
A Scalable Petri Net Representation of Interaction
Protocols for Overhearing*

Gery Gutnik and Gal Kaminka

The MAVERICK Group, Computer Science Department, Bar-Ilan University
52900 Ramat Gan, Israel

{gutnikg ,galk}@cs.biu.ac.il

 Abstract. In open distributed multi-agent systems, agents often coordinate using

standardized agent communications. Thus, representing agent conversations is
an important aspect of multi-agent applications. Lately, Petri nets have been
found to provide certain advantages comparing to other representation
approaches. Radically different approaches using Petri nets to represent multi-
agent interactions have been proposed, and yet relative strengths and weaknesses
of these approaches have not been examined. Moreover, no approach was shown
to provide a comprehensive coverage of advanced standardized communication
aspects such as those found in FIPA interaction protocols. This paper presents (i)
an analysis of existing Petri net representation approaches in terms of their
scalability and appropriateness for different tasks; (ii) a novel scalable
representation approach, particularly suited for monitoring open systems; and
(iii) a skeletal procedure for semi-automatically converting FIPA interaction
protocols to their Petri net representations. We argue that the representation we
propose is comprehensive, in the sense that it can represent all FIPA interaction
protocol features.

1 Introduction

Open distributed multi-agent systems often involve multiple, independently-built
agents performing mutually dependent tasks. To allow different agents designs to be
developed independently, without having to consider the internal design of other
agents, the coordination of the activities is often accomplished using standardized
inter-agent interactions, typically by communications. Indeed, the multi-agent
community has been investing a significant effort in developing standard
communication languages to facilitate sophisticated multi-agent systems (e.g., FIPA
communication standards [4]). These languages define agent interaction protocols that
rely on pre-defined communicative acts for a variety of system tasks, ranging from
simple queries, to complex negotiations by auctions and bidding. For instance, FIPA
Contract Net Protocol [4] defines possible sequences of concrete messages that allow
the interacting agents to negotiate.

Ideally, interaction protocols should be represented in a way that allows
performance analysis, validation and verification, automated monitoring, debugging,
etc. Various formalisms have been proposed for such purposes. However, Petri nets

* This research was supported in part by BSF grant #2002401

2 Gery Gutnik and Gal Kaminka

have been shown to offer significant advantages in representing multi-agent
interactions, compared to other approaches [2,8,9,10]. Specifically, Petri nets are
useful in validation and testing, automated debugging and monitoring [13] and
dynamic interpretation of interaction protocols [3].

Unfortunately, existing literature on using Petri nets to represent multi-agent
interactions leaves open several questions. First, different approaches to represent
multi-agent interactions have been introduced, and yet their relative strengths and
weakness have not been investigated. Second, most previous investigations have not
provided a systematic comprehensive coverage of all issues that arise in representing
complex protocols such as the standardized FIPA interaction protocols.

This paper addresses these open challenges. We analyze and compare existing
approaches to representing interactions using Petri nets (Section 3). This comparison
is done based on the type of Petri net chosen, its choice of representing individual or
joint states, and explicit representation of messages. We then present a novel scalable
representation that uses Colored Petri nets in which places explicitly denote joint
conversation states and messages (Sections 4). This representation can be used to
cover essentially all features used in FIPA conversation standards, including
interaction building blocks, communicative act attributes (such as message guards and
cardinalities), protocol nesting and temporal aspects (e.g., deadlines and duration).
Finally, we provide a skeletal algorithm for converting FIPA conversation protocols
in AUML, i.e. Agent UML, (the chosen FIPA representation standard [4,11]) to Petri
nets (Section 5). Section 6 concludes.

2 Background

We begin first with a brief overview of Petri nets, and then survey existing
approaches that use Petri nets in representing multi-agent interactions.

Petri nets are a graphical representation for describing systems in which multiple
concurrent states may exist. An early elaboration of Petri nets is called
Place/Transition nets (PT-nets), while another high-level extension is called Colored
Petri nets (CP-nets) [6].

A PT-net is a bipartite directed graph where each vertex is either a place (typically
denoted by circles) or a transition (rectangles). Arcs are directed edges connecting
places to transitions and vice versa. A place can contain tokens (small black dots). An
assignment of tokens to places is called a marking. Arcs may have associated integer
expressions, which determine the number of tokens associated with the corresponding
arc. A transition is enabled if and only if the marking of its input places satisfies the
appropriate arc expressions. It then fires, carrying tokens from its input places, per the
output arc expressions, to its output places.

In CP-nets, tokens carry information, called color [6]. Token color may be simple
or complex, e.g. a tuple. Each place contains only tokens of a specified color. CP-net
arc expressions are also extended, to allow complex expressions over colored token
variables associated with the corresponding arcs. CP-nets also use transition guards,
boolean expressions over token color attributes, which determine transition firing.

A Scalable Petri Net Representation of Interaction Protocols for Overhearing 3

CP-nets contain additional extensions, which can be useful in representing complex
AUML features. Further detail can be found in [5].

We now turn to using Petri nets to explicitly represent multi-agent conversations.
All Petri net representation approaches of this type use places to represent interaction
states, and Petri net transitions to represent transitions between interaction states. Net
marking represents the current state of interaction. However, previous investigations
take different design choices within this general approach.

Individual roles and CP-nets. Most investigations choose to separately represent
individual roles within the interaction, rather than represent joint interaction states. In
this approach, separate places are used for separate roles in the interaction, and thus
different markings distinguish a conversation state where one agent has sent a
message, from a state where the other agent received it. Typically, the net for each
individual role is built separately, and then these nets are either merged into a single
net [2,8,9], or simply connected together using Petri net fusion places, or other means
[3,14]. All these investigations use CP-nets to represent multi-agent interactions. As
shown later in the paper, the use of token color allows compact representation of
multiple conversations using the same net.

Joint-state representations using PT-nets. In contrast, a limited number of
investigations model conversations using PT-nets with joint conversation states
[10,13].1 In joint state representations, each net place is at once a representative of the
conversation state of all agents. Typically, markings represent only valid conversation
states (thus the nets ignore transmission delay, etc.), and synchronization protocols
are implicitly assumed to underlie the conversation, to make sure that the agents are
synchronized [12].

3 Analysis of Key Representations

The survey of related work presented above indicates that previous investigations
have introduced rather different approaches to the modeling of multi-agent
interactions using Petri nets. This section offers a comparative analysis of these
approaches on the basis of several criteria: scalability (Section 3.1), and suitability for
monitoring tasks (Section 3.2).

3.1 Scalability

We have classified previous approaches based on (i) their representation of individual
conversation states vs. joint states, and on (ii) their utilization of token color. We now
show how these two independent features affect the scalability of the chosen
representation in terms of the number of conversations.

In principle, for a conversation that has R roles, with M messages, a representation
which explicitly differentiates the conversation state of each role would have O(MR)

1 Though authors claim otherwise, they in fact ignore color, using CP-nets as if they were PT-
nets. For instance, Nowostawski et al. [10] duplicate portions of Petri net to represent multiple
conversations, rather than using color tokens within a single net.

4 Gery Gutnik and Gal Kaminka

places: For every message there would be two individual places for the sender (before
sending, and after sending), and similarly two more for each receiver (before
receiving and after receiving). All possible joint states (i.e. message sent and received,
sent and not received, not sent but incorrectly believed to have been received, not sent
and not received) can be represented. In cases where all joint states must be
represented (including all erroneous states), this representation is preferable to an
explicit joint-state representation which would require O(MR) places.

However, many applications only require representation of valid conversation
states (message not sent and not received, or sent and received). For instance, the
specification of the FIPA interaction protocols [4] implicitly assumes the use of
underlying synchronization protocols to guarantee delivery of messages [12]. Under
such assumption, for every message, there are only two joint states regardless of the
number of roles: before the message is sent, and after the message is sent and
received. The number of places representing joint conversation states grows (linearly)
in this case only with the number of messages – O(M).

We now turn to examining the use of color tokens. In principle, CP-nets and PT-
nets are equivalent from a computational perspective [6], in much the same way the
high level programming languages are no more powerful in principle than assembly.
However, when representing conversations, a significant difference between PT-nets
and CP-nets is their scalability. A PT-token corresponds to a single bit. The
information it conveys is a function of the place it is marking. As a result, it is
impossible to represent several concurrent conversations in the same PT-net, since the
tokens representing the different states of the conversations may overwrite each other,
or cause the net to fire erroneously. Therefore, representing C concurrent
conversations–all of the same interaction protocol–would require O(C) PT-nets.

In contrast, however, colored tokens can be differentiated, even when multiple
tokens mark the same net. For instance, in the representation we present in Section 4,
token colors carry information about the sender and receivers of messages, about the
time in which the message was sent, etc. This information allows us to represent
multiple concurrent conversations–of the same protocol–on a single CP-net structure.
Note that we save only on the number of nets explicitly represented–the number of
tokens for representing C conversations is O(C) in either a PT-net or CP-net
approach.

There are some additional differences between CP-nets and PT-nets, in terms of
features that support representation of FIPA interaction protocols, such as guards,
sequence expressions, cardinalities and timing [4]. Representation of FIPA attributes
is straightforward using the additional information carried by token color (a more
detailed discussion can be found in [5]).

Table 1. Scalability Comparison.

 PT-nets CP-nets

Individual
States Space: O(MRC) Space: O(MR)

[2],[3],[8],[9],[14]

Joint States Space: O(MC)
[10],[13] Space: O(M)

A Scalable Petri Net Representation of Interaction Protocols for Overhearing 5

Based on the above, it is possible to make concrete predictions as to the scalability
of different approaches with respect to the number of agents. Table 1 above shows the
space complexity of different approaches, given that we model C conversations, each
with a maximum of R roles, and M messages. The table also cites relevant
investigations.

3.2 Monitoring Conversations

There are many different uses for a representation of an interaction: To monitor its
progress, to detect faults [13], to verify or analyze its features, etc. We focus here on
monitoring, and distinguish two settings, depending on the information available to
the monitor.

In the first type of setting, the monitor, representing the conversation, has access to
the state of the conversation in one or more of the participants, but not to the
messages being exchanged. This would be the case, for instance, if a participant in a
conversation is monitoring its own progress. In this case, the participant has access to
its own conversation state, but likely, does not have direct knowledge on whether
messages were sent or received by others. Therefore, messages are not explicitly
represented, except as transitions that take the conversation from one place to another
(regardless of whether these places are represented individually or jointly). By placing
tokens in the appropriate conversation places, an agents’ state can be inferred. Then,
letting the corresponding transition fire implies the message being sent and received.
Previous works that have taken this approach include [2,8,9].2

In the second type of settings, the monitor has knowledge of the messages being
sent and received, but does not necessarily know the internal conversation state. It
monitors conversations by tracking the messages (e.g., through overhearing [7]). This
could be done either from an individual perspective, or in settings of a global monitor
that does not have direct knowledge of the conversation state of each agent. However,
this requires the use of separate message places. In this type of representation, a state
place and a message place are connected via a transition to a new state. A monitoring
agent in this case places a token in the appropriate message place whenever it
intercepts a message. Together with conversation state places, these tokens allow the
conversation to transition from one conversation state to a new conversation state
only based on explicit knowledge of the message being sent or received. In principle,
given the current state, the new conversation state can be inferred from “observing” a
message. Previous work that has used explicit message places include [2,3,10,13,14].

4 Scalable Representation for Overhearing

In this section, we focus on developing a scalable representation for overhearing. The
design choices are dictated by the insights gained in the previous section. Thus, the
clear choice in terms of scalability is the approach combining CP-nets with places
representing joint interaction states. In addition, since in overhearing we only expect

2 In the same publication, Cost et al. [2] also use the other approach.

6 Gery Gutnik and Gal Kaminka

to have knowledge of messages being exchanged, we use explicit message places.
Unfortunately, previous investigations did not explore this design, though the work in
[13] explores similar ideas using PT-nets.

We now show how various simple and complex AUML interaction features, used
in FIPA conversation standards [4], can be implemented using the proposed CP-net
representation.

We begin by examining a simple agent conversation building block, corresponding
to a FIPA asynchronous message, which we first show in AUML (Figure 1-a) and
then using our CP-net representation (Figure 1-b). Here, agent1 sends an
asynchronous message msg to agent2. In Figure 1-a, the msg communicative act is
shown by the arrow connecting the lifelines of the corresponding agents. The stick
arrowhead denotes that msg is passed asynchronously (see [1,4,11] for AUML
details).

To represent the same conversation using a CP net, we first identify net places and
transitions. The representation we develop uses two types of places, corresponding to
messages and joint conversation states (as previously described). Figure 1-b shows
the asynchronous message implementation using our CP-net model. This CP-net
shows three places and one transition connecting them. The A1B1 and the A2B2 places
are agent places, while the msg place is a message place. The A and B capital letters
are used to denote the agent1 and the agent2 individual interaction states respectively.
We have indicated the individual and the joint interaction states over the AUML
diagram in Figure 1-a, however these details are omitted later on in the paper. The
A1B1 place indicates a joint interaction state where agent1 is ready to send the msg
message to agent2 (A1) and agent2 is waiting to receive the corresponding message
(B1). The msg message place corresponds to the msg sent and received. The
interception of the msg (and placing a corresponding token) causes the agents to
transition to the A2B2 place. This place corresponds to the joint interaction state in
which agent1 has already sent the msg communicative act to agent2 (A2) who has
received it (B2).

agent� agent�

msg

A� B�

B�A�

A1B1
msg

INTER-
STATE MSG

INTER-
STATE

<s,r> <s,r>

<r,s>

A2B2

 color AGENT = …;
 color INTER-STATE =
 record a1:AGENT*
 a2:AGENT;
 color MSG = record
 s:AGENT*r:AGENT;
 var s,r:AGENT;

 (a) (b)

Figure 1. Asynchronous message interaction.

(a) AUML (b) CP-net representations.

The CP-net implementation in Figure 1-b introduces the use of token colors to
represent additional information about agent interaction states and communicative
acts of the corresponding interaction. The token color sets are defined in the net

A Scalable Petri Net Representation of Interaction Protocols for Overhearing 7

declaration (dashed box in Figure 1-b). The syntax follows standard CP-notation [6].
The AGENT color is used to identify agents participating in the corresponding
interaction. This color is further used to construct the two net compound color sets.
The first color set is INTER-STATE. This color set is related to the net agent places and
it is applied to represent agents corresponding to the appropriate joint interaction
states. The INTER-STATE color token is a tuple (record) <a1,a2>, where a1 and a2 are
AGENT color elements of the interacting agents. We apply the INTER-STATE color set
to model concurrent conversations using the same CP-net. The second color set is
MSG. The MSG color set describes interaction communicative acts and it is associated
with the net message places. The MSG color token is a record <s,r>, where the s and r
elements determine the sender and the receiver agents of the corresponding message.

Therefore, in Figure 1-b, the A1B1 and the A2B2 places are associated with the
INTER-STATE color set, while the msg place is associated with the MSG color set. The
place color set is written in italic capital letters next to the corresponding place.
Furthermore, we use the s and r AGENT color type variables to denote the net arc
expressions. Thus, given that the output arc expression of both the A1B1 and the msg
places is <s,r>, the a1 and a2 elements of the agent place token must correspond to the
s and r elements of the message place token. Consequently, the net transition occurs if
and only if the addressed agents of the message correspond to the interacting agents.

Figures 2 through 4 show similar mappings between AUML representation of
FIPA building blocks, and their CP-net equivalents. Figure 2 shows synchronous
message passing, denoted through the filled solid arrowhead, meaning, that an
acknowledgement of msg communicative act must always be received by agent1
before the interaction protocol may proceed. Figure 3 shows a more complex
interaction, called XOR-decision. In this interaction, the sender can send only one of
the two possible messages to the designated recipients. The figure shows the use of a
joint state for the three agents (the A1B1C1 place). Figure 4 shows another complex
interaction, the OR-parallel interaction, in which the sender can send one or two
communicative acts (inclusively) to the designated recipients simulating an inclusive-
or. As shown, agent1 can send message msg1 to agent2 or message msg2 to agent3 or
both.

agent� agent�

msg

A1B1
msg

INTER-
STATE MSG

INTER-
STATE

<s,r> <s,r>

<r,s>

A1’B1’

ack-msg

MSG

<s,r>

INTER-
STATE

<s,r>

<s,r>

A2B2

 (a) (b)

Figure 2. Synchronous message interaction.
(a) AUML (b) CP-net representations.

8 Gery Gutnik and Gal Kaminka

msg�

msg�

agent� agent� agen�

x

msg1

INTER-
STATE-3

MSG

INTER-
STATE

<s,r1>
<s,r1,r2>

<r1,s>

A2B2

MSG

<s,r2>

INTER-
STATE

<r2,s>

A2C2

msg2

<s,r1,r2>

A1B1C1

 (a) (b)

Figure 3. XOR-decision messages interaction.
(a) AUML (b) CP-net representations.

msg�

msg�

agent� agent� agen�

msg1

MSG

INTER-
STATE

<s,r1>

<r1,s>

A2B2

INTER-
STATE

<s,r2>

<r2,s>

A2C2

<s,r1,r2>

INTER-
STATE-3

A1B1C1

<s,r1> <s,r2>

INTER-
STATE

INTER-
STATE

A1'B1 A1'’C1
msg2

MSG

<s,r1> <s,r2>

 (a) (b)

Figure 4. OR-parallel messages interaction.

(a) AUML (b) CP-net representations.

We now extend our technique to facilitate the implementation of additional
interaction aspects useful in describing multi-agent conversation protocols. First, we
use CP-nets to represent interaction message attributes used by FIPA conversation
standards such as guards, sequence expressions, cardinalities, etc [4]. Second, we
demonstrate representation of multiple agent concurrent conversations using the same
CP-net.

Figure 5-a demonstrates a conditional agent interaction using AUML. This
interaction is similar to Figure 1-a above, except for the use of the message guard-
condition [condition]. Its semantics are that msg is sent if and only if the condition is
true. Fortunately, message guard-conditions can be mapped directly to a CP-net
transition guard (indicated next to the corresponding transition using square brackets
in Figure 5-b). The transition guard guarantees that the transition is enabled if and
only if the transition guard is true.

A Scalable Petri Net Representation of Interaction Protocols for Overhearing 9

agent� agent�

msg

[condition]

A1B1
msg

INTER-
STATE MSG

INTER-
STATE

<s,r> <s,r,t,c>

<r,s>

A2B2

[condition]

(a) (b)

Figure 5. Message guard-condition.

(a) AUML (b) CP-net representations.

In Figure 5-b, we also demonstrate the CP-net implementation to message type and
content attributes. For that purpose, we define two additional colors. The first, TYPE
color, determine a message type, while the second, CONTENT color, represents
message content. Furthermore, we extend the MSG color set, previously defined, to
allow information passing between agents. Thus, the MSG color token is a record
<s,r,t,c>, where the s and r elements has previous interpretation and the t and c
elements define the message type and content.

Additional communicative act attributes include message sequence-expression and
cardinality. In FIPA [4], sequence-expressions denote a constraint on the message
sent from an agent: m denotes that the message is sent exactly m times; n..m denotes
that the message is sent n up to m times; {*} denotes that the message is sent an
arbitrary number of times.

In this paper, we focus on a non-FIPA extension commonly used–the broadcast
sequence expression, which denotes the broadcast sending of a message to all
recipients on a list. In Figure 6 we show its representation using CP-nets. For this
purpose, we define an INTER-STATE-CARD color set. This color set is a tuple (<a1,a2>,
i) consisting of two elements. The first tuple element is an INTER-STATE color
element, which denotes the interacting agents as before. The second tuple element is
an integer i that counts the number of messages already sent by an agent–message
cardinality. This element is initially assigned to 0. The S1R1 place is of color INTER-
STATE-CARD. Two additional colors are BROADCAST-LIST (defining the sender's list
of receivers) and TARGET (index into this list).

The key novelty in Figure 6 is the use of the condition on the first transition,
coupled with the arc looping back to S1R1. The initial marking of S1R1 is a single
token (<s,TARGET(0)>,0), pointing at the first receiver on the broadcast list as the
target, with message cardinality counter initiated to 0. On the other hand, the msg1
message place initially contains multiple tokens. Each of these tokens represents the
msg1 message addressed to a designated receiver on the broadcast list. The S1R1 place
token and the appropriate msg1 place token together enable the corresponding
transition. It fires, thus representing the sending of msg1 to the first receiver on the
broadcast list.

10 Gery Gutnik and Gal Kaminka

S1R1

msg1
INTER-
STATE-
CARD

MSG

INTER-
STATE

(<s,r>,i) msg

<r,s>

S2R2

msg2
MSG

msg

INTER-
STATE

<s,r>

<r,s>

S3R3

1`(<s,TARGET
(0)>,0)

(<s,TARGET
(i+1)>,i+1)

[i<size]

 color AGENT = …;
 color TYPE = …;
 color CONTENT = …;
 color INTER-STATE = record a1:AGENT*

 a2:AGENT;
 color CARD = int;
 color INTER-STATE-CARD = product

 INTER-STATE*CARD;
 color MSG = record s:AGENT*r:AGENT*

 t:TYPE*c:CONTENT;
 color BROADCAST-LIST = AGENT with…;
 val size = …;
 color TARGET = index BROADCAST-LIST

 with 0...size-1;
 var s,r:AGENT; var msg:MSG; var i:CARD;

Figure 6. Broadcast in CP-net representation.

The arc looping back to S1R1 has an arc expression which increments the index i.

Thus after the initial firing, a new token is placed in S1R1, pointing at the next
recipient on the broadcast list. This recipient is matched with the appropriate token in
the msg1 place, and again the transition would fire, indicating transmission and receipt
of msg1 by the second receiver. The process continues while the condition on the
transition holds, i.e., while the index i is smaller the size of the broadcast list.

The use of token color allows multiple conversations to be concurrently tracked
using the same CP-net. For instance, in Figure 6, let the sender agent be called agent1
and its broadcast list contain agents agent2,…, agent6. Suppose agent1 has already sent
msg1 to all agents on the broadcast list, but has only received the msg2 reply from
agent3, agent4 and agent6. The CP-net marking for this state would be: (i) The S2R2
place marked {<agent2, agent1>, <agent5, agent1>}; and (ii) the S3R3 place marked
{<agent1, agent3>, <agent1, agent4>, <agent1, agent6>}. The different tokens, that
are distinguishable because of the token color, differentiate concurrent conversations
involving agent1, using the same CP-net. This is a significant improvement over PT-
net representations.

Due to space constraints, we cannot show how the proposed CP-net representation
is amenable to represent all FIPA AUML building blocks (and additional features,
such as deadlines and nested protocols). The reader is referred to [5] for such details.

5 Algorithm & Concluding Example

Previous investigations have explored various machine-readable Petri net
representations. However, interaction protocols are typically specified in human-
readable form (e.g., in AUML [1,11]). The question of how to systematically translate
an interaction protocol specification into a machine-readable form has been
previously ignored. We present a semi-automated procedure for transforming an
AUML protocol diagram of two interacting agents to its CP-net representation. While
not fully automated, we believe that it represents a significant step towards fully

A Scalable Petri Net Representation of Interaction Protocols for Overhearing 11

automatic translation. We apply this algorithm on a complex multi-agent conversation
protocol that involves many of the interaction aspects already discussed.

The procedure is presented in Figure 7. Its input is an AUML diagram, and its
output is a corresponding CP-net representation using joint states and explicit
message places. The CP-net is constructed in iterations: The algorithm essentially
creates the conversation net by exploring the interaction protocol breadth-first, while
avoiding cycles. Lines 1-2 create and initiate a queue and the output CP-net
respectively. The queue, denoted by S, holds the initiating agent places for the current
iteration. These places correspond to interaction states that initiate further
conversation between the interacting agents. In lines 4-5, an initial agent place, A1B1,
is created and inserted into the queue.

We enter the main loop in line 8 and set curr to the first initiating agent place in S.
Lines 10-13 create the CP-net components of the current iteration. First, in line 10,
message places, associated with curr agent place, are created using
CreateMessagePlaces. These places correspond to communicative acts, which take
agents from the joint interaction state curr to its successor(s). Then, in line 11, we
create agent places that correspond to interaction state changes as a result of these
messages associated with curr agent place. Then, in CreateTransitionsAndArcs (line
12), these places are connected through transitions and arcs, using the CP-net building
blocks described previously, and in [5]. Finally, we add token color elements to the
CP-net structure, implementing attributes using FixColor (line 13).

CPN

 AR arcsCPN arcsCPN

 TR stransitionCPN stransitionCPN

RP MP placesCPN placesCPN

p enqueue S

place gterminatin p

iteration current in created not wasp
RP p place

AR TR, RP, MP,CPN, AUML, FixColor
RP MP,curr, AUML, ArcssitionsAndCreateTran AR ,TR

 MPcurr, AUML, Places ltingAgent CreateResu RP
curr ,AUML agePlacesCreateMess MP

 dequeue S curr

empty S

BA enqueue S
ninformatio color withplace agent BA

net-CP CPN

queue S
 CPNAUML, tersationNeCreateConv

11
11

return:
:

whileend:
..:
..:
..:

:
foreachend:

)(.:
notisif:

continue:
if:

inforeach:
:

)(:
)()(:

)(:
)(:

:
().:

donotwhile:
:

)(.:
new:

:
new:
new:

):output:input(Algorithm

27
26
25
24

23

22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

�
�

� �

=
=
=

←
←
←

←

←

←
←

Figure 7. AUML to CPN Conversion Procedure.

12 Gery Gutnik and Gal Kaminka

Lines 15-20 determine agent places that are inserted into S for further iteration.
Only non-terminating agent places, corresponding to non-terminal interaction states,
are inserted into S (lines 18-19), with the exception of places that have already been
handled (lines 16-17). Completing the iteration, the output CP-net, denoted by CPN,
is updated according to the current iteration CP-net components in lines 22-24. The
loop iterates as long as S contains places that have not been handled. Finally, the
resulting CP-net is returned (line 27).

To demonstrate this algorithm, we now use it to construct a CP-net of the FIPA
Contract Net Interaction Protocol [4] (shown in AUML in Figure 8). In this protocol,
the Initiator agent issues m calls for proposals using a cfp message. By a given
deadline, each of the Participants may send either a refuse message (terminating the
interaction), or a propose message containing a counter-proposal. Once the deadline
expires, the Initiator evaluates received proposals and selects agents to perform the
requested task. Selected participants are sent an accept-proposal message, while
others are sent a reject-proposal. Selected participants carry out their task, and upon
completion, send either an inform-done, an inform-result, or a failure message.

reject-proposal

accept-proposal

failure

inform-done:inform

inform-result:inform

l=j-k

k2j

propose

n
refusei2n

j=n-i

cfp m

Initiator Participant

Figure 8. FIPA Contract Net using AUML.

We now use the algorithm introduced above to create a CP-net for this protocol, in

four iterations of the main loop. The algorithm begins with the creation (and insertion
into S) of the I1P1 place, of INTER-STATE color. Thus, in the first iteration, the curr
variable is set to I1P1. The algorithm creates net places, which are associated with the
I1P1 place, i.e. a cfp message place and an I2P2 resulting agent place. Then, the three
places are connected using the asynchronous message building block shown in Figure
1-b. Next, the color sets of the corresponding places are determined, and the

A Scalable Petri Net Representation of Interaction Protocols for Overhearing 13

algorithm also handles the broadcast sequence-expression attribute of the cfp
message, as shown in Figure 6. Accordingly, the color set associated with I1P1 place,
is changed to the INTER-STATE-CARD color set. The I2P2 is not a terminating place
(Initiator is waiting for a response from Participants) and is thus inserted into the S
queue.

In the second iteration, curr is set to the I2P2 place. A Participant can send either a
refuse or a propose messages, and thus appropriate message places are created. Then,
the I3P3 and I4P4 agent places, corresponding to the results of the messages, are
created. The I2P2, Refuse, I3P3, Propose and I4P4 places are connected using the XOR-
decision described in Figure 3-b. Then, the deadline sequence expression of both the
refuse and the propose messages is implemented as shown in [5]. The I3P3 place
(resulting from refuse) is a terminal interaction state, while the I4P4 place represents a
non-terminal state. Thus, only I4P4 is inserted into S.

For lack of space, we now skip over the final two iterations of the main loop, to the
resulting CP net (Figure 9). The only items of interest in these skipped iterations
involve the creation of the guard conditions on the transitions (see Figure 5-b), and
the abstraction of the two inform messages (inform-done, inform-result) into a single
message place marked inform. A detailed discussion of their creation is provided in
[5].

I1P1

Cfp

INTER-STATE-
CARD

MSG

(<s,r>,i) msg

<r,s> Propose

MSG-
TIME

msg@[Tts]msg@[Tts]

<r,s>

I3P3

1`(<s,TARGET(0)>,0)

[i<m]

<r,s>

I5P5

(<s,TARGET
(i+1)>,i+1)
Refuse

MSG-
TIME

INTER-
STATE I2P2

<s,r><s,r>

[Tts<
Tdeadline]

[Tts<
Tdeadline] <r,s>

INTER-
STATE

I4P4

MSG-
TIME

MSG-
TIME

Accept-
Proposal

Reject-Proposal

msg@[Tts] msg@[Tts]

<s,r> <s,r>

<r,s>
[Tts>=

Tdeadline]
[Tts>=

Tdeadline]

INTER-
STATE

INTER-
STATE

I6P6

<s,r> <s,r>

<r,s> <r,s>
INTER-
STATE

INTER-
STATE

I7P7 I8P8

MSG

MSGFailure
Inform

[#t msg=inform-
done or #t msg=

inform-result]

INTER-
STATE

msg msg

 color AGENT = …;
 color TYPE = cfp|refuse|...;
 color CONTENT = …;
 color INTER-STATE = record a1:AGENT*

 a2:AGENT;
 color CARD = int;
 color INTER-STATE-CARD = product

 INTER-STATE*CARD;
 color MSG = record s:AGENT*r:AGENT*

 t:TYPE*c:CONTENT;
 color TARGET-LIST = AGENT with…;
 val m = …;
 color TARGET = index TARGET-LIST

 with 0...m-1;
 var s,r:AGENT; var msg:MSG;
 var i:CARD;
 val deadline=…;

Figure 9. FIPA Contract Net using CP-net.

Although this procedure can convert many 2-agent protocols in AUML to their CP-
net equivalents, it does not address the general n-agent case. We leave this
development to future work.

14 Gery Gutnik and Gal Kaminka

6 Summary & Conclusions

Over recent years, increasing attention has been directed at representations of agent
conversations. In particular, there is an increasing interest in using Petri nets to model
multi-agent interactions [2,9,10,14]. Unfortunately, features of competing approaches
with respect to scalability and suitability for different tasks have not been analyzed.
Furthermore, no procedures were provided that guide the conversion of an interaction
protocol given in AUML (the FIPA standard human-readable representation [4,11]) to
any of the Petri net representations.

This paper sought to address these open questions. First, we analyzed key features
in existing representation approaches. We have shown that (i) when representing valid
conversations, a CP-net, where places denote joint conversation states, scales better
than other approaches; (ii) message places are necessary for tracking conversations by
overhearing. Unfortunately, previous work did not examine this combination of CP-
nets with joint states and message places.

We therefore developed this representation to target scalable overhearing and
monitoring tasks. We provided building blocks allowing this representation to model
complex multi-agent conversations as defined by FIPA [4]. Finally, we have
presented a skeleton semi-automated procedure for converting an AUML protocol
diagrams to an equivalent CP-net, and demonstrated its use on a challenging FIPA
conversation protocol.

We believe that the proposed technique can assist and motivate continuing
research on representing conversations for tasks other than overhearing, e.g.,
debugging [13], automated monitoring [7], etc.

References

1. AUML site (2004). Agent UML, at www.auml.org.
2. Cost, R. S., Chen, Y., Finin, T., Labrou, Y. & Peng, Y. (2000). Using Coloured Petri Nets

for a Conversation Modeling. In Dignum, F. & Greaves, M. (Eds.), Issues in Agent
Communications, pp. 178-192. Springer-Verlag.

3. Cranefield S., Purvis M., Nowostawski M. & Hwang P. (2002). Ontologies for interaction
protocols. In Proceedings of AAMAS-02.

4. FIPA Specifications (2004). FIPA Specifications, at
www.fipa.org/specifications/index.html.

5. Gutnik, G. & Kaminka, G.A. (2004). A comprehensive Petri net representation for multi-
agent conversations. MAVERICK Technical Report 2004/1, Bar-Ilan University, at
www.cs.biu.ac.il/~maverick/tech-reports/.

6. Jensen, K. (1997). Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. Springer-Verlag.

7. Kaminka, G.A., Pynadath, D.V. & Tambe, M. (2002). Monitoring Teams by Overhearing:
A Multi-Agent Plan-Recognition Approach. JAIR, 17, 83-135.

8. Lin, F., Norrie, D. H., Shen, W. & Kremer, R. (2000). A schema-based approach to
specifying conversation policies. In Dignum, F. & Greaves, M. (Eds.), Issues in Agent
Communications, pp. 193-204. Springer-Verlag.

9. Mazouzi, H., Fallah-Seghrouchni, A. E. & Haddad, S. (2002). Open protocol design for
complex interactions in multi-agent systems. In Proceedings of AAMAS-02.

A Scalable Petri Net Representation of Interaction Protocols for Overhearing 15

10. Nowostawski, M., Purvis, M. & Cranefield, S. (2001). A layered approach for modeling
agent conversations. In Proceedings of Workshop on Infrastructure for Agents, MAS and
Scalable MAS, pp. 163-170. Montreal, Canada.

11. Odell, J., Parunak, H. V. D. & Bauer, B. (2001). Agent UML: A formalism for specifying
multi-agent interactions. In Ciancarini, P. & Wooldridge, M. (Eds.), Agent-Oriented
Software Engineering, pp. 91-103. Springer-Verlag, Berlin.

12. Paurobally S., Cunningham J. & Jennings N. R. (2003). Ensuring consistency in the joint
beliefs of interacting agents. In Proceedings of AAMAS-03.

13. Poutakidis, D., Padgham, L. & Winikoff, M. (2002). Debugging multi-agent systems using
design artifacts. In Proceedings of AAMAS-02.

14. Purvis, M. K., Hwang, P., Cranefield, S. J. & Schievink, M. (2002). Interaction Protocols
for a Network of Environmental Problem Solvers. In Proceedings of iEMSs-02.

