Utility-Based Plan Recognition: An Extended Abstract

Dorit Avrahami-Zilberbrand

Gal A. Kaminka*

The MAVERICK Group
Computer Science Department
Bar llan University, Israel
{avrahad1,galk,}@cs.biu.ac.il

ABSTRACT

Plan recognition is the process of inferring other agents’ plans and
goals based on their observable actions. Essentially all previous
work in plan recognition has focused on the recognition process it-
self, with no regard to the use of the information in the recognizing
agent. As a result, low-likelihood recognition hypotheses that may
imply significant meaning to the observer, are ignored in existing
work. In this paper, we present novel efficient algorithms that al-
lows the observer to incorporate her own biases and preferences—
in the form of a utility function—into the plan recognition pro-
cess. This allows choosing recognition hypotheses based on their
expected utility to the observer. We call this Utility-based Plan
Recognition (UPR). We briefly discuss a hybrid symbolic decision-
theoretic plan recognizer, and demonstrate the efficacy of this ap-
proach in an example.

1. INTRODUCTION

Keyhole plan recognition [2, 3] focuses on mechanisms for rec-
ognizing the unobservable state of an agent, given observations of
its interaction with its environment. Most approaches to plan recog-
nition utilize a plan library, which encodes the behavioral repertoire
of observed agents. Observations are matched against this plan li-
brary in sequence.

Essentially all plan recognition techniques ignore the decision
processes of the recognizing agent. Existing work focuses on prob-
abilistic or heuristic ranking of recognition hypotheses. As a result,
low-likelihood recognition hypotheses that may carry significant
gains or costs to the observer, might be ignored.

For instance, suppose we observe a sequence of Unix commands
that can be explained by for some intention / or for a more common
intention L. Most plan recognition systems will prefer the most
likely hypothesis L, and ignore I. Yet, if the expected cost (risk)
of I for the observer is high (e.g., if [ is a plan to take down the
computer system), then that hypothesis should be preferred when
trying to recognize suspicious behavior.

We advocate a novel plan recognition approach, utility-based
plan recognition (UPR), in which the observer folds its biases and

*This research was supported by ISF Grant #1211/04.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

AAMAS’07 May 14—18 2007, Honolulu, Hawai’i, USA.

Copyright 2007 IFAAMAS .

preferences—in the form of a utility function—into the plan recog-
nition process itself. Using UPR, the recognition process ranks
recognition hypotheses based on their expected utility to the ob-
server. This allows the observer, for instance, to select hypotheses
based on their expected costs (e.g., in the case of a risk-averse ob-
server), or expected gains. Unfortunately, while in principle UPR
can be carried out via influence diagrams or other means, such rea-
soning about interactions with others is intractable in the general
case [5,7].

We present an efficient UPR recognizer, able to carry out plan
recognition in worst-case complexity of O(NDT'), where N is
the size of a hierarchical plan library, D is the depth of the li-
brary, and T is the number of observations. This complexity is
achieved by using an hybrid approach that combines an efficient
symbolic plan recognizer [1], with a decision-theoretic inference
mechanism. We restrict these algorithms to the case of keyhole
recognition, where the observed agent does not modify its behavior
based on the knowledge that it is being observed.

2. RELATED WORK AND MOTIVATION

There has been considerable research exploring plan recognition
algorithms. Almost all of it ignores the use of utilities; we leave
those aside for lack of space.

[6] address utilities of the other agent’s actions to itself, but in
contrast to our work they consider the impact of recognition hy-
potheses on the observed agent, not to the observer.

More closely-related work examined reasoning about the util-
ity of recognition hypotheses for the observer. RESC [8] takes
a heuristic approach that prefers hypotheses that imply significant
costs to the observer (e.g., potential destruction). The relative like-
lihood of such hypotheses is ignored. While we are inspired by this
work, we take a principled, decision-theoretic, approach. In the al-
gorithms we present, the likelihood of hypotheses is combined with
their utilities, to calculate the expected impact on the observer.

In general, a UPR recognizer could be implemented by extend-
ing the use of plan-recognition Bayesian networks [2] to influence
diagrams [5]. However, the run-time complexity of inference in
such representations is inhibitory for real-world cases.

3. A HYBRID UPR TECHNIQUE

This section presents an efficient hybrid UPR technique. Here, a
highly efficient symbolic plan recognizer [1] is used to filter through
hypotheses, maintaining only those that are consistent with the ob-
servations. We then use a decision-theoretic layer on top of the
symbolic recognizer for ranking the hypotheses.

3.1 Efficient Symbolic Plan Recognition

We exploit SBR, a highly-efficient symbolic plan recognizer,
briefly described below. The reader is referred to [1] for details.



SBR’s plan library is a single-root directed graph, where vertices
denote plan steps, and edges can be of two types: Decomposition
edges decompose plan steps into sub-steps, and sequential edges
specify the temporal order of execution. The graph is acyclic along
decomposition transitions.

Each plan has an associated set of conditions on observable fea-
tures of the agent and its actions. When these conditions hold, the
observations are said to match the plan. At any given time, the ob-
served agent is assumed to be executing a plan decomposition path,
root-to-leaf through decomposition edges. An observed agent is as-
sumed to change its internal state in two ways. First, it may follow
a sequential edge to the next plan step. Second, it may reactively
interrupt plan execution at any time, and select a new (first) plan.
Figure 1 shows an example portion of a plan library.

The recognizer operates as follow: First, it matches observations
to specific plan steps in the library according to the plan step’s con-
ditions. Then, after matching plan steps are found, they are tagged
by the time-stamp of the observation. These tags are then propa-
gated up the plan library, so that complete plan-paths (root to leaf)
are tagged to indicate they constitute hypotheses as to the internal
state of the observed agent when the observations were made. The
propagation process tags paths along decomposition edges. How-
ever, the propagation process is not a simple matter of following
from child to parent. A plan may match the current observation,
yet be temporally inconsistent, when a history of observations is
considered. SBR is able to quickly determine the temporal consis-
tency of a hypothesized recognized plan [1].

At the end of the SBR process we are left with a set of current-
state hypotheses, i.e., a set of paths through the hierarchy, that the
observed agent may have executed at the time of the last observa-
tion. The overall worst-case run-time complexity of this process
is O(LD) [1]. Here, L is the number of plan-steps that directly
match the observations; D is depth of a degenerate plan-library
(i.e., a linked list).

3.2 The Expected Utility of an Hypothesis

After getting all current state hypotheses from the symbolic rec-
ognizer, the next step is to compute the expected utility of each
hypothesis. This is done by multiplying the posterior probability of
a hypothesis, by its utility to the observer.

We follow in the footsteps of Hierarchical Hidden Markov Model
(HHMM) [4] in representing probabilistic information in the plan
library. We denote plan-steps in the plan library by ¢¢, where i is
the plan-step index and d is its hierarchy depth, 1 < d < D. For
each plan step, there are three probabilities maintained:
Sequential transition. For each internal state ¢¢, there is a state

d d
transition probability matrix denoted by AT = (ag’ j), where afv ;=
P(qf|gf) is theprobability of making a sequential transition from
the i*" plan-step to the 5" plan-step. Note that self-cycle transi-
tions are also included in A"

Interruption. We denote by afin 4 A transition to a special plan

step end? which signifies an interruption of the sequence of current
plan step ¢¢, and immediate return of control to its parent, g%~ .
Decomposition transition. When the observed agent first selects a
decomposable plan step ¢¢, it must select between its (first) chil-
dren for execution. The decomposition transition probability is
d d e
denoted 119" = 77" (¢*™') = P(g""|¢), the probability that

plan-step ¢ will initially activate the plan-step q,‘j*l.

Observation Probabilities. each leaf has output probability vec-
d
tor denoted by B = (b7 (k)), the probability that state ¢ will

0.8

y X
walk No End

article

walk with
article

Figure 1: An example plan library. Recognition time-stamps in the
text appear in circles. Costs appear in diamonds on edges.

output symbol k.

In addition to transition and interruption probabilities, we add
utility information on the edges in the plan library. The utilities on
the edges represent the cost or gains to the observer, given that the
observed agent selects the edge. For the remainder of the paper,
we use the term cost to refer to a positive value associated with
an edge or node. As in the probabilistic reasoning process, for

. e d . .
each node we have three kinds of utilities: (a) £ is the sequential
transition utility (cost) to the observer, conditioned on the observed

d
q
i,end

d
is the interruption utility; and (c) W7 is the decomposition utility

agent transitioning to the next plan-step, paralleling Aqd; b)e

to the observer, paralleling e,

Figure 1 shows portion of the plan library of an agent walking
with or without a suitcase in the airport, occasionally putting it up
and picking it up again, an example discussed below. Note the end
plan step at each level, and the transition from each plan-step to
this end plan step. This edge represent the probability to interrupt.
The utilities are shown in diamonds (we omitted zero utilities, for
clarity). The transitions allowing an agent to leave a suitcase with-
out picking it up are associated with large positive costs, since they
signify danger to the observer.

We use these probabilities and utilities to rank the hypotheses
selected by the SBR. First, we determine all paths from each hy-
pothesized leaf in time-stamp ¢ — 1, to the leaf of each of the cur-
rent state hypotheses in time stamp ¢. Then, we traverse these paths
multiplying the transition probabilities on edges by the transition
utilities, and accumulating the utilities along the paths. If there is
more then one way to get from the leaf of the previous hypothesis
to the leaf of the current hypothesis, then it should be accounted
for in the accumulation. Finally, we can determine the most costly
current plan-step (the current-state hypothesis with maximum ex-
pected cost). Identically, we can also find the most likely current
plan-step, for comparison.

Formally, let us denote hypotheses at time ¢ — 1 (each a path
from root to leaf) as W = {W1, Wa, ..., W,.}, and the hypothe-
ses at time ¢t as X = {X1, Xo,..., X;}. To calculate the maxi-
mum expected-utility (most costly) hypothesis, we need to calcu-
late for each current hypothesis X; its expected cost to the observer,
U(X;|O), where O is the sequence of observations thus far. Due
to the use of SBR to filter hypotheses, we know that the first ¢ — 1
observations in O have resulted in hypotheses W, and that obser-
vation ¢ results in new hypotheses X . Therefore, under assumption
of Markovian plan-step selection, U(X;|0) = U(X;|W).

The most costly hypothesis is computed in Equation 1. We use
P(Wy), calculated in the previous time-stamp, and multiply it by
the probability and the cost to the observer of taking this step from



Wy to X;. This is done for all 4, k.
X; =argmax » _ P(Wi)- P(Xi|Wi) - U(Xi|Wi) (1)
X

To calculate thevgex%vevcted utility E(X;|Wy) = P(X;|Wk) -
U(X:|Wy), let X; be composed of plan steps {z7,..., 2"} and
W} be composed of {wj., ..., wi } (the upper index denotes depth).
Given w € W), and x € X, there are two cases. In the first case,
z and w have a common parent, and x is a direct decomposition of
this common parent. Here, the expected utility is accumulated by
climbing up vertices in w (by taking interrupt edges) until we hit a
parent common to x and w, and then climbing down (by taking first
child decomposition edges) to . In the second case, x is reached
by following a sequential edge from a vertex in w to a vertex in x.

A naive algorithm for computing the expected costs of hypothe-
ses at time ¢ can be expensive to run. It would go over all leaves of
the paths in ¢ —1 and for each of these, traverse the plan library until
getting to all leaves of paths we got in time-stamp ¢. The worst-case
complexity of this process is O(N>T'), where N is the plan library
size, and 7" is the number of observations.

3.3 Efficient UPR Algorithms

We developed a set of algorithms that calculates the expected
utilities of hypotheses (Equation 1) in worst-case runtime complex-
ity O(NDT'), where D is the depth of the plan library (N,T as
above). The algorithms are based on the observation that the struc-
tural constraints on the plan library are such, that all the paths from
any path (hypothesis) true at time ¢ — 1, to a given hypothesis X,
true at time ¢, must necessarily go through a single node S that is a
part of X;. Moreover, S is necessarily a common node to X; and
one or more paths at time t — 1. If we can propagate the utilities
and probabilities up to this node .S, then we could propagate down
from it to all paths X in which it is a part, that are true at time ¢.

This translates into the following procedure. We begin with the
leaves of all ¢ — 1 hypotheses Wi (1 < k < n). We sum the
utilities and probabilities while climbing up from the leaves along
the hierarchy, all the way to the root, storing intermediate sums in
the internal nodes w’ (plan-steps) of the hierarchy. Then, any of
those internal nodes (i) that has a child marked at time ¢ (i.e., w? is
a common parent, Eq(w?, 27) is true); or (ii) that has a sequential
transition to an internal node marked at time ¢ (i.e., af“x > 0).
In either of these cases, we have found a node (marked time t)
through which one or more time ¢ hypotheses X; pass, i.e., a node
S as above. We then propagate down the calculated probability and
utility downward.

Complexity Analysis: the run-time complexity of the algorithm
is O(NDT): We first propagate the ¢ — 1 expected utilities up
the hierarchy, not visiting plans that already been visited, in worst-
case time O(N). Then, calculating (3 for different depths, for paths
tagged with ¢, is O(N D). We do this for every observation, of
which there are 7', thus overall, we get O(NDT).

Note the reliance on the underlying SBR: Since the symbolic
recognizer provides the possible paths at times ¢t — 1, ¢, we do not
need to consider all possible paths, and can begin the propagation
process directly at the leaves of paths. Hopefully, many paths are
disqualified by the symbolic algorithm, due to temporal coherence;
in that case, we expect performance in practice to improve signifi-
cantly over the worst case complexity.

3.4 Leaving unattended articles

It is important to track a person that leave her articles unattended
in the airport. It is difficult, if not impossible, to catch this behavior
using only probabilistic information. We demonstrate the process
using the plan library in Figure 1. This Plan library is used to track

simulated passengers in an airport that walk about carrying articles,
which they may put down and pick up again. The recognizer’s
task is to recognize passengers that put something down, and then
continue to walk without it. Note that the task is difficult because
the plan-steps are hidden (e.g., we see a passenger bending, but
cannot decide whether it pick something up, put something down,
or neither; we cannot decide whether a person has an article).

Suppose that in time ¢ = 2, the SBR had returned that the
two plan-steps marked walk match the observations (walkN means
walking with no article, walkW signifies walking with an article);
in time t = 3 the two stop plan steps match (stopN and stopW),
and in time ¢ = 4 the plan step pickN and plan step putW, match
(e.g., we saw that the observed agent was bending). The probability
int = 4 will be P(putW |stopW) = 0.5 x 0.2 = 0.1 (the prob-
ability of stopW in previous time-stamp is 0.5, then following se-
quential link to putW), and in the same way P (pickN|stopN) =
0.5 x 0.3 = 0.15. Normalizing the probabilities for the current
time ¢ = 4, P(putW|stopW) = 0.4 and P(pickN|stopN) =
0.6. The expected utility in time ¢t = 4 is U(putW |stopW) =
P(putW |stopW) x E(putW|stopW) = 0.4 x 10 = 4. The
expected utility of pickN is still zero. If we had not paid attention
to the utilities and picked just the observation with the maximum
probability, we could miss important information, such as a passen-
ger putting down an article and not picking it up.

4. SUMMARY AND FUTURE WORK

This paper presents a utility-based plan recognition (UPR) ap-
proach, for incorporating biases and preferences of the observer
into keyhole plan recognition. This allows choosing recognition
hypotheses based on their expected utility to the observer. While
reasoning about such expected utilities is intractable in the general
case, we present a hybrid symbolic decision-theoretic plan recog-
nizer, whose complexity is O(N DT'), where N is the plan library
size, D is the depth of the library and 7" is the number of obser-
vations. We plan to further explore the use of UPR algorithms in
additional queries and cases such as intended recognition.

5. REFERENCES

[1] D. Avrahami-Zilberbrand and G. A. Kaminka. Fast and
complete symbolic plan recognition. In IJCAI-05, 2005.

[2] E. Charniak and R. P. Goldman. A Bayesian model of plan
recognition. ALJ, 64(1):53-79, Nov. 1993.

[3] T. V. Duong, H. H. Bui, D. Q. Phung, and S. Venkatesh.
Activity recognition and abnormality detection with the
switching hidden semi-markov model. In CVPR (1), pages
838-845, 2005.

[4] S. Fine, Y. Singer, and N. Tishby. The hierarchical hidden
markov model: Analysis and applications. Machine Learning,
32(1):41-62, 1998.

[5] R. A. Howard and J. E. Matheson. Influence diagrams. In
R. A. Howard and J. E. Matheson, editors, Readings on the
Principles and Applications of Decision Analysis. Strategic
Decisions Group, 1984.

[6] W.Mao and J. Gratch. A utility-based approach to intention
recognition. In AAMAS 2004 Workshop on Agent Tracking:
Modeling Other Agents from Observations, NY City, NY,
USA, July 2004.

[7] S. Noh and P. Gmytrasiewicz. Flexible multi-agent
decision-making under time pressure. IEEE Transactions on
Systems, Man, and Cybernetics, Part A: Systems and Humans,
35(5):697-707, 2005.

[8] M. Tambe and P. S. Rosenbloom. RESC: An approach to
agent tracking in a real-time, dynamic environment. In
1JCAI-95, August 1995.



