
Towards a Formal Approach to Overhearing:
 Algorithms for Conversation Identification

 Gery Gutnik Gal Kaminka
 Bar-Ilan University Bar-Ilan University
 Computer Science Department Computer Science Department
 gutnikg@cs.biu.ac.il galk@cs.biu.ac.il

Abstract

Overhearing is gaining attention as a generic method
for cooperative monitoring of distributed, open, multi-
agent systems. It involves monitoring the routine
conversations of agents–who know they are being
overheard–to assist the agents, assess their progress, or
suggest advice. While there have been several
investigations of applications and methods of
overhearing, no formal model of overhearing exists.
This paper takes steps towards such a model. It first
formalizes a conversation system–the set of
conversations in a multi-agent system. It then defines a
key step in overhearing–conversation recognition–
identifying the conversations that took place within a
system, given a set of overheard messages. We provide a
skeleton algorithm for conversation recognition, and
provide instantiations of it for settings involving no
message loss, random message loss, and systematic
message loss (such as always losing one side of the
conversation). We analyze the complexity of these
algorithms, and show that the systematic message loss
algorithm, which is unique to overhearing, is
significantly more efficient then the random loss
algorithm (which is intractable).

1. Introduction

Overhearing is fast gaining attention as a generic
method for cooperative monitoring of distributed, open,
multi-agent systems. Overhearing involves monitoring
the routine conversations of agents–who know they are
being overheard–to infer information about the agents.
Such information can be used to assist them [7,9], assess
their progress [6], or suggest advice [1,2,3].

Overhearing is particularly suited to open distributed
multi-agent applications, which often use standardized
communication protocols. In such settings, agents'
internal structure is not generally known to a monitoring
agent, but overhearing does not require such knowledge.
Instead, the monitoring agent uses the overheard

communications as a basis for inference about the other
agents. In our paper, we focus on cooperative
overhearing, in which the overheard agents know they
are being overheard, and do not in any way intend to
disrupt the monitor.

Previous investigations of overhearing have
demonstrated a range of overhearing techniques.
However, these were only in context of specific
applications. Novick and Ward [9] have modeled
overhearing by pilots that seek to maintain their own
situational awareness. Kaminka et al. [6] have
developed a plan-recognition approach to overhearing in
order to monitor the state of distributed agent teams.
Aielo et al. [1] and Bussetta et al. [2,3] have investigated
an architecture that enables overhearing, so that domain
experts can provide advice to problem-solving agents
when necessary. Legras [7] has examined the use of
overhearing for maintaining organizational awareness.
All these previous investigations have dealt with
overhearing without providing a comprehensive formal
model of the general problem.

This paper takes first steps towards formalizing the
general overhearing task, and its key challenges. In
particular, we present a comprehensive theoretical
model that is constructed from three components. The
first models the representation of conversation
protocols, i.e. inter-agent communication templates used
to coordinate a specific system task performance (e.g.,
FIPA interaction protocols [4]). The second component
models a complete conversation system, a set of
instantiated conversations that take place in a multi-
agent system. Finally, the third component of our model
represents the view of an overhearing agent on the
corresponding conversation system.

We use this model to formulate a key step in
overhearing, called conversation recognition, that deals
with identifying the conversation that took place, given
a set of overheard messages. This is a preliminary step
to obtaining information from overheard conversations.
We provide a skeleton algorithm for this task and
instantiate it for handling lossless and lossy overhearing.
We explore the complexity of these algorithms, and

show that handling general lossy overhearing–
overhearing where messages can randomly be lost–is
computationally expensive. Surprisingly, however, a
specific case of lossy overhearing, called systematic
message loss – e.g., always losing one side of the
conversation, is significantly more efficient in terms of
complexity. Fortunately, systematic message loss is
likely to be more frequent in practice.

This paper is organized as follows. The next section
provides a brief discussion of previous investigations
and background. Section 3 formalizes a conversation
system, whereas Section 4 presents conversation
recognition algorithms. Section 5 discusses these
algorithms in terms of their complexity and Section 6
concludes.

2. Background

The work by Nowick and Ward [9] has been an early
use of cooperative overhearing to model interactions
between pilots and air-traffic controllers. In this model,
pilots maintain mutuality of information with the
controller not only by dialogue, but also by listening to
the conversations of other pilots. While each pilot and
controller act cooperatively, the other pilots are not
necessarily collaborating on a joint task. Rather, they
use overhearing to maintain their situational awareness
out of their own self-interest. Similarly, Legras [7] uses
overhearing as a method that allows agents to maintain
organizational knowledge. In this approach, agents
broadcast changes in their organizational memberships.
Other agents use this information to maintain
organizational awareness.

In contrast, investigations in [1,2,3] describe
collaborative settings in which the overhearing agent
may act on overheard messages to assist the
communicating agents. The settings they describe
involve communicating agents, who are engaged in
problem solving. An overhearing agent monitors their
conversations, and offers expert assistance if necessary.

Kaminka et al. [6] used plan recognition in
overhearing a distributed team of agents, which are
collaborating to carry out a specific task. Knowing the
plan of this task and its steps, the monitor uses
overheard messages as clues for inferring the state of
different team-members. The authors presented a
scalable probabilistic representation (together with
associated algorithms) supporting such inference, and
showed that knowledge of the conversations that take
place facilitates a significant boost in accuracy.

Despite the inspiration and concrete techniques
provided by previous work, general challenges in
overhearing were only addressed in the context of

specific applications. As a result, a model of overhearing
is yet to be presented. In this paper, we address this
challenge introducing (in Section 3) a formal approach
to overhearing.

Moreover, key assumptions made by previous works
are difficult to extract. For instance, the investigations,
described above, all make the assumption that the
overhearing agent can match intercepted messages to a
conversation protocol. Most make the assumption that
all messages in a conversation are overheard (i.e. no
losses). Yet both assumptions are challenged in real-
world settings. This paper seeks to address these
assumptions by presenting (in Section 4) conversation
recognition algorithms.

3. Modeling a Conversation System

Addressing the general overhearing task, we propose
a formal model that is constructed of three components:
(i) conversation protocols; (ii) a system of conversations
using conversation protocols; and (iii) a view on
conversations by an overhearing agent.

To demonstrate the proposed model, we consider the
following overheard conversation between two agents
bidding on a contract. The first agent sends a call for
proposal (cfp), on which the second agent replies with a
proposal–a propose message. Then, the first agent
accepts this proposal by sending an accept-proposal.
Finally, the second agent performs the agreed task and
communicates an inform message–informing the first
agent on the established results.

This conversation implements a portion of the FIPA
Contract Net protocol [4]. Generally1, the same protocol
can be overheard differently. After the first agent issues
a cfp, a second agent can refuse it or propose to it.
Then, its proposal is either accepted or rejected by the
first agent–communicating an accept-proposal or a
reject-proposal message. Finally, the second agent
notifies the first agent on the results of the performed
task sending an inform or a failure message.

In the following sub-sections, we discuss the various
components of our model demonstrating them using the
presented protocol and conversation.

3.1. Conversation Protocols

When involved in a conversation, agents normally
communicate according to a protocol, which can be
captured by well-defined patterns. These patterns, i.e.
conversation protocols, define a template that
conversations must follow to achieve a communications

1 We describe this pattern as it may appear to the overhearing agent.

goal. Hence, conversation protocols specify an abstract
representation of the corresponding conversations.

Conversation protocols are widely used in open
multi-agent settings. For instance, FIPA protocols [4]
are an example to the continuous effort to standardize
the use of conversation protocols in multi-agent
community. Though frequently used in agent-oriented
settings, conversation protocols can be found in human-
oriented environments as well. For example, McElhearn
[8] has showed that conversation protocols can be
extracted by analyzing e-mail mailing list traffic.

In our model, a conversation protocol is a tuple
denoted by (R , Σ , S , s0 , F , δ). Below, we provide a
detailed discussion of the components of this tuple.

Conversation Roles (R): A conversation role defines a
separate functionality in a conversation. Conversation
protocols define valid sequences of messages between
various conversation roles. Each role determines agent
behavior in a specific conversation. In our model, R
denotes the set of conversation roles in a conversation
protocol. In the contract-net protocol shown above, two
roles can be distinguished: the first agent is the initiator,
whereas the second agent is the participant [4]. Thus,
the set R consists of these two conversation roles.

Communicative Act Types (ΣΣΣΣ): There are often multiple
communicative act types (e.g. in FIPA [4]). Σ denotes
the set of all communicative act types used by the given
conversation protocol. In our example, this set contains:
cfp, refuse, propose, etc.

Conversation States (S): A conversation state of an
agent marks its state within the protocol (in contrast
with its internal state). Here, we must distinguish
between individual and joint states [5].

We explain these terms using the contract-net
protocol. We denote the two conversation roles as A and
B. For the moment, let us consider A individually. The A
role starts in an initial conversation state, denoted as A1,
where initiator is ready to send a cfp message type.
Sending this message, the agent transitions to its second
conversation state (A2) in which it has already sent a cfp
type message and is now waiting to receive either a
propose or a refuse message type. Receiving it, the agent
transitions to one of the A3 or A4 conversation states, and
so on. Similarly individual conversation states A1-A8 and
B1-B8 can be defined over the A and B roles respectively.
In this paper, we do not present a detailed discussion on
the protocol implementation, but we refer the readers to
[5] for additional information.

The same protocol may also be defined using a
collection of joint interaction states [5], S = SA × SB,

where each member of S corresponds to a specific
combination of individual states. However, not all joint
states are legal. For example, A1B1 is a legal joint
conversation state in the given conversation protocol,
whereas A2B1 joint conversation state is considered to be
illegal (since it denotes a state where A has sent a
message but B did not receive it). In our model, S is the
set of all legal joint conversation states over a
conversation protocol. In our example, S contains the
following joint conversation states: A1B1, A2B2, etc.

Initiating Conversation State (s0): s0 is an initiating
joint conversation state, which corresponds to the
combination of the initiating individual conversation
states over the various conversation roles.

Terminating Conversation States (F): F defines the set
of joint conversation states that terminate the
conversation. Thus, F ⊆ S. In our example, F includes
A3B3 joint conversation state in which the initiator
received a refuse message and terminated, whereas the
participant has sent it and terminated as well.

Transition Function (δδδδ): δ determines the progress of a
conversation by defining which message types are
expected at different points of the conversation
according to its current conversation state.

In order to define δ, we must first define following
parameters. An abstract message am is a <rx,ry,σ>,
which is a member of the relation AM, where
AM={<rx,ry,σ> | rx ,ry∈R ,σ∈Σ and rx≠ry }.Thus, AM
denotes a set of abstract messages that may potentially
correspond to the appropriate conversation protocol.

Now, we define δ as S × AM�S. Thus, the δ function
defines whether a transition, between two legal joint
conversation states, is possible. In addition, δ determines
the specific abstract message, which causes this
transition to occur.

In the example above, let us consider the
δ(A1B1,<A,B,cfp>) = A2B2 instance of δ. This instance
has the following interpretation: given agents in A1B1

joint conversation state, the <A,B,cfp> abstract message
(of a cfp message type sent from the initiator to the
participant) causes the agents to transition to the A2B2

joint conversation state.

Based on the presented definition of conversation

protocols, we can now define the set of possible abstract
conversation sequences over a conversation protocol.
Given a conversation protocol p, we denote this set as
AS(p). To define this parameter, we define a transition
function on a sequence of abstract messages. This
function, defined as δ*:S×AM*�S (where AM* denotes

the set of all possible sequences over AM), can be
formulated recursively as follows:

** AM wAMv AMempty�S s

 vws� � wvs�

 s �s�

**
*

∈∈∈∈
=

=

,)(where
)),,((),(

),(

,,

Using δ*, we define the AS(p) set. An abstract
conversation sequence is considered to be possible over
a given conversation protocol if and only if it is a
sequence of abstract messages that begins from an
initiating conversation state and ends in one of the
terminating conversation states. Thus, given a
conversation protocol p denoted by a tuple (R , Σ , S , s0
, F , δ), the AS(p) ⊆ AM* is defined as:

}),(|{)(Fws*� * AM w pAS 0 ∈∈=

In the presented FIPA protocol, there are four
possible abstract conversation sequences [5]. Let us
consider one of them: <A,B,cfp> <B,A,propose>
<A,B,accept-proposal> <B,A,inform>. This sequence
corresponds to s0 = A1B1�…� A8B8∈F sequence of
joint conversation states. In fact, this abstract
conversation sequence corresponds to the conversation
described at the beginning of Section 3.

3.2. Conversation Systems

A conversation system is a set of conversations in a

multi-agent system. In our model, a conversation system
is denoted by a tuple (P , A , Λ , I , C). In this section,
we describe these components in details.

Conversation Protocols (P): P is the set of conversation
protocols of the conversation system, where each
protocol is defined by a tuple as shown in Section 3.1.

Agents (A): A indicates the set of agents in the
corresponding conversation system. Based on this
parameter, we define another element in the model–2A.
Using its formal definition–2A is the set of all subsets of
A–we refer to it as the set of all possible conversation
groups in the conversation system. However, following
the intuition that at least two agents must be involved in
a conversation, we further restrict the definition of the 2A
set to be formulated as 2A ={ g | g ⊆ A and |g| ≥ 2 }.

Conversation Topics (ΛΛΛΛ): Λ denotes the set of all
conversation topics in the conversation system.

Intervals (I): An interval is a time period within the
conversation system lifetime. Thus, we define I as
follows: I={ [t1 , t2] | t1,t2 time stamps , t1 ≥ 0 , t2 ≤
lifetime ,t1 ≤ t2 }.

Conversations (C): A conversation in a conversation
system is defined by a group of agents g∈2A
implementing a conversation protocol p∈P on a
conversation topic λ∈Λ within a time interval i∈I using
an abstract conversation sequence am*∈AS(p). We can
formulate the set of conversations, which is denoted as
C, in a conversation system as follows:

})(,

,,,),,,,({
,,g pASamm Ii

 �� 2g Pp | m i � g p C

**

*
i

A

∈ ←∈

∈∈∈⊆
λλλλ

Thus, a conversation c∈C in a conversation system is
a tuple (p , g , λ , i , m*). Here, the m* parameter of
conversation needs further explaining. This parameter
denotes the actual conversation sequence that has taken
place in the corresponding conversation. In fact, m* is
an implementation of some abstract conversation
sequence over the corresponding conversation protocol.
The actual conversation sequence m* instantiates an
abstract conversation sequence am*∈AS(p) with
conversation group g, topic λ and time interval i. This
instantiation is established as follows:

[1] Instantiating conversation roles with agents: Here,
we determine the mapping between conversation
roles of the conversation protocol and the agent
conversation group implementing it. For every
conversation role r∈R, we determine an agent a∈g
(g∈2A) implementing it.�

[2] Instantiating abstract messages with a topic: Each
abstract message of the implemented abstract
conversation sequence is instantiated with the same
topic, i.e. the topic of the conversation.

[3] Instantiating abstract messages with time stamps:
Finally, each abstract message of the implemented
abstract conversation sequence is instantiated with a
time stamp within a given time interval.

A conversation sequence m* can therefore be denoted
as m*=µ1…µn where µi (∀i, i=1,..,n) denotes a message
within the conversation sequence. A single message is
defined as µ=<s,r,σ,λ,t>, where s and r are the sender
and the recipient of the message (s, r∈g), σ is its
message type, λ is its topic and t is its time stamp.

To demonstrate this formalization, we return to the
conversation described at the beginning of Section 3.
We denote the two conversing agents as agentx and
agenty, and their conversation group as g={agentx,
agenty}. Accordingly, the first agent is the initiator,
while the second is the participant. We denote the topic
of this conversation as λ=contract-X∈Λ. Finally, we
denote the interval of this conversation as i=[t1, t4]
assuming that the messages have been communicated at
t1, t3, t3, and t4 time stamps. Thus, the actual

conversation sequence of the given conversation can be
represented as <agentx, agenty, cfp, contract-X,
t1><agenty, agentx, propose, contract-X, t2><agentx,
agenty, accept-proposal, contract-X, t3><agenty, agentx,
inform, contract-X, t4>.

3.3. Overhearing Conversations

An overhearing agent monitors inter-agent
conversations by listening in to the exchanged
communications. We denote the observed conversation
sequence as o* as opposed to m*. The actual
conversation sequence m* is defined as m*=µ1…µn
where µi (∀i, i=1,..,n) denotes a message within the
actual sequence. Analogously, we define the observed
conversation sequence as o*=o1…om in which oi (∀i,
i=1,..,m) denotes an observed message of o*.

Since the overhearing agent may not overhear all
messages, or may incorrectly overhear some messages,
the overheard conversation sequence does not
necessarily match the actual conversation sequence.
Table 1 summarizes the possible differences between
the two conversation sequences.

Table 1. Possible differences between actual
and overheard conversation sequences.

4. Conversation Recognition Algorithms

Overhearing a conversation sequence o*, one of the
key objectives of the overhearing agent is to correctly
recognize its appropriate conversation within the
conversation system. Specifically, the agent should
determine its conversation group (g), topic (λ), and
interval (i). It must also identify the appropriate protocol
(p) and its actual conversation sequence (m*). We focus
on the extraction of p and m*, since extracting the other
elements is almost trivial in many practical settings.

We propose a skeleton algorithm to determine the
protocol corresponding to an observed sequence of
messages o* (Figure 1). Finding a matching protocol
also enables us to determine its m*.

The proposed skeleton algorithm follows similar
principles to the debugging algorithm applied in [10].
The algorithm consists of three phases. Phase I is
initialization (lines 1-2). Here, we construct a potential
protocol set (PP) over P, which assumed to be given in
advance. Each protocol in PP, called a control protocol,
is an extension of the original protocol including a
control mechanism used for performing phases II-III of
the algorithm. At phase II (lines 3-12), we disqualify
inappropriate protocols. For each observed message,
each potential protocol is checked (line 8) using
CheckObsMsgMatch. Inappropriate protocols are
accumulated in the disqualified protocol set (DP) (line
9) and are subtracted from the PP set at the end of each
iteration (line 11). Finally, at phase III (lines 13-14), we
determine the final protocols, out of whatever protocols
remain in the set PP.

)(return:
:

foreachend:
:

foreachend:
}{thennotif:

),(:
inforeach:

:
breakthenisif:

*inforeach:
:

)(:
:

):output
:*:input(

orithmlgA

PPolsinalProtocDetermineF
protocols final Determine - III Phase //

DP \ PP PP

pp DP DP rc

 ppo gMatchCheckObsMs rc bool
PP pp
 empty set DP

 empty PP
o o

 protocols ateinappropri Disqualify - II Phase //
ProtocolsPotentialPInitialize PP

 eInitialiaz - I Phase //
P setprotocol

...ooo o sequenceobserved
sngProtocolFindMatchi

i

i

m21

14
13
12
11
10

9
8
7
6
5
4
3
2
1

=

=
=

=

=

⊆
=

�

Figure 1. FindMatchingProtocols algorithm

This algorithm is a generic skeleton. Different
instantiations are needed to handle the problems
described in Table 1. Below, we first show an
overhearing algorithm for lossless o* (Section 4.1). We
remove this naïve assumption, first in general lossy
overhearing (Section 4.2), and then in systematic lossy
overhearing (Section 4.3).

4.1. The Naïve Algorithm

The Naïve algorithm assumes that the observed
conversation sequence is equal to the actual
conversation sequence, i.e. it assumes no losses.

In this case, InitializePotentialProtocols extends the
original conversation protocols with two new
components. The first is scurr∈S – a pointer to the current
conversation state within the protocol–it is initialized to
s0. The second is AG – a mapping between R and A–
whose elements are initialized to unknown. We use the

Loss
(m<n)

Insert (m>n) Order (m=n)

Se
qu

en
ce

L

ev
el

 Losing
some

messages
of the
actual

sequence.

Misoverhearing
the actual

sequence or
misclassifying
messages of

another sequence.

Inaccurately
overhearing
the order of
messages in

actual
sequence.

Errors and Losses (oi ≠µj)

M
es

sa
ge

L

ev
el

Missoverhearing or losing some information of
the overheard message (e.g. can not resolve the

designated recipient of overheard message).

AG mapping to accumulate information about agents
implementing various roles of the protocol.

Then, we check (CheckObsMsgMatch) whether exists
a transition from scurr to some snext that is appropriate to
the communicative act type of o. We also check whether
agents, corresponding to this message, match the
information in AG (CheckRolesMatch). In case these
two conditions are satisfied, scurr is incremented to snext
and procedure returns true, else it returns false.

Finally, each protocol, remaining in PP, is checked
(DetermineFinalProtocols) to determine whether its
scurr∈F. If so, the corresponding protocol is considered
as matching the observed conversation sequence.

4.2. The Random Loss Algorithm

The Random Loss algorithm handles the case in
which there are multiple random message losses in o*,
where each such loss is made up to k consecutive
messages. This lossy overhearing condition may occur,
for example, in case of malfunction in the overhearing
agent, due to which it loses a certain interval within the
overheard conversation.

In our example, in case k=2, this algorithm can
determine that o*=<agentx, agenty, cfp, contract-X, t1>
<agenty, agentx, inform, contract-X, t4> corresponds to
the FIPA protocol introduced in Section 3. Furthermore,
keeping track of the conversation state sequence within
the protocol, it may be able to restore m*.

In the Random Loss algorithm, control protocols are
initialized with two additional components–CS and AG
(InitializePotentialProtocols). The AG mapping has
identical semantics as before. However, instead of a
single scurr, the CS set contains numerous pointers to the
possible current conversation states reflecting the
uncertainty caused by losing messages.

In CheckObsMsgMatch (Figure 2), for each scurr in
CS (lines 2-4), we determine its possible next states
using PropIgnLostMsg. These next possible states are
accumulated in NS set (line 3), which is then assigned to
CS (line 5). If at the end of the procedure, CS is not
empty, the procedure returns true, else it returns false.

Given a scurr state, PropIgnLostMsg (Figure 3)
determines its next possible states ignoring up to k
consecutive losses. In each iteration, we apply two sets –
NSi and ISi+1. The first contains the next possible states
corresponding to iteration i (line 11), whereas the
second set holds up the intermediate states that are to be
checked in the following iteration i+1 (line 12).

Finally, we determine final protocols using procedure
similar to the one shown in Figure 3. A protocol is
considered to be final if in its CS set there is at least one
state which is either final or there is a final state with no
more than k consecutive losses from it.

)is(notreturn:
:

hend foreac:
,,(:

inforeach:
:

):output
),,,,,(:

),,(:
),,,,,(::input(

ocedurePr

empty CS
NS CS

 AG)os tMsgPropIgnLos NS NS

CS s
 empty set NS

 bool
� F0sS�R p where

AGCS p pp protocol control
 t�� rcv sen o message observed

gMatchCheckObsMs

curr

curr

6
5
4
3
2
1

=

=

=

=
=

=

�

Figure 2. CheckObsMsgMatch procedure
The Random Loss Algorithm

NS

i NS NS

s s�| s 1i IS 1i IS
 s i NS i NS

 AG�r ro MatchCheckRoles
 exists

s�r r s�
 exists whethercheck exists bool

 i IS s
empty set 1i IS i NS

 empty i IS
k 0i

 s IS
 empty set NS

 NS set statetion conversa
AG mapping role- agent

t�� rcv sen o message observed
 s statetion conversa

tMsg PropIgnLos

k

0i

int

next

yx

nextyxint

int

curr
0

 curr

return:
:

forend:
foreachend:

}_),({:
}{:

),,,,(:
andif:

),,,(:
:

inforeach:
:

breakthenisif:
tofor:

}{:
:

):output

),,,,,(:
,:input(

ocedurePr

16

15
14
13
12
11
10

9
8
7
6
5
4
3
2
1

�

�

�

=
=

=+=+
=

><

=><
=

=+=

=
=
=

=

Figure 3. PropIgnLostMsg procedure

4.3. The Systematic Loss Algorithm

The Systematic Loss algorithm handles a more
common situation in lossy overhearing—losing up to l
conversation roles. This condition can occur in case that
an overhearing agent, due to its location, cannot
overhear messages sent from agents implementing the
lost roles (e.g., the overhearing agent sees outgoing
messages, but not incoming messages). In our example,
in case l=1 and the lost role is initiator, the algorithm
can determine that o*=<agenty, agentx, propose,
contract-X, t2><agenty, agentx, inform, contract-X, t4>
corresponds to the FIPA protocol described in Section 3.

In the Systematic Loss algorithm, we determine for
each set of lost roles (LR) a CS and AG component.
Thus, for each potential protocol, we define a control set
(CLR) that contains (LR,CS,AG) tuples.

 empty CLR

 AG CS LR \ CLR CLR
 empty CS

NS CS

 LR s tRoles sPropIgnLo NS NS
AG �r ro esMatch ol CheckR

 exists
s�r r s�

 exists whethercheck exists bool
CS s

empty set NS
 CLR AG CSLR

 bool
 LRSLRAG CSLR CLR

 � FsS�R p where
CLR p pp protocol control

 t�� rcv sen o message observed
gMatch sCheckObsM

yx

yxint

curr

0

)is(notreturn:
foreachend:

}),,({:
thenisif:

:
cheaend for:

),(:
),,,,(:

andif:
),,,(:

:
inforeach:

:
in),,(foreach:

):output
}|),,({:

and),,,,,(:
),(:

),,,,,(::input(
ocedurePr

14
13
12
11
01
9
8
7
6
5
4
3
2
1

=

=

=
><

=><
=

=

∈∀=
=

=
=

�

Figure 4. CheckObsMsgMatch procedure
The Systematic Loss Algorithm

NS

1i IS i IS

 s NS NS

s 1i IS IS

 LRr
 s r s�

 i IS s

 empty set IS
empty IS

s IS
 empty set NS

NS set stateonconversati
RLR setrole onconversati

 s stateonconversati
tRolesPropIgnLos

 int

1i

int
int

1i

i
curr

i

curr

return:
end while:

:
hend foreac:

foreachend:
end if:

}{:
else :

}{:
if:

)__,,,(foreach:
inforeach:

:
is notwhile:

}{:
:

):output

,:input(
ocedurePr

16
15
14

13
12
11
10

9
8

7
6
5

4
3

2
1

+=

=

+=
∈

=><

=

=
=

⊆

+

+

�

�

 Figure 5. PropIgnLostRoles procedure

In CheckObsMsgMatch (Figure 4), each (LR,CS,AG)

is considered individually (line 1). For each scurr in its
CS, we determine in lines 4-9 whether exists a potential
next state and then propagate from it ignoring the lost
roles (using PropIgnLostRoles in Figure 5). The next
potential states are accumulated in NS set, which is later
assigned to CS (line 10). If CS is empty, the (LR,CS,AG)
tuple is discarded from CLR (lines 11-12). The

procedure returns true if at the end of it the CLR set is
not empty, else it returns false (line 14).

5. Discussion

We now turn to analyzing the complexity of the
conversation recognition algorithms we presented. This
section analyzes these algorithms in terms of their
complexity. The algorithmic skeleton (Figure 1) consists
of three phases. However, only phases II and III
contribute to algorithm complexity. In phase II, we
match each of m messages with each protocol in PP
using CheckObsMsgMatch. In phase III
(DetermineFinalProtocols), we determine whether a
protocol is final (CheckIfProtocolFinal). In this analysis,
we denote the complexity of CheckObsMsgMatch at
iteration i as O(f1

i), while CheckIfProtocolFinal
procedure is denoted as O(f2).

The complexity of both phases depends on the
number of protocols in PP at each stage of the
algorithm. In the best case, all (but one) protocols are
disqualified after the first iteration, whereas the final
protocol remains through all m iterations. Assuming m is
relatively big, the complexity of disqualifying |P|-1
protocols is negligible. Thus, the best-case complexity
can be formulated as follows:

 fffff-1P 2

m

1i

i
12

m

1i

i
1

1
1)(O)(O)(O)(O)(O)|(| +=++ ��

==

 In the worst case, all protocols remain consistent with
all m messages, and are therefore repeatedly matched
against overheard messages:

))(O)(O(|| 2

m

1i

i
1 ff P +�

=

Now, let us focus on evaluating the ΣO(f1
i)+O(f2)

component–the complexity for matching a single
protocol–for each algorithm. We denote this complexity
by O(T). In the Naïve algorithm, both O(f1

i) and O(f2)
are equal to O(1), since both procedures only perform a
simple check. Thus, O(T)=O(m) for the Naïve algorithm.

In the Random Loss algorithm, the complexity of
O(f1

i) and O(f2) depends on the size of the appropriate
CS set. The size of CS in iteration i is determined by the
NS set of the previous iteration (i-1). Furthermore, for
each state in CS, we examine all states that are up to k
transitions from it. Thus, in order to evaluate O(T), we
must consider the structure of δ function and the size of
the NS set established in each iteration.

In the best case for O(T), δ contains only one
possible transition for each state and |NS| is always equal
to 1. Accordingly, O(T) is equal to mO(k)+O(1)=O(mk).

In the worst case, δ contains b transitions for each
state – b is the branching factor of the state (1≤b≤|Σ|).

Thus, the complexity O(α) of examining up to k
transitions from a certain state s∈S can be evaluated as
O(1+b+b2+…+bk) ≤O(bk+1). Such states contribute no
more than one new state to NS. In the worst case, |NS| is
1+b+b2+…+ bk–1 ≤ bk. We denote it as β. Thus, the
complexity of ΣO(f1

i) is α.(1+β+β2+…+βm)≤αβm.+1

=O(bmk+2k+1). Analogously, the complexity of O(f2) is
bm(1+b+b2+…+bn-m)=O(bn+1), where n = |m*|. Thus, the
worst-case complexity of O(T) for the Random Loss
algorithm is O(bmk)+O(bn).

In the Systematic Loss algorithm, the complexity of
O(f1

i) and O(f2) depends on the size of CS and the
structure of δ. However, this complexity also depends
on the number of LR sets in CLR, i.e. |CLR|. In Section
4.3, we have defined each LR set as a possible
combination of up to l lost roles of the protocols’
conversation roles. Thus, |CLR| can be formulated as
follows:

�
=

��
�

�
��
�

�
=

l

0i i

R
 CLR

||
||

In the best case, b=1 and |NS| is always equal to 1. In
addition, all LRs (but one) are disqualified after the first
iteration. Furthermore, from each state, h states can be
skipped (PropIgnLostRoles). Thus, the complexity of
O(f1

i) is always O(1+h)=O(h), and the complexity of
O(f2) is O(1)–simply checking the remaining state.
Therefore, the best-case complexity of O(T) for the
Systematic Loss algorithm is equal to O(mh).

In the worst case, we assume that no propagation can
be made. Thus, the complexity of ΣO(f1

i) is similar to
the Naïve algorithm, only multiplied by |CLR|, i.e.
|CLR|O(m). As for O(f2), from the single state in CS, all
states in levels n-m from it must be examined. Thus,
similarly to the principles explained above, O(f2)≤
|CLR|O(bn–m+1)= |CLR|O(bn–m). Thus, the worst-case
complexity of O(T) for the Systematic Loss algorithm is
equal to |CLR|(O(m)+O(bn–m)).

In general, it is difficult to determine which of the
algorithms is better. However, in practice, we often
know which roles are lost or at least know the number of
lost roles. In such cases, the |CLR| parameter becomes a
constant and, thus, the Systematic Loss algorithm seems
to be more efficient than the Random Loss algorithm.

6. Conclusions and Future Work

In this paper, we have taken the first steps towards a
formal approach to overhearing. Using the proposed
theoretical model, we were able to formulate a key
problem of overhearing – conversation recognition.

Addressing this problem, we discuss conversation
identification, given a set of overheard messages. Here,

we present a skeleton algorithm (and three
instantiations) for finding a conversation pattern that
corresponds to the overheard messages, despite losses of
overheard messages. We show that the Naïve algorithm,
assuming no losses, is efficient. However, its naïve
assumption is challenged in real-world settings.

Addressing lossy overhearing, we analyze the best-
case and the worst-case complexities of the Random
Loss and the Systematic Loss algorithms. We show that,
in general, it is difficult to determine which of the two
algorithms is better. However, in practice, we expect the
Systematic Loss algorithm to outperform the Random
Loss algorithm.

In this paper, we analytically derived the best- and
worst-case complexities of the algorithms. In the future,
we hope to examine their performance empirically.
Furthermore, conversation recognition is but a first step
towards a general formal treatment of overhearing. We
plan to tackle additional overhearing challenges, as
mentioned in the paper.

References

[1] Aielo, M., Busetta, P., Dona, A. & Serafini, L. (2001).

Ontological overhearing. In Proceedings of ATAL-2001.
Seattle, USA.

[2] Busetta, P., Serafini, L., Singh, D. & Zini, F. (2001).
Extending multi-agent cooperation by overhearing. In
Proceedings of CoopIS 2001, Trento, Italy.

[3] Busetta, P., Dona, A. & Nori, M. (2002). Channeled
multicast for group communications. In Proceedings of
the AAMAS-02. Bologna, Italy.

[4] FIPA Specifications (2004). FIPA Specifications, at
www.fipa.org/specifications/index.html.

[5] Gutnik, G. & Kaminka, G.A. (2004). A comprehensive
Petri net representation for multi-agent conversations.
MAVERICK Technical Report 2004/1, Department of
Computer Science, Bar-Ilan University, at
www.cs.biu.ac.il/~maverick/tech-reports/.

[6] Kaminka, G.A., Pynadath, D.V. & Tambe, M. (2002).
Monitoring teams by overhearing: a multi-agent plan-
recognition approach. JAIR, 17, 83-135.

[7] Legras, F. (2002). Using overhearing for local group
formation. In Proceedings AAMAS-02. Bologna, Italy.

[8] McElhearn, K. (1996). Writing conversation: an analysis
of speech events in e-mail mailing lists. Masters’ thesis,
Language Studies Unit, Aston University.

[9] Novik, D. G. & Ward, K. (1993). Mutual beliefs of
multiple conversants: a computational model of
collaboration in air traffic control. In Proceedings of
AAAI-93, pp. 196-201. Washington, DC, USA.

[10] Poutakidis, D., Padgham, L. & Winikoff, M. (2002).
Debugging multi-agent systems using design artifacts:
The case of interaction protocols. In Proceedings of
AAMAS-02, pp. 960-967. Bologna, Italy.

