Context-Dependent Joint-Decision Arbitration
for Computer Games

Gal A. Kaminka, Jared Go and Thuc D. Vu

Computer Science Department
Carnegie Mellon University
galk@cs.cmu.edu, {jgo,tdv}@andrew.cmu.edu

Abstract. Multi-agent teams benefit from the application of explicit
teamwork mechanisms. These alleviate the workload on the designer by
automating key components of teamwork, such as communication con-
tent and timing decisions, conflict resolution, and joint decision mak-
ing. However, existing mechanisms make architectural commitments to
context-free methods of joint decision making: The agents use the same
procedure (e.g., negotiations, voting, reference to rank) to decide on the
next step to take, regardless of the status of their task, or the options
available. We hypothesize that teams will benefit instead from context-
dependent arbitration, where the selection of a joint-decision procedure
depends on the status of the task and agents involved. To examine this
hypothesis, this paper presents SCORE (Synchronous CoORdination En-
gine), a prototype teamwork and coordination executable model, that
allows the human designer of a team to specify different joint-decision
procedures and the conditions under which they are to be used. We evalu-
ate SCORE and context-dependent arbitration in a complex multi-agent
3D virtual environment, using the GameBots interface. We empirically
show that, all else being equal, using context-dependent arbitration re-
sults in performance which is superior to that resulting from context-free
arbitration scheme.

1 Introduction

There is growing recognition, both in theory and in practice, that multi-agent
teams can significantly benefit from the application of explicit teamwork mech-
anisms [2,5,4,13]. Such mechanisms can automate communication content and
timing decisions, negotiations over joint decision making, coordination of ac-
tivities, social organization into roles, and re-organization upon failures. This
allows the human designer to focus on specifying the goal-oriented behavior of
the agents, as collaborative behavior is automated to a large degree. Indeed,
a number of teamwork models have been deployed successfully in complex dy-
namic multi-agent applications, e.g. GRATE* [5], COLLAGEN [11,9], STEAM
steam-jair, and ALLIANCE [10].

A key benefit of teamwork models is their capacity for automating the team’s
decision-making and conflict resolution. The models provide communication and



negotiation protocols that automate the team’s arrival at an agreement as to
what action-step, plan, or behavior is to be jointly executed by team-members.
This frees the designer from the need to specify the communication procedures to
be used in all possible circumstances. For instance, STEAM [13] allows any agent
to announce the achievement or unachievability of a joint-subgoal, thus allowing
any team-member to cause an abandonment of the relevant goal-oriented activi-
ties of its teammates. However, selection of the next subgoal to be tackled is left
to the team-leader, who is responsible for beginning a confirm-request protocol
to gain mutual belief in this new subgoal. Any conflicts (e.g., about which sub-
goal is to be pursued next) are handled in STEAM by referring to rank, though
some decisions are implicitly resolved by referring to designer-determined roles
(i-e., agents of two different roles select different plans).

Formally, an automated decision-making procedure (e.g., reference to rank,
role-based, or negotiations) can be though of as a function that maps world
and agents’ states into a joint decision. There are many different realizations
for such functions [15]: Auctions, reference to rank or to a central authority,
argumentation [8,14], voting, market-based methods, etc.

However, while a plethora of procedures exists, a close examination of existing
teamwork models reveals architectural commitments to context-free methods
of arbitration, i.e., to a single procedure that ignores execution context. We
introduce the term arbitration policy to denote a function which maps world and
agents’ states into a decision about which arbitration procedure is to be used.
Current teamwork models are characterized by context-free arbitration policies:
The same joint-decision procedure is used regardless of world and agents’ states.

We hypothesize, however, that teamwork benefits from flexibility in the way
that agents resolve conflicts and make joint decisions: Different mechanisms are
appropriate depending on the context of task execution. For instance, reference
to rank—a mechanism by which the agent with higher rank makes the decision
centrally-may be appropriate if the agent with higher rank has access to better
information. However, a voting scheme may be more appropriate when there is
little time pressure, and all agents have access to the same information.

This paper examines context-dependent arbitration policies, in which a differ-
ent procedure is used by the agents depending on the context of task execution,
e.g., the agents may used role-based selection for one decision, and bidding in oth-
ers. While ideally the arbitration policy itself would be automatically generated
(leaving the decision about which procedures should be used to the teamwork
model), for the purposes of testing our hypothesis we use manually-designed
policies, in which the selection of a joint-decision protocol (e.g., negotiations,
voting, etc.) is left to the designer.

To provide concrete empiric evaluation of context-dependent arbitration poli-
cies, we present a team of software agents in a complex, 3D multi-agent virtual
environment, built using the GameBots interface [7]. The team is executing a
dynamic team task, playing capture-the-flag against a different fixed team. To
control their coordinated execution our agents use SCORE (Synchronous COoR-



dination Engine), a teamwork model that facilitates and manages coordinated
teamwork, and allows the use of context-dependent arbitration policies.

We compare context-free and context-dependent arbitration policies and
show that the context-dependent arbitration policy, which uses different conflict-
resolution procedures depending on the context, is superior to the context-free
arbitration policies using either one of the procedures, on a number of perfor-
mance measure. Furthermore, the context-dependent arbitration policy results
in less wasteful behavior by the team, so that each concentrated effort at the
task is more productive.

This paper is organized as follows: Section 2 presents motivation and related
work. Section 3 discusses SCORE, the run-time engine that enables context-
dependent joint-behavior arbitration. Section 4 presents the experimental set-up
and the results. Section 5 presents related work. Section 6 concludes.

2 Motivation and Background

The motivation for this work comes from our experience in constructing teams of
autonomous software agents which play capture-the-flag (CTF) in a multi-agent
3D virtual environment, using the GameBots interface [7]. In this highly dynamic
game, two teams of agents are each attempting to steal the opponent’s flag from
the opponent’s base, and bring the flag back to the team’s own home base. Each
successful capture adds a point to the team’s total. Agents have to navigate a
complex environment, avoiding obstacles, and coordinating with each other. For
instance, they may have to decide to leave some agents behind (to defend the
home base) while others go forward to try to capture the opponent’s flag. Or,
the agents may decide to coordinate their capture attempt so that one agent
clears the way for the other agent to go forward and steal the flag. Agents can
communicate with their teammates and opponents, and use simulated magical
wands to tag each other: A tag causes an agent to disappear from its current
location and re-appear in one of a number of possible locations back at the
home-base.

The task of constructing teams of agents for this task is quite challenging.
A physical simulation server manages the simulation of all 3D physical objects,
including agent bodies, their magical wands, and their surroundings. Each agent
is a separate program, which connects to the server using a socket interface,
through which the agent program receives sensory information, and sends back
actuation information. Agents can see objects within a limited field of view, and
can also hear sounds of movement or wand tagging. Agents can turn around,
run or walk, and tag opponents and friends with the magical wands. They may
also pick up health packs and wand replacements, which are sometimes found in
the environment. In other words, each agent program provides the “brains” for a
simulated “body”. Since the body’s sensing and action is limited, and since the
environment is complex, the number of possible states is enormous.

To address the challenges of constructing agents for this domain, we chose
to rely on two proven technologies: (i) behavior-based control for the design



of the single agent, e.g., [3], and (ii) explicit teamwork models for the auto-
mated coordination of the agents, e.g., [13]. Using these two technologies, the
designer first builds a behavior-hierarchy, specifying the steps to be taken by
an agent in playing CTF (see next section for our chosen hierarchical behavior
representation). Then, the designer specifies roles in the team, by constructing
an organizational hierarchy separating subteams and allocating different agents
to different subteams. Finally, the designer associates roles and subteams with
specific behaviors. This establishes two classes of behaviors: Team behaviors are
to be executed by their associated subteams together—all subteam members
selecting and deselecting the behaviors at the same time (e.g., for coordinated
attacks); individual behaviors, typically in service of team behaviors, can be se-
lected by individual agents independently from the selections of their teammates.
Thanks to the run-time support of a teamwork model such as STEAM [13], all
communications required to synchronize the execution of team behaviors are
automated. The designer does not need to write countless special-purpose rules
that cover the many possible scenarios. Instead, the designer only specifies what
behaviors are to be executed jointly, and the run-time teamwork model takes
care of the joint-decision making by the agents.

Our initial implementation of the teamwork model for the agents built on
the STEAM model [13]. Any agent may cause termination of a joint behavior,
however when agents need to select a new team behavior for joint execution, a
pre-defined team-leader makes a centralized decision on the next behavior to be
selected, and then requests confirmation from its teammates'. Once all agents
confirm, the team begins joint execution of the newly selected joint behavior.
Thus in principle all conflicts are resolved by reference to the rank of the leader,
i.e., all joint behavior arbitration is always done using the same method (in
particular, request-confirm).

Leaving all decisions to a team-leader presented mixed results. On one hand,
the decision making procedure was quick, for instance in assigning tasks to agents
(e.g., escorting the carrier after stealing the flag vs. distracting opponents). Such
soft real-time responsiveness was very appropriate given the dynamic competitive
nature of the game. On the other hand, due to its own sensory limitations, the
leader would sometimes make obviously poor decisions, such as assigning the
task of clearing a path to the opponent base to an agent that was far away from
it, while assigning the task of stealing the flag to an agent that was much closer—
resulting in the path clearing being too late to be effective. A different decision-
making procedure, e.g. one that would give more considerations to the agents’
own preferences may alleviate these problems. On the other, such a procedure
will cause a greater delay, as agents will have to discuss their preferences until
they settle on a joint decision.

Taking our inspiration from human social organizations, we hypothesized
that teams of agents will benefit from utilizing different decision-making proce-

! We simplified the model by leaving out STEAM’s decision-theoretic evaluation of the
costs of communications versus the costs of coordination. Thus our model triggers
communications even when STEAM’s may not have.



dures depending on the context for their decision. Just as a team of programmers
may sometimes engage in lengthy discussions on the best course of action, and
sometimes yield to the authority of a project leader, we believe that a team of
agents can benefit from a context-dependent arbitration policy.

3 The Synchronous Coordination Engine

SCORE (Synchronous CoORdination Engine) is a teamwork and coordination
engine for multi-agent teams using behavior-based control. SCORE handles the
tasks of team synchronization, and context-dependent joint-behavior arbitra-
tion under designer-specified task constraints. To do this, SCORE automates
and manages communications between agents, controlling content and timing to
control coordinated execution. This section opens with a brief overview of the
behavior-based control methodology used in building the CTF team, including a
few short illustrative examples (Section 3.1). Then, we describe SCORE’s team
synchronization (Section 3.2) and context-dependent arbitration mechanisms
(Section 3.3). Finally, Section 3.4 provides an overview of the team behavior
specification language, parsed by SCORE, which ties the different mechanisms
together.

3.1 Single-Agent Behavior-Based Control

To facilitate responsive execution in the dynamic environment in which the CTF-
playing agents are to participate, we chose to implement a behavior-based control
system. This system is similar in many ways to others that have been reported
in the literature (e.g., RAPs [3]) and so will only be described here briefly.

The control of each individual agent is divided into a set of behaviors, each
one responsible for its own sensing requirements, memory/state maintenance,
and action scheduling. Each behavior is associated with selection conditions and
termination conditions, typically testing environmental features but also pos-
sibly testing globally-set variables. When selection conditions are satisfied, the
behavior is selected for execution, and it takes complete control of the agent
involved. When its termination conditions are satisfied, it removes itself from
control and allows other behaviors to be selected. Conflicts in selection are han-
dled by designer-specified control rules.

The designer, on top of selection and termination conditions, can provide
temporal execution constraints, which impose a (partial) order on the selection
of behaviors, and specifies which behaviors are to follow others. Such temporal
execution constraints can be cyclic, allowing a behavior to follow itself or its own
predecessors in order of execution). Behaviors can also be hierarchically decom-
posed into other behaviors, in order to facilitate meaningful design compositions
(such as goal /subgoal), and primitive behavior re-use in service of different super-
behaviors. Such hierarchical decomposition links point from a behavior to its first
child(ren), i.e., any children behaviors which begin a temporally-constrained ex-
ecution. In our system, hierarchical links may not be cyclic. Multiple temporal
or hierarchical outgoing links denote alternative paths of execution.



For instance, Figure 1 presents the behavior hierarchy for the CTF team.
Here, for instance, the Explore behavior is to be followed by the WinGame behav-
ior. This last behavior has two alternative decompositions, into the Defend be-
havior sub-tree, and into the Attack behavior sub-tree. Agents choosing Defend
will choose either Return-our-flag or Defend-Base. When these are termi-
nated, the agents will agent choose Defend and again will have to choose between
its children as appropriate. On the other hand, Agents choosing the Attack sub-
tree will start with the Attack behavior (and either one of its children), and will
then follow it with a Go-back-to-our-base behavior. Upon its termination, the
agents will choose Attack again.

Explore WinGame

Explore Attack : e Defend

 ATheir —— While : P

| Base Explore S

y P Return-our-flag ™ pefend-Base
Explore Defend

Our —> While D Y
Base Explore
Attack —————> Go-back-to—our—base

GetFlag ClearPath Carry  Distract Escort

Fig. 1. Behavior Hierarchy for the CTF team. Full arrow lines mark temporal order
constraints. Dotted arrow lines mark hierarchical decomposition links.

3.2 Maintaining Team Synchronization

The single-agent behavior-based control described above is insufficient by itself
to manage highly coordinated joint behaviors, i.e., behaviors that are to be
executed at the same time by several teammates. Some of the behaviors, e.g.,
Attack, may be intended for joint execution, and so appropriately tagged by
the designer as team behaviors. For instance, all relevant agents may jointly
select Attack, where by some members select the Go-to-flag behavior while
others select the Attack-Base behavior (see Figure 1). However, this relies on the
relevant agents to each select and de-select their own instances of the appropriate
behaviors at approximately the same time.

Before the introduction of explicit teamwork models, all communications re-
lated to such decisions had to be specifically provided by the designer. However,
in dynamic domains the number of possible different states that an agent may
find itself with respect to its teammates prohibits attempts at fully enumerating
all appropriate responses a-priori [13]. Explicit teamwork models were intro-
duced to automatically manage communications among agents so as to alleviate
the need to foresee all possible inter-agent situations. Teamwork theories, such
as Joint Intentions [2] and SharedPlans [4] have provided principles of team-
work which could be translated into rules governing communications to manage
agreement and conflict resolution.



SCORE builds on previous work on explicit teamwork models to ensure that
when an individual member of a (sub)team selects a behavior for its own exe-
cution, and that behavior is tagged by the designer as a team-behavior (i.e., to
be executed in agreement with the other members of the team), then the other
agents select the agreed-upon behavior at the same time. For instance, suppose
a team-member privately believes that the Explore behavior is to be terminated
(since its termination conditions were satisfied). Since Explore is tagged by the
designer as a team-behavior, ideally all relevant members of the team should be
terminating it at the same time.

SCORE provides a synchronization service which is automatically invoked.
The service maintains a table of team wvariables, whose value SCORE seeks to
replicate across the different agents by communicating when the values change.
For instance, the Explore behavior is terminated when two location variables
are known: The location of the team’s own base, and the location of the oppo-
nent base. The two variables representing these locations are put in the team-
synchronized variable table: From that point on, any change in their values (by
one of the agent) will automatically be propagated by SCORE to the other
agents. Thus once an agent discover the locations of the two bases, it will termi-
nate its own execution of the Explore behavior. However, due to the replication
of the location variables, the position will be propagated automatically to the
other team-members, which will cause them to terminate their own execution of
the Explore behavior as well (since their own termination conditions will have
been satisfied).

This method may face difficulties as the number of agents is scaled up, and
it relies on the assumption that agents will not have conflicting beliefs in the
values for team-synchronized variables (e.g., that two different agents discover
the base location in two different places). However, we find that for the purposes
of computer games, specifically involving small teams and reliable communica-
tions, it is simple and efficient. Indeed, similar methods have been successfully
used in the past in domains with similar characteristics, such as RoboCup [1,12].

3.3 Context Dependent Arbitration

The team-variable synchronization described above can be useful in both jointly
terminating and selecting behaviors by relevant agents. However, it does not at
all deal with conflict resolution and joint behavior arbitration. For instance, sup-
pose all agents select WinGame for execution. While all should execute WinGame,
only some agents should execute Attack, while others should execute Defend.
Naturally, different agents may have different beliefs as to whom should execute
what behavior. This is where arbitration is to take place.

SCORE differentiates itself from other teamwork models by allowing for
context-dependent arbitration. While models such as STEAM utilize a fixed
procedure by which agents come to decide on their selected behaviors, SCORE
allows the designer to specify a different procedure to be used, depending on
the execution context. Thus depending on the state of the world and agents



involved, a different arbitration procedure may be used. As with joint behav-
iors, each agent runs its own copy of the specified arbitrator, which manages
communications with the other agents’ arbitrators to carry out the arbitration
procedure. For now, we assume the arbitrator chosen by the designer is known
by all agents, so that they all use the same arbitration procedure (much like we
assume they all have access to the same joint behaviors).

To allow for such flexibility in arbitration procedures, SCORE internally de-
fines an arbitration API, which allows new joint-behavior arbitration procedures
(henceforth, arbitrators) to be plugged into SCORE seamlessly: The inputs to ar-
bitrators include the state of the world (including currently executing behaviors
and beliefs about the agent and its teammates), and the alternative behaviors
of which one is to be selected. The output expected is a choice of one of the
alternative behaviors.

As a first step to utilizing different multiple arbitrators, SCORE allows the
designer to specify which arbitrator to use in initiating which behavior, thus
making the arbitrator selection dependent on the task execution context. We
have defined two significantly different arbitrators, which we will use in different
combinations to evaluate this approach (Section 4). The designer has the choice
of requiring the use of either one of these arbitrators. In context-free arbitration,
only one arbitrator would be available.

The first arbitrator is based on designer-specified roles: The assumption here
is that the designer assigns names roles to each agent, and that these roles
are then associated with specific decisions with respect to joint behaviors. For
instance, one agent in the team may be assigned the role of Attacker, and will
always select specific behaviors, while another agent may be assigned the role of
a Defender, and will always select other behaviors.

To carry out role-based arbitration, SCORE relies on a designer-specified
organization hierarchy, which specifies team/subteam relationships, and places
individual agents within specific subteams, thus defining their roles. For instance,
Figure 2 presents the organization hierarchy for the our CTF team. Three sub-
teams are created by the designer: Defenders, Attackers, and SecondAttackers.
The designer may choose the number of agents available in each subteam. The
designer must also specify which behaviors in the behavior hierarchy (Figure 1
are associated with which subteams (Figure 2). In our case, the Defend behav-
ior (under WinGame) is associated with the Defenders subteam. The Attack and
Go-back-to-our-base behaviors are associated with the Attackers and Secon-
dAttackers subteams.

CTF Team

Defenders Attackers SecondAttackers

Fig. 2. Organization and Behavior Hierarchies for the CTF team.



The second arbitrator currently defined uses centralized preference-
scheduling. Each agent sends its preferred selected behavior to a predefined
team-leader. The team leader then greedily assigns behaviors to agents based
on their preferences, and taking into account designer-specified constraints (ex-
pressed as the number of agents that must be assigned to each behavior) and
then sends its decisions to the agents (which are assumed to accept them uncon-
ditionally). For instance, an agent may prefer to execute the Defend behavior if
it is closer to the home base, or may prefer to execute the Get-Flag behavior if
it has sufficient stamina. It will communicate its preference to the team leader,
and will shortly thereafter be assigned a behavior (based on the team-leader’s
decisions) which it will then select for execution. In essence, this allows for dy-
namic formation and re-formations of teams by different agents, according to
their preferences and the constraints imposed by the designer. All communica-
tions are of course automated by the arbitrator, which is triggered automatically
when the agent comes to a decision point.

Unlike in previous teamwork models, the designer can mix and match ar-
bitrators within the behavior hierarchy: When the agents have a selection to
make, the designer-specified arbitrator is called to manage the actual arbitra-
tion procedure, and then the resulting joint decision is returned to each agent
so that they begin execution of their agreed-upon behavior. In our experience,
role-based arbitration is faster (since agents know their roles, the only commu-
nication requirements are those of synchronizing the team variables). However,
preference-based arbitration tends to better take into account detailed situation
features such as distances to goal locations, individual agent health, etc.

3.4 SCORE Behavior Language: Tying it all together

We defined a simple language in which team behaviors and arbitration can be
specified. A single file contains all the behaviors of the team, specified as blocks
of behavior data is read by each agent, and parsed by SCORE. It specifies the
behavior names, its children and following behaviors, the selection and termi-
nation conditions, and arbitrators and associated constraints. As an example, a
single behavior in the file is presented in Figure 3:

The fields and keywords used in Figure 3 are explained below:

startswhen <condition>. The startswhen keyword is followed by a condition
which uses a Boolean expression containing variables in the shared
team state. These specify selection conditions. When arbitrating over
the behavior, the selection conditions are checked, in order to deter-
mine whether the behavior is selectable.

endswhen <condition>. The endswhen keyword is similar to the startswhen
keyword, but controls the termination conditions, upon which a par-
ticular behavior should cease execution.

children  <child 1> <child 2> ... <child n>. The children keyword describes
the list of child behaviors reachable from the current behavior.



behavior Explore
startswhen (var ourBaseKnown == NULL || var theirBaseKnown == NULL)
endswhen (var ourBaseKnown != NULL && var theirBaseKnown != NULL)

following WinGame
children ExploreOurBase ExploreTheirBase

arbitrator role

constraint attacker

constraint ExploreTheirBase

constraint defender

constraint ExploreQurBase
end behavior

Fig. 3. An example specification of a team behavior in the SCORE language.

following  <behavior name>. The following keyword defines the next same-level
behavior that follows the current behavior.

arbitrator <arbitrator name>. The arbitrator keyword defines the arbitrator
that should be run at the current behavior, when deciding which of
its alternative decompositions should be taken.

constraint <string>. The constraints are dependent on the arbitrator speci-
fied. There can be multiple constraint statements within the body
of a single behavior, each is parsed as a string and passed as a vec-
tor of strings to the arbitrator. For role arbitration, the constraint
field specifies which subteams are to select which child behavior.
For preference-based arbitration, the constraints field specifies how
many agents are required to select each behavior (to prevent a sce-
nario where all agents pick one of the children, yet joint execution
requires some to select the other children behavior as well).

4 Experiments

We evaluate SCORE and context-dependent arbitration policies in a set of ex-
periments in which we compared the performance of CTF-playing teams using
context-free and context-dependent arbitration policies. The experiments con-
sisted of three sets of CTF games, each consisting of 5 games. Each set of 5 games
used a different arbitration policy: a context-free role-based arbitration policy,
a context-free preference-based arbitration policy, and a context-dependent ar-
bitration policy mixing role-based and preference-based arbitrators. In all other
respects, all of the game settings were identical: the same fixed opponent and
simulated physical environment was used, and the behavior hierarchy was iden-
tical as well. The tables below compare the results of the three game sets using
different performance measures.



Table 1 shows the score-difference results for each set of games (i.e., the
number of flags captured by the evaluated team minus the number of flags cap-
tured by the fixed opponent). Score-difference is the ultimate task performance
measure in this domain. In the table, each column corresponds to the three ex-
perimental settings. Each row but the last provides the score difference results in
a game. The last row shows the average score difference in each set of games. The
table clearly shows that context-dependent arbitration policy results in higher—
better—score difference than either of the context-free arbitration policies.

[Role Arbitration|Preference Arbitration|Mixed (Context-dependent) Arbitration]

3 -3 3
-1 -3 1
-1 -3 1
0 -3 1
0 -1 1

| 0.2 | -2.6 | 14

Table 1. Score difference in the three experiment sets.

Table 2 presents a second set of measurements from the same games. The
structure of the table is identical to Table 1, but the entries correspond to the
Average-Time-to-Agreement (ATA) [6]. The ATA measures average arbitration
time, where each arbitration interval is taken from the time the first agent ter-
minates one joint behavior, until all agents select a new joint behavior. Here the
trade-offs between arbitration policies begin to emerge. Role-based arbitration
(first column) clearly results in shorter arbitration intervals, while preference-
based arbitration (second column) results in arbitration intervals more than five
times longer on average. The context-dependent arbitration used requires just
over twice the arbitration time as role-based arbitration, yet as we have seen it
results in significantly better results (in terms of task performance).

|Role Arbitration|Preference Arbitration|Mixed (Context-dependent) Arbitration|

0.649 7.360 1.807
1.124 6.181 1.602
1.012 5.475 3.895
1.025 3.998 2.012
0.857 4.857 2.012
| 0.933 | 5.574 | 2.266

Table 2. Average Time to Agreement in the three experiment sets.

A final performance measure is presented in Table 3. Here, we measure how
many times per second was the opponent flag reached by the agents (though



not necessarily successfully captured and taken back to base). A larger value
here indicates greater success at reaching the flag, but taking into account the
score difference, we will see that such success does not necessarily translate into
overall task performance (i.e., captured flags). Indeed, the results show that
the context-dependent arbitration policy shows reduced success at reaching the
flag, compared to role-based arbitration. However, when taking into account the
results in Table 1 it becomes clear that context-dependent arbitration results
in much more success than role-based arbitration in translating each incursion
into a successful capture. In other words, agents utilizing context-dependent
arbitration reach the flag slower and less often, but they are more successful at
capturing the flag once it is reached.

[Role Arbitration|Preference Arbitration|Mixed (Context-dependent) Arbitration]

0.016 0.010 0.010
0.011 0.012 0.008
0.015 0.008 0.012
0.021 0.010 0.011
0.021 0.014 0.013
| 0.017 | 0.011 | 0.011

Table 3. Flags reached per second in the three experiment sets.

To summarize, the results demonstrate a context-dependent arbitration pol-
icy can result in significant performance benefits compared to context-free arbi-
tration policies, both in terms of overall task performance (Table 1) and ability
to translate opportunities into results (Table 3). The context-dependent arbitra-
tion policy we have evaluated managed to provide these benefits while keeping
arbitration time significantly shorter than preference-based arbitration (Table
2).

5 Related Work

Previous teamwork models have not explored context-dependent arbitration poli-
cies. True to Joint Intentions theory [2] upon which they are partially based,
both STEAM [13] and GRATE* [5] uses a static procedure where any agent is
allowed to cause termination of a joint behavior, but a recognized team-leader
selects the next joint behavior to be executed by all team-members. In STEAM,
such a team-leader is given by designer-provided ranks. In GRATE*, the team-
leader is the agent which originated the problem-solving activity for the team.
COLLAGEN [11,9], a teamwork model specialized for intelligent user-interface
tasks, allows both the user and its agent collaborator to propose tasks for joint
execution, but naturally leaves conflict resolution to the user. ALLIANCE [10]
uses an opportunistic agenda-based decision making. Every agent is free to se-
lect and de-select individual tasks, while communicating their decisions to their



peers. This allows for great flexibility and fault-tolerance, ALLTANCE’s explicit
goals. On the other hand, models such as STEAM and ALLIANCE have mecha-
nisms for failure detection and recovery, while SCORE currently lacks any such
mechanisms.

Conceptually, work on the theory of negotiation by argumentation has recog-
nized that different argumentation techniques (e.g., threat, promise, or appeal)
are possible in different settings [8]. However, very little work has been done
in terms of confirming such theoretical distinctions with empirical results, or
of translating the theoretical distinctions into algorithms to be used in practice
(though see [14] for promising empirical work). Our work does not provide a sys-
tematic exploration of argumentation techniques: Instead, it provides empirical
evidence that even within relatively stable organizational settings (here, a team),
a variety of appropriately used conflict resolution techniques (of which argumen-
tation provides several special cases) is preferably to using a single method.

6 Summary and Future Work

We presented context-dependent arbitration policies in deploying multi-agent
teams in computer games. To evaluate their usefulness, we presented SCORE,
a state-of-the-art teamwork model whose key novelty is the ability to use dif-
ferent multi-agent decision-making procedures (arbitrators) depending on the
context of task execution. We provided motivation for using SCORE in a com-
plex, 3D environment where teams of agents are engaged in an adversarial game
of Capture-the-Flag. We used this environment to empirically evaluate a context-
dependent arbitration policy compared to context-free arbitration policies. The
results show that context-dependent arbitration can significantly out-perform
context-free arbitration.

We are currently exploring several future development directions. First, as
each agent executes a different copy of the selected arbitrator, agents may get into
failures where they differ in their selection of an arbitrator, or in the arbitration
results. This opens up significant challenges which we hope to address in future
work. In addition, we are planning to extend the SCORE behavior language
and to fully develop a GUI development system for it, which allows users to
drag-and-drop behaviors together to visually see the layout of the team program
and the transitions that the agents will make. We also plan to offer a library of
arbitration procedures and to examine systematically their empiric performance
in the CTF domain.

References

1. T. Ando. Refinement of soccer agents’ positions using reinforcement learning. In
Hiroaki Kitano, editor, RoboCup-97: Robot soccer world cup I, volume 1395 of
LNAI pages 373-388. Springer-verlag, 1998.

2. Philip R. Cohen and Hector J. Levesque. Teamwork. Nous, 35, 1991.



10.

11.

12.

13.

14.

15.

R. James Firby. An investigation into reactive planning in complex domains. In
Proceedings of the National Conference on Artificial Intelligence, 1987.

Barbara J. Grosz and Sarit Kraus. Collaborative plans for complex group actions.
Artificial Intelligence, 86:269-358, 1996.

Nicholas R. Jennings. Controlling cooperative problem solving in industrial multi-
agent systems using joint intentions. Artificial Intelligence, 75(2):195-240, 1995.
Gal A. Kaminka and Milind Tambe. Robust multi-agent teams via socially-
attentive monitoring. Journal of Artificial Intelligence Research, 12:105-147, 2000.
Gal A. Kaminka, Manuela M. Veloso, Steve Schaffer, Chris Sollitto, Rogelio Adob-
bati, Andrew N. Marshall, Andrew Scholer, , and Sheila Tejada. GameBots: A
flexible test bed for multiagent team research. Communications of the ACM,
45(1):43-45, January 2002.

Sarit Kraus, Sycara Katia, and Amir Evenchik. Reaching agreements through
argumentation: a logical model and implementation. Artificial Intelligence, 104(1—
2):1-69, 1998.

Neal Lesh, Charles Rich, and Candace L. Sidner. Using plan recognition in human-
computer collaboration. In Proceedings of the International Conference on User
Modelling (UM-99), Banff, Canada, 1999.

Lynne E. Parker. ALLIANCE: An architecture for fault tolerant multirobot co-
operation. IEEE Transactions on Robotics and Automation, 14(2):220-240, April
1998.

Charles Rich and Candace L. Sidner. COLLAGEN: When agents collaborate with
people. In W. Lewis Johnson, editor, Proceedings of the International Conference
on Autonomous Agents, pages 284-291, Marina del Rey, CA, 1997. ACM Press.
Peter Stone, Manuela Veloso, and Patrick F. Riley. The CMUnited-98 champion
simulator team. In RoboCup-98: Robot soccer world cup II, pages 61-76. Springer-
verlag, 1999.

Milind Tambe. Towards flexible teamwork. Journal of Artificial Intelligence Re-
search, 7:83-124, 1997.

Milind Tambe and Hyuckchul Jung. The benefits of arguing in a team. AI Maga-
zine, 20(4):85-92, 1999.

Gerhard Weiss, editor. Multiagent Systems: A Modern Approach to Distributed
Artificial Intelligence. MIT Press, 2000.



