Artificial Intelligence

Lesson 11 (From Russell \& Norvig)

Conditional probability

- Conditional or posterior probabilities e.g., $\mathrm{P}($ cavity \mid toothache $)=0.8$
i.e., given that toothache is all I know
- Notation for conditional distributions: $\mathbf{P}($ Cavity \mid Toothache $)=2$-element vector of 2-element vectors)
- If we know more, e.g., cavity is also given, then we have $\mathrm{P}($ cavity \mid toothache, cavity $)=1$
- New evidence may be irrelevant, allowing simplification, e.g., $\mathrm{P}($ cavity \mid toothache, sunny $)=\mathrm{P}($ cavity \mid toothache $)=0.8$
- This kind of inference, sanctioned by domain knowledge, is crucial

169
Ram Meshulam 2004

Independence

- A and B are independent iff $\mathbf{P}(A \mid B)=\mathbf{P}(A) \quad$ or $\mathbf{P}(B \mid A)=\mathbf{P}(B) \quad$ or $\mathbf{P}(\mathrm{A}, \mathrm{B})=\mathbf{P}(A) \mathbf{P}(B)$

\mathbf{P} (Toothache, Catch, Cavity, Weather) $=\mathbf{P}($ Toothache, Catch, Cavity $) \mathbf{P}($ Weather $)$
- 32 entries reduced to 12 ; for n independent biased coins, $O\left(2^{n}\right) \rightarrow O(n)$
- Absolute independence powerful but rare
- Dentistry is a large field with hundreds of variables, none of which are independent. What to do?

171
Ram Meshulam 2004

Conditional independence

- $\mathbf{P}($ Toothache, Cavity, Catch $)$ has $2^{3}-1=7$ independent entries
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache
(1) $\mathbf{P}($ catch \mid toothache, cavity $)=\mathbf{P}($ catch \mid cavity $)$
- The same independence holds if I haven't got a cavity: (2) $\mathbf{P}($ catch \mid toothache, \neg cavity $)=\mathbf{P}($ catch $\mid \neg$ cavity $)$
- Catch is conditionally independent of Toothache given Cavity: $\mathbf{P}($ Catch \mid Toothache, Cavity $)=\mathbf{P}($ Catch \mid Cavity $)$
- Equivalent statements:
$\mathbf{P}($ Toothache \mid Catch, Cavity $)=\mathbf{P}($ Toothache \mid Cavity $)$
$\mathbf{P}($ Toothache, Catch \mid Cavity $)=\mathbf{P}($ Toothache \mid Cavity $) \mathbf{P}($ Catch \mid Cavity $)$ 172

Ram Meshulam 2004

Bayesian networks

- A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions
- It describes how variables interact locally
- Local interactions chain together to give global, indirect interactions
- Syntax:
- a set of nodes, one per variable
- a directed, acyclic graph (link \approx "directly influences")
- a conditional distribution for each node given its parents: $\mathbf{P}\left(\mathrm{X}_{\mathrm{i}} \mid\right.$ Parents $\left.\left(\mathrm{X}_{\mathrm{i}}\right)\right)$ - conditional probability table (CPT)

173
Ram Meshulam 2004

Example 2

- N independent coin flips :
$\mathbf{P}(\mathbf{X} 1=$ tree $)=0.5$

- No interactions between variables: absolute independence
- Does every Bayes Net can represent every full joint?
- No. For example, Only distributions whose variables are absolutely independent can be represented by a Bayes' net with no arcs.

Calculation of Joint Probability

- Given its parents, each node is conditionally independent of everything except its descendants
- Thus,

$$
\begin{gathered}
\mathrm{P}\left(\mathrm{x}_{1} \wedge \mathrm{x}_{2} \wedge \ldots \wedge \mathrm{x}_{\mathrm{n}}\right)=\prod_{\mathrm{i}=1, \ldots, \mathrm{n}} \mathrm{P}\left(\mathrm{x}_{\mathrm{i}} \mid \text { parents }\left(\mathrm{X}_{\mathrm{i}}\right)\right) \\
\rightarrow \text { full joint distribution table }
\end{gathered}
$$

- Every BN over a domain implicitly represents some joint distribution over that domain

176

Example 3

- I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?
- Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
- Network topology reflects "causal" knowledge:
- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call

177
Ram Meshulam 2004

Answering queries

- I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?
$-\mathrm{P}(\mathrm{blj},-\mathrm{m})=\mathrm{P}(\mathrm{b}, \mathrm{j},-\mathrm{m}) / \mathrm{P}(\mathrm{j},-\mathrm{m})$
$-P(b, j-m)=P(b, e, a, j,-m)+P(b,-e, a, j, r m)+P(b, e, \sim a, j,-m)+P(b,-e,-a, j, r m)=$
$\mathrm{P}(\mathrm{b}) \mathrm{P}(\mathrm{e}) \mathrm{P}(\mathrm{a} \mid \mathrm{b}, \mathrm{e}) \mathrm{P}(\mathrm{j} \mid \mathrm{a}) \mathrm{P}(\neg \mathrm{m} \mid \mathrm{a})+$
$\mathrm{P}(\mathrm{b}) \mathrm{P}(\mathrm{e}) \mathrm{P}(\neg \mathrm{a} \mid \mathrm{b}, \mathrm{e}) \mathrm{P}(\mathrm{j} \mid-\mathrm{a}) \mathrm{P}(\neg \mathrm{m} \mid-\mathrm{a})+$
$\mathrm{P}(\mathrm{b}) \mathrm{P}(\neg \mathrm{e}) \mathrm{P}(\mathrm{a} \mid \mathrm{b},\ulcorner\mathrm{e}) \mathrm{P}(\mathrm{j} \mid \mathrm{a}) \mathrm{P}(\neg \mathrm{m} \mid \mathrm{a})+$
$\mathrm{P}(\mathrm{b}) \mathrm{P}(\neg \mathrm{e}) \mathrm{P}(\neg \mathrm{a} \mid \mathrm{b},\ulcorner\mathrm{e}) \mathrm{P}(\mathrm{j} \mid-\mathrm{a}) \mathrm{P}(\neg \mathrm{m} \mid-\mathrm{a})$
- Do the same to calculate $\mathrm{P}(\neg \mathrm{b}, \mathrm{j} \leftharpoondown \mathrm{m})$ and normalize
- Worst case, for a network with n Boolean variables, $\mathrm{O}\left(\mathrm{n} 2^{\mathrm{n}}\right)$.

Laziness and Ignorance

- The probabilities actually summarize a potentially infinite set of circumstances in which the alarm might fail to go off
- high humidity
- power failure
- dead battery
- cut wires
- a dead mouse stuck inside the bell
- John or Mary might fail to call and report it
- out to lunch
- on vacation
- temporarily deaf
- passing helicopter

180
Ram Meshulam 2004

Compactness

- A CPT for Boolean X_{i} with k Boolean parents has 2^{k} rows for the combinations of parent values
- Each row requires one number p for $X_{i}=$ true (the number for $X_{i}=$ false is just $1-p$)

- If each variable has no more than k parents, the complete network requires $O\left(n \cdot 2^{\mathrm{k}}\right)$ numbers
- I.e., grows linearly with n, vs. $O\left(2^{n}\right)$ for the full joint distribution
- For burglary net, $1+1+4+2+2=10$ numbers (vs. $2^{5}-1=31$)
- We utilize the property of locally structured system

181
Ram Meshulam 2004

Reverse Casualty?

- Rain causes Traffic
- Let's build the joint:

Casualty?

182
Ram Meshulam 2004

183
Ram Meshulam 2004

Casualty?

- What do the arrows really mean?
- Topology may happen to encode causal structure
- Topology really encodes conditional independencies
- When Bayes' nets reflect the true causal patterns:
- Often simpler (nodes have fewer parents)
- Often easier to think about
- Often easier to elicit from experts
- BNs need not actually be causal
- Sometimes no causal net exists over the domain
- E.g. consider the variables Traffic and RoofDrips
- End up with arrows that reflect correlation, not causation

184
Ram Meshulam 2004

Example 2, Again

Consider the following 2 orders for insertion:

- (a) MaryCalls, JohnCalls, Alarm, Burglary, Earthquake

Since, P(Burglary|Alarm, JohnCalls, MaryCalls) $=\mathrm{P}$ (BurglarylAlarm)

- (b) Mary Calls, JohnCalls, Earthquake, Burglary, Alarm

185

(b)

What can be inferred?

i: $\quad P(H, G)=P(H) \cdot P(G) \mathbb{X}$
ii $\quad P(J \mid R, H)=P(J \mid R) \downarrow$
iii $\quad P(J) \neq P(J \mid H) \boldsymbol{X}$
Q : What is the value of $\mathrm{P}(\mathrm{H}, \mathrm{G}, \neg \mathrm{R}, \neg \mathrm{J})$?
A: $\mathrm{P}(\mathrm{H}, \mathrm{G}, \neg \mathrm{R}, \neg \mathrm{J})=\mathrm{P}(\mathrm{H}) * \mathrm{P}(\mathrm{G} \mid \mathrm{H}) * \mathrm{P}(\neg \mathrm{R} \mid \mathrm{H}, \mathrm{G}) * \mathrm{P}(\neg \mathrm{J} \mid \mathrm{H}, \mathrm{G}$,
$\neg \mathrm{R})=\mathrm{P}(\mathrm{H}) * \mathrm{P}(\mathrm{G} \mid \mathrm{H}) * \mathrm{P}(\neg \mathrm{R} \mid \mathrm{H}, \mathrm{G}) * \mathrm{P}(\neg \mathrm{J} \mid \neg \mathrm{R})=0.1 * 0.4 * 0.2$

* $0.8=0.0064$

Q : What if we want to add another parameter, $\mathrm{C}=$ Has The Right Connections?

188
Ram Meshulam 2004

true	false	true
true	true	false

true	true	true

189
Ram Meshulam 2004

Reachability (the Bayes Ball)

- Shade evidence nodes
- Start at source node
- Try to reach target by search
- States: node, along with previous arc

- Successor function:
- Unobserved nodes:
- To any child
- To any parent if coming from a child
- Observed nodes:
- From parent to parent
- If you can't reach a node, it's conditionally independent of the start node

Ram Meshulam 2004

Example

- Lind. T', given T?

Yes

- Lind. B?

Yes

- Lind. B, given T ? No
- Lind. B , given T '?

No

- Lind. B, given T and R ? Yes

Naïve Bayes

- Conditional Independence Assumption: features are independent of each other given the class:
$P\left(X_{1}, \ldots, X_{n} \mid C\right)=P\left(X_{1} \mid C\right) \bullet P\left(X_{2} \mid C\right) \bullet \cdots \bullet P\left(X_{n} \mid C\right)$
- What can we model with naïve bayes?
- Any process where,
- Each cause has lots of "independent" effects
- Easy to estimate the CPT fro each effect
- We want to reason about the probability of different causes given observed effects

Naive Bayes Classifiers

Task: Classify a new instance D based on a tuple of attribute values into one of the classes $c_{j} \in C$

$$
\begin{aligned}
& D=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle \\
& \begin{aligned}
c_{M A P} & =\underset{c \in C}{\operatorname{argmax}} P\left(c \mid x_{1}, x_{2}, \ldots, x_{n}\right) \\
& =\underset{c \in C}{\operatorname{argmax}} \frac{P\left(x_{1}, x_{2}, \ldots, x_{n} \mid c\right) P(c)}{P\left(x_{1}, x_{2}, \ldots, x_{n}\right)} \\
& =\underset{c \in C}{\operatorname{argmax}} P\left(x_{1}, x_{2}, \ldots, x_{n} \mid c\right) P(c)
\end{aligned}
\end{aligned}
$$

Summary

- Bayesian networks provide a natural representation for (causally induced) conditional independence
- Topology + CPTs $=$ compact representation of joint distribution
- Generally easy for domain experts to construct

