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Abstract 
 

Overhearing is gaining attention as a generic method 
for cooperative monitoring of distributed, open, multi-
agent systems. It involves monitoring the routine 
conversations of agents–who know they are being 
overheard–to assist the agents, assess their progress, or 
suggest advice. While there have been several 
investigations of applications and methods of 
overhearing, no formal model of overhearing exists. 
This paper takes steps towards such a model. It first 
formalizes a conversation system–the set of 
conversations in a multi-agent system. It then defines a 
key step in overhearing–conversation recognition–
identifying the conversations that took place within a 
system, given a set of overheard messages. We provide a 
skeleton algorithm for conversation recognition, and 
provide instantiations of it for settings involving no 
message loss, random message loss, and systematic 
message loss (such as always losing one side of the 
conversation). We analyze the complexity of these 
algorithms, and show that the systematic message loss 
algorithm, which is unique to overhearing, is 
significantly more efficient then the random loss 
algorithm (which is intractable).  

 
 

1.  Introduction 
 

Overhearing is fast gaining attention as a generic 
method for cooperative monitoring of distributed, open, 
multi-agent systems. Overhearing involves monitoring 
the routine conversations of agents–who know they are 
being overheard–to infer information about the agents. 
Such information can be used to assist them [7,9], assess 
their progress [6], or suggest advice [1,2,3].  

Overhearing is particularly suited to open distributed 
multi-agent applications, which often use standardized 
communication protocols. In such settings, agents' 
internal structure is not generally known to a monitoring 
agent, but overhearing does not require such knowledge. 
Instead, the monitoring agent uses the overheard 

communications as a basis for inference about the other 
agents. In our paper, we focus on cooperative 
overhearing, in which the overheard agents know they 
are being overheard, and do not in any way intend to 
disrupt the monitor. 

Previous investigations of overhearing have 
demonstrated a range of overhearing techniques. 
However, these were only in context of specific 
applications. Novick and Ward [9] have modeled 
overhearing by pilots that seek to maintain their own 
situational awareness. Kaminka et al. [6] have 
developed a plan-recognition approach to overhearing in 
order to monitor the state of distributed agent teams.  
Aielo et al. [1] and Bussetta et al. [2,3] have investigated 
an architecture that enables overhearing, so that domain 
experts can provide advice to problem-solving agents 
when necessary. Legras [7] has examined the use of 
overhearing for maintaining organizational awareness. 
All these previous investigations have dealt with 
overhearing without providing a comprehensive formal 
model of the general problem.   

This paper takes first steps towards formalizing the 
general overhearing task, and its key challenges. In 
particular, we present a comprehensive theoretical 
model that is constructed from three components. The 
first models the representation of conversation 
protocols, i.e. inter-agent communication templates used 
to coordinate a specific system task performance (e.g., 
FIPA interaction protocols [4]). The second component 
models a complete conversation system, a set of 
instantiated conversations that take place in a multi-
agent system. Finally, the third component of our model 
represents the view of an overhearing agent on the 
corresponding conversation system.  

We use this model to formulate a key step in 
overhearing, called conversation recognition, that deals 
with identifying the conversation that took place, given 
a set of overheard messages. This is a preliminary step 
to obtaining information from overheard conversations. 
We provide a skeleton algorithm for this task and 
instantiate it for handling lossless and lossy overhearing. 
We explore the complexity of these algorithms, and 



 

show that handling general lossy overhearing–
overhearing where messages can randomly be lost–is 
computationally expensive. Surprisingly, however, a 
specific case of lossy overhearing, called systematic 
message loss – e.g., always losing one side of the 
conversation, is significantly more efficient in terms of 
complexity. Fortunately, systematic message loss is 
likely to be more frequent in practice. 

This paper is organized as follows. The next section 
provides a brief discussion of previous investigations 
and background. Section 3 formalizes a conversation 
system, whereas Section 4 presents conversation 
recognition algorithms. Section 5 discusses these 
algorithms in terms of their complexity and Section 6 
concludes. 
 
2.  Background  
 

The work by Nowick and Ward [9] has been an early 
use of cooperative overhearing to model interactions 
between pilots and air-traffic controllers. In this model, 
pilots maintain mutuality of information with the 
controller not only by dialogue, but also by listening to 
the conversations of other pilots. While each pilot and 
controller act cooperatively, the other pilots are not 
necessarily collaborating on a joint task. Rather, they 
use overhearing to maintain their situational awareness 
out of their own self-interest.  Similarly, Legras [7] uses 
overhearing as a method that allows agents to maintain 
organizational knowledge. In this approach, agents 
broadcast changes in their organizational memberships. 
Other agents use this information to maintain 
organizational awareness. 

In contrast, investigations in [1,2,3] describe 
collaborative settings in which the overhearing agent 
may act on overheard messages to assist the 
communicating agents. The settings they describe 
involve communicating agents, who are engaged in 
problem solving. An overhearing agent monitors their 
conversations, and offers expert assistance if necessary. 

Kaminka et al. [6] used plan recognition in 
overhearing a distributed team of agents, which are 
collaborating to carry out a specific task. Knowing the 
plan of this task and its steps, the monitor uses 
overheard messages as clues for inferring the state of 
different team-members. The authors presented a 
scalable probabilistic representation (together with 
associated algorithms) supporting such inference, and 
showed that knowledge of the conversations that take 
place facilitates a significant boost in accuracy. 

Despite the inspiration and concrete techniques 
provided by previous work, general challenges in 
overhearing were only addressed in the context of 

specific applications. As a result, a model of overhearing 
is yet to be presented. In this paper, we address this 
challenge introducing (in Section 3) a formal approach 
to overhearing.   

Moreover, key assumptions made by previous works 
are difficult to extract. For instance, the investigations, 
described above, all make the assumption that the 
overhearing agent can match intercepted messages to a 
conversation protocol. Most make the assumption that 
all messages in a conversation are overheard (i.e. no 
losses). Yet both assumptions are challenged in real-
world settings. This paper seeks to address these 
assumptions by presenting (in Section 4) conversation 
recognition algorithms. 
 
3.  Modeling a Conversation System 
 

Addressing the general overhearing task, we propose 
a formal model that is constructed of three components: 
(i) conversation protocols; (ii) a system of conversations 
using conversation protocols; and (iii) a view on 
conversations by an overhearing agent.  

To demonstrate the proposed model, we consider the 
following overheard conversation between two agents 
bidding on a contract. The first agent sends a call for 
proposal (cfp), on which the second agent replies with a 
proposal–a propose message. Then, the first agent 
accepts this proposal by sending an accept-proposal. 
Finally, the second agent performs the agreed task and 
communicates an inform message–informing the first 
agent on the established results. 

This conversation implements a portion of the FIPA 
Contract Net protocol [4]. Generally1, the same protocol 
can be overheard differently. After the first agent issues 
a cfp, a second agent can refuse it or propose to it.  
Then, its proposal is either accepted or rejected by the 
first agent–communicating an accept-proposal or a 
reject-proposal message. Finally, the second agent 
notifies the first agent on the results of the performed 
task sending an inform or a failure message. 

In the following sub-sections, we discuss the various 
components of our model demonstrating them using the 
presented protocol and conversation. 

 

3.1.  Conversation Protocols 
 

When involved in a conversation, agents normally 
communicate according to a protocol, which can be 
captured by well-defined patterns. These patterns, i.e. 
conversation protocols, define a template that 
conversations must follow to achieve a communications 
                                                           
1 We describe this pattern as it may appear to the overhearing agent.  
 



 

goal. Hence, conversation protocols specify an abstract 
representation of the corresponding conversations.  

Conversation protocols are widely used in open 
multi-agent settings. For instance, FIPA protocols [4] 
are an example to the continuous effort to standardize 
the use of conversation protocols in multi-agent 
community. Though frequently used in agent-oriented 
settings, conversation protocols can be found in human-
oriented environments as well. For example, McElhearn 
[8] has showed that conversation protocols can be 
extracted by analyzing e-mail mailing list traffic. 

In our model, a conversation protocol is a tuple 
denoted by ( R , Σ , S , s0 , F , δ ). Below, we provide a 
detailed discussion of the components of this tuple. 

 
Conversation Roles (R): A conversation role defines a 
separate functionality in a conversation. Conversation 
protocols define valid sequences of messages between 
various conversation roles. Each role determines agent 
behavior in a specific conversation. In our model, R 
denotes the set of conversation roles in a conversation 
protocol. In the contract-net protocol shown above, two 
roles can be distinguished: the first agent is the initiator, 
whereas the second agent is the participant [4]. Thus, 
the set R consists of these two conversation roles. 
 
Communicative Act Types (ΣΣΣΣ): There are often multiple 
communicative act types (e.g. in FIPA [4]). Σ denotes 
the set of all communicative act types used by the given 
conversation protocol. In our example, this set contains: 
cfp, refuse, propose, etc.  
 
Conversation States (S): A conversation state of an 
agent marks its state within the protocol (in contrast 
with its internal state). Here, we must distinguish 
between individual and joint states [5]. 

We explain these terms using the contract-net 
protocol. We denote the two conversation roles as A and 
B. For the moment, let us consider A individually. The A 
role starts in an initial conversation state, denoted as A1, 
where initiator is ready to send a cfp message type. 
Sending this message, the agent transitions to its second 
conversation state (A2) in which it has already sent a cfp 
type message and is now waiting to receive either a 
propose or a refuse message type. Receiving it, the agent 
transitions to one of the A3 or A4 conversation states, and 
so on. Similarly individual conversation states A1-A8 and 
B1-B8 can be defined over the A and B roles respectively. 
In this paper, we do not present a detailed discussion on 
the protocol implementation, but we refer the readers to 
[5] for additional information.  

The same protocol may also be defined using a 
collection of joint interaction states [5], S = SA × SB, 

where each member of S corresponds to a specific 
combination of individual states. However, not all joint 
states are legal. For example, A1B1 is a legal joint 
conversation state in the given conversation protocol, 
whereas A2B1 joint conversation state is considered to be 
illegal (since it denotes a state where A has sent a 
message but B did not receive it). In our model, S is the 
set of all legal joint conversation states over a 
conversation protocol. In our example, S contains the 
following joint conversation states: A1B1, A2B2, etc. 

 
Initiating Conversation State (s0): s0 is an initiating 
joint conversation state, which corresponds to the 
combination of the initiating individual conversation 
states over the various conversation roles.  

 
Terminating Conversation States (F): F defines the set 
of joint conversation states that terminate the 
conversation. Thus, F ⊆ S. In our example, F includes 
A3B3 joint conversation state in which the initiator 
received a refuse message and terminated, whereas the 
participant has sent it and terminated as well.  
 
Transition Function (δδδδ ): δ determines the progress of a 
conversation by defining which message types are 
expected at different points of the conversation 
according to its current conversation state. 

In order to define δ, we must first define following 
parameters. An abstract message am is a <rx,ry,σ>, 
which is a member of the relation AM, where 
AM={<rx,ry,σ> | rx ,ry∈R ,σ∈Σ  and rx≠ry }.Thus, AM 
denotes a set of abstract messages that may potentially 
correspond to the appropriate conversation protocol.  

Now, we define δ as S × AM�S. Thus, the δ function 
defines whether a transition, between two legal joint 
conversation states, is possible. In addition, δ determines 
the specific abstract message, which causes this 
transition to occur.  

In the example above, let us consider the 
δ(A1B1,<A,B,cfp>) = A2B2 instance of δ. This instance 
has the following interpretation: given agents in A1B1 

joint conversation state, the <A,B,cfp> abstract message 
(of a cfp message type sent from the initiator to the 
participant) causes the agents to transition to the A2B2 

joint conversation state. 
 
Based on the presented definition of conversation 

protocols, we can now define the set of possible abstract 
conversation sequences over a conversation protocol. 
Given a conversation protocol p, we denote this set as 
AS(p). To define this parameter, we define a transition 
function on a sequence of abstract messages. This 
function, defined as δ*:S×AM*�S (where AM* denotes 



 

the set of all possible sequences over AM), can be 
formulated recursively as follows:   
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Using δ*, we define the AS(p) set. An abstract 
conversation sequence is considered to be possible over 
a given conversation protocol if and only if it is a 
sequence of abstract messages that begins from an 
initiating conversation state and ends in one of the 
terminating conversation states. Thus, given a 
conversation protocol p denoted by a tuple ( R , Σ , S , s0 
, F , δ  ), the AS(p) ⊆ AM* is defined as: 

}),(|{)(  Fws*�  * AM w  pAS 0 ∈∈=  
 

In the presented FIPA protocol, there are four 
possible abstract conversation sequences [5]. Let us 
consider one of them: <A,B,cfp> <B,A,propose> 
<A,B,accept-proposal> <B,A,inform>. This sequence 
corresponds to s0 = A1B1�…� A8B8∈F sequence of 
joint conversation states. In fact, this abstract 
conversation sequence corresponds to the conversation 
described at the beginning of Section 3.  

 
3.2. Conversation Systems 

 
A conversation system is a set of conversations in a 

multi-agent system. In our model, a conversation system 
is denoted by a tuple ( P , A , Λ , I , C ). In this section, 
we describe these components in details.  
 
Conversation Protocols (P): P is the set of conversation 
protocols of the conversation system, where each 
protocol is defined by a tuple as shown in Section 3.1. 

 
Agents (A): A indicates the set of agents in the 
corresponding conversation system. Based on this 
parameter, we define another element in the model–2A. 
Using its formal definition–2A is the set of all subsets of 
A–we refer to it as the set of all possible conversation 
groups in the conversation system. However, following 
the intuition that at least two agents must be involved in 
a conversation, we further restrict the definition of the 2A 
set to be formulated as 2A ={ g | g ⊆ A and |g| ≥ 2 }. 

 
Conversation Topics (ΛΛΛΛ): Λ denotes the set of all 
conversation topics in the conversation system. 

 
Intervals (I): An interval is a time period within the 
conversation system lifetime. Thus, we define I as 
follows: I={ [ t1 , t2 ] | t1,t2 time stamps , t1 ≥ 0 , t2 ≤ 
lifetime ,t1 ≤ t2 }. 

Conversations (C): A conversation in a conversation 
system is defined by a group of agents g∈2A 
implementing a conversation protocol p∈P on a 
conversation topic λ∈Λ within a time interval i∈I using 
an abstract conversation sequence am*∈AS(p). We can 
formulate the set of conversations, which is denoted as 
C, in a conversation system as follows: 
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Thus, a conversation c∈C in a conversation system is 
a tuple ( p , g , λ , i , m*). Here, the m* parameter of 
conversation needs further explaining. This parameter 
denotes the actual conversation sequence that has taken 
place in the corresponding conversation. In fact, m* is 
an implementation of some abstract conversation 
sequence over the corresponding conversation protocol. 
The actual conversation sequence m* instantiates an 
abstract conversation sequence am*∈AS(p) with 
conversation group g, topic λ and time interval i. This 
instantiation is established as follows: 

 

[1] Instantiating conversation roles with agents: Here, 
we determine the mapping between conversation 
roles of the conversation protocol and the agent 
conversation group implementing it. For every 
conversation role r∈R, we determine an agent a∈g 
(g∈2A) implementing it.� 

[2] Instantiating abstract messages with a topic: Each 
abstract message of the implemented abstract 
conversation sequence is instantiated with the same 
topic, i.e. the topic of the conversation.  

[3] Instantiating abstract messages with time stamps: 
Finally, each abstract message of the implemented 
abstract conversation sequence is instantiated with a 
time stamp within a given time interval. 

 

A conversation sequence m* can therefore be denoted 
as m*=µ1…µn where µi (∀i, i=1,..,n) denotes a message 
within the conversation sequence. A single message is 
defined as µ=<s,r,σ,λ,t>, where s and r are the sender 
and the recipient of the message (s, r∈g), σ is its 
message type,  λ is its topic and t is its time stamp. 

To demonstrate this formalization, we return to the 
conversation described at the beginning of Section 3. 
We denote the two conversing agents as agentx and 
agenty, and their conversation group as g={agentx, 
agenty}. Accordingly, the first agent is the initiator, 
while the second is the participant. We denote the topic 
of this conversation as λ=contract-X∈Λ. Finally, we 
denote the interval of this conversation as i=[t1, t4] 
assuming that the messages have been communicated at 
t1, t3, t3, and t4 time stamps. Thus, the actual 



 

conversation sequence of the given conversation can be 
represented as <agentx, agenty, cfp, contract-X, 
t1><agenty, agentx, propose, contract-X, t2><agentx, 
agenty, accept-proposal, contract-X, t3><agenty, agentx, 
inform, contract-X, t4>. 
 

3.3. Overhearing Conversations 
 

An overhearing agent monitors inter-agent 
conversations by listening in to the exchanged 
communications. We denote the observed conversation 
sequence as o* as opposed to m*. The actual 
conversation sequence m* is defined as m*=µ1…µn 
where µi (∀i, i=1,..,n) denotes a message within the 
actual sequence. Analogously, we define the observed 
conversation sequence as o*=o1…om in which oi (∀i, 
i=1,..,m) denotes an observed message of o*. 

Since the overhearing agent may not overhear all 
messages, or may incorrectly overhear some messages, 
the overheard conversation sequence does not 
necessarily match the actual conversation sequence. 
Table 1 summarizes the possible differences between 
the two conversation sequences. 

 

Table 1. Possible differences between actual 
and overheard conversation sequences. 

4. Conversation Recognition Algorithms 
 

Overhearing a conversation sequence o*, one of the 
key objectives of the overhearing agent is to correctly 
recognize its appropriate conversation within the 
conversation system. Specifically, the agent should 
determine its conversation group (g), topic (λ), and 
interval (i). It must also identify the appropriate protocol 
(p) and its actual conversation sequence (m*). We focus 
on the extraction of p and m*, since extracting the other 
elements is almost trivial in many practical settings. 

We propose a skeleton algorithm to determine the 
protocol corresponding to an observed sequence of 
messages o* (Figure 1). Finding a matching protocol 
also enables us to determine its m*. 

The proposed skeleton algorithm follows similar 
principles to the debugging algorithm applied in [10]. 
The algorithm consists of three phases. Phase I is 
initialization (lines 1-2). Here, we construct a potential 
protocol set (PP) over P, which assumed to be given in 
advance. Each protocol in PP, called a control protocol, 
is an extension of the original protocol including a 
control mechanism used for performing phases II-III of 
the algorithm. At phase II (lines 3-12), we disqualify 
inappropriate protocols. For each observed message, 
each potential protocol is checked (line 8) using 
CheckObsMsgMatch. Inappropriate protocols are 
accumulated in the disqualified protocol set (DP) (line 
9) and are subtracted from the PP set at the end of each 
iteration (line 11). Finally, at phase III (lines 13-14), we 
determine the final protocols, out of whatever protocols 
remain in the set PP. 
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Figure 1. FindMatchingProtocols algorithm  

This algorithm is a generic skeleton. Different 
instantiations are needed to handle the problems 
described in Table 1. Below, we first show an 
overhearing algorithm for lossless o* (Section 4.1). We 
remove this naïve assumption, first in general lossy 
overhearing (Section 4.2), and then in systematic lossy 
overhearing (Section 4.3). 
 

4.1. The Naïve Algorithm 
 

The Naïve algorithm assumes that the observed 
conversation sequence is equal to the actual 
conversation sequence, i.e. it assumes no losses.  

In this case, InitializePotentialProtocols extends the 
original conversation protocols with two new 
components. The first is scurr∈S – a pointer to the current 
conversation state within the protocol–it is initialized to 
s0. The second is AG – a mapping between R and A– 
whose elements are initialized to unknown. We use the 
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AG mapping to accumulate information about agents 
implementing various roles of the protocol. 

Then, we check (CheckObsMsgMatch) whether exists 
a transition from scurr to some snext that is appropriate to 
the communicative act type of o. We also check whether 
agents, corresponding to this message, match the 
information in AG (CheckRolesMatch). In case these 
two conditions are satisfied, scurr is incremented to snext 
and procedure returns true, else it returns false.  

Finally, each protocol, remaining in PP, is checked 
(DetermineFinalProtocols) to determine whether its 
scurr∈F. If so, the corresponding protocol is considered 
as matching the observed conversation sequence. 
 
4.2. The Random Loss Algorithm 
 

The Random Loss algorithm handles the case in 
which there are multiple random message losses in o*, 
where each such loss is made up to k consecutive 
messages. This lossy overhearing condition may occur, 
for example, in case of malfunction in the overhearing 
agent, due to which it loses a certain interval within the 
overheard conversation.  

In our example, in case k=2, this algorithm can 
determine that o*=<agentx, agenty, cfp, contract-X, t1> 
<agenty, agentx, inform, contract-X, t4> corresponds to 
the FIPA protocol introduced in Section 3. Furthermore, 
keeping track of the conversation state sequence within 
the protocol, it may be able to restore m*. 

In the Random Loss algorithm, control protocols are 
initialized with two additional components–CS and AG 
(InitializePotentialProtocols). The AG mapping has 
identical semantics as before. However, instead of a 
single scurr, the CS set contains numerous pointers to the 
possible current conversation states reflecting the 
uncertainty caused by losing messages.  

In CheckObsMsgMatch (Figure 2), for each scurr in 
CS (lines 2-4), we determine its possible next states 
using PropIgnLostMsg. These next possible states are 
accumulated in NS set (line 3), which is then assigned to 
CS (line 5). If at the end of the procedure, CS is not 
empty, the procedure returns true, else it returns false.  

Given a scurr state, PropIgnLostMsg (Figure 3) 
determines its next possible states ignoring up to k 
consecutive losses. In each iteration, we apply two sets –
NSi and ISi+1. The first contains the next possible states 
corresponding to iteration i (line 11), whereas the 
second set holds up the intermediate states that are to be 
checked in the following iteration i+1 (line 12). 

Finally, we determine final protocols using procedure 
similar to the one shown in Figure 3. A protocol is 
considered to be final if in its CS set there is at least one 
state which is either final or there is a final state with no 
more than k consecutive losses from it. 
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Figure 2. CheckObsMsgMatch procedure        
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Figure 3. PropIgnLostMsg procedure  

 
4.3. The Systematic Loss Algorithm 
 

The Systematic Loss algorithm handles a more 
common situation in lossy overhearing—losing up to l 
conversation roles. This condition can occur in case that 
an overhearing agent, due to its location, cannot 
overhear messages sent from agents implementing the 
lost roles (e.g., the overhearing agent sees outgoing 
messages, but not incoming messages). In our example, 
in case l=1 and the lost role is initiator, the algorithm 
can determine that o*=<agenty, agentx, propose, 
contract-X, t2><agenty, agentx, inform, contract-X, t4> 
corresponds to the FIPA protocol described in Section 3. 

In the Systematic Loss algorithm, we determine for 
each set of lost roles (LR) a CS and AG component. 
Thus, for each potential protocol, we define a control set 
(CLR) that contains (LR,CS,AG) tuples.  
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Figure 4. CheckObsMsgMatch procedure           
The Systematic Loss Algorithm 
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    Figure 5. PropIgnLostRoles procedure 
 
In CheckObsMsgMatch (Figure 4), each (LR,CS,AG) 

is considered individually (line 1). For each scurr in its 
CS, we determine in lines 4-9 whether exists a potential 
next state and then propagate from it ignoring the lost 
roles (using PropIgnLostRoles in Figure 5). The next 
potential states are accumulated in NS set, which is later 
assigned to CS (line 10). If CS is empty, the (LR,CS,AG) 
tuple is discarded from CLR (lines 11-12). The 

procedure returns true if at the end of it the CLR set is 
not empty, else it returns false (line 14). 
 
5. Discussion 
 

We now turn to analyzing the complexity of the 
conversation recognition algorithms we presented. This 
section analyzes these algorithms in terms of their 
complexity. The algorithmic skeleton (Figure 1) consists 
of three phases. However, only phases II and III 
contribute to algorithm complexity. In phase II, we 
match each of m messages with each protocol in PP 
using CheckObsMsgMatch. In phase III 
(DetermineFinalProtocols), we determine whether a 
protocol is final (CheckIfProtocolFinal). In this analysis, 
we denote the complexity of CheckObsMsgMatch at 
iteration i as O(f1

i), while CheckIfProtocolFinal 
procedure is denoted as O(f2). 

The complexity of both phases depends on the 
number of protocols in PP at each stage of the 
algorithm. In the best case, all (but one) protocols are 
disqualified after the first iteration, whereas the final 
protocol remains through all m iterations. Assuming m is 
relatively big, the complexity of disqualifying |P|-1 
protocols is negligible. Thus, the best-case complexity 
can be formulated as follows: 
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    In the worst case, all protocols remain consistent with 
all m messages, and are therefore repeatedly matched 
against overheard messages: 
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Now, let us focus on evaluating the ΣO(f1
i)+O(f2) 

component–the complexity for matching a single 
protocol–for each algorithm. We denote this complexity 
by O(T). In the Naïve algorithm, both O(f1

i) and O(f2) 
are equal to O(1), since both procedures only perform a 
simple check. Thus, O(T)=O(m) for the Naïve algorithm. 

In the Random Loss algorithm, the complexity of 
O(f1

i) and O(f2) depends on the size of the appropriate 
CS set. The size of CS in iteration i is determined by the 
NS set of the previous iteration (i-1). Furthermore, for 
each state in CS, we examine all states that are up to k 
transitions from it. Thus, in order to evaluate O(T), we 
must consider the structure of δ function and the size of 
the NS set established in each iteration.  

In the best case for O(T), δ contains only one 
possible transition for each state and |NS| is always equal 
to 1. Accordingly, O(T) is equal to mO(k)+O(1)=O(mk).  

In the worst case, δ contains b transitions for each 
state – b is the branching factor of the state (1≤b≤|Σ|). 



 

Thus, the complexity O(α) of examining up to k 
transitions from a certain state s∈S can be evaluated as 
O(1+b+b2+…+bk) ≤O(bk+1). Such states contribute no 
more than one new state to NS. In the worst case, |NS| is 
1+b+b2+…+ bk–1 ≤ bk. We denote it as β. Thus, the 
complexity of ΣO(f1

i) is α.(1+β+β2+…+βm)≤αβm.+1 

=O(bmk+2k+1). Analogously, the complexity of O(f2) is 
bm(1+b+b2+…+bn-m)=O(bn+1), where n = |m*|. Thus, the 
worst-case complexity of O(T) for the Random Loss 
algorithm is O(bmk)+O(bn). 

In the Systematic Loss algorithm, the complexity of 
O(f1

i) and O(f2) depends on the size of CS and the 
structure of δ. However, this complexity also depends 
on the number of LR sets in CLR, i.e. |CLR|. In Section 
4.3, we have defined each LR set as a possible 
combination of up to l lost roles of the protocols’ 
conversation roles. Thus, |CLR| can be formulated as 
follows: 
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In the best case, b=1 and |NS| is always equal to 1. In 
addition, all LRs (but one) are disqualified after the first 
iteration. Furthermore, from each state, h states can be 
skipped (PropIgnLostRoles). Thus, the complexity of 
O(f1

i) is always O(1+h)=O(h), and the complexity of 
O(f2) is O(1)–simply checking the remaining state. 
Therefore, the best-case complexity of O(T) for the 
Systematic Loss algorithm is equal to O(mh).  

In the worst case, we assume that no propagation can 
be made. Thus, the complexity of ΣO(f1

i) is similar to 
the Naïve algorithm, only multiplied by |CLR|, i.e. 
|CLR|O(m). As for O(f2), from the single state in CS, all 
states in levels n-m from it must be examined. Thus, 
similarly to the principles explained above, O(f2)≤ 
|CLR|O(bn–m+1)= |CLR|O(bn–m). Thus, the worst-case 
complexity of O(T) for the Systematic Loss algorithm is 
equal to |CLR|(O(m)+O(bn–m)). 

In general, it is difficult to determine which of the 
algorithms is better. However, in practice, we often 
know which roles are lost or at least know the number of 
lost roles. In such cases, the |CLR| parameter becomes a 
constant and, thus, the Systematic Loss algorithm seems 
to be more efficient than the Random Loss algorithm. 
 

6. Conclusions and Future Work 
 

In this paper, we have taken the first steps towards a 
formal approach to overhearing. Using the proposed 
theoretical model, we were able to formulate a key 
problem of overhearing – conversation recognition. 

Addressing this problem, we discuss conversation 
identification, given a set of overheard messages. Here, 

we present a skeleton algorithm (and three 
instantiations) for finding a conversation pattern that 
corresponds to the overheard messages, despite losses of 
overheard messages. We show that the Naïve algorithm, 
assuming no losses, is efficient. However, its naïve 
assumption is challenged in real-world settings. 

Addressing lossy overhearing, we analyze the best-
case and the worst-case complexities of the Random 
Loss and the Systematic Loss algorithms. We show that, 
in general, it is difficult to determine which of the two 
algorithms is better. However, in practice, we expect the 
Systematic Loss algorithm to outperform the Random 
Loss algorithm. 

In this paper, we analytically derived the best- and 
worst-case complexities of the algorithms. In the future, 
we hope to examine their performance empirically. 
Furthermore, conversation recognition is but a first step 
towards a general formal treatment of overhearing. We 
plan to tackle additional overhearing challenges, as 
mentioned in the paper.  
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