Artificial Intelligence

Lesson 12

Many applications:
- Floor cleaning, mowing, de-mining, ...

Many approaches:
- Off-line or On-line
- Heuristic or Complete

Multi-robot, motivated by robustness and efficiency

Robotics, a Case Study - Coverage

Environment Assumptions
- Static - to be able to guarantee completeness
- Inaccessible - greater impact on the on-line version
- Non-deterministic
- Continuous
 - Exact cellular decomposition
 - Approximate cellular decomposition

MSTC - Multi Robot Spanning Tree Coverage
- Complete - with approximate cellular decomposition
- Robust
 - Coverage completed as long as one robot is alive
 - The robustness mechanism is simple
- Off-line and On-line algorithms
 - Off-line:
 - Analysis according to initial positions
 - Efficiency improvements
 - On-line:
 - Implemented on simulation of real-robots
Off-line Coverage, Basic Assumptions

- Area division – \(n \) cells
- \(k \) homogenous robots
- Equal associated tool size
- Robots movement

STC: Spanning Tree Coverage

(Gabrieli and Rimon 2001)

- Area division
- Graph definition
- Building the spanning tree

Non-backtracking MSTC

- Initialization phase: Build STC, distribute to robots
- Distributed execution: Each robot follows its section
 - Low risk of collisions

Guaranteed Robustness

- Coverage completed as long as one robot is alive
- Low communication, no need for re-allocation
Analysis: Non-backtracking MSTC

- Running time = $\max_{i,k} \text{step}(i)$

- Best case: $\left\lceil \frac{n}{k} \right\rceil - 1$

- Worst case: $n - k$
 - Unfortunately, common case

- General non-backtracking worst case: $n - 2(k-1) - 1$

Backtracking MSTC

- Similar initialization phase
- Robots backtrack to assist others
- No point is covered more than twice

Backtracking MSTC (cont.)

- Same robustness mechanism
- Same communication requirements

Backtracking MSTC Analysis

Best case: The same

Worst case:
\[
\begin{cases}
 k=2 & \left\lceil \frac{2n}{3} \right\rceil \\
 k>2 & \left\lceil \frac{n}{2} \right\rceil
\end{cases}
\]
Efficiency in Off-line Coverage

- Optimal MSTC - improves the average case
- Heterogeneous robots - flexibility
- Optimal spanning tree - improves the worst case

Optimal MSTC

- Similar initialization phase
- Robots backtrack to assist others:
 - All the robots can backtrack
 - Backtracking on any number of steps
- No point is covered more than twice

- Same robustness mechanism
- Same communication requirements

Optimal MSTC (cont.)

- Choose a robot
- Search for the minimum valid solution
 - Left search
 - Right search
- Complexity:
 - Check on all the robots: k
 - Each search: O(n logn)
 - Validity check: O(k)
 - Total: O(k^2 logn)

Heterogeneous Robots

- Different speeds
 - Non-backtracking MSTC
 - Backtracking MSTC
 - Optimal MSTC

- Different fuel/battery time
 - Non-backtracking MSTC
 - Backtracking MSTC
 - Optimal MSTC
Optimal Spanning tree

- Improves the worst case with all 3 algorithms
- The construction is believed to be NP-Hard

A Heuristic Solution

- Build k subtrees on coarse grid
 - Start building subtrees from initial locations
 - Add cells to each subtree gradually
 - Spread away from other robots (based on Manhattan dist)
- Connect subtrees
 - Randomly pick connections between subtrees
 - Calculate x in resulting tree
 - Repeat k^α times (α is a parameter)
 - Report tree yielding minimal x

Illustration – Stage 1

Generating a Good Spanning Tree (Believed to be NP-Hard)
Example

On-line MSTC

- Same basic assumptions:
 - Area decomposition - n cells
 - k homogenous robots
 - Equal tool size and robot movements
- All the robots know their absolute initial position
- Initialization phase
 1. Agreed-upon grid construction
 2. Self-localization
 3. Locations update

On-line MSTC (Cont.)

Guaranteed Robustness

- Coverage completed as long as one robot is alive
- No need for re-allocation
From Theory to Practice

- Player/Stage with modeled RV-400 robots
- Localization solutions
 - GPS
 - Odometry with limited errors
- Agreed-upon grid options
 - Big enough work-area
 - Dynamic work-area
- Collisions avoidance with bumps
 - Random wait
 - Communication based
- Limited sensors solution

Off-line Algorithms Experiments (1)

- Work area: 30X20 cells, 2400 sub-cells
- Each point represents 100 trials

Off-line Algorithms Experiments (2)

- Work area: 30X20 cells with 80 holes, 2080 sub-cells
- Each point represents 100 trials

Experimental Results
Experimental Results - 27% Obstacles

On-line Algorithm Run-time Example

On-line Algorithm Experiments

- Random places
- Each point represents 10 trials

Conclusion

- Complete and robust multi-robot algorithms
- Redundancy vs. efficiency with off-line algorithms
- Optimal MSTC which handle heterogeneous robots
- Implemented on-line MSTC with approximation techniques