
A Synergy of Agent Components:

Social Comparison for Failure Detection
Gal A. Kaminka Milind Tambe

Information Sciences Institute and Computer Science Department

University of Southern California

4676 Admiralty Way, Marina del Rey, CA 90292

{galk, tambe}@isi.edu

1 Overview
Recently, encouraging progress has been made in
integrating independent components in complete agents for
real-world environments. While such systems demonstrate
component integration, they often do not explicitly utili ze
synergistic interactions, which allow each component to
function beyond its original capabiliti es because of the
presence of other components. This abstract presents an
implemented ill ustration of such explicit component
synergy and its usefulness in dynamic multi -agent
environments. In such environments, agents often have
three important abiliti es: (a) collaboration with other agents
(teamwork), (b) monitoring the agent’s own progress
(execution monitoring), and (c) modeling other agents’
beliefs/goals (agent-modeling). Generally, these capabiliti es
are independently developed, and are integrated in a single
system such that each component operates independently of
the others, e.g., monitoring techniques do not take into
account the modeled plans of other agents, etc.

In contrast, we highlight a synergy between these three
agent components that results in significant improvement in
capabiliti es of each component: (a) The collaboration
component constrains the search space for the agent-
modeling component via maintenance of mutual beliefs and
facilit ates better modeling, (b) the modeling and
collaboration components enable SOCFAD (Social
Comparison for Failure Detection), a novel execution
monitoring technique which uses other agents to detect and
diagnose failures (the focus of this abstract), and (c) the
monitoring component, using SOCFAD, detects failures in
individual performance that affect coordination, and allows
the collaboration component to replan.

SOCFAD addresses the well known problem of agent
execution monitoring in complex dynamic environments,

e.g., [4]. This problem is exacerbated in multi -agent
environments due to the added requirements for
coordination. The complexity and unpredictabilit y of these
environments causes an explosion of state space
complexity, which inhibits the abilit y of any designer to
enumerate the correct response in each possible state in
advance. For instance, it is generally diff icult to predict
when communication message will get lost, sensors return
unreliable answers, etc. The agents are therefore presented
with countless opportunities for failure, and must
autonomously detect them and recover.

To detect failures, an agent must have information about
the ideal behavior expected of it. This ideal is compared to
the agent’s actual behavior to detect discrepancies
indicating possible failure. Previous approaches to this
problem (e.g., [4]) have focused on the designer or planner
supplying the agent with redundant information, either in
the form of explicitly specified execution-monitoring
conditions, or a model of the agent itself which may be used
for comparison. While powerful in themselves, these
approaches have limitations which render them insuff icient
in dynamic multi -agent environments: (a) They fail to take
into account information from sensors that monitor other
agents, and are thus less robust. For example, a driver may
not see an obstacle on the road, but if she sees another car
swerve, she can infer the presence of the obstacle; (b)
Monitoring conditions on agent behavior can be too rigid in
highly dynamic environments, as agents must often adjust
their behavior flexibly to respond to actual circumstances;
and (c) Both approaches require the designer to supply
redundant information, which entails further work for the
designer, and encounters diff iculties in scaling up to more
complex domains.

We propose a novel complementary approach to failure
detection and recovery, which is unique to multi -agent
settings. This approach, SOCFAD, is inspired by ideas from
Social Comparison Theory [1], a theory from social
psychology. The key idea in SOCFAD is that agents use
other agents as information sources on the situation and the
ideal behavior. The agents compare their own behavior,
beliefs, goals, and plans to those of other agents, in order to
detect failures and correct their behavior. The agents do not
necessarily adapt the other agents’ beliefs, but can reason
about the differences in belief and behavior, and draw

useful conclusions regarding the correctness of their own
actions. This approach alleviates the problems described
above: (a) It allows relevant information to be inferred from
other agents’ behavior and used to complement the agent’s
own erroneous perceptions, (b) It allows for flexibilit y in
monitoring, since the flexible behavior of other agents is
used as an ideal, and (c) It doesn’t require the designer to
provide the agent with redundant information, utili zing
instead other agents as information sources.

Teamwork or collaboration is ubiquitous in multi -agent
domains. An important issue in SOCFAD is that the agents
being compared should be socially similar to yield
meaningful differences. By exploiting the synergy with the
collaboration component, SOCFAD constrains the search
for socially-similar agents to team-members only.
Furthermore, the collaboration component is able to
provide SOCFAD with guarantees on other agents’
behaviors (through mutual beliefs) which are exploited to
generate confidence in any detected failures. By exploiting
the agent-modeling component’s capacity to infer team
members’ goals, SOCFAD enables eff icient comparison
without significant communication overhead.

Knowledge of other agents can be communicated.
However, such communication is often impractical given
costs, risk in hostile territories, and unreliabilit y in
uncertain settings. Our implementation of SOCFAD relies
instead on the agent modeling component that infers an
agent’s beliefs, goals, and plans from its observable
behavior and surroundings for comparison.

2 Implementation
Our agents’ design is based on reactive plans (operators)
[1], which form hierarchies that control each agent. The
design implements an domain-independent explicit model
of teamwork [3]. Operators may be team operators (shared
by the team) or individual (specific to one agent). Team
operators achieve and maintain joint goals, and require
coordination with the other members of the team as part of
their application.

We use the RESCteam [2] agent-modeling technique to
infer the operator-hierarchies of other agents in the team
from their observable actions. The agent therefore has
unified representation of its own plans and those of its
team-mates. The comparison process is simply comparing
the operators in equal depths of the hierarchies belonging to
the agent and its social role models.
 Explicit team operators form the basis for teamwork,
requiring mutual belief on the part of the team members as
a condition for the establishment, and termination of team
operators. At the team level, members are maximally
socially similar, requiring that identical plans be executing.

Any difference in team operators between agents in a team
is therefore a certain sign of failure, regardless of its cause.
 In service of team operators, different agents may work
on different individual operators. These do not carry with
them the responsibiliti es for mutual belief that team
operators do, and so differences in individual operators are
not sure signs of failure, but at best indications of the
possibilit y. We therefore require additional information
about the agent’s role and status which can help in
determining whether the difference is justified or not..
Differences with agents of similar role or status have
greater weight in our confidence that a failure has occurred.

3 An Example: SOCFAD at Work
Our application domain involves developing pilot agents in
a multi -agent battlefield simulation--dynamic, complex and
rich in detail . Here, agents encounter never-ending
opportunities for failure. For example, a team of three
helicopters arrives at a specified landmark position. Upon
detection of the landmark, they are to jointly switch from a
“fly-flight-plan” plan to a “wait-at-point” plan, in which one
of the team-members, whose role is that of a scout, is to
continue forward towards the enemy, while its teammates
(attackers) wait for its return. Due to unanticipated sensory
failure, one attacker does not detect the landmark at the
waiting point. Without SOCFAD running, instead of
waiting behind, the miscoordinating agent would continue
to fly forward with the scout, leaving the other attacker
behind. However, with SOCFAD running, the
miscoordinating agent infers (through agent modeling) that
the other agents are executing the “wait-at-point” plan and
detects a discrepancy with its own team plan of “ fly flight
plan” . It then infers (by abduction) that the other agents
have detected the landmark, even though its own sensors
didn’t. By adopting this belief, it recovers and re-
establishes coordination with the team.
4 References
[1] Newell A., 1990. Unified Theories of Cognition.

Harvard University Press.

[2] Tambe, M. 1996. Tracking Dynamic Team Activity, in
Proceedings of the National Conference on Artificial
Intelligence (AAAI-96), Portland, Oregon.

[3] Tambe, M. 1997. Agent Architectures for Flexible,
Practical Teamwork, in Proceedings of the National
Conference on Artificial Intelli gence, Providence,
Rhode Island.

[4] Willi ams, B. C.; and Nayak, P. P. 1996. A Model-
Based Approach to Reactive Self-Configuring Systems.
In Proceedings of the Thirteenth National Conference
on Artificial Intelligence (AAAI-96), Portland, Oregon.

