristics based on our
model: (i) Differences in density exist between coordioatmethods; (i) Given a certain
radiusr, some density valug(r) results in the best group performance, regardless of thepgro
size (V) operating within the domain, or the specifics of the cocation method used. The
latter is a very important observation, as it may providedglines for matching coordination
methods to specific domains based on their derived densitgemonstrate these claims, we
logged the value o as a function of various distance$rom the home-base (poip) within
the foraging domain, and various group sizes. Specificaiystudied how values aof corre-
sponded between coordination methods taken at distances=09.5, 1.0, 1.5, 2.0, 2.5, 3.0,
3.5,4.0, 4.5, and 5.0. As was the case in Figure 1, we averaged value from 100 simulated
runs.

First, we compared the Aggression, Noise, Repel and Stucidotation methods defined
in the previous section. Recall from Figure 1 that the Agsitas method performed best in
groups of 10 robots, and Repel performed best in groups adind®igure 3 we plot the density
functions forN = 10 (the graph on the left) and 30 robots (the graph on the rigib}e, that
differences in coordination methods’ densities were mosh@unced when studying smaller
distances for around poinp. As one would expect, a4(r) encompasses progressively larger
portions of the entire domain area, the number of robotsiwitiis area k) eventually equals
N and no differences should be expected between coordinatethods. Consequently, we
only focus on density differences within small values forThe Aggression method, which
performed well in medium sized groups, did not successfelplve conflicts in larger groups.
This is reflected by an increase in density when moving fromob0ts to 30 robots. Conversely,
Repel, which was effective in larger groups, exhibits a)tow density in small and medium
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sized groups, reflecting a relatively lower productivity.

Second, when carefully inspecting the density levels foictvithe coordination methods
have arrived at maximal productivity, it appears that sopteaal density level exists. Specif-
ically, one can observe that the density graphs for Aggoessi groups of 10 and for Repel in
groups of 30, are nearly identical (recall that these grajoinseespond to methods performing
optimally for a given group size). Inspecting the densitiuea arrived at by these methods
shows that they are almost identiegl0.5) = 0.18, ¢(1.0) = 0.15, etc., from which we can
conclude that optimal performance corresponds to a comreosity pattern. As we show
below, other observations support this conclusion.
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Figure 3: Robotic density for four coordination methodsdooups of 10 robots (on left) and 30 robots (on right)

Similarly, one may question if the parameters within therdowation methods provide opti-
mal densities. The Repel method we defined in the previou®sduacktracks for 50 seconds
after a detected collision. We posit that different baatinag amounts would create different
densities, each most appropriate for different domain itimms. To support this claim, we cre-
ated variations of the Repel behavior where repel values b 520, and 50 seconds (Repel50,
Repell0, Repel20, and Repel500 respectively) were usgdrd=4 displays these density func-
tions for group sizesv =10, 20 and 30. Note that the density graphs of Repel50 in grotip
10, Repel200 in groups of 20, and Repel500 in groups of 30wite similar, and again reflect
values similar to those seen in Figure 3. In fact, as we wdl\sghin the experiments sections
(see Figure 10) that these Repel values yielded the highedtigtivity in these group sizes.
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Figure 4: Comparing robotic density for coordination meth&epel50, Repel100, Repel200, and Repel500 in
Groups of 10 (left), 20 (middle) and 30 (right)
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We believe that the model could theoretically be used toutale an optimal density for
a given domain. A group designer could then compare the guatidn methods at her dis-
posal, and select the one closest to this optimal densitygh&umore, this model may also give
us insight into predicting what the productivity of a grouposld be, and the amount a spe-
cific coordination mechanism deviates from that theorebpgimal performance level. This
information could then be used to create improved coorainahethods. For example, if one
would know the density needed to achieve optimal performanoe could adjust the repel
values within this coordination method to ensure that thrsdition is met.

However, this paper’s assumption is that the number of bleginvolved with creating this
precise model, and their associated states, makes detgioninf the optimal density imprac-
tical, for this and most real-world settings. Instead, weubon developing a CCC measure
that is significantly easier to calculate and can be autonshganeasured by each robot. This
measure requires no prior knowledge of the specifics of tlhedooation methods being used,
or a-priori knowledge of domain parameters. Nonethelessha next section demonstrates,
this measure is still effective in modeling differencesasaurces spent on resolving coordina-
tion conflicts. Furthermore, as Sections 4 and 5 demonstrasemeasure can also be used to
create adaptive methods that quickly and effectively att@toordination of the team to the
task.

3 Quantifying the Cost of Coordination: the CCC Measure

A mechanism is needed to measure why certain coordinatiamamésms are more effective
than others. In this section we present such a measure alioation, the Combined Coordi-
nation Cost measure (CCC). We find that this measure and gtivilyiare strongly correlated,
and use this measure to explain differences in productbatyveen all teams. As one might
expect, the more effort the group spends in coordinatiomwers, its ability to complete the
task at hand is diminished. We posit that in the absence aflawation conflicts such as those
caused by spatial conflicts, all teams should consisterigahstrate marginal gains during
scale up. We confirm this idea by easing the spatial confidterent in the domains and note
that all groups consistently demonstrate increasing mafgiroductivity returns.

3.1 Measuring Combined Coordination Costs

The CCC is defined as the sum of resources a group member exipecalise of its interactions
with other members, in particular resolving conflicts bedweagents (preventing conflicts and
managing their consequences). Examples of these resauaesclude the time, fuel, and
money spent in coordination activities or in any combinatd factors. Each agent expends
a coordination cost;, that impacts the entire group’s productivity. This cost cansist of
multiple factors,C/, with each one containing a relative weightBf. We create a multi-
attribute cost function based on the Simple Additive Waigh{SAW) method [35] often used
for multi-attribute utility functions.

We describe the combined coordination cost of a specific tagerfollows. LetG' =
{a1,...,an} beagroup ofV agents engaged in some cooperative behaviolC,Let{C!}, 1 <
j <t be the set of coordination costs in the system derived from the actioregents;. Let
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P; be the ratio of each factor @f in the total cost calculation, i.eZ§:1 P; = 1. As the total
coordination cost of each agent is the simple weighed suindi3all of these costs, the final
cost equation is:

t
C;=) Cl-P, (1)
j=1

In contrast to Goldberg and Mataiitterferencemeasure [11], we model resources spentin
coordination even before a specific conflict, such as a rolwatiision, occurs. For example,
the Aggression group’s timid and aggressive behaviors tadasollisions all constitute coor-
dination costs by our definition. The TimeRand and TimeRegpelps have costs only after
a collision is detected. The Gothru group’s CCC measure \vesya zero because it never
engages in collision resolution behaviors and thus repteseéealized group performance.

According to the hypothesis, we expected to see a negativelation between CCC mea-
sures and productivity, in two major respects. First, thgrele to which a group deviates from
idealized marginal gains is proportional to the average @G®€l within the group. This in turn
impacts the group size where the group reaches its maximarpence. Second, even before
groups hit their maximum productivity point, we hypothesizhat the more productive groups
have lower CCC levels than their peers. This accounts fowdnging productivity levels in
equally sized groups.

3.2 Measuring CCC from Various Resources

In order to confirm this hypothesis, we reran the seven fagagroups and logged their average
CCC levels. Figure 5 represents the result from this triake X-axis once again represents the
group size over the 1-30 robot range, and the Y-axis reptetemaverage time that each robot
within the group spent in coordination behaviors (out of Sé6onds) over the 100 trials.
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Figure 5: Comparing foraging groups’ coordination costs

Overall, we found a strong negative correlation (averag@4between groups’ perfor-
mance and their CCC levels, in all groups sized 1 to 30 robidis. lower the average robots’
coordination cost, the higher that groups’ average pradtictThe intuitive explanation is that
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since the task was bounded only by time, the more time spenbordination behaviors, the
less time was available for properly completing the taskusligroups that minimized this cost
were more effective.

However, the CCC measure is also capable of taking othes oustconsideration. We also
implemented these same coordination methods, but usenhfiehd of time as the one limiting
production resource, i.éP?; = 1 again. In this experiment we allocated each robot 300 units
of fuel. We assumed the fuel used was proportional to thawltst traveled, with a much lower
amount of fuel (1 unit per 100 seconds) consumed for basiotreénsing and computation.
Fuel was not transferable. Once a robot ran out of fuel, fgd functioning and became an
obstacle. Once again, we reasoned that certain methods Wweuhore successful than others
in minimizing this measurement under varying domain coads.
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Figure 6: Comparing group productivity and coordinatioelfcost measures in foraging groups

Figure 6 graphically presents the foraging productivigulées over the group range of 1-30
robots when only accounting for coordination cost baseduah fWe again found a strong
negative correlation (average -0.95) between the codidimaost at the agent level, and the
group’s productivity. Notice that the cost functions of tkemethods are effected by the new
domain requirements (productivity bounded by fuel instafatne) and the ordering of the best
coordination methods changes as a result. In these trebitheout based groups (TimeRand
and TimeRepel) fared best in medium sized groups, whilestigesups never had the highest
productivity in the first set of experiments.

Realistically, some combination of production resouraedi&ely to bound an agent’s pro-
ductivity. As a result, we also studied cases of multi-attré cost functions, and present the
results forPr;,,. = 0.7 andPr,.; = 0.3. While time and fuel are different resources, we cre-
ated a combined cost function by viewing the a@5t™ as a constant amount of fuel that was
detracted every second of the robot’s operation, indeperaféts movement. This allowed us
to normalize the time cost to approximately 70 percent ofttit@l cost function and create a
cost function composed of these two factors. Figure 7 pteska results for this multi-cost at-
tribute function, with the lower Y-axis here measuring tbendined cost of both factors, out of
300 total units. The multi-attribute measurement was stitingly negatively correlated (-0.94
on average) to each group size and its corresponding avpragdectivity level.

The CCC measure is equally applicable to other domains dsTeedlemonstrate this claim,
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Figure 7: Comparing group productivity and multi-attribwbordination cost measures

we studied a spatially limited search domain constructeflésvs. Using the Teambots [4]
simulator, we created a room of approximately 3 by 3 meteth wme exit 0.6 meters wide
and placed groups of robots inside (for comparison purpeael robot is approximately 0.5
meters wide). We measured the time until the first robot foautarget item outside the room.
We ran trials of groups of six out of seven coordination mdgh{the Gothru method is not
applicable to search tasks) in sizes from 1-23 robots (the toolds a maximum of 23 robots)
and averaged the results from 50 trials. We measured thédioadion cost in terms of the time
and/or fuel used per robot in coordination behaviors whileanplishing this task.

We again found a high correlation between the cost measuamased on the robot’s time
spent in resolving conflicts, and the total time it took foe tjroup to complete its task. We
first considered the case of only the time cost being impo(®#;,,. = 1 andP .., = 0). We
capped each experiment at 15 minutes of activity, after imhie assumed the task could not be
completed by that group. The results from these experinaetpresented in Figure 8. In the
left portion of the graph, we display the time length (in set®) until the task was completed as
the Y-axis with the X-axis showing the different group sizé#e found that most groups were
able to complete their task more quickly with small groupsotiiots. After some group size, we
again found that adding additional robots detracted froengitoup’s overall productivity. The
right graph displays the average CCC measurement basetheratbne. The Y-axis depicts
the number of seconds (out of 900 seconds) the robots weegedgvith, on average, dealing
with spatial conflicts. As the robots spent more time resmj\group conflicts, more time was
needed to complete the task.

We found a very high correlation (average 0.97) betweenyibeage measurement of each
robot’s time cost measurement, and the time to completeasie tNote that in this domain,
lower search times are better, thus higher productivitgemesented by lower values. There-
fore, the high correlation in the search domain is positivale it was strongly negative in the
foraging domain. Still, in both cases, as the CCC measureased, the group’s productivity
decreased.

The relationship between coordination costs in energyesst measures and multi-attribute
costs also applied to this new domain. In the experimentsevBe;,,,. = 0 andP g, = 1
we allotted each search robot with 300 units of fuel. As wasddise in the foraging domain,
the robots used this fuel to move, but also used a smaller afrioumaintain basic sensors
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Figure 8: Comparing group productivity and coordinationdicost measures in search groups

and processing capabilities. We also created experimenBf;,,,. = 0.7, andP g, = 0.3
with the same standardization between time and fuel as fautite foraging domain. The
fuel-only experiments had a correlation of 0.99 betweenfileé used in resolving conflicts,
and the average fuel used until the first robot completedatble tvhile the equivalent weighted
experiments had a correlation of 0.98. As opposed to thgiiegadomain, the ordering of the
most effective coordination methods was not effected bycts functions oP;,,. = 1 and
Prya =0, 0rPrie = 0 andPpy, = 1, Or Prye = 0.7, andPp,; = 0.3. In all cases, the
Noise group had the best time to task completion and the kiwekusage to task completion
in small groups. The TimeRand group had the best time to cetephe task and the lowest
fuel usage in larger groups. This result is intuitive, as yrdomains exist when fuel usage and
time to task completion are correlated.

Thus, in both domains the CCC measure was successful inciiregihe relative effec-
tiveness of coordination methods. In the foraging domaendbrrelation between the group
productivity and this measure ranged from -0.94 to -0.96thensearch domain it was even
slightly higher, and ranged between 0.97 and 0.99.

3.3 Coordination Conflicts: The Trigger for Large CCC Values

According to the density model, different coordination huets effect robots’ interactions
within spatially constrained domains and the goal must bproperly match the best coor-
dination method to the needs of the domain. Care must be tadeto spend too much on
coordination, and thus unnecessarily lower the group’sitfgror too little, and thus resulting
in too high a density. Robots with too low a density have spemimany resources preventing
collisions. If robots have too high a density, they have mpa&ng enough on coordination and
will constantly retrigger collision resolution behavido® quickly.

The CCC measures this expenditure of the resources speaelsid after coordination
conflicts. It is for this reason that the CCC can effectivelgasure (after the fact) which
method in total spent the least on coordination, and thueaeti the best density and highest
productivity.

However, the goal is also to develop mechanisms to improvemperformance. In order to
do so, the robots must be aware of the conflicts that triggerdioation resolution behaviors.
In this section we demonstrate that the spatial conflicteraht in the domains we studied trig-
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gered the CCC costs. Once we removed the reason for conflicisps consistently achieved
marginal gains, and differences between coordination atstbecame less pronounced.

Within the foraging domain, spatial conflicts revolved arduhe one home-base within
the operating area. We modified the foraging group requiréroéreturning the pucks to
one centralized home base location. Instead, robots wkyweal to deposit their pucks as
soon as they picked them up, without returning them to anylocation. We left all other
environmental factors such as the number of trials, theasideshape of the field and the targets
to be delivered identical. Teambots [4] was again used talsita 21,000 trials (7 groups 30
group sizes< 100 trials per size) of 9 minute intervals in this experiment
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Figure 9: Modified foraging and search domains

As the left side of Figure 9 shows, all groups did indeed abyaghieve marginal returns in
the modified foraging domain. While Gothru still performéd best, the differences between it
and other groups’ coordination methods were not as proremurdost groups had very similar
coordination costs, and also productivity levels. The pkoa was the RepelRand group which
had relatively high costs in small groups, and also lowefigperance. However, even this group
consistently demonstrated marginal gains in productagtyhe group size grew.

Within the search domain, we hypothesized that limitatiariee room size and width of the
exits created coordination costs during scale up. In omlease this restriction, we doubled
the size of the room to become approximately 6 by 6 meterswanened the exit to allow
free passage out of the room by more than one robot. Once,agaimeasured the time
elapsed (in seconds) until the first robot left the room aretayed 100 trials for each point.
This experiment also constituted nearly 14,000 trials (Bigsx 23 group sizes< 100 trials)
of varying lengths. The right side of Figure 9 graphicallywsfs that the modified domain
consistently realized marginal increases in faster searas with respect to group size. Once
again, cost levels were also negligible in the new domairusTkve concluded that achieving
marginal productivity gains was always possible once cditipe over spatial resources was
removed.
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4 Improving Productivity through Coordination Metrics

In this section, we demonstrate how the CCC measure is usefuélping robots self-evaluate
the effectiveness of their coordination methods onlinendutask execution. By monitoring
the triggers of coordination conflicts, robots are able tapadheir coordination methods to
the needs of their environment. Robots that use such an agipademonstrate a statistically
significant improvement in productivity over non-adaptimethods.

The dynamic nature of robotic environments makes the agdi®f creating adaptive coor-
dination formidable. While traditional reinforcement ieeng methods have been used within
some robotic environments [23, 25], the number of iteratisach algorithms require makes
them unproductive without a significant training period eBafter robots could learn the theo-
retically optimal coordination method for their specifi’g#nnment, events such as changes in
the environment or hardware failures would likely rendestapolicies obsolete. Furthermore,
finding the optimal coordination method for a group is everaedbar problem, with typically
intractable complexity [27]. This is because the stateeep# all possible actions, taken to-
gether with all possible interactions, is of exponentiaésiAs such, even without considering
system dynamics, finding the optimal coordination actiomosalways feasible.

We therefore focus on using CCC heuristically, to allow nsido dynamically select coor-
dination algorithms during task execution. The approacfuires no prior knowledge of the
domain’s physical dimensions, boundaries, number of gletaor number of other teammates.
The possible state-space is limited to mapping values of @Q@e coordination methods at
the group designer’s disposal—a tractable problem thabeaguickly addressed.

We present two adaptive coordination methods and theirradgas above static methods.
In the first technique we have the robots self adjust paraseft¢hin one coordination method
to match the perceived environmental conditions. The stechnique involves adaptation
between a number of distinct and mutually exclusive, comtion methods. We found that
both approaches did indeed significantly outperform thiécstaethods we studied in both the
foraging and search domains.

4.1 Adaptive Coordination Algorithms

The adaptive approaches are based on having each roboamaintestimate of local coordi-
nation conflicts. This estimate is adjusted as collisior@io@nd/or are resolved and is thus
sensitive to the triggers of the CCC costs. Specificallyafgerithm works as follows: Every
robot autonomously measures its own estimete represent the likelihood coordination con-
flicts are about to be encountered. We first initialiZzéo a base valuéy;,;;. For each cycle
that passes where that robot detects no impending colisibdecreases its value of by a
certain amountlV,,.,,. For each cycle where a robot senses a collision is likelycieases its
valueV by a certain amounty,,,. This process continues autonomously for all robots within
a group. Furthermore, this process does not require any comeation between group mem-
bers. Thus, it is conceivable, and even likely, that robalishave different values foi” based
on the localized conditions it is currently encountering.

The valueV is pivotal for determining the coordination method to bedus&’henV” is low,
the robot has resolved all coordination conflicts and shas&methods with low coordination
overhead (low CCC cost) that do not further lower the grodgssity. This allows the robot
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to finish its task as quickly as possible. When conflicts areencommon and’ is high, more
costly methods are needed to reduce the group’s densitg. réhioves a potential bottleneck
condition, allowing some of the robots to complete theiktagthin the spatially constrained
area.

In the first group of adaptation methods, we translate véehrels directly as a parameter of
the coordination method. For example, we use this valuet&rihne the number of cycles the
Repel method uses to repel once it detects a collision is irantior the time period chosen by
the TimeRand method before engaging in collision resatubiehaviors. This way, each robot
can autonomously control the strength of its resolutioralvairs.

In the second adaptation method the valuesdfare used to switch between a set of coordi-
nation techniques that have been pre-ordered based orctioedination overheads as ranging
from simple to complex ones. Ranges of valuesifoare then mapped to these mutually ex-
clusive methodsl,,;; corresponds to the starting point represented by the awatidn method
with the lowest overhead, and the valuesf andV,,, are then used to change the robot’s
fundamental coordination mechanism. Once the viluises or falls below a certain threshold,
that robot will change its fundamental coordination methedheeded.

4.2 Quickly Setting the Weight Values

We now discuss how the weights;,;;, W.,,, and Wy, can be quickly set. It is important

to stress that these weights form an approach to resolviagde@tion conflicts online. Our
goal is not to find any one optimal coordination method as wadothat dynamics within the
domain require different coordination methods througtibattask completion. For example,
assume one robot ceases functioning in the middle of the thslay be required to switch
coordination methods because of this event. Thus, the gdalfind a theoretical policyy,
based on the robot’s estimdtethat can be used to change the coordination method each agent
uses in an optimal fashion.

While traditional learning methods, such as Q-learning @3d other methods [30, 34]
guarantee the ability to find an optimal policy, there areesgvmajor challenges in imple-
menting this approach here. The first is procedural. Q-legris based on a Markov based
decision process that requires a concept of “state” thaiffisudt to define during task execu-
tion. As opposed to clearly defined discrete domains, trer®ireward for any given cycle
of activity in the robotic domains we studied. Thus, theifptb evaluate the effectiveness of
any given action can only be done after a relatively lond.tfidis in turn leads to a second
problem—namely, the amount of exploration data typicaéigaed in Q-learning and other tra-
ditional learning methods to converge on an optimal sotutithe thousands of trials that might
be needed are impractical for physical robot trials [19]r &mample, in the foraging domain
previously mentioned, we studied 7 groups of coordinati@thods over group sizes of 1-30
robots. Each productivity data point was averaged from ti@@stfor statistical significance,
or a total of 21,000 trials. Third, even if a theoretical opdi policy might be found, dynamics
within robotic domains may render these policies obsoletg guickly and a new learned pol-
icy = would need to be created. Finally, even if some form of leagmiould produce optimal
weights for one robot’s value df;,,;;, W.,,, andW,..,, there is no guarantee that these weights
form the optimal coordination policy for the group. This isdause the robots’ sensors yield
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only a partial observable picture of their environment, arake no use of communication to
attempt to complete that picture. Work by Pynadath and Tg@iBledemonstrated that finding
an optimal policy in such cases is NEXP-complete.

As a result, the goal ismprovedproductivity through an adaptive policy over the static
methods upon which it is based, which may or may not féenactual optimal policy. Our
approach is to facilitate autonomous adaptation basedeo€@@C measure. This measure can
be locally estimated without communication, and can be @seguickly achieving significant
productivity gains without a prolonged learning period.

Similar to work by Kohl and Stone [19], we used two differeaaiining approaches for
setting the weights: Hill Climbing and Gradient Learningr leach learning method, we used
two different types of evaluation functions. In one podgipithe average productivity from
the entire range of robot group sizes was considered. Asabelimation adaptation methods
are intended to work for any group size, when evaluating ffectveness ofr, the average
productivity from the entire group range should be caladatThe downside of this approach
is the number of trials required for policy evaluation. Assng 5 or more trials are needed for
each data point due to the noise common within any given #&iadn evaluating a range of 30
robots requires 150 trials—a number that would be difficujperform once, let alone multiple
times to converge on an optimal value. As a result, we alsd agseevaluation function that
analyzed a selective group sampling of each policy. Accgytlh this approach, representative
group sizes are used to evaluate the new policy. In the arpets, we analyzed representative
groups of small, medium and large group sizes. We seleceeérnl points (group sizes of
2 and 30) as well as the middle group size (15 robots). We \Jmali¢his would provide a
reasonable estimate over the entire range with much feveds treeded to evaluate any given
policy. Variations of this idea are possible, such as rarlgeelecting the representative group
size for evaluation from within a set group range, learnmgtiest group sizes to evaluate, and
various heuristics. We leave the development of these idedisture work.

In both of the algorithms, we set the initialto approximate the parameters of the static
coordination that served as a basis for adaptation. Anjcstabrdination method could be
viewed as containing a with fixed values ol;,,;;, W, andW,,,,,. One naive way of improv-
ing on any static method is to choose random value8ifgyandW,,,,, which should improve
performance beyond this point. For example, assume ongingtto create an adaptive Repel
method based on a static method that repels for 200 cyckesagfirojected collision. Once one
setsV;,;; to 200, any naive values &¥,, and W, should represent a policy improvement
from this point. In the second type of adaptatidf,;; could similarly be set to represent the
method with the highest average productivity. Again, arsuténg policy changes resulting
from W,,, andW,,.,,, should only help. Hill Climbing and Gradient Learning algloms were
then used to further refine the weight values from this baseli

Hill Climbing algorithms have the advantage that they ateitive for this and similar para-
meterization problems [19]. In this method, random pedtidms for the values of;,,;;, W,
andWg,.., are evaluated. If these values represent an improvememé igroup’s overall pro-
ductivity, judged through either of the two methods evatrafunctions previously described
(either average sampling over the entire range, or seestimpling), these new values are ac-
cepted forr. Otherwise, the changes are discarded. The following mseade describes the
approach:
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Algorithm 1 Hill Climbing
1. 7 < Initial Policy (as described in paper)
2: while not donedo
3:  Create variation ofr policy, 7., With random perturbations i%,i:, Vip, andVaewn

4: if Productivity(r,,.,) > Productivity ¢r) then
5: T <= Thew

6: endif

7: end while

The Gradient Learning implementation is built upon the iilimbing approach. In both
cases, perturbations in values 1dr,;;, W,,, andW,,,, are created and evaluated. However,
in this approach, each change is evaluated individuallstebd of simply accepting a change
as is, a function of the improvement caused by this factocegjpted. In the experiments, we
used a normalized value in the change multiplied by a smaktzmt, or

A(‘VNew—weight - VOld—wez’ght‘)/VOld—weight x Constant (2)

to create a normalized gradient direction. The followinguymo-code describes this algorithm:

Algorithm 2 Gradient Learning

1. 7 < Initial Policy (same as in approaghl)

2: while not donedo

3: generate small variations for each parameter in the valaé-afSpecifically:
Generate an change (perturbation) in parameigy,;;

Evaluate new/;,,;; policy
Generate aa change (perturbation) in parameiég,.,..,

Evaluate new/,.,,, policy
Generate an change (perturbation) in parameiéy,

Evaluate new/,,;, policy
10: Create a new policy based on gradient learning based on the combinedatiah of all three sub-policies.

Specifically:
7 < modified old policy with normalized gradient changes in like parameters

11: end while

© 0N gk

As the next section details, both learning approaches vitetige in significantly improv-
ing productivity over non-adaptive methods.

5 Adaptation Experimental Results

In this section we present the results in applying both adapipproaches within the foraging
and search domains we studied. The first type of adaptatamangeter tweaking within one
method, was effective in raising productivity levels to thghest levels of the static levels they
were based on. Adaptation between methods was even momesstidcand often significantly
exceeded the productivity levels of the static methods these based on, especially in the
foraging domain.

Section 5.1 presents the results of both of these adaptitieont® in the foraging domain,
and Section 5.2 discusses the respective results in thehsgamain. We also found that there
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was some flexibility in setting the weights, and near “outhsd box” productivity improve-
ments were found. As we demonstrate in Section 5.3, everpsiatel weight values were still
successful in significantly improving a group’s performanginally, in Section 5.4, we present
support for why the approach is so successful. We attrith@esticcess to the robots’ ability to
quickly and effectively change coordination approachesetian their localized conditions in
the dynamic environments in which they operate.

5.1 Adaptation in Multi-Robot Foraging

The first type of adaptation uses each robot's CCC estimadejtest the strength within one
given coordination method. In order to demonstrate theafficof this approach, we began
by analyzing the strength of coordination behaviors witthie Repel and TimeRand coordi-
nation methods previously mentioned. In the previous exparts, we chose a length of 500
cycles (50 seconds) with the Repel group to move away fronbatneearing a collision. Our
TimeRand group waited 10 seconds before a robot consideselfistopped by another robot.
As we described in Section 2.2, these parameter valueskatg to be optimal only for cer-
tain group sizes. Once again, the optimal density, and tieiamount of resources each robot
spends in these behaviors, must be properly matched todhe gize and needs of the domain.
For example, if a Repel robot repels for too long after a pmdénollision, it will take longer
to complete its task. However, in situations where colhsiare likely to occur, too short a
repulsion period results in too high a density, and robolish@come stuck within the spatially
constrained domain. A similar problem exists in the TimetRgroup. If the timeout threshold
is set too low, the robots will consider themselves inactiven while performing necessary
tasks such as slowing down to attempt to take a target puck. Iditg a timeout threshold
results in inappropriately high densities, and robots baitome stuck for long periods before
attempting to resolve conflicts.

To demonstrate this phenomenon, we studied 5 variationseoRepel groups, choosing
values of 10, 50, 100, 200, and 500 cycles as the length ofrbinets repelled after projected
collisions. We found that the best variation of the Repelrdomtion method depended on the
size of the group. As the group size grew, robots collidedenfrgquently, and increasingly
more aggressive coordination methods were needed to Ibwegroup’s density. Among the
Repel groups, Repel50 had the highest productivity in tlhes up to 10 robots. Between 10
and 15 robots, the Repell100 group did best. The Repel20@ daned better over the next 5
robots, and the Repel500 group had the highest producbeityyeen 20—30 robots. Overall,
the Repel200 fared the best with an average productivitBgiuitks. However, this group only
fared the best over a range of 5 robots. The left side of FifjQneepresents the productivity of
these static methods.

We proceeded to create an adaptive Repel group where eaoshusdd its CCC estimates
to autonomously choose which repel value to use. The ledt sidrigure 10 also displays the
productivity results from the Hill Climbing Repel adaptiaégorithm and coordination costs
Prime = 1 andPr, = 0. These results were taken after 5 learning iterations usiadirst
evaluation function (taking the average productivity frbrtrials over the entire possible robot
population). Similar results were obtained from learnirngl$ of the other learning variations.
Notice that the adaptive method often matches the highesiugtivity levels from the static
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Figure 10: Productivity graphs in Repel (left) and TimeRé&nght) Groups. Each data-point represents average
productivity levels taken from 50 trials.

groups. For statistical significance we ran all Repel grdop$0 trials over a range of 1-30
robots.

In order to evaluate the significance of these results, wdwtted a two-tailed paired t-test
on the data. We first compared the averaged productivityegat the adaptive Repel group
to all of the non-adaptive methods over the range of 30 robdiisscores were far below the
0.05 significance level with the highestvalue for the Null hypothesis being only 0.00013
(between the adaptive group and the Repel 100 group), $yreagporting the hypothesis that
this adaptive method statistically improved results ovatic methods.

We also studied 5 variations of the TimeRand group, againging values of 10, 50, 100,
200, and 500 cycles as the length of time robots waited befogaging in resolution behav-
iors. The dynamic TimeRand group also performed better tharstatic methods. The right
side of figure 10 displays the results from the adaptive HilinBing TimeRand algorithm for
Prime = 1 andPp,,, = 0. Again, this dynamic coordination method was able to achiev
the best performance, or nearly the best, from among theusstatic amounts. To confirm
the statistical significance of these findings, we againgoeréd the two tailed t-test. When
comparing the dynamic timeout group to all static ones, wedip-scores of 0.0014 or less
(p=0.0014 was found between the adaptive group and the Time&baa, which had per-
formed the best of the static TimeRand methods). A very higtissical correlation coefficient
of 0.98 also existed between the dynamic group and the mamipreductivity value taken
from among all the static timeout methods over each of ther80msizes. Thus, we concluded
that this form of adaptation was effective in raising praduty in robotic groups.

The second adaptation method used the valudé tof switch between 3 distinct coordination
methods. In the case #f7;,,. =1 andPr,.; = 0, this involved adaptation between the Noise,
Aggression, and Repel methods. The Noise group has theclestst coordination method, and
was most effective in small groups up until 7 robots. At thieeotextreme, the Repel method
fared poorly in small groups, but had the best productivitgrioups larger than 17 robots. For
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the caseéPr;,,. =0 andPr,., = 1 this type of adaptation would involve switching between the
Noise, TimeRepel, and Repel methods.

In the implementation of all adaptive methods from this gatg, we set the values of both
Waown andWW,,, to be one. Thus, we limited the learning problem to find theghold values
of V' to switch between the basic coordination methods. We agagotemented versions of
gradient learning and hill climbing algorithms to conveevalues for these weights. Our
learning algorithms converged on threshold valued’dior each of the three states at 100,
200 and 300 accordingly. Thus, ¥f increased by a total of 100, the robot would assume a
more robust coordination method was required and woulditian to use the next most robust
coordination method, say from Noise to Aggression. If thistmod was still insufficient to
resolve this instance of a projected collisidti,, would increase the value &f until the next
threshold was reached and once again the robot would mowe toeixt coordination method.
Conversely, if that method was sufficient to resolve thaidet of a projected collision, the
value of Wy,,,, would begin to decrease the valuelofand the robot could eventually move
down to the next lower method of coordination.
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Figure 11: Adaptation between static groups B¢, = 1 andPg,.; = 0 (on left) and adaptation between
static groups foP 1, = 0.7 andP g¢; = 0.3 (on right)

This second adaptive coordination heuristic was even nfteete than the first approach—
adaptation only within one method. Figure 11 contains tBalte from the cases whekey;,,.
= 1.0 andPp, = 0.0 on the right side an®;,,. = 0.7 andP ., = 0.3 on the left. In both
of these cases, we graphed the productivity levels of that&shethods with the highest pro-
ductivity as well as that of the adaptive method (learne@ ff@rough Gradient Learning). The
adaptive method here yielded strong productivity gaingroin excess of more than 20 percent
compared to the static methods it was based on. We agaimpeddhe two-tailed paired t-test
on the data and foundiavalue below 0.0001 between all basic methods with the adaphes,
demonstrating this strong improvement.

The basic assumption of the adaptive methods we preserdtisittcoordination acts can
be done independently. Therefore, in the domains we studhedts are able to independently
choose a coordination method without impacting other teaambrers. For example, it is possi-
ble to have one robot use the “Noise” coordination colligiesolution mechanism while other
robots use the “Aggression” mechanism.
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However, many communication protocols exist where statided coordination is required.
To represent these situations, we also implemented aniaglawbup, Uniform Adapt(also
found in Figure 11). In this method, once one robot deemeddessary to switch methods,
it broadcasted the selected method to all other robots (@bmmmunication network was
simulated) and all robots switched in turn. In order to prevebots from quickly switching
back, all robots also set their cost estimatdo the base value of this method. Potentially,
this method could force certain members to use a coordimatiethod not appropriate for its
localized conditions. We hypothesized that allowing rebimt autonomously adapt to their
localized conditions facilitates even further produdtingains. We further develop this idea in
Section 5.3.

5.2 Adaptation in Multi-Robot Search

We believe the approach can be generalized to domains dtherforaging. To support this
claim, we implemented both adaptive methods within thectedomain (previously studied in
Section 3.2).

Our first type of adaptation involves having agents adjuststihength of their coordination
methods based on the needs of the domain. Again in the seanchinl, we demonstrate the
shortcomings within static methods, and implemented tineesive TimeRand variations of
10, 50, 100, 200, and 500 cycles. We then implemented aniaddpneRand search method
using the same weight learning algorithms to set value¥fgr, W,,, and W, as described
in the previous sections. The result was a potiayhich translated” to the number of cycles
used when resolving any given collision event. The restltsis trial for Pr;,,,. = 1 andP z,
=0 are also found in Figure 12. On average, we found a statigtipmovement in performance
in the adaptive group, with average search scores downynagercent in the adaptive group
over the best levels among the static ones (TimeRand50).
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Figure 12: Search adaptation within TimeRand method usialgj+&ttribute coordination costs

We were also successful in creating adaptive coordinatiethads that switched between
the most effective coordination methods in this domain.eNbat in this domain the Noise and
TimeRand were always the best two methods, regardless dastecomprised oP7;,,,. = 1
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andPr,. =0, Prime = 0 andPpy = 1, Or Prjppe = 0.7 andP g, = 0.3. We used the same
methodology to create an adaptive search method with edch uging the CCC cost estimate
V to effectively switch between these methods.

Figure 13 shows the Noise, TimeRand and Adaptive groupsarnrstance ofP7;,,. =
0.7 andPr,,;, = 0.3. On the left side, we denote the productivity graphs wheesXfraxis
represents the size of the group, and the Y-axis displaysdaech time, measured in seconds,
until that group completed its task. On the right side, weldig the CCC measures for these
groups, with the Y-axis displaying the normalized CCC measweighted between time and
fuel (normalized out of 250 units). In order to establishgtegistical significance of the results
we performed the two-tailed paired t-test between the agaptethods and the static ones they
were based on. All results were below the 0.05 confidence (beénveen 0.01 and 0.04 in all
three groups).
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Figure 13: Search adaptation using multi-attribute cowtion costs

5.3 Quickly and Significantly Improving Performance

We found that some flexibility exists in setting the weights;;;, W,,,, andW,,,,. Our results
demonstrate that even results that were far from optima¢wséh a significant improvement
from the static methods they were based on. This is becaustua 8fV/,,;; being initially
set too high was soon corrected by the weight8lip.... Conversely an initial value set too
low can be quickly rectified by the weights W1,,,. Figure 14 depicts the productivity of three
adaptive repel foraging groups with values igy;; of 300, 450 and 600 and identical values
for W,, and Wy,,,,. Note that while differences exist, these differences werestatically
significant for most group sizes.

Figure 15 demonstrates the success of the weighted hewjgiroach with only minimal
learning. This graph represents three iterations in thdignalearning implementation for the
adaptive foraging repel method. Our initial policy was lthea Repel200, which on average
had the highest average productivity over the 1-30 robetvat. In the first adaptive iteration
(Gradientl) we used a value of 200 fgr,;; and naive values of 10 for botl,, and W ..

In subsequent trials (Gradient2, Gradient3), gradienniag was used to tweak these naive
values. Two issues are noteworthy in this graph: First,|rézat in the first evaluation method,
the policy 7 is evaluated from averaging five trials over the entire groanqpge. Notice the
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Figure 15: Three iterations of the adaptive repelling geouging gradient learning

large variance between trials. This illustrates the difficin learning an optimal weight value
without extensive trials. Second, note that despite thigcdity, gradient learning quickly

improved the weights used in the algorithms. Even withinftist iteration (Gradient2) the

adaptive group averaged approximatéfy improved performance, while by only the third
iteration, a near local optimum was achieved with an avepag®rmance increase ©6%.

5.4 Large Productivity Gains

Not only does coordination adaptation based on CCC estmyaddd productivity gains after
short learning periods, but these productivity gains aterofjuite large—beyond any of the
static methods they are based on. For example, we previpus$gnted two types of foraging
adaptive groupsidaptiveandUniform Adaptthat often significantly exceeded the productivity
levels of the methods they were based on. At first glance résiglt is surprising. One would
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assume adaptation is only capable of achieving resultsénwith the best levels of productivity
for the methods it was based on, not significantly higher.

We claim that the root of these productivity gains is theigbdf these methods to switch
between coordination methods as dictated by fluctuatingaitoconditions. Thus, during the
course of one trial, one robot may switch between its Noiggrassion, and Repel coordina-
tion methods many times. Our goal is not to converge on anycoonalination method, as that
method can often change as the possibility of collisionsvgror dissipates. To demonstrate
this point, we studied the average CCC estimatewithin robots in the various group sizes.
Recall that this value ranged from 0-300, with values of @+t@&pped to the Noise method,
values of between 100 and 200 mapped to the Aggression medhddarger values to the
Repel method. Assuming the goal was to converge on the otie stethod with the highest
productivity, one would assume these robots would haveageevalues of” of over 200 in
groups larger than 17 (where the static Repel group faret)l. bdswever, as Figure 16 demon-
strates, this was not the case, and average valués fanged between 0 and 200 regardless of
the Adaptive group’s size. This result implies that everangé groups, robots did not use the
most expensive method (Repel) for large portions of thdstrieor example, in one foraging
trial of 25 robots using the Adaptive method, the entire tesgrant on average 56 percent of
its time in the Noise behavior, 11 percent in Aggression higingand 33 percent in the Repel
behavior. Thus, the average valuelohever rose above 200 because the group never spent a
majority of its time using the most costly coordination noeth.
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Figure 16: Average threshold valuds, between robots using adaptive coordination method viheg,. = 1.0
andPFuel =0.0

Our working hypothesis is that fluctuations in the level oflismns even within one trial
allow for this adaptive method to outperform the static ahissased on. The Adaptive method
adapted to these fluctuations, yielding the marked impr@vgin this group’s productivity over
other groups. As empirical evidence of these fluctuatiohiwitrials, Figure 17 represents the
percentage of robots that are colliding throughout the s®of three trials (540000 cycles) in
groups of 25 robots. The X-axis in this graph representsuingaer of cycles elapsed in the trial
(measured in hundreds of cycles), while the Y-axis meagheepercentage of robots colliding
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at that time. We found that these values do in fact fluctuaténas sharply, throughout almost
all foraging trials. This further illustrates the dangerattempting to converge on one ideal
coordination method, even within one trial.

—a— Thall
—m— Trial2

—u— Tnal3

Percent of Robots Colliding

Time {Hundreds of Cycles)

Figure 17: Fluctuations in collisions over time

We believe this is also the reason why the Adaptive methaufsigntly outperformed the
Uniform Adapt group in larger group sizes. At times, the @ni Adapt approach may be ad-
vantageous as some robots could cue others as to the bedination method to use. Notice
how this group did have slightly higher productivity in sirtal medium groups (refer back to
Figure 11). However, we believe the Uniform Adapt method tiaasmajor drawbacks. First,
it requires communication between robots, a factor thatlevéikely add another coordina-
tion cost,C/ to every agent in a group. However, even beyond this pointhelieve the first
approach is more effective in allowing robots to adapt tartloeal domain conditions. In do-
mains with dynamics, such as the ones we studied, at leasbboeis typically not colliding,
and thus would naturally choose the least costly Noise ¢oatidn method. In the Uniform
method, this one robot could force the entire group to switatk to this method, accounting
for the lower productivity in this group when more costly imads were justified. In the future,
we hope to further study how adaptation can yield improvemanproductivity, even when
standardized adaptation is required.

As further empirical evidence of the effectiveness of thiggive approach, we present por-
tions of simulated foraging runs captured from the Teamsbiotsilator [4]. These results can be
found at: http://www.jct.ac.il/ rosenfa/movies/aij208in. Note that the simple Noise method
is not able to resolve coordination conflicts in groups of@fots, while it is quite successful in
smaller groups of 5 robots. Both the Repel and Aggressiohoastare moderately successful
in resolving conflicts in groups of 20 robots. However, asAldaptive movie demonstrates,
this method is able to significantly outperform these threghwods by effectively switching
between the static methods.

Finally, observe that the gains from the Adaptive approackhe foraging domain that
switched between coordination methods (see Figure 11) meh greater than the adaptive
methods that tweaked the parameter strength within oneauddfigure 10). We believe this
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difference is primarily due to the large differences in tlemsity distributions and cost func-
tions (refer to Figures 3 and 5) created by these methodssmtimain. As a result, when the
Adaptive approach switched between these sharply diffe@rdination methods, it benefited
from larger productivity gains.

In contrast, the first type of adaptation, i.e. adaptatiothiwione coordination method,
did not have as large differences in the variations withia ooordination method (see Figure
4). As a result, adaptation did not facilitate radicallyfeliént approaches to coordination, and
productivity gains from this category of adaptation did sighificantly outperform the methods
it was based on. Similarly, the search domain only had twdou to switch between, with
only modest differences in their cost functions (Figure. M% believe that this prevented the
adaptive methods in this domain from realizing even largedpctivity improvements.

6 Related Work

This work uses a novel CCC group measure to create dynamidication that improve a
group’s productivity. Our approach is related to severastexg research topics including:
Algorithm selection [1, 13, 20, 22], coordination and teamnk14, 21, 24, 31], group behavior
measures [5, 15, 17] and dynamic coordination [9]. We distilsse below.

6.1 Algorithm Selection

We draw inspiration from previous work in automatic alglomit selection, where the challenge
is to find a mapping between a portfolio of algorithms and fEwhinstances. Allen and Minton
[1] suggest running all algorithms in the portfolio for a styeriod of time, and then selecting
the best algorithm based on secondary performance chastéiceecompiled from this prelimi-
nary trial. Gomes and Selman [13] suggest running sevegati#hms (or randomized instances
of the same algorithm) in parallel.

A different approach uses machine learning to learn the mgpy algorithms to problems.
For example, Brown et al. [22], use a machine learning bogstpproach to create a classifier
to select the best algorithm. They predict which algorithith e best based on this classifier,
and then execute the algorithm based on this predictionoldakis and Littman [20] con-
centrate on recursive algorithms such as sorting ordestitaselection problems, and use a
Markov Decision Process model to select the best algorithm.

All of these previous approaches involve a single agent stesy, and thus the selection
process is centralized. Moreover, in most cases (with thepon of [20]), algorithm selection
occurs at a global level. In contrast, coordination proldeme inherently distributed, and our
approach involves local—and distributed—adaptation.

6.2 Coordination and Teamwork Models

Coordination can be defined as “managing dependencies &etactivities” [24]. Previous
work by Malone and Crowston study how coordination is defiaetbss multiple disciplines
including organization theory, psychology, economicg] artificial intelligence. While their
work presents a number of theoretical definitions for camtion, none of these are directly
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applicable for describing how one may “manage dependénicies optimal or near optimal
fashion [24].

More generally, many different coordination frameworkséndeen previously proposed
within the distributed artificial intelligence communiti4, 18, 21, 31]. While these approaches
generally address teamwork issues, they do not addressicpgeordination measures or the
relative effectiveness between approaches. The Shared&bgroach [14] consists of creating
teamwork recipes based on models of beliefs and intentitarebe’s STEAM [31] provides a
domain-independent teamwork engine. The TAEMS framew®if €onsists of a rule based
approach to quantifying coordination relationships. BILB] allows the designer of a robot
team to mix-and-match different coordination methods ftetént points in the execution of
a task, but the choice is made before run-time. These prewmestigations did not explore
on-line adaptation of the coordination methods.

One set of approaches [6] suggest using a game-theoretgateframework to negotiate a
decision between agents about which behavior to chooseettwhese approaches are useful
for characterizing self-interested agents, while our woduses on a cooperative environment.
Other approaches model these problems based on a Markosi@eé&irocess (MDP) model
[27] which can be used even within cooperative environmeitewever, these approaches
demonstrate the inherent complexity in selecting the ogitimetion within these models, and
certainly cannot trivially solve which action to choose.nBglath and Tambe demonstrate that
finding optimal teamwork behaviors, even in small groupsa isomputationally intractable
problem for most real-world problem instances. Thus, thestjan of the optimality of any one
of these approaches is difficult to ascertain. Our adapteedination methods based on the
CCC measure may be of significance in helping determine wiyg#, or family of coordina-
tion methods to use, or even to switch between coordinatiotets during task execution.

6.3 Group Behavior Measures

To date, very few studies have been conducted contrastingugp’g composition and its task
performance.

The CCC, as a coordination measure, is most closely relat€bkdberg and Mataric’s in-
terference measure [11]. Both our work and theirs focus erefforts spent on coordination
in forming a coordination measure. However, there is a wifiee in the definition of the mea-
sure. The CCC measure focuses on resources spent on rgsptaiup conflicts regardless if
they are before, during, or after events such as collisibonsontrast, Goldberg and Mataric’s
interference measure studies the time robots actuallideolThis difference in definition may
account for differences in findings: They report increasestipctivity as their interference
measure grew, while we found that productivity decreaseith@<CC measure grew. Addi-
tionally, the work by Goldberg and Matari¢ equates coaation methods with homogeneous
and heterogeneous capabilities. In contrast, our workiesugtoups of homogeneous robots.
We believe that in order to incorporate heterogeneous déebinto the CCC coordination
measure, some normalizing must occur to equate group memberare currently researching
what extensions are necessary to create this unified measure

Balch [5] presents a metric &focial entropywhich can measure the level of diversity or
how heterogeneous a group is. He shows that certain taskatansically better suited for
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homogeneous groups, with others for heterogeneous onedindttehis measure positively

correlated with the group’s productivity in some domaingj aegatively correlated in others.
Our CCC does not measure heterogeneity, but individualres@xpenditure. We believe it is

always negatively correlated with performance. Furtheenae show that adaptive methods
can be created based on the CCC. We believe it may be possiblgand the coordination

measure to account for heterogeneous robots, and hopediptbiese types of groups in the
future.

Kaminka and Tambe [17] use anerage time to agreemefATA) measure to study a team’s
behavior in the RoboCup simulated soccer domain. This rmeaaluates the relative effec-
tiveness of social monitoring of team behaviors. Similaotw work, this measure aims to
provide feedback about team effectiveness through thearsore. However, the question of
correlation between productivity and the ATA measure wélgen.

Hogg and Jennings [15] introducendllingness to cooperate factawvhich defines the de-
gree to which social agents engage in individual versusgomnsiderations. Similar to our
structure, they use their measure to alter agents’ actwitgsource constraints that are sensed
during run-time. However, their formalized structure isddlexible to change than ours and
requires a Q-learning model to allow for adaptation. As alteg is unclear how their model
could be applied for quickly reacting to domain dynamicsitirermore, it is unclear how their
framework could be modified or applied to specifically addresordination issues.

6.4 Dynamic and Adaptive Coordination

Our main focus lies in the ability to use the CCC measure tateradaptive coordination
methods that improve a group’s performance. We achievedjtial because the CCC measure
can be easily estimated during task execution and can thusduakto match the best method to
given domain conditions. Previous works envisioned pdrtkis idea.

The concept of switching between groups of coordinatiorhgs was previously described
as part of the TAEMS theoretical framework [21]. Howeveeitlwork concedes the necessity
of preplanning or replanning for contingencies, makingdgtem unable to adapt to runtime
dynamics.

While the work by Toledo and Jennings [9] demonstrates tbatdination adaptation is
possible even during runtime, several key differencest exith our work. Their formalized
reasoning model as to which coordination method to use mapeaeasily transferable from
the theoretical grid-world domains they studied to reald/domains or actual groups of co-
ordination algorithms. Furthermore, their system doesahways improve the group’s perfor-
mance. However, their work is quite significant as it can l@sveid as a mature departure point
for our work. By using the CCC coordination cost measure thasehe actual resources being
consumed in coordination activities, the CCC-based methoel easily transferable to new do-
mains and coordination methods. Furthermore, both of ouhadas do improve performance,
at times by significant amounts beyond the static methogsatebased on.
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7 Conclusion and Future Work

In this paper we argue that the coordination cost a singletrgénerates is a primary factor in
determining the productivity of the entire group. In theanbots should consistently demon-
strate increasing marginal productivity gains. Howevianjting production resources, such
as the spatial limitations inherent in many robotic groypsyents productivity gains by this
theoretical amount. At times, adding robots then hurtsguerdnce, as was previously noted
[29, 32]. We present a model for evaluating multi-attribcé@rdination cost functions that a
single robot contains. Our CCC (combined coordination)cosasure quantifies a weighted
sum of all production resource conflicts between membersgpbap. While other team mea-
surements are possible, we find that focusing on this cosedbrxilitates effective comparison
between different coordination methods. This approachireg no centralized mechanism,
with accurate coordination measures being taken autonsi;mby members of the group. We
present two adaptive coordination methods based on the C&3ure, which both improve
the group’s performance and scalability properties in &issteally significant fashion in the
foraging and search robotic domains we studied.

For future work, several directions are possible. We believnay be possible to use the
coordination measurements to predict when adding an agéme group will be helpful. Team
sizes could thus be modified to maximize the use of producisources. We also hope to study
if similar measurements could model gains each robot adds twoup. Such a measurement
would be useful for purposes of task allocation as it couthtdy which team member is best
suited to perform given tasks. We are hopeful that the usbefXCC measure will replace
domain and task specific cost functions. We believe thisagr could facilitate additional
advances in agent and robotic team research.
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