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Fresh our memory with
PROBABILITY

Lesson 9
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• Unconditional or prior probability that a 

proposition A is true:  P(A)

– In the absence of any other information, the probability 

to event A is P(A).

– Probability of application accepted: 

P(application-accept) = 0.2 

• Propositions include random variables X

– Each random variable X has domain of values: 

{red, blue, …green}

– P(X=Red) means the probability of X to be Red

Unconditional Probability
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• If application-accept is binary random variable ->

values = {true,false}

– P(application-accept) same as P(app-accept = True)

– P(~app-accept) same as P(app-accept = False)

• If Status-of-application domain: 

{reject, accept, wait-list}

– We are allowed to make statements such as:

P(status-of-application = reject) = 0.2

P(status-of-application = accept) = 0.3

P(status-of-application = wait-list) = 0.5

Unconditional Probability
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Conditional Probability

• What if agent has some evidence?

– E.g. agent has a friend who has applied with a much weaker 

qualification, and that application was accepted? 

• Posterior or conditional probability

P(A|B) probability of A given all we know is B

– P(X=accept|Weaker application was accepted)

– If we know B and also know C, then P(A| B  C)
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– P(A  B) = P(A|B)*P(B)

– P(A  B) = P(B|A)*P(A)

– P(A|B) = P(A  B) / P(B)

– P(B|A) = P(A  B) / P(A) BA

Product rule
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• Probability of all the possible values of X Denote by 

P(X)

– Note that P is in bold

– In our example:

X = Status-of-application 

Xi {reject, accept, wait-list}

P(X) = <0.2, 0.3, 0.5>

•  P(X=xi) = 1

Probability Distribution
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Joint Probability Distribution

• Joint probability distribution is a table

– Assigns probabilities to all possible assignment of values for 
combinations of variables

• P(X1,X2,..Xn) assigns probabilities to all possible 
assignment of values to variables X1, X2,..Xn
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Joint Probability Distribution

• X1 = Status of your application

• X2 = Status of your friend’s application

• Then P(X1,X2)

0.15 0.3 0.02

0.3 0.02 0.09

0.02 0.09 0.01

X1

X2

AcceptReject Wait-list

Accept

Reject

Wait-list
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Bayes’ Rule

• Given that

– P(A  B) = P(A|B)*P(B)

– P(A  B) = P(B|A)*P(A)

 P(B|A) =      P(A|B)*P(B)

P(A)

• Determine P(B|A) given P(A|B), P(B) and P(A)

• Generalize to some background evidence e

P ( Y | X, e) =  P(X | Y, e) * P(Y | e)

P(X | e)
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Bayes’ Rule Example
• S: Proposition that patient has stiff neck

• M: Proposition that patient has meningitis

• Meningitis causes stiff-neck, 50% of the time

• Given:

– P(S | M) = 0.5

– P(M) = 1/50,000

– P(S) = 1/20

– P(M|S) = P(S| M) * P(M) / P(S) = 0.0002

• If a patient complains about stiff-neck, 

P(meningitis) only 0.0002
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Bayes’ Rule

• How can it help us?

– P(A|B) may be causal knowedge, P(B|A)  diagnostic knowledge

– E.g., A is symptom, B is disease

• Diagnostic knowledge may vary:

– Robustness by allowing P(B | A) to be computed from others

130

Bayes’ Rule Use

• P(S | M) is causal knowledge, does not change

– It is “model based”

– It reflects the way meningitis works

• P(M | S) is diagnostic; tells us likelihood of M given 

symptom S

– Diagnostic knowledge may change with circumstance, thus helpful 

to derive it 

– If there is an epidemic, probability of Meningitis goes up; rather 

than again observing P(M | S), we can compute it
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Computing the denominator: P(S)

We wish to avoid computing the denominator in the 

Bayes’ rule

– May be hard to obtain

– Introduce 2 different techniques to compute (or avoid 

computing P(S))
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Computing the denominator: 

#1 approach - compute relative likelihoods:

• If M (meningitis) and W(whiplash) are two possible 

explanations:

– P(M|S) = P(S| M) * P(M) / P(S)

– P(W|S) = P(S| W) * P(W)/ P(S)

• P(M|S)/P(W|S) = P(S|M) * P(M) / P(S| W) * P(W)

• Disadvantages:

– Not always enough

– Possibility of many explanations
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#2 approach - Using M & ~M:

• Checking the probability of M, ~M when S

– P(M|S) = P(S| M) * P(M) / P(S)

– P(~M|S) = P(S| ~M) * P(~M)/ P(S)

• P(M|S) + P(~M | S) = 1  (must sum to 1)

– [P(S|M)*P(M)/ P(S) ] +

[P(S|~M) * P(~M)/P(S)] = 1

– P(S|M) * P(M) + P(S|~M) * P(~M) = P(S)  

• Calculate P(S) in this way…

Computing the denominator: 
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The #2 approach is actually - normalization:

• 1/P(S) is a normalization constant

– Must ensure that the computed probability values sum to 1

– For instance: P(M|S)+P(~M|S)  must sum to 1

• Compute:

– (a)    P(S|~M) * P(~M)

– (b)     P(S | M) * P (M)

– (a) and (b) are numerators, and give us “un-normalized 

values”

– We could compute those values and then scale them so that 

they sum to 1

Computing the denominator
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Simple Example

• Suppose two identical boxes

• Box1:

– colored red from inside

– has 1/3 black balls, 2/3 red balls

• Box2:

– colored black from inside 

– has 1/3 red balls, 2/3 black balls

• We select one Box at random; cant tell how it is colored 

inside.

• What is the probability that Box is red inside?
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Applying Bayes’ Rule
What if we were to select a ball at random from Box, and it is red,

Does that change the probability?

P(Red-box | Red-ball) = P(Red-ball | Red-box) * P(Red-box)

P(Red-ball)

= 2/3 * 0.5 / P(Red-ball)

How to calculate P(Red-ball)?

P(Black-box|Red-ball) = P(Red-ball |Black-box)*P(Black-box)

P(Red-ball)

= 1/3 * 0.5 / P(Red-ball)

Thus, by our approach #2:   2/3 * 0.5 / P(Red-ball) +

1/3 * 0.5 / P(Red-ball) 

= 1

Thus, P(Red-ball) = 0.5, and P(Red-box | Red-ball) = 2/3
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Absolute and Conditional Independence

• Absolute: P(X|Y) = P(X)   or   P(X  Y) = P(X)P(Y)

• Conditional: P(A  B | C) = P(A | C) P(B | C) 

• P(A| B  C)

– If A and B are conditionally independent given C Then, 
probability of A is not dependent on B

– P(A| B  C) = P(A| C) 

• E.g. Two independent sensors S1 and S2 and a jammer J1

– P(Si) = Probability Si can read without jamming

– P(S1 | J1  S2) = P(S1 | J1)
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Combining Evidence
• Example:

– S: Proposition that patient has stiff neck

– H: Proposition that patient has severe headache 

– M: Proposition that patient has meningitis

– Meningitis causes stiff-neck, 50% of the time

– Meningitis causes head-ache, 70% of the time

• probability of Meningitis should go up, if both symptoms 

reported

• How to combine such symptoms?
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Combining Evidence

• P(C| A  B) = P(C  A  B) / P ( A  B)

• Numerator:
– P(C  A  B) = P(B | A  C) * P(A  C)

= P(B | C) * P(A  C)

= P(B | C) * P(A | C) * P (C)

• Going back to our example:

P(M | S  H) = P(S| M) * P(H| M) * P(M) 

P( S  H)


