Artificial Intelligence

Lesson 7

Ram Meshulam 2004

STRIPS – Representation

- States and goal sentences in FOL.
- Operators are combined of 3 parts:
 - Operator name
 - Preconditions a sentence describing the conditions that must occur so that the operator can be executed.
 - Effect a sentence describing how the world has change as a result of executing the operator. Has 2 parts:
 - Add-list
 - Delete-list
 - Optionally, a set of (simple) variable constraints

Ram Meshulam 2004

Planning

- Traditional search methods does not fit to a large, real world problem
- We want to use general knowledge
- We need general heuristic
- Problem decomposition

Ram Meshulam 2004

Example – Blocks world

Basic operations

- stack(X,Y): put block X on block Y
- unstack(X,Y): remove block X from block Y

Ram Meshulam 2004

- pickup(X): pickup block X
- putdown(X): put block X on the table

TABLE

- 1

Example – Blocks world (Cont.)

```
operator(unstack(X,Y),
operator(stack(X,Y),
     Precond [holding(X),clear(Y)],
                                               [on(X,Y), clear(X), handempty],
     Add [handempty,on(X,Y),clear(X)],
                                               [holding(X),clear(Y)],
     Delete [holding(X),clear(Y)],
                                               [handempty,clear(X),on(X,Y)],
     Constr [X = Y, Y = table, X = table]).
                                               [X = Y, Y = table, X = table]).
operator(pickup(X),
     [ontable(X), clear(X), handempty],
                                           operator(putdown(X),
     [holding(X)],
                                              [holding(X)],
     [ontable(X),clear(X),handempty],
     [X = table]).
                                              [ontable(X),handempty,clear(X)],
                                              [holding(X)],
                                              [X = table]).
                                 Ram Meshulam 2004
```

STRIPS Algorithm

- Strips Stands for STanford Research Institute Problem Solver (1971).
- See example (pdf).
- See applet.

95 Ram Meshulam 2004

STRIPS Pseudo code

STRIPS(stateList start, stateList goals)

- 1. Set state = start
- 2. Set plan = []
- 3. Set stack = goals
- 4. while stack is not empty do
 - 1. STRIPS-Step()
- 5. Return plan

96 Ram Meshulam 2004

STRIPS Pseudo code – Cont.

STRIPS-Step()

switch top of stack t:

- 1. case *t* is a goal that matches state:
 - 1. pop stack

97

- 2. case *t* is an unsatisfied conjunctive-goal:
 - 1. select an ordering for the sub-goals
 - 2. push the sub-goals into stack

Ram Meshulam 2004

STRIPS Pseudo code – Cont.

- 3. case *t* is a simple unsatisfied goal
 - 1. choose an operator op whose add-list matches t
 - 2. replace the *t* with *op*
 - 3. push preconditions of *op* to stack
- 4. case *t* is an operator
 - 1. pop stack
 - 2. state = state + t.add-list t.delete-list
 - *3.* plan = [plan / t]

Ram Meshulam 2004

Versions and Decision points

- 3 decision points
 - How to order sub-goals?
 - Which operator to choose?
 - Which variable to instantiate?
- Different versions
 - Backtracking? (at each decision point)
 - Lifted Vs. grounded
- The original STRIPS
 - Backtrack only on the order of sub-goals
 - Lifted

Ram Meshulam 2004