
BAR ILAN UNIVERSITY
Faculty of Exact Sciences

School of Graduate Studies

EMPIRICAL EVALUATION OF AUTONOMOUS
AGENTS SOFTWARE USING CODE METRICS

A thesis submitted toward the degree of

Master of Science in Exact Sciences

by

Alon Zanbar

2021

BAR ILAN UNIVERSITY
Faculty of Exact Sciences

School of Graduate Studies

EMPIRICAL EVALUATION OF AUTONOMOUS
AGENTS SOFTWARE USING CODE METRICS

A thesis submitted toward the degree of

Master of Science in Exact Sciences

by

Alon Zanbar

This research was carried out at Bar Ilan University
in the Department of Computer Science

Faculty of Engineering
under the supervision of Prof. Gal A. Kaminka

2021

Acknowledgments

This research would not have been possible without the careful and knowledgeable guid-
ance of my advisor Prof. Gal A. Kaminka. Thank you for opening the door of knowledge
for me and sharing with me the excitement and curiosity of my first thesis. Obviously, to
my one and only wife, Tamar and my wonderful kids: Hoshen, Moriya, Tchelet, Noam
and Nave, you gave the strength to keep trying and the incentive to achieve this dream. To
my parents that made me what I am and pushed me at youth and maturity to explore the
world of Math and Computer Science. And lastly, God, Thanks for sharing your wisdom
with flesh and blood.

Abstract

E mpirical research based on agent software repositories using commonly used software
metrics, which are used in software engineering literature to quantify meaningful charac-
teristics of software based on its source code. In the first part agent software measurements
are contrasted with those of software in other categories. Analyzing hundreds of software
projects the commonality and uniqueness of the two groups is presented. The second
part describes an attempt to use the information extract from the code metrics to identify
behaviors that impact program performance.

i

ii

Table of Contents

Abstract i

Nomenclature vii

List of Figures vii

List of Tables ix

1: Introduction 1

2: Background 3

3: Code Analysis 6

3.1 Source Code Metrics . 7

3.1.1 Size metrics . 7

3.1.2 Object oriented design metrics 8

3.1.3 Control Flow Graph measures 9

4: Data Collection and Curation 12

4.1 Data Sources . 12

4.2 Data Collection . 14

4.2.1 Robocup data . 15

4.2.2 github data . 15

4.3 The Measurement Pipeline . 16

iii

4.3.1 Source Code Measurement Pipeline 16

4.4 Data validation and curation . 19

4.4.1 Data Curation . 19

5: Is Autonomous Agents Code Unique? 23

5.1 Is Autonomous Agents code Unique? - A Statistical Analysis 23

5.1.1 Uni variant statistical tests . 23

5.1.2 Data distribution . 25

5.1.3 Statistical tests . 27

5.1.4 Results . 28

5.1.5 Interim Summary. 31

5.2 Is Autonomous Agents code Unique? - Machine Learning Analysis . . . 38

5.2.1 Pre-processing the data. 38

5.2.2 Machine learning pipeline . 38

5.2.3 Results . 40

5.3 Feature importance . 41

5.3.1 Logistic regression . 42

5.3.2 Boosted trees . 43

5.3.3 Agent software classifier . 49

6: AI Code Metrics as Performance Predictors 53

6.1 data preparation . 53

6.2 Regression . 55

6.3 Winner classification . 58

6.3.1 Feature importance . 58

7: Conclusions & Future Work 61

7.0.1 Future Work . 63

References 65

iv

Appendix A: Code Example 70

v

vi

List of Figures

3.1 Control components . 10

4.1 Automatic flow of selecting GitHub projects 17

4.2 Module level code metrics histograms 20

4.3 Correlation of size features CCCC VS Analizo 21

4.4 Normalized residual between lines of code metrics of CCCC and analizo . 22

5.1 Probability plots of DIT mean dots are closely related to the line revealing
close to normal behavior . 25

5.2 Probability plots of RFC max dots are not correlated with the normal line 26

5.3 Box plot distribution of cbo 50%. 30

5.4 Box plot distribution of LCOM4 50%. 30

5.5 Box plot distribution of mean LOC of software domains. 31

5.6 Box plot distribution of mean anpm of software domains. 32

5.7 Box plot distribution of mean mmloc of software domains. 33

5.8 Box plot distribution of mean mmloc of software domains. 34

5.9 Box plot distribution of mean rfc of software domains. 35

5.10 Box plot distribution of mean ACCM of software Categories. 36

5.11 ROC plots of Classification of Boosted Decision Trees classifiers. 43

5.12 Feature Importance - Logistic Regression 45

5.13 Feature Importance - Logistic Regression 46

5.14 Feature Importance - XGBoost . 47

vii

5.15 Feature Importance - XGBoost . 48

5.16 Average AUC curve and with error boundaries of classifying Agent against
non-Agent software repositories . 50

5.17 F1 scores of predicting agent vs non-agent on each of the agent categories 51

6.1 Joining process flow . 54

6.2 Team performance indicators VS Ranks - Clear advantage of the ‘Ranked‘
teams, teams that made it to the semi finals, over the teams that are not
ranked . 56

6.3 Scatter plots of a ‘win diff’ performance indicator vs the modules average
of the different code metrics in each the agent repository 57

6.4 Importance values of the features in the different classifiers: Error bars
present the variance between the different classifiers on the same feature . 60

viii

List of Tables

3.1 Compression between different Line Of Code metrics 7

3.2 Cyclomatic Complexity of Basic Flows 10

4.1 Software categories breakdown . 14

4.2 min, max, and mean total LOC. 18

5.1 Methods for feature ranking . 24

5.2 Mutual information top features . 27

5.3 Top distinguishing features in descending order, and the software domains
they cluster. 29

5.4 Number of projects in each category in the final data-set 39

5.5 Performance indicators for one to many classification using Logistic Re-
gression . 41

5.6 Performance indicators for one to many classification using Gradient Boost-
ing Trees . 42

5.7 Features with highest number of occurrences in the top ranked features
based on the feature rank analysis of the XGBoost based classifiers . . . 44

5.8 Features with highest number of occurrences in the top ranked features
based on the feature rank analysis of the Logistic Regression based classifiers 44

5.9 Performance indicators for binary classification on "held out" category by
classifiers trained on other categories 52

6.1 Correlation of code metrics vs normalize wins and loses performance in-
dicator . 58

ix

6.2 Kfolds split estimated performance: Weighted average AUC: 0.65±0.10,
Weighted average accuracy: 0.54±0.10 59

6.3 Year based split estimated performance: weighted average AUC: 0.74±0.17,
weighted average accuracy: 0.57±0.21 59

x

1 Introduction

For many years, significant research efforts have been spent on investigating methodolo-
gies, tools, models and technologies for engineering autonomous agents software. Re-
search into agent architectures and their structure, programming languages specialized for
building agents, formal models and their implementation, development methodologies,
middle-ware software, have been discussed in the literature, encompassing multiple com-
munities of researchers, with at least partial overlaps in interests and approaches.

The most important underlying assumption of these research efforts is that such spe-
cialization is needed, because autonomous agent software poses engineering requirements
that may not be easily met by more general (and more familiar) software engineering and
programming paradigms. Specialized tools, models, programming languages, code archi-
tectures and abstractions make sense, if the software engineering problem is specialized.

A broad overview of the literature reveals that for the most part, the truth of this as-
sumption has been supported by qualitative arguments and anecdotal evidence. Agent-
oriented programming [40] is by now a familiar and accepted programming paradigm,
and countless discussions of its merits and its distinctiveness with respect to other pro-
gramming paradigms (e.g., object-oriented programming, aspect-oriented programming)
are commonly found on the internet. Agent architectures are commercially available as de-
velopment platforms and are incorporated into products. Indeed, agent-oriented software
development methodologies are taught and utilized in and out of academic [36, 16, 21, 6].

However, there is a disturbing lack of quantitative, empirical evidence for the distinc-
tiveness of autonomous agent software. Lacking such evidence, agent software engineers
rely on intuition, experience, and philosophical arguments when they evaluate or advocate
specialized methods. The basic data we use for the research are common code metrics.
We utilize general source code metrics, such as Cyclomatic Complexity, Cohesion, Cou-
pling, and others. These metrics (see below) are commonly used by researchers and
practitioners to assess code quality, estimate work effort, and to quantify other meaningful

1

characteristics of software. The research cover two hypotheses: one that common code
metrics of a program holds descriptive information about the program and can be used to
identify unique characteristics of AI software. Second, the performance of AI software
is impacted by code quality and this quality can be evaluated by common code metrics.
The first hypothesis is addressed by comparing AI to other software domains. We quanti-
tatively analyze over 500 software projects: 140 autonomous agent and robotics projects
(from RoboCup, the Agent Negotiations Competitions, Chess, and other sources), together
with close to 400 automatically selected software projects from github, of various types.
For validation of the second hypothesis , unique information of the Robocup programs is
used: performance of achieving the task of wining a football competition. The perfor-
mance of each team with relation to the code metrics of the the program is investigated to
reveal patterns of impact.

2

2 Background

The fundamental questions lay under our research are basically: are there special charac-
teristics of autonomous agent development? what are they? How can we use this unique
form in agent software design?

There is vast literature reporting on research that directly or indirectly impacts software
engineering and development of autonomous agents: agent architectures, agent-oriented
programming languages, formal models and their implementation, development method-
ologies, middleware software, and more. We cannot do justice to these efforts for lack
of space. For brevity, we use the term agent-oriented software engineering (AOSE) to
refer to the combined research area, With due apologies to all the different threads of work
whose unique contributions are blurred by our choice.

AOSE is a thriving area of research, with at least one dedicated annual conference/-
workshop and a specialized journal1. [40, 25, 42, 36, 38, 44]. For the most part, the
arguments for the study of AOSE as distinct from general software engineering are well
argued philosophically, and qualitatively pointing out inherent conceptual differences be-
tween the software engineering of agents. To the best of our knowledge, little quantitative
empirical evidence—certainly not at the scale detailed below—has been offered to support
these important conceptual arguments.

Closely related, pioneering works into software engineering in robotics similarly ar-
gue qualitatively for distinguishing software engineering in robotics [8]. For important
features and design methodologies. Some emphasize specific middle-ware frameworks
like JaCaMo [6] or O-MAZE [16] (e.g., [20, 10, 39, 17, 43]), while others focus on criti-
cal capabilities or approaches [35, 14, 9]). The underlying implicit assumption is similar
to those in AOSE: that robotics software is sufficiently different from general software,
that it merits distinct methodologies and tools to ease software development. As agents
researchers would (in general) argue that robots are a special case of agents, this should
not be surprising.

1 International Journal of Agent-Oriented Software Engineering

3

However, researchers have repeatedly found that using methods from software agents
in robotics is not trivial, and require significant changes and extensions to the original
software agents tools and methods [27, 28, 31]. These findings essentially make quali-
tative arguments, based on case studies, rather than strong, cross-task empirical studies.
Indeed, we report below that robot code is similar in some aspects to autonomous agents
code, but is not as easily distinguished from general software. For example, we do not
know whether agent-based development methodologies are more suited to robotics soft-
ware development, than—for example—methods and approaches for software engineering
of enterprise server systems, or operating systems.

Code metrics , When coming into the space of common code metrics it is fair to say
that the history of quantitative methods for evaluating general software is almost as old
as computer engineering itself. Many different researches were conducted on the subject
over the years with variate of metrics is well as many different applications for the metrics
proposed.

1970s pioneering research on Cyclomatic Complexity [32] and Halstead measures [22]
there have been many investigations both proposing quantitative metrics of software con-
structs, and relating the measurements to software quality, development effort, software
type, and other attributes of interest [1, 26, 5]. For example, metrics such as Cyclomatic
Complexity, Coupling, and Cohesion—generated from analysis of the software source
code and the program control flow graph— have been shown to correlate with defects [32,
11, 24]. Maintaining their values within specific ranges (or below some thresholds) tends
to lower the expected defect creation rate, and improve other measures of software qual-
ity. Development and exploration of software metrics continues today, e.g., for paradigms
such as aspect-oriented programming [37].

Applied statistics and Code metrics , In addition to the role software metrics have been
playing in evaluating software properties, some researches proven its effectiveness in clas-
sifying software, set guidelines for good programming and determine the attractiveness
of open source projects. Classification of software domains is also promising approach
for revealing software attributes. For an example [29] showed LOC (among other prod-
uct level metrics) a reliable feature for clustering software for their cost or effort. [15]
showed significant difference in values of "coupling" metrics between different software
categories. Based on those finding they suggested that weights and values of specific met-
rics should be enforced with adjustments to the domain of the software. [41] adapted the
classification method to Android projects. Another example was found by Meirelles [33],

4

who found linkage between the size and complexity of open source projects to attractive-
ness of the project for contributors. Investigating the uniqueness or commonality of AI
code based on those techniques is just another implementation that have not been looked
at.

Those and other techniques that are being used with general software research for
many years. In this research we make an attempt to evaluate those general quantitative
techniques on agent code analysis to answer questions about agents software architecture
as well a verification of validity of the common code researches in this software domain.
We think that by addressing the above we are opening the path to expend the tool-set of
analysis and researches on AI code and make it less limited to its own architecture specific
methodology and measurements.

our research goal, to compare ASOE and general software on the same common met-
rics prevent us from using those ASOE specific metrics. Furthermore, we were forced to
neglect project code portions that used ASOE special architecture as those do not enable
general code metrics analysis. We think that the code hold enough data even without the
agent specific metrics to compared fairly to general software repositories

5

3 Code Analysis

There are few components of the AI software development that impact the final attributes
and the performance of the resulted program. Among the rest, there are process charac-
teristics, domain knowledge and the quality of the requirements. However, this research is
focused on code metrics solely for several reasons: First, code metrics, as opposed to other
attributes, has a simple and direct quantitative representation, this is crucial when coming
to conduct large scale research that aims to draw general conclusions. For example metrics
like domain expertise can only be estimated roughly but can hardly be evaluated numeri-
cally. Second, code metrics can be used for different types of software domains. Finally,
code metrics preserve information about the code design.

The question about the impact of different code metrics on the maintainability and
development effort is a subject to a well established research. Its results which shows
relation between code metrics to several effort and maintainability measures is being used
for decades by the industry for measuring quality and predicting development effort.

Software code metrics can roughly be divided into three main groups: size metrics,
complexity metrics, interrelations metrics. Although those groups might represents differ-
ent aspects of software analysis, literature reveals relationship between the groups. The
applications that were suggested for code metrics are among the rest: quantitative expres-
sion of code, quality evaluation, maintenance cost, classification of software, developer
identification.

The code metrics used in this research are described below alongside a support for
using it in our research.

6

3.1 Source Code Metrics

3.1.1 Size metrics

Lines Of Code (LOC) A common basis of estimate on a software project is the LOC
or Lines of Code. LOC are used to create time and cost estimates. The LOC estimate be-
comes the baseline to measure the degree of work performed on a project. Once a project
is underway, the LOC becomes a tracking tool to measure the degree of progress on a mod-
ule or project. An experienced developer can make a LOC estimate based upon knowledge
of past productivity on projects. The LOC measurement becomes the barometer for the
program‘s progress and productivity. There are few ways of counting LOC:

LOC - All lines of Code without any filtering.

eLOC - An effective line of code or eLOC is the measurement of all lines that are not
comments, blanks or standalone braces or parenthesis. This metric more closely represents
the quantity of work performed.

iLOC - Logical Lines of Code, Logical lines of code represent a metrics for those line
of code which form code statements. These statements are terminated with a semi-colon.
The control line for the for loop contain two semi-colons but accounts for only one semi
colon. Lines of Comments - Lines of comments and the relation between it and other
size and complexity measures might suggest the level of attention invested in code. Also
many comments might lower the maintenance cost of a program. The different ways of
calculating LOC are demonstrated in table 3.1

Source code line LOC eLOC lLOC Comment Blank
if (x < 10) // test range * * *
{ *

// update y coordinate *
*

y = x+1; * *
} *

Table 3.1: Compression between different Line Of Code metrics

Average Method LOC, Maximum method LOC (AMLOC, MMLOC) The LOC of
the different layers of the program indicates if the code is well distributed between the
methods or modules How bigger, "heavier" they are. It’s preferable to have a lot of small
and of easy understandable operations than a few large and complex operations.

7

3.1.2 Object oriented design metrics

Afferent Connections per Class (ACC) Measures the connectivity of a class as follows.
Let (Ci => Cj) be a one edge of the directed graph defined by a unique call from one class
Ci to another Cj is_client(Ci, Cj) = 1, if (Ci => Cj) exists and (Ci => Cj) does not exists
is_client(Ci, Cj) = 0, otherwise. So ACC(C j) = (sum(is_client(Ci,C j)), i = 1toN), where
N is the total number of system classes. If the value of this metric is large, a change in the
class has substantially more side effects, making maintenance more difficult [34].

Coupling Between Objects (CBO) Similar to to ACC but when ACC is directed, mean-
ing it counts only "outgoing" calls, CBO is in-directed thus, it counts outgoing and incom-
ing interactions. Thus, for CBO any call between a pair of class is counted

Average Number of Parameters per method (ANPM) A large amount of parameters
per function might indicate a flew in design where function is doing more task.

Coupling Factor (COF) Considers inheritance, polymorphism, method overriding, and
direct methods of invocations to identify possible interactions in the system that contribute
to the software complexity. Formal definition of this framework is

COF =
∑

TC
i=1

[
∑

TC
j=1 is_client(Ci,C j)

]
TC2−TC−2×∑

TC
i=1 DC(Ci)

where is_client defines a relation between two classes that is not inheritance, TC is the
total number and 2×∑

TC
i=1 DC(Ci) defines the maximum number of interactions due to in-

heritance. The numerator then represents the actual number of couplings not imputable to
inheritance. The denominator stands for the maximum possible number of non-inheritance
couplings in a system with TC [7].

Depth of Inheritance Tree (DIT) This measure might indicate under design when this
number is low for a large part of the program and over design when the Depth is very high
[37].

Lack of Cohesion of Methods (LCOM4) A class should have one responsibility taken
care by its internal method and attribute. When class methods can be separated to uncon-

8

nected components, meaning there is no common internal parameter they are accessing, it
might suggest the class has more than one responsibility [23].

Number of Attributes, Methods, Public Attributes, Public Methods (NOC, NOM,
NPA, NPM) Calculates the number of different members of a class. Its minimum value
is zero and there is no upper limit to its result. A class with many members may indicate
that it has many responsibilities and presents a low cohesion, i.e., is probably dealing
with several different subjects. Also the Rate between public and private members might
indicate bad object oriented design of the program

Number of Children (NOC) The number of direct subclasses a class has. When NOC
is high it might indicate good code reusability. On other hand a large number of Children
increase the potential impact of of an error in the class and might suggest bad responsibility
design [30].

3.1.3 Control Flow Graph measures

Control Flow Graph The most basic description of a computer program is the its Con-
trol flow graph. The CFG presents the statements as nodes and the sequence of executing
the statements as edges of the graphs. Statements in the CFG (and generally in software
) as divided to two types: state changing statements and control statements. State chang-
ing statements are every statement that impact the world state (print to screen, variable
value change etc.) And they keep the natural sequential flow of the program. Thus, a
state changing statement will be connected with an outgoing edge to the next statement
in the program. Control statements potentially change the natural flow of the statement
and can connect with edges with multiple nodes / statements in the graph in arbitrary dis-
tance. Control statements are among the reset: conditions, jump, loops etc. Describing a
program as a Graph enables extracting attributes that describe the flow of the program in
graph analysis tools,

3.1 shows the structure describing basic flows in a program. CFG is a powerfully
presentation that enables cross language and cross platform analysis as it is generic and
language independent. Yet the structure describes same algorithm in different language
might have different CFG structure and expose some language specific attributes as shown
by [4] in a paper measuring the different graph structure of the same algorithm in different
language

9

Control Cyclomatic Complexity

Sequential CC = 1 - 2 + 2 = 1
IF-THEN-ELSE CC = 4 - 4 + 2 = 2

WHILE CC = 3 - 3 + 2 = 2

Table 3.2: Cyclomatic Complexity of Basic Flows

Control Structure

Sequence

If Then Else

While

Until

Figure 3.1: Control components

Cyclomatic Complexity and Average Cyclomatic Complexity per Method (ACCM)
(from wikipedia) The cyclomatic complexity of a section of source code is the number
of linearly independent paths within it. Mathematically, the cyclomatic complexity of a
structured program[a] is defined with reference to the control flow graph of the program, a
directed graph containing the basic blocks of the program, with an edge between two basic
blocks if control may pass from the first to the second. The complexity M is then defined
as

M = E−N +2P

where

E = the number of edges of the graph. N = the number of nodes of the graph. P = the
number of connected components.

For instance the complexity of each flow presented in 3.1 per structure is calculated in
3.2:

Cyclomatic complexity was investigated thoroughly and is being used in research in
industry with several implantation in software quality and software architecture. Program
CC is proven to be highly correlated with Program size therefore we collect Average CC
of methods in the module in order to expose the code standards / code behavior. This

10

research we uses CC as in indicator to the amount of logical trajectories in a code a term
that will be later elaborated and show cased.

Collections statistics , The code metrics described above are collected by the analysis
tools we used at the module level. For example in C++ programs it will calculate the
metrics in the class level while in C programs, files are the calculated level. Since our
research is focused on the project level, single module metrics are aggregate to the project
level using the following statistics: [min, max, 25%, 50%, 75%, mean], to get the metrics
we use the our analysis. For example amloc mean represents a "double" averaging on the
length (in lines of code) of the methods in the program: first, averaging method LOC
inside each module and than averaging the results of all the individual modules.

11

4 Data Collection and Curation

The fundamental part of any empirical research is its data. Defining a data harvesting
methodology, extracting enough samples and reducing data errors has a critical impact on
the results and reliability of data based research like this one. The research described in
this thesis attempts to answer questions about attributes of a autonomous agents software
by extracting information from samples of software programs. This chapter describes the
process of preparing the data empirical analysis. It specifies the following parts :

1. Code repositories used as data sources for the research.

2. Automatic data harvesting process used to allocate and download those repositories.

3. Methodology used to reduce errors and validate the correctness of the extraction
process and of the data collecting.

4.1 Data Sources

Data variability is a key element in robustness of a data study. therefore the need of
different source of code repository having different attributes that potentially will reduce
biases of homogenise data. We begin with an overview of data collected and will be used
in the analysis processes described in Section 4.2. We use several sources of software
projects, each containing multiple projects. These are described below.

RoboCup. RoboCup is one of the oldest and largest annual global robotics competition
events in the world—taking place since 1997. The event is organized in several different
divisions (soccer, rescue, junior/educational, and more). Within each division, there are
multiple leagues, with their own rules and requirements. For example, within the soccer
division, there were over the years up to three different simulation-based leagues (2D, 3D,

12

and coach), and several physical robot competitions (standard platform, small-size, mid-
size, and two humanoid leagues), restricted to different sizes). In addition to the main
world-cup event, there are regional competitions which take place during the year. The
competitions themselves are between completely autonomous agents/robots; No human
in the loop. In most cases, the agents run in completely distributed fashion, without a
centralized controller.

The bulk of the code in the various leagues is written by graduate students and re-
searchers in robotics and artificial intelligence, some from top universities in these fields.
The simulation leagues follow an internal rule, which requires all teams to release a binary
version of their code within a year following the competition. Source code release is not
required, but strongly encouraged. Indeed, we use the source code from many 2D simu-
lation league teams, downloaded from their repository server. In addition, we used source
code from other RoboCup soccer leagues, gathered from the internet.

GitHub. GitHub has more than 24 million users and more than 67 million code repos-
itories. It is the largest repository of open source projects in the world. GitHub exposes
robust API for finding repositories using extensive query language, which we used to find
relevant project for analysis. Repositories in GitHub are categorized by users using tags,
which we used to categorize software projects.

Automated Negotiating Agent Competition (ANAC). The annual International Au-
tomated Negotiating Agents Competition (ANAC) is used by the automated negotiation
research community to benchmark and evaluate its work and to challenge itself. The
benchmark problems and evaluation results and the protocols and strategies developed are
available to the wider research community. ANAC has similar properties to the RoboCup
in the sense of emphasizing autonomous agents. It is a popular competition for software
agent researchers, maintains a requirement that all the sources of the agents participating
in the competition are made available for research. We collected ANAC software agent
projects from the competition web site.

Table 4.1 presents a breakdown of the number and categories of the harvested software
projects in the dataset (almost a terabyte). In total, there were 118 projects generally
classified as autonomous agents for software or virtual environments.

13

Classification Source Software Domain Number of projects

Autonomous
Agents

RoboCup 2D simulation Virtual Robots 71
ANAC Negotiating Agents 105

GitHub Chess playing Engines 60
Chatbot 65

AI
platforms GitHib Deep Learning 62

Reinforcement Learning 59

General GitHub

Audio 73
Education 129
Finance 108
Games 89
Graphics 36
IDE 134
Mobile Applications 136
Security 68

Table 4.1: Software categories breakdown

4.2 Data Collection

The data we are using in the research is collected from different sources but is analyzed
using a common pipeline. Thus, before making the actual analysis some prepossessing
steps were carried out, the transformations the data source has gone through is different
depending on the source but the outline of the process is the same. Note, that that process
of preparing the data for the research is cyclic by nature: the data should be validated
and inspected and then a need for more or different data arises, leading to another cycle
of fetching data and reprocessing it is than cried out etc. still, for the sake of simplicity
the process described below as if it was executed once. The prepossessing includes the
following steps:

1. Data definition: setting the attributes of the data to harvest, source url, Category,
size etc.

2. Data retrieval: Fetching the data from external sources to a file system in the lab

3. Restructure: Restructuring the file system to a structure required by the analysis
pipeline

4. Meta data: Extracting meta data for each project

5. Static code analysis: harvesting code metrics for each project

14

The prepossessing phase as well the measurement pipeline are done in a map reduce
paradigm. Each project is analyzed separately and the results of each step is saved in
the local folder of the project. Later in the process those results and meta data files will
be collected to create the common data set. Also, the pipeline implemented a continuation
mechanism the eliminating the need to rerun steps that were already executed. This design
supported a big data ETL (Extract, Transform, Load) and analysis processes executed by
24 cores in parallel running for over a week.

As explained in the previous chapter LOC is the most basic metric to evaluate the size
of a program. This metric is also easy to extract from any kind of a program and gave
us ability to filter data before we run the full resource consuming pipeline for extracting
more advanced metrics. The filtering based on LOC was done to validated our data is not
strictly biased toward domains or categories that are much bigger or smaller in terms of
code size. Filtering based on the size is done because programs that are much different in
their size might have different properties regardless of its software category. For example a
very small program might be consider easy enough to handle or read and not be developed
in code standard and care as bigger program that does not have the same simplicity.

4.2.1 Robocup data

In order to overcome the lack of meta data on the project we collected from robocup
archive a process of extracting information from the files of the project was executed. In
this process we collected the below information for each project: competition name and
year, group name, does the project contains source code, code language of the project, etc.
At the phase of collecting the data some curation has to be carried in order not to feed the
final analysis with wrong data.

Many of projects contains some binaries without clear information which was used for
the competition. For that an iterative rule based (partially manual) process was executed.
In each iteration a smaller subset of indeterminate executable were retrieved and the rules
were adjusted until all projects had one player file and up to one coach file.

4.2.2 github data

The process of collecting and filtering of repositories from GitHub was automatic, as
described in 4.1. The primary constraint in selecting software projects is comparability.
The source code collected for agents uses C++, and Java, and so we restricted ourselves to
projects in these languages, to allow meaningful comparison to the agents code. Similarly,

15

we restricted ourselves to software size (measured in lines of code—LOC) in comparable
ranges, and belonging to software categories other than agents or AI:

• Programming languages: C++, Java

• high Level of maturity (measured by github stars)

• Distinct classification in github (for github projects)

• Size > 900 lines of code (practically filtered at the retrieval phase by file system size
and later at the analysis fine tunes by LOC)

The only exception for this process is repositories from Chess tag which was defined
as target repository manually. Chess project where collected as control group to lower the
bias we have for competition code in our "agent" group. Chess repositories are part of the
"agent" group for the rest of the research.

Furthermore, as main data-source only used repositories that has more than 50 projects
that matched the above the criterion, in some cases we also used smaller repositories as
secondary data set to support our findings.

4.3 The Measurement Pipeline

The essence of the process is the measurement, i.e., the generation of measurements from
applying code metrics to the software. We focus on source code metrics in this paper. our
pipeline handles binary data as well as source code. The flow and tools are much different
and they will be describe separately below:

4.3.1 Source Code Measurement Pipeline

The source code of each project was processed to extract two different data structures: a
control flow graph, and a code statistics database. These, in turn, are used to calculate
several different metrics. For Source code we used two different tools, independently, to
allow validation of the results: CCCC1 and Analizo2.

1 http://cccc.sourceforge.net/
2 http://www.analizo.org/

16

Figure 4.1: Automatic flow of selecting GitHub projects

17

The measurement tools provide the following general software metrics, for different
level of analysis (see [18] for detailed descriptions). As with the restriction on choice of
language, we are restricted to using general metrics as they allow for measuring non-agent
code. Otherwise, we’d be able to use code metrics specific to AOSE [19, 3, 2, 12], and
specialized languages (e.g., 2/3APL, JASON).

To allow smooth recurrent execution of the automatic analysis process an initial debug
and fixing phase was conducted on the some of the repositories to remove files that failed
the execution. during the execution the program logs progress in a central and distributed
way to enable debugging and rerunning of analysis skipping already analyzed repositories.
Finally the metrics were extracted and aggregated for each module and and some general
metrics were collected for the project as a whole. The focus of our research is the structure
and profile of the code and not the quality aspects so we used the type of metrics that
provide such information. The metrics the we collected are described in the background.

Table 4.2 lists the minimum, maximum and median project size in each domain, mea-
sured in LOC. Overall, almost a terabyte of project data was collected and analyzed.

min mean max
category

ANAC 40 3629 205632
Audio 78 25647 182806
Business 44 21630 182806
Chatbot 152 2852 18951
Chess 49 8467 59646
Deep-Learning 276 39958 471213
Education 132 18261 182806
Finance 93 15541 147279
Games 132 20522 182806
IDE 107 27702 182806
Mobile 107 14938 182806
Reinforcement-Learning 375 16207 363987
Robocup-2D 329 38945 153661
Security 132 24476 182806

Table 4.2: min, max, and mean total LOC.

.

18

4.4 Data validation and curation

In order to achieve reliable results, several cycles of validation of the data are preformed.
The first phase is an overview analysis of the metric extraction process: some projects
are not successfully analyzed because of technical reasons (bad characters or usage of
platform that are not compatible with the extraction tools). Those projects are fixed or
replaced with another project in the same domain.

4.4.1 Data Curation

After finalizing the raw dataset that contains all the projects to be analyzed, The metrics
of the internal modules are deeper investigated and cleaned to increase data integrity. Log
histogram of the different module level metrics presented in figure 4.2 reveals that there
are some extreme outliers that dominant the model of this specific metric. Exploring the
data exposes that for some metrics there are data records that have invalid values that were
probably caused by a wrong calculation. For example in ACCM there some records that
have ACCM value of more than 1E9. We reported the bug to the owners of the package
and clean the defected data as explain below.

Next, the values collected for each project are scanned to find extremely high values.
Few methods for capturing samples with values that are extreme outliers were experi-
mented: n top, upper/lower X percentile, etc. The method we selected for this task is
removing samples that has values (in one metric) that are N times IQR higher then the
75% precnetile (Q3) or lower than the 25% precnetile (Q1) minus N time the IQR. This
method is chosen for most cases of uni-variant outlier removal in this research as it is ro-
bust to scale and it is would not remove outlier if there is not high variance (as apposed to
the other listed methods which are always removing samples). The method expressed in
equation 4.1: For a given dataset X an extreme outlier is define as

EO(xi) = xi > Q3+100IQR(X)∨ xi < Q1−100IQR(X) (4.1)

. The above method was selected and is used in further steps of the research

As explained, one of the reasons for the usage of two different analysis tools is to find
metrics that are common between the tools but are not correlated as expected. figure 4.3
presents the initial correlation matrix which exposes unsatisfactory correlation between
the module level size metrics of both tools (84%). Calculating the normalized residual on
the LOC from both tools reveals projects that one of the tools failed to analyze correctly

19

0 250 500 750

101

103

105

acc

0.0 0.5 1.0 1.5 2.0
1e9

101

103

105

accm

0 25000 50000 75000 100000

101

103

105

amloc

0 10 20 30 40

101

103

105

anpm

0 50 100 150

101

103

105

cbo

0.0 2.5 5.0 7.5 10.0

102

104

dit

0 2500 5000 7500 10000

102

104

lcom4

0 50000 100000 150000

101

103

105

loc

0 25000 50000 75000 100000

102

104

mmloc

0 1000 2000 3000

101

103

105

noa

0 250 500 750

101

103

105

noc

0 2500 5000 7500 10000

102

104

nom

0 1000 2000 3000

101

103

105

npa

0 2500 5000 7500 10000

102

104

npm

0 5000 10000 15000

101

103

105

rfc

0 50000 100000 150000

101

103

105

sc

Figure 4.2: Module level code metrics histograms

20

an
al

izo
_t

ot
al

_m
od

ul
es

_w
ith

_d
ef

in
ed

_m
et

ho
ds

an
al

izo
_t

ot
al

_c
of

an
al

izo
_t

ot
al

_m
et

ho
ds

_p
er

_a
bs

tra
ct

_c
la

ss

an
al

izo
_t

ot
al

_a
bs

tra
ct

_c
la

ss
es

an
al

izo
_t

ot
al

_m
od

ul
es

_w
ith

_d
ef

in
ed

_a
ttr

ib
ut

es

an
al

izo
_t

ot
al

_m
od

ul
es

an
al

izo
_t

ot
al

_lo
c

an
al

izo
_t

ot
al

_n
om

an
al

izo
_t

ot
al

_e
lo

c

cccc_IF4

cccc_rejected_lines_of_code

cccc_lines_of_comment

cccc_McCabes_cyclomatic_complexity

cccc_lines_of_code

cccc_number_of_modules

cccc_IF4_visible

0.63 -0.33 0.54 0.62 0.63 0.6 0.6 0.62 0.77

0.79 -0.55 0.55 0.66 0.77 0.78 0.76 0.76 0.88

0.74 -0.49 0.56 0.64 0.75 0.74 0.78 0.75 0.91

0.71 -0.45 0.57 0.59 0.72 0.72 0.81 0.75 0.92

0.79 -0.53 0.58 0.65 0.79 0.79 0.84 0.8 0.93

0.75 -0.49 0.55 0.68 0.74 0.72 0.7 0.71 0.88

0.63 -0.33 0.53 0.62 0.62 0.6 0.59 0.62 0.77

correlation of size features CCCC and Analizo totals

0.50

0.25

0.00

0.25

0.50

0.75

Figure 4.3: Correlation of size features CCCC VS Analizo

4.4. After fixing the projects or replacing them we validate the correlation again, In this
particular example we achieve 97%, 99% (Pearson and Spearman respectively) correlation
between Analizo and CCCC LOC after the correction.

21

0 25000 50000 75000 100000 125000 150000 175000
cccc_lines_of_code

0

1000

2000

3000

4000

5000

6000

No
rm

al
ize

d
Re

sid
ua

l

Figure 4.4: Normalized residual between lines of code metrics of CCCC and
analizo

22

5 Is Autonomous Agents Code Unique?

We conducted two separate analysis efforts which had common general goal. 5.1 details
the results of a statistical analysis, while the Section 5.2 presents the use of machine-
learning analysis. The focus in both is to reveal differences, if they occur, between the
different software categories, as expressed in the measurements of different metrics. The
analysis was carried out both for code repositories and binary repositories.

5.1 Is Autonomous Agents code Unique? - A Statistical Analysis

5.1.1 Uni variant statistical tests

Every project is represented by approximately 250 different metrics. As such, it is difficult
to find differentiating metric by hand. Our goal in this method of analysis is to find in-
dividual features that its statistics differ noticeably between different software categories.
This task can be described as feature ranking based on the individual feature classifica-
tion power. This task can be more practically defined as the task to identify code metrics
features that can be used as good predictors for a software’s category.

Formally we seek for a set of functions g such that g = p(class| f eature) and g >

threshold. Note that this is a uni-variate analysis The methods that used here evaluates
each feature individually and do not consider feature interactions. The uni variate methods
consist of providing a score to each feature, often based on statistical tests. The scores
given by the tests usually either measure the dependency between the dependent variable
and the features (e.g. Chi squared , Pearson’s correlation coefficient), or the difference
between the distributions of the features given the class label (F-test and T-test). Table 5.1
summaries several methods for feature ranking that were examined.

23

Test Assumptions relevancy

Chi-
squared

On large samples (n>30)
works without normality
Since the average value of a
distribution converges in dis-
tribution to a Gaussian. Data
should be strictly positive

F - test (=
one way
anova)

For each class, the feature
is normally distributed, with
same variance.

Not relevant, Our data is not
normal

T-test Assumes equal variance Different software domains
has different variance in the
same feature

Kolmogorov–Smirnov
test

Less robust that T- test but
does not require Normality

Both t-test and KS-test are
used for two classes test, A
propriety method developed
to support multi class.

Mutual In-
formation

Relies on the computation of
the feature probability distri-
bution, which is usually done
using non- parametric meth-
ods (without major assump-
tions)

It is a measure of the depen-
dency between two random
variables. It intuitively mea-
sures how much knowing one
of the variables reduces the
uncertainty about the other

Table 5.1: Methods for feature ranking

24

2 0 2
Theoretical quantiles

0.0

0.5

1.0

Or
de

re
d

Va
lu

es

Anac

2 0 2
Theoretical quantiles

0.0

0.5

1.0

1.5

Or
de

re
d

Va
lu

es

Chatbot

2 0 2
Theoretical quantiles

0.5

0.0

0.5

1.0

1.5

2.0

Or
de

re
d

Va
lu

es

Education

2 0 2
Theoretical quantiles

0

1

2

Or
de

re
d

Va
lu

es

Ide

2 0 2
Theoretical quantiles

0.0

0.5

1.0

1.5

Or
de

re
d

Va
lu

es

Security

2 0 2
Theoretical quantiles

0.0

0.5

1.0

Or
de

re
d

Va
lu

es

Audio

2 0 2
Theoretical quantiles

0.0

0.5

1.0

1.5

Or
de

re
d

Va
lu

es

Chess

2 0 2
Theoretical quantiles

0

1

2

Or
de

re
d

Va
lu

es

Finance

2 0 2
Theoretical quantiles

0.0

0.5

1.0

1.5

2.0

Or
de

re
d

Va
lu

es

Mobile

2 0 2
Theoretical quantiles

0.00

0.25

0.50

0.75

1.00

1.25

Or
de

re
d

Va
lu

es

Robocup-2D

2 0 2
Theoretical quantiles

0.0

0.5

1.0

1.5

Or
de

re
d

Va
lu

es

Business

2 0 2
Theoretical quantiles

0.2

0.0

0.2

0.4

0.6

0.8

Or
de

re
d

Va
lu

es

Deep-Learning

2 0 2
Theoretical quantiles

0.0

0.5

1.0

1.5

Or
de

re
d

Va
lu

es

Games

2 0 2
Theoretical quantiles

0.0

0.5

1.0

1.5

Or
de

re
d

Va
lu

es

Reinforcement-Learning

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.1: Probability plots of DIT mean dots are closely related to the line
revealing close to normal behavior

5.1.2 Data distribution

First, Normality tests were conducted on the the data to test that the assumption that the
distribution of the values of feature inside each software category is normally distributed.
The test were applied using "normaltest" function of the scipy library which implements a
methods based on skewness and kurtosis suggested in [13]. The results of the tests exposes
that although for some features the tests shows nearly normal behavior, the majority of the
data is not normal. Examples for close to normal and non normally distributed features are
presented in Figures 5.1 and 5.2. Those finding rejects the assumption that all features are
normally distributed inside the categors and suggests that methods that does not require
normality should be used.

Therefore, only the two relevant statistical methods were used to find promising fea-
tures. First we evaluate the feature importance by the mutual information metrics. Intu-
itively, mutual information means the amount of information (that is, reduction in uncer-

25

2 0 2
Theoretical quantiles

0

1000

2000

3000

Or
de

re
d

Va
lu

es

Anac

2 0 2
Theoretical quantiles

0

500

1000

1500

2000

Or
de

re
d

Va
lu

es

Chatbot

2 0 2
Theoretical quantiles

0

500

1000

1500

Or
de

re
d

Va
lu

es

Education

2 0 2
Theoretical quantiles

1000

0

1000

2000

3000

4000

Or
de

re
d

Va
lu

es

Ide

2 0 2
Theoretical quantiles

0

500

1000

1500

Or
de

re
d

Va
lu

es

Security

2 0 2
Theoretical quantiles

0

500

1000

1500

Or
de

re
d

Va
lu

es

Audio

2 0 2
Theoretical quantiles

0

1000

2000

3000

Or
de

re
d

Va
lu

es

Chess

2 0 2
Theoretical quantiles

0

500

1000

Or
de

re
d

Va
lu

es

Finance

2 0 2
Theoretical quantiles

500

0

500

1000

1500

Or
de

re
d

Va
lu

es

Mobile

2 0 2
Theoretical quantiles

0

1000

2000

Or
de

re
d

Va
lu

es

Robocup-2D

2 0 2
Theoretical quantiles

0

500

1000

1500

Or
de

re
d

Va
lu

es

Business

2 0 2
Theoretical quantiles

0

500

1000

1500

Or
de

re
d

Va
lu

es

Deep-Learning

2 0 2
Theoretical quantiles

0

2000

4000

Or
de

re
d

Va
lu

es

Games

2 0 2
Theoretical quantiles

0

1000

2000

3000

Or
de

re
d

Va
lu

es

Reinforcement-Learning

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.2: Probability plots of RFC max dots are not correlated with the normal
line

26

feature mutual infomration
score

0 noa_50% 0.23
1 rfc_50% 0.23
2 rfc_min 0.23
3 anpm_max 0.22
4 loc_min 0.22
5 complexity_per_module 0.21
6 rfc_25% 0.21
7 cccc_lines_of_code 0.21
8 lcom4_max 0.21
9 npm_min 0.21
10 cbo_std 0.20
11 accm_50% 0.20
12 amloc_min 0.20
13 accm_min 0.20
14 LOC_per_module 0.20
15 noc_count 0.19
16 lcom4_count 0.19
17 anpm_min 0.19
18 anpm_std 0.19
19 nom_min 0.19

Table 5.2: Mutual information top features

tainty) that knowing either variable provides about the other. In our case we are interested
to identify the features that encapsulate more information about the classification to soft-
ware domain of the specific sample. Practically the test was conducted using the multivari-
ate mutual information calculation function of sklern: "mutual_info_classif" a rank list of
the top 20 features is presented in Table 5.2 and will be discussed in the analysis section
below.

5.1.3 Statistical tests

The investigation above revealed that some metrics statistics has information that can sup-
port software domains classification. Next, the ability to cluster several software categories
based on the code metrics is investigated. The goal in this investigation is to highlight
features that are not only able to segregate one class from all the others but identify the
features that supports separation of several class and potentially reveal some relation be-
tween those classes This goal was achieved by running an algorithm that iterate over all
features (code metrics statistics) separately and creates two one-dimensional sample dis-
tributions on each cycle: one from the repository under test and one from the union of all

27

other repositories.

Next, the algorithm executes two samples Kolmogorov–Smirnov test to determine how
likely the sample of this feature in the repository under test is taken from the corresponding
feature in "other" repositories distributions. If the result (p-value) of the tests is under a
certain threshold it is a added to a set containing all the repositories passed the test on
the same feature. Lastly the algorithm returns all those "feature" sets that has less than or
equal to 4 repositories. The logic behind that last step is that if for a certain feature too
many repositories are "unique" it probably due to a noisy feature. Algorithm 1 describes
the procedure. We emphasize that this is a heuristic procedure, to draw human attention to
features of interest, not for statistical inference.

Algorithm 1 Common differentiator algorithm
1: for all r ∈ Domains do
2: others← (Domains−{r})
3: for all f ∈ metrics do
4: if 2-samples t-test(r f ,others f)< 0.05 then
5: CommonSet f ←CommonSet f

⋃
r

6: for all f ∈ metrics do
7: if |CommonSet f |>= 3 then . 3 or more clustered together?
8: selected f ←CommonSet f

5.1.4 Results

Table 5.3 shows the output of the algorithm for each individual metric, when listed in in-
creasing order of probability (15 first clusters) (i.e., in order of decreasing indication of
separation power). The p value presented is a the mean value of all p values in the cluster.
The table shows that the most frequent cluster is the cluster of [anac, Chess, Robocup-2D]
which appears 8 in the from the top 15. The second frequent cluster is [Anac, Chatbot,
Chess] which appears 3 times in the top 10. The features that were identified by algo-
rithm to have high separation power: mmloc_mean, loc_mean, loc_75%, mmloc_75%,
accm_mean are all related to complexity and are highly correlated. Other separating fea-
ture is the rfc which indicates high coupling.

Note that p value is used in Table 5.3 as a heuristic indicator for the human analyst.
It gives an indication of the strength of the clustering, independent of the content of the
cluster. Even if the agent domains could be distinguished from the others, we could easily
expect other software domains to be so clustered. However, the fact is that the strongest

28

distinguishing metrics put autonomous agents together, apart from other domains. This
hints as to the clarity of the clustering in the data.

’most segregating feature’ algorithm executed on the data. The results shows that
distributions with lowest p-value are related to ACCM and ’Agent’ repositories (RoboCup-
2d, anac, chess) and it highlights ACCM as metrics that mostly differentiate the ’Agent’
category from other software domains.

Repositories p value ks relative to mean
var

mmloc_mean [Anac, Chess, Robocup-2D] 9.53E-10 above
loc_mean [Anac, Chess, Robocup-2D] 1.92E-09 above
rfc_mean [Anac, Chess, Robocup-2D] 6.65E-09 above
loc_75% [Anac, Chess, Robocup-2D] 2.10E-06 above
mmloc_75% [Anac, Chess, Robocup-2D] 1.11E-05 above
accm_mean [Anac, Chess, Robocup-2D] 5.34E-05 above
amloc_mean [Anac, Chess, Robocup-2D] 7.19E-05 above
cccc_McCabes_ cyclo-
matic_complexity

[Audio, Ide, Robocup-2D] 2.43E-04 above

anpm_mean [Deep-Learning, RL, Robocup-2D] 2.69E-04 above
lcom4_max [Anac, Chatbot, Chess] 3.27E-04 below
lcom4_std [Anac, Chatbot, Chess] 7.09E-04 below
amloc_75% [Anac, Chess, Robocup-2D] 8.22E-04 above
cccc_lines_of_code [Audio, Ide, Robocup-2D] 1.13E-03 above
npm_max [Audio, Deep-Learning, Ide, Robocup-2D] 1.31E-03 above
dit_max [Anac, Chatbot, Chess] 2.25E-03 below

Table 5.3: Top distinguishing features in descending order, and the software do-
mains they cluster.

We then moved to examining the results visually, using box-plots and bar-plots to
display the distribution of specific metrics of each software domain. First we validate
(randomly) that features that has overall high p value really describe the data in an in-
separable manner. cbo_50% as showed 5.3 in is an example to such feature.

We seek to find features which, as clearly as possible, distinguish the three classes of
domains.

Indeed some metrics clearly are different between domains. For example, Figure 5.4
show the box-plot distribution of the Lack-of-Cohesion (LCOM4) metric, which received
generally low rank by the heuristic procedure (i.e., a relative high p value). Here, we
clearly see that the anac group stands out, compared to the other software domains. How-
ever, it is the only domain in the cluster, and so it does not stands as a good clustering
feature for our needs.

29

Cha
tbo

t

Dee
p-L

ea
rni

ng
Mob

ile Ide

Busi
ne

ss
Aud

io

Rein
for

cem
en

t-L
ea

rni
ng

Fin
an

ce

Se
cur

ity
Ana

c
Gam

es

Ed
uca

tio
n

Che
ss

Rob
ocu

p-2
D

category

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

cb
o_

50
%

cbo_50%

Figure 5.3: Box plot distribution of cbo 50%.

Cha
tbo

t
Che

ss
Mob

ile

Se
cur

ity

Busi
ne

ss

Ed
uca

tio
n

Dee
p-L

ea
rni

ng Ide

Fin
an

ce
Gam

es
Aud

io

Rob
ocu

p-2
D

Rein
for

cem
en

t-L
ea

rni
ng

Ana
c

category

0

1

2

3

4

5

lco
m

4_
50

%

lcom4_50%

Figure 5.4: Box plot distribution of LCOM4 50%.

30

Cha
tbo

t

Busi
ne

ss

Fin
an

ce
Mob

ile

Se
cur

ity

Ed
uca

tio
n

Aud
io Ide

Dee
p-L

ea
rni

ng
Gam

es

Rein
for

cem
en

t-L
ea

rni
ng

Che
ss

Rob
ocu

p-2
D

Ana
c

category

0

100

200

300

400

500

lo
c_

m
ea

n

loc_mean

Figure 5.5: Box plot distribution of mean LOC of software domains.

In contrast, inspecting metrics that were ranked high by Alg. 1 visually figs. 5.5 to 5.10
reveals convincing differences between the groups highlighted by the algorithm. Some
findings regarding the the differnt software domains stand out from the others. First, The
subgroup of {anac,robocup-2d,chess} which are the "agent" categories exist in most of the
clustering features. Second, and maybe more interesting is that the feature that are promis-
ing, in terms of its their ability to distinguish between agents and non-agent software are
all related to complexity: loc (module line of code), mmloc (mean method line of code),
accm (Average Cyclomatic Complexity per Method).

5.1.5 Interim Summary.

We defer a discussion of the meaning of these findings to Section 7. For now, based on
the manual analysis procedure described, we only state the hypothesis that complexity re-
lated metrics (LOC, Max method LOC, ACCM) metrics are different between autonomous
agents software and general software in other domains. This finding suggest inherent char-

31

Cha
tbo

t

Gam
es

Se
cur

ity

Busi
ne

ss

Ed
uca

tio
n Ide

Mob
ile

Aud
io

Che
ss

Fin
an

ce
Ana

c

Rein
for

cem
en

t-L
ea

rni
ng

Rob
ocu

p-2
D

Dee
p-L

ea
rni

ng

category

0.5

1.0

1.5

2.0

an
pm

_m
ea

n

anpm_mean

Figure 5.6: Box plot distribution of mean anpm of software domains.

32

Cha
tbo

t

Fin
an

ce
Mob

ile

Se
cur

ity

Busi
ne

ss
Aud

io

Dee
p-L

ea
rni

ng Ide
Gam

es

Ed
uca

tio
n

Rein
for

cem
en

t-L
ea

rni
ng

Che
ss

Ana
c

Rob
ocu

p-2
D

category

0

20

40

60

80

100

120

140

m
m

lo
c_

m
ea

n

mmloc_mean

Figure 5.7: Box plot distribution of mean mmloc of software domains.

33

Cha
tbo

t
Ana

c

Rein
for

cem
en

t-L
ea

rni
ng

Mob
ile

Dee
p-L

ea
rni

ng

Fin
an

ce
Aud

io Ide

Busi
ne

ss

Se
cur

ity

Ed
uca

tio
n

Gam
es

Che
ss

Rob
ocu

p-2
D

category

0

1

2

3

4

cb
o_

m
ea

n

cbo_mean

Figure 5.8: Box plot distribution of mean mmloc of software domains.

34

Cha
tbo

t

Dee
p-L

ea
rni

ng

Busi
ne

ss

Se
cur

ity

Fin
an

ce Ide
Aud

io
Mob

ile

Ed
uca

tio
n

Gam
es

Rein
for

cem
en

t-L
ea

rni
ng

Che
ss

Rob
ocu

p-2
D

Ana
c

category

0

20

40

60

80

rfc
_m

ea
n

rfc_mean

Figure 5.9: Box plot distribution of mean rfc of software domains.

35

Dee
p-L

ea
rni

ng

Cha
tbo

t
Mob

ile
Gam

es
Aud

io

Fin
an

ce

Busi
ne

ss

Se
cur

ity

Rein
for

cem
en

t-L
ea

rni
ng

Ed
uca

tio
n Ide

Che
ss

Rob
ocu

p-2
D

Ana
c

category

0

1

2

3

4

5

6

ac
cm

_m
ea

n

accm_mean

Figure 5.10: Box plot distribution of mean ACCM of software Categories.

36

acteristics of agent software that makes its development different and impact the way it is
coded.

37

5.2 Is Autonomous Agents code Unique? - Machine Learning Analysis

A second approach for our investigation uses machine learning techniques, to complement
the manual analysis. Humans detect patterns in visualizations that computers may miss,
yet may also fall prey to misconceptions. Thus an automated analysis can complement the
manual process, especially if they agree in their conclusions.

We attempted to use several different machine learning classifiers to distinguish agent
and non-agent software domains, with the goal of analyzing successful classification schemes,
to reveal the metrics, or metric combinations, which prove meaningful in the classification.

5.2.1 Pre-processing the data.

As the base for the ML based analysis we used the same data-set described in the former
chapters while doing the following pre processing actions to adjust to automatic model
training. In order to reduce the number of features (standing originally at around 400
), highly correlated features (> 95 Pearson correlation) were removed. The remaining
features are 104 features of the descriptive statistics of the Analizo tool and all the features
from the CCCC tool. Next, all records (project repositories) that has null values in one of
those 104 features were removed Finally, to make the classification valid the data set was
reduced to contain categories with more than 30 projects 5.4 shows the final amount of
projects in each category.

Informally the machine learning based approach tries to run multiple optimizations to
that should output the best classifier for each class of software, thus a classifier that has
the best score under the relevant evaluation method. If a classifier is able to separate with
score above some threshold between the class it was trained on and the rest of the reposi-
tories population and suggests that this class is unique in some manner, in this chapter we
describe the process and results of this process. Moreover, using techniques to explore the
decisions of the model the features that were used by the model of each class are explored
and used to suggest reasoning for the model’s output.

5.2.2 Machine learning pipeline

We choose one vs many classification strategy, similarly to the manual analysis above.
Iterating over all software classes, we trained a binary classifier to differentiate between
samples of one software domain (ex. Audio) to all other software classes. In order to
adjust our data to to binary classification problem we created a dataset for each category

38

Category Projects

Mobile 114
Anac 105
Education 94
Ide 93
Finance 83
Games 79
Audio 64
Business 58
Deep-Learning 57
Robocup-2D 57
Chess 54
Security 53
Reinforcement-Learning 53
Chatbot 53
Development 32
Graphics 31

Table 5.4: Number of projects in each category in the final data-set

such that the input is all the code metrics features selected in the pre-process phase and
the target variable (class) was set to be 1 for the underline category and 0 for the all the
projects in the other categories. The data in each category data-set was divided into a
training (85%) and testing (15%) sets.

For classification, we used the following classification algorithms: Logistics Regres-
sion, and Gradient-Boosted Decision Trees. The implementations are open-source pack-
ages (scikit-learn1 and XGBoost2). The performance of classifiers was carried out using
two scoring functions, familiar to machine learning practitioners: F1 and AUC (area under
the ROC curve). In both, a greater value indicates better performance. Each of the tables
below (Tables 5.5–5.6) shows the top classifiers built using the classification algorithms.
In each, we list the top classification results of a single domain versus all others. Our inter-
est, however, is not so much on being able to classify a specific domain, but instead in the
metrics used as features when classifying Agent software. The last column of each table
lists the most informative 3–4 features (metrics) used by the classifier. Frequent recurrence
may hint at important metrics.

F1 is a popular scoring function used in many supervised learning tasks. F1 score can

1 https://scikit-learn.org/
2 https://github.com/dmlc/xgboost

39

be interpreted as a weighted average of the precision and recall. the following are formal
definitions of those evaluation functions:

Accuracy = T P+T F
T P+T F+FP+FN

Precision = T P
T P+FP

Recall = T P
T P+FN

F1 = 2∗Precision∗Recall
Precision+Recall = 2∗T P

2∗T P+FP+FN

(5.1)

The second scoring function is the area under curve of the receiver operating charac-
teristic curve, i.e., ROC curve. The latest is a graphical plot that illustrates the diagnostic
ability of a binary classifier system as its discrimination threshold is varied. The auc curve
is created based on two evaluation methods:

Sensitivity = Recall = T P
T P+FN

Speci f icity = T N
FP+T N

(5.2)

ROC curve is produced by calculating the values of those functions at different decision
threshold values (0≥ T ≤ 1) and piloting the curve connecting between those values on
a 2dim space. Calculating the area under this curve Calculating the area under the ROC
curve returns a score that expresses the robustness of the classifier and predicates its per-
formance in future predictions. High ROC curve AUC scores predicts high performance
of the classifier.

model parameters all the LR classifier build for this task are using lib-linear opti-
mizer, l2 regularization and stopping criteria of converge or 100 iterations. Next, we used
Gradient-Boosted Decision Tree classifiers. The idea in this technique is to use an en-
semble of decision trees based on subsets of the samples and features, to lower the risk of
over-fitting while maintaining high accuracy. The classifiers were built using the XGBoost
package, using the default parameters.

5.2.3 Results

The top performing LR classifiers are reported in Table 5.5. In general their scores are
lower than the XGBoost 5.6 reported blow.

Figure 5.11 shows the ROC curves for the XGBoost classifier described above. The
ROC curves of the top performers match our understanding of their efficacy.

40

Category AUC F1

0 Anac 0.97 ± 0.02 0.92 ± 0.05
1 Reinforcement-Learning 0.82 ± 0.02 0.36 ± 0.15
2 Deep-Learning 0.81 ± 0.05 0.39 ± 0.10
3 Robocup-2D 0.80 ± 0.15 0.49 ± 0.29
4 Chatbot 0.78 ± 0.03 0.17 ± 0.01
5 Chess 0.70 ± 0.08 0.22 ± 0.05
6 Audio 0.58 ± 0.04 0.15 ± 0.04
7 Mobile 0.49 ± 0.01 0.15 ± 0.02
8 Graphics 0.45 ± 0.04 0.03 ± 0.00
9 Development 0.45 ± 0.08 0.08 ± 0.05
10 Games 0.43 ± 0.03 0.10 ± 0.03
11 Ide 0.41 ± 0.04 0.09 ± 0.01
12 Education 0.40 ± 0.05 0.10 ± 0.03
13 Business 0.39 ± 0.06 0.05 ± 0.01
14 Finance 0.35 ± 0.03 0.07 ± 0.01
15 Security 0.35 ± 0.04 0.05 ± 0.00

Table 5.5: Performance indicators for one to many classification using Logistic
Regression

5.3 Feature importance

Finding the a classifiers that separates agent based software from other types of software
is not enough for hypothesizing about the nature of the difference, for that a deep exam-
ination of the feature used by the models to make their classification is required. Feature
importance analysis is the task of evaluating how the features in a model contribute to
prediction. The specific evaluation method is model depended and there are several whys
to quantify this impact.

41

Category AUC F1

0 Anac 0.98 ± 0.02 0.94 ± 0.05
1 Robocup-2D 0.96 ± 0.05 0.74 ± 0.25
2 Chatbot 0.87 ± 0.05 0.33 ± 0.10
3 Chess 0.86 ± 0.06 0.49 ± 0.15
4 Deep-Learning 0.80 ± 0.04 0.45 ± 0.13
5 Reinforcement-Learning 0.80 ± 0.07 0.34 ± 0.16
6 Development 0.68 ± 0.10 0.09 ± 0.01
7 Audio 0.53 ± 0.03 0.11 ± 0.04
8 Graphics 0.49 ± 0.11 0.04 ± 0.01
9 Mobile 0.41 ± 0.02 0.12 ± 0.00
10 Games 0.40 ± 0.06 0.11 ± 0.04
11 Ide 0.36 ± 0.02 0.11 ± 0.03
12 Education 0.35 ± 0.02 0.10 ± 0.02
13 Finance 0.33 ± 0.03 0.08 ± 0.02
14 Business 0.28 ± 0.01 0.05 ± 0.00
15 Security 0.27 ± 0.03 0.04 ± 0.00

Table 5.6: Performance indicators for one to many classification using Gradient
Boosting Trees

5.3.1 Logistic regression

Logistic regression classifier are optimize to minimize the following loss function:

J(β) = 1m∑
m
i=1 log(1− e−yi(wT xi +b))

yi: Label of point i ∈ {−1,1}
y∗i : Model prediction wT xi +b
w: Weight vector
xi: input vector
b: intercept

l (5.3)

When the input vector xi is normalized to positive values (e.g. 0,1) large positive
values of xi will push the model toward positive prediction and large negative values will
do the opposite. Therefore the importance of a feature for the classification of each of the
labels is evaluated naturally based on relevant entry in the wights vector.

42

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Anac

Chance
Mean ROC (AUC = 0.98 ± 0.01)
± 1 std. dev.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Robocup-2D

Chance
Mean ROC (AUC = 0.95 ± 0.04)
± 1 std. dev.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Chatbot

Chance
Mean ROC (AUC = 0.87 ± 0.04)
± 1 std. dev.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Chess

Chance
Mean ROC (AUC = 0.86 ± 0.05)
± 1 std. dev.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Deep-Learning

Chance
Mean ROC (AUC = 0.80 ± 0.03)
± 1 std. dev.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Reinforcement-Learning

Chance
Mean ROC (AUC = 0.80 ± 0.06)
± 1 std. dev.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Development

Chance
Mean ROC (AUC = 0.68 ± 0.08)
± 1 std. dev.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Audio

Chance
Mean ROC (AUC = 0.53 ± 0.03)
± 1 std. dev.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Graphics

Chance
Mean ROC (AUC = 0.49 ± 0.09)
± 1 std. dev.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Mobile

Chance
Mean ROC (AUC = 0.41 ± 0.01)
± 1 std. dev.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Games

Chance
Mean ROC (AUC = 0.40 ± 0.05)
± 1 std. dev.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Ide

Chance
Mean ROC (AUC = 0.36 ± 0.02)
± 1 std. dev.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Education

Chance
Mean ROC (AUC = 0.35 ± 0.01)
± 1 std. dev.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Finance

Chance
Mean ROC (AUC = 0.33 ± 0.02)
± 1 std. dev.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Business

Chance
Mean ROC (AUC = 0.28 ± 0.01)
± 1 std. dev.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Security

Chance
Mean ROC (AUC = 0.27 ± 0.02)
± 1 std. dev.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.11: ROC plots of Classification of Boosted Decision Trees classifiers.

5.3.2 Boosted trees

Evaluating feature importance for tree based and more specifically extreme boosted classi-
fication trees based classifiers is more complicated and and there are few ways to evaluate
the importance of each feature. In this task a comparison between different models in
different tasks (1 vs many classification for each of the software categories) is required.
Therefore the evaluation is done based on the ‘Gain‘ feature added to classification at
each tree. ‘Gain‘ is the improvement in accuracy brought by a feature to the branches it
is on. The idea is that before adding a new split on a feature X to the branch there was

43

some wrongly classified elements, after adding the split on this feature, there are two new
branches, and each of these branch is more accurate (one branch saying if your observation
is on this branch then it should be classified as 1, and the other branch saying the exact
opposite). The Gain in each specific tree is then averaged between all decision trees in
the ensemble to form a single score for each classifier. The Importance of each feature in
each classifier for both XGBoost in LR are presented in figs. 5.12 to 5.14. For messuring
the important of each feature for all the agents software, each occurrences of a feature in
the top 5 important feature in each single classifier is counted. Features with the highest
number of occurrences are listed in 5.8, 5.7 The ranks column indicates the number of
occurrences of a feature in the top 5 important features of the different classifiers

Feature Occurrences Categories

cccc_LOC_per_module 3 [Anac, Chatbot, Robocup-2D]
cccc_CC_per_module 3 [Chatbot, Reinforcement-Learning, Robocup-2D]
anpm_std 2 [Chatbot, Deep-Learning]
lcom4_max 2 [Chatbot, Chess]
mmloc_75% 2 [Deep-Learning, Robocup-2D]

Table 5.7: Features with highest number of occurrences in the top ranked fea-
tures based on the feature rank analysis of the XGBoost based classifiers

Feature Occurrences Categories

noa_50% 3 [Anac, Chatbot, Development]
cccc_number_of_modules 2 [Reinforcement-Learning, Robocup-2D]
sc_75% 2 [Chatbot, Chess]
loc_mean 2 [Anac, Robocup-2D]
noa_75% 2 [Chatbot, Development]
npm_75% 2 [Deep-Learning, Robocup-2D]

Table 5.8: Features with highest number of occurrences in the top ranked fea-
tures based on the feature rank analysis of the Logistic Regression based classi-
fiers

based on the feature importance analysis results on the top performing classifiers which
are those that are able to distinguish agent software from other types of software we can
highlight the following: for XGBoost classifier the features with the highest predictive
power which are most common between the classifiers are those feature that represent

44

0.0 0.2 0.4 0.6 0.8 1.0
noa_max

rfc_min
loc_min
rfc_max

anpm_max
sc_25%

CC
accm_75%

LOC
noc_std
rfc_75%

npm_25%
amloc_50%

acc_mean
lines_of_comment

mmloc_25%
cbo_std

noc_mean
CC_per_module

loc_mean
Robocup-2D

0.0 0.2 0.4 0.6 0.8
CC

noa_50%
npa_75%
dit_75%

amloc_mean
loc_mean
npm_min

loc_std
lcom4_min

CC_per_module
mmloc_50%

cbo_mean
rfc_std

lcom4_75%
cbo_std

amloc_min
noa_max

nom_25%
cbo_75%

sc_75%
Chess

0.0 0.2 0.4 0.6 0.8
npm_min

npm_75%
sc_mean
npa_75%

sc_std
acc_mean

lines_of_comment
dit_75%

nom_mean
loc_min

anpm_min
noc_mean
accm_std

cbo_mean
nom_50%

amloc_50%
anpm_25%
nom_75%

cbo_std
noa_50%

Chatbot

Figure 5.12: Feature Importance - Logistic Regression

45

0.0 0.2 0.4 0.6 0.8 1.0
acc_75%

LOC
rfc_max

lines_of_comment
dit_std

rfc_min
loc_max

anpm_25%
anpm_max

amloc_mean
accm_mean
lcom4_50%
accm_25%
accm_min

dit_max
rfc_75%

rfc_mean
npm_min

lcom4_max
npm_25%

Reinforcement-Learning

0.0 0.2 0.4 0.6 0.8 1.0
acc_std

accm_25%
anpm_mean

nom_min
anpm_std

amloc_mean
lcom4_min
accm_min

anpm_50%
LOC

amloc_50%
loc_mean
loc_75%
acc_max
dit_max

npa_50%
rfc_50%

anpm_min
npm_75%

mmloc_75%
Deep-Learning

Figure 5.13: Feature Importance - Logistic Regression

46

0 5 10 15 20 25
acc_mean

IF4
rfc_mean

LOC_per_line_of_comment
CC_per_line_of_comment

cbo_std
loc_std

noa_max
nom_50%

CC_per_module
amloc_std

amloc_mean
rfc_max
noa_std

LOC_per_module
sc_max
rfc_std

lines_of_comment_per_module
loc_mean

mmloc_75%
Robocup-2D

0 2 4 6 8
sc_75%

npm_mean
noa_mean
nom_max
npa_max
dit_75%
loc_std

noc_std
npa_mean

nom_mean
acc_max

acc_count
mmloc_25%

acc_std
cbo_75%

lcom4_max
number_of_modules

accm_75%
CC

npm_50%
Chess

0 1 2 3 4 5 6
npa_max

npm_50%
sc_std

loc_75%
noc_max
rfc_max

anpm_std
lcom4_max

sc_max
cbo_50%

CC
sc_50%

LOC_per_module
npm_mean

lines_of_comment_per_module
loc_mean
dit_mean

mmloc_75%
noc_std

CC_per_module
Chatbot

Figure 5.14: Feature Importance - XGBoost

47

0 1 2 3 4 5
LOC_per_line_of_comment

lcom4_75%
anpm_max
anpm_25%

noa_50%
anpm_50%

acc_50%
npm_75%

mmloc_min
acc_std

rfc_mean
cbo_mean
nom_max

IF4
mmloc_max

noc_std
IF4_per_module

lcom4_50%
sc_std

dit_75%
Reinforcement-Learning

0 1 2 3 4 5 6 7 8
amloc_min

mmloc_75%
amloc_50%
anpm_75%

LOC_per_module
accm_mean

npa_mean
loc_std

accm_50%
npm_50%
noc_mean

mmloc_25%
number_of_modules

npa_75%
CC_per_module

sc_mean
cbo_75%

acc_mean
noa_50%

anpm_std
Deep-Learning

Figure 5.15: Feature Importance - XGBoost

48

the complexity of code in its wide sense. The "lines of code per module" and "McCabes
cyclomatic complexity per module" and also "mean method line of code" suggest that that
there is difference between agent / AI modules to other types of software in the amount of
code requires to implement functionality and also by the amount of different trajectories
this code handles. In Logic regression classifies however, although it also separates AI
software better than other types of software, the results of the feature importance analysis
are much less descriptive. Looking at the feature importance of the individual charts (5.8
does highlight complexity related features (Anac - mean accm of method, Robocup - line
of code and CC per module, Deep learing - Mean method loc) but the commonality of
such features is not as clear as in the XGboost classifiers.

5.3.3 Agent software classifier

Based on the above results that suggest unique behavior of agent software we planned
another experiment to evaluate the difference between agent code form general software.
The idea of this experiment is to build one classifiers to distinguish between agent and non-
agent software. Hereby the experiment description: we trained GB Trees classifiers on our
basic data-set setting the target variable to be 1 if the project is from an agent category
and 0 otherwise. The training was done with 3 folds of 80:20. On each fold the test data
was evaluated to get overall performance of classification of Agent software against other
software type and also the deferential performance with regards to each specific category.
The second set of experiments in the "general autonomous agent" training attempt is to
done on repositories taken from gitHub alone putting aside the Anac and Robocup-2D
repositories. This configuration although lacks many of the repositories representing pure
AI code has the advantage of removing the variability in other parameters such as contest
vs no contest code and others and keeping the AI vs non AI as the only difference between
the classes of code. The results of this experiment although has slightly worse performance
the average performance of XGBoost classifiers train with both experiment configuration
are presented in section 5.3.3. The performance of classifying agent software in each
category is presented in fig. 5.16 and fig. 5.17.

49

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Chance
Mean ROC (AUC = 0.88 ± 0.02)
± 1 std. dev.

Figure 5.16: Average AUC curve and with error boundaries of classifying Agent
against non-Agent software repositories

50

0 1 2
fold

0.4

0.5

0.6

0.7

0.8

0.9

1.0
f1

 sc
or

e

category
Anac
Chatbot
Chess
Deep-Learning
Reinforcement-Learning
Robocup-2D

Figure 5.17: F1 scores of predicting agent vs non-agent on each of the agent
categories

Configuration AUC F1

0 All categories 0.88 ± 0.02 0.76 ± 0.02
0 GutHub Only 0.8 ± 0.02 0.66 ± 0.02

The results clearly suggests the model is able to generalize Agent software characteris-
tics and apply it on the classification task. Note that although the "GitHub only" setting has
lower performance compared to the "All repositories" one, The results of this experiment
are even more distinct since it eliminate the inherited uniqueness of the two competition
repositories type - Anac, Robocup.

Lastly, we pressed the distinction thesis even further. 5 different classifiers were
trained, each keeping aside another subset of projects of the "agent" categories for val-
idation. Also as negative examples we used another data set consists of projects select
randomly from github under the same criteria described above. At each cycle of train-
validation we trained one classifier and validate its separation power on the validation set

51

that as explained contains the one "agent" category it did not train on and 500 other general
software project. The results shown in 5.9 present the different classifiers. Inspecting the
results compared to the results of the 1 to many classification might suggest that although
each category of the "agent" type has unique characteristics that enables it to be separated
from other software, still the training process was able to generalize some characteristics
to create an "agent" detector classifier to separate "unseen" agent repositories from general
ode repositories

Category AUC F1

0 Anac 0.79 0.37
1 Robocup-2D 0.69 0.33
2 Reinforcement-Learning 0.58 0.27
3 Chess 0.56 0.24
4 Deep-Learning 0.46 0.16
5 Chatbot 0.38 0.21

Table 5.9: Performance indicators for binary classification on "held out" cate-
gory by classifiers trained on other categories

52

6 AI Code Metrics as Performance Pre-
dictors

The second research question tries to evaluate a different possible usage of AI code met-
rics: are general code metrics applicable for evaluating AI performance?. For general
software it was shown that some code metrics has a direct effect of the quality of a soft-
ware in general terms like bugs per line of code and maintenance effort. In our research
we are more in a specific are of software: AI agents code,Thus, we seek for a relation
between code attribute to quality metrics that are unique to this area. As explained in the
previews sections our main data source is a set of repositories with programs developed
to compete in the Robucup challenge over the year, The same data source also contains
logs of the different matches over the years. Each log fie contains an audit log of each
action of each player participates of a single match in the RoboCup tournament. Using
those logs we were able to pull information about some quality evaluates (number of win,
number of goals etc...) for each of the teams. This chapter describes our attempts to find
correlation between the code metrics of each team to its quality measures and thus to sup-
port the assumption that code metrics holds information that can affect the q"quality" of
AI program.

6.1 data preparation

For the internal question research we needed two types of data-sets: 1. Code metrics
features data-set based on the same data-set used in the external question research. 2.
Quality measures of the differed matches. This part of the dataset, following process
was executed: crawl to download logs files segregated by competition and year. a regular
expression based extractor to extract the names of the groups from the file names and a final
text processor to extract the number of goals each teams scored in the respective match.
Note that there might be other quality indicator besides the goals like interaction between

53

Figure 6.1: Joining process flow

agents (ball passe) but we focused on the most intuitive and definitive KPI. The second part
of the data preparations is joining between the two data-sets described above. Generally
the mapping is based on the year, competition name and team name. But since the team
names in logs and the folder which contains the code for the program of the team are not
synced, there are many misalignment between the two which enforce a more complicated
joining process. The iterative process is based on a set of regular expression joining rules
(lower, containment etc.) and manually mapped names for cases the automatic rules do
not apply. The process is described in fig. 6.1

Performance indicators each row (’x’) in the below script represent a summery for one
group for a competition in a specific year, i.e. oxsy in robocup 2016. The raw results
extracted from each log are:

• games - number of games played by the subject team

• win - number of games resulted in win for subject team

• loss - number of games resulted in loss for subject team

• tie - number of games resulted in tie for subject team

• S - number of goals scored by the subject team

• R - number of goals received by the subject team

based on the above raw values we defined four numeric performance indicators:

54

win diff = (wins - losses) / number of matches

win rate = wins / number of matches

loss rate = losses / number of matches

goals diff = (goals scored - goals received) / number of matches

Data validations In order to cross-validate the correctness of the extraction process an-
other data-set is used. This dataset is an extraction of the top ranked teams from each year
of the main RoboCup tournament. This validation process is designed with the assump-
tion that team ranked high in the tournament should also have higher scores in the lower
resolution performance indicators. i.e a team that has reached the second place in thew
2002 tournament has higher wins rate than a team reached the 20Th place in the same
tournament. fig. 6.2 Demonstrate the validation made using the cross validation between
the two sources.

6.2 Regression

First attempt to expose the relation between code behavior and AI performance is done by
training a regression model to fit a regression function between the code metrics and the
KPI calculated from the logs. since code metrics data set contains above 200 dimensions
(code metrics and their statistics) and in this internal task we also extracted 11 highly
correlated target variables. In order to make performance evaluation feasible a reduction
of the two has to be done. although during the research we made a full analysis of several
KPIs, for the sake of clarity the analysis in the following sections is based on the win_diff
KPI which is highly correlated with some other KPIs and also logically represented a
robust evaluator as it is normalized by number of the games a team played during the
underlined tournament The straight forward approach to examine the Pearson correlation
of the different metrics against the target variable and select those with the highest values
as they are must "promising" with regards to their prediction power.

A sample of the features and corresponding Pearson correlation values with regards to
the win_diff KPI is presented in table 6.1. The outcome of the correlation analysis shows
that there is no single feature that can be used for prediction of the team performance, the
model that will be used Eventually there are only 44 teams that has both source code and
which we could match logs to. This amount of sample leave us with about 10% of the
group in each year. Such a sparse data prevents us from fitting a model the correlates some
attributes of the team to it performance In the following section we describe an alternative
way to use the metrics for fitting a binary model which eliminate the sparseness effect

55

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

value
variable = win

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

 ariable = tie

0 2 4 6 8 10 12 14 16
 ariable = loss

0 20 40 60 80

100

120

 ariable = goal_recei ed

0 25 50 75

100

125

150

175

200

 ariable = goal_scored

year
0 5 10 15 20 25 30 35

 alue

 ariable = gam
es

year

−0.2

0.0

0.2

0.4

0.6

0.8
 ariable = win_diff

year
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 ariable = win_rate

year

−4 −2 0 2 4 6 8
 ariable = goals_diff

year
0.0

0.1

0.2

0.3

0.4

0.5

0.6

 ariable = loss_rate
is_ranked

False
True

Figure
6.2:

Team
perform

ance
indicators

V
S

R
anks

-C
lear

advantage
ofthe

‘R
anked‘team

s,team
s

thatm
ade

itto
the

sem
i

finals,over
the

team
sthatare

notranked

56

1
2

3
4

1.
00

0.
75

0.
50

0.
25

0.
00

0.
25

0.
50

win_diff
va

ria
bl

e
=

ac
c

2
4

6

va
ria

bl
e

=
ac

cm

0
20

40
60

va
ria

bl
e

=
am

lo
c

0.
0

0.
5

1.
0

1.
5

va
ria

bl
e

=
an

pm

0
1

2
3

4

va
ria

bl
e

=
cb

o

0.
00

0.
25

0.
50

0.
75

1.
00

1.
00

0.
75

0.
50

0.
25

0.
00

0.
25

0.
50

win_diff

va
ria

bl
e

=
di

t

2
4

6
8

va
ria

bl
e

=
lco

m
4

0
10

0
20

0
30

0
40

0
50

0

va
ria

bl
e

=
lo

c

0
25

50
75

10
0

12
5

va
ria

bl
e

=
m

m
lo

c

0.
0

2.
5

5.
0

7.
5

10
.0

12
.5

va
ria

bl
e

=
no

a

0.
0

0.
2

0.
4

0.
6

1.
00

0.
75

0.
50

0.
25

0.
00

0.
25

0.
50

win_diff

va
ria

bl
e

=
no

c

5
10

15
20

25
30

va
lu

e

va
ria

bl
e

=
no

m

0
2

4
6

8
va

lu
e

va
ria

bl
e

=
np

a

5
10

15
20

25
va

lu
e

va
ria

bl
e

=
np

m

0
50

10
0

15
0

va
lu

e

va
ria

bl
e

=
rfc

0
10

20
30

va
lu

e

1.
00

0.
75

0.
50

0.
25

0.
00

0.
25

0.
50

win_diff

va
ria

bl
e

=
sc

co
de

 m
et

ric
 v

s g
am

e
re

su
lts

. m
et

ric
: m

ea
n

, r
es

ul
t :

 w
in

_d
iff

Fi
gu

re
6.

3:
Sc

at
te

r
pl

ot
s

of
a

‘w
in

di
ff

’p
er

fo
rm

an
ce

in
di

ca
to

r
vs

th
e

m
od

ul
es

av
er

ag
e

of
th

e
di

ff
er

en
tc

od
e

m
et

ri
cs

in
ea

ch
th

e
ag

en
tr

ep
os

ito
ry

57

win_diff

(75%, npa) -0.380407
(25%, lcom4) 0.361000
(50%, npa) -0.318953
(25%, noa) -0.317907
(std, mmloc) -0.301572
(75%, npm) -0.290096
(max, acc) 0.283206
(std, nom) -0.281419
(50%, dit) 0.265909
(std, accm) -0.264787

Table 6.1: Correlation of code metrics vs normalize wins and loses performance
indicator

6.3 Winner classification

The goal of the "Winner classification" experiment is to train a model to effectively classify
the winner of a single match. The advantage of this model is it can focus on the difference
between the data points (groups). Moreover, our data become a bit larger, since each
data point represents a match and during a tournament there are few matches between
each group. Another advantage of the binary model is it is eliminates the different year
bias as it only compares group from the same year. The model is trained to minimize
the following loss function : L(y_true,y_pred) where y_pred = F(WX), X is the code
metrics vectors of the two groups in a single match and W are the model parameters.
Two different splitting methods for "Winner classification" experiments has been tested:
1. Year based folding: training several classifiers each time leaving one year’s matches
as validation set. 2. Simple Kfold splitting: In this setting each fold split was stratified
based on the year to have close to equal proportions of the different years between train
and test splits. The results of the cross validation of each setting is shown in table 6.2
and table 6.3 respectively. Although not distinct, the results suggests that code metrics of
a robotic football program can be used to predict the winner of match with good success
rate.

6.3.1 Feature importance

Next, The classifiers of that were trained in each split were investigated to highlight fea-
tures that are dominant for the decision. Such features if found might highlight the cause

58

for a team to outperform another team. As presented in fig. 6.4 There is no clear advantage
of a single feature across the different classifiers

split F1 AUC supports

0 0.6875 0.781250 16
1 0.6250 0.533333 16
2 0.5000 0.698413 16
3 0.4375 0.531250 16
4 0.4375 0.681818 16

Table 6.2: Kfolds split estimated performance: Weighted average AUC:
0.65±0.10, Weighted average accuracy: 0.54±0.10

F1 AUC supports year

0 0.230769 0.472222 13 2008
1 0.705882 0.871429 17 2009
2 0.400000 0.500000 5 2011
3 0.400000 0.895833 10 2012
4 0.625000 0.701389 24 2014
5 0.900000 0.958333 10 2016

Table 6.3: Year based split estimated performance: weighted average AUC:
0.74±0.17, weighted average accuracy: 0.57±0.21

59

25
%_no

m_y

mea
n_n

pa
_y

mea
n_a

ccm
_x

mea
n_n

oc_
x

mea
n_a

np
m_y

50
%_an

pm
_y

mea
n_d

it_x

max
_am

loc
_y

75
%_an

pm
_x

mea
n_s

c_x

max
_lc

om
4_y

std
_no

c_x

Feature

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ga
in

Figure 6.4: Importance values of the features in the different classifiers: Error
bars present the variance between the different classifiers on the same feature

60

7 Conclusions & Future Work

Ultimately, our goal in this investigation is not only finding out if there is a difference
between agent or robot software, and other software domains, but also to uncover the
nature of this difference. This section discusses the results presented above, and attempts
to draw conclusions, lessons, and hypotheses for future investigations.

Uniqueness of agent based software. First, a very obvious fact is that both the statistical
analysis and the ML based identified the Autonomous agent category as having unique
code attributes when compared to general software. In the manual analysis we presented
avoidance that the group of the categories ANAC, Robocup 2d and Chess was the most
dominant group among all that has unique behavior (low p value) this is true for 5 of the top
"unique" features. However, chatbot as a category belong the autonomous agent domain
was not identified as unique on the same features. Thus, features that separate between
the other categories in the agents domain like loc_mean and accm_mean do not statically
differentiate chatbot from other general software, we relate to this difference later at this
chapter.

The uniqueness autonomous agent software becomes even more significant when run-
ning machine learning based analysis to reveal how groups of software can be clustered.
The ROC curve and F1 performance of binary classifies trained to separate groups of soft-
ware is proved to be significantly better when trained to separate agent software than any
other type of software. Note, that this method also highlights chat-bots as an easily iden-
tified software category. Also, Machine learning analysis highlights AI platform software
domain as significantly different that general code as well.

Interestingly looking into the features that were identified in the manual analysis as
having stronger separability potential reveals the following insight: Agent software seems
to have high values, compared to other software domains, in features that are related to size
and complexity. Those features (Mean module line of code, mean method line of code,
average cyclometic complexity) are presented in figs. 5.5, 5.7 and 5.10. although not as

61

distinct, the feature rank analysis executed on the trained classifier show similar evidence
as for XGBoost classifier the highly ranked features are related to LOC and complexity .

is Agent Software Inertly more complex? Both analysis efforts proves uniqueness of
the agent based software with regards to their code attributes. But, we also argue that the
results point out the agent code is more complex. Complexity is about more branching
points, conditional loops, and decision points. In the software chapter A present an ex-
ample of a module written in C++ as part of autonomous agent program for the Robocup
contest. The large amount of branching point like condition inside loops and switch case
statements in this code generates a code with high complexity. This code example was se-
lected also for its relative cleanness and its OO structure to prove that there are cases that
the complexity is inherited from the required functionality and not from lack of coding
standards. In this example being able to implement a logic that support the analysis of the
game state is complex and requires to related to many different options

Cyclomatic Complexity has been generally shown to be inversely correlated to code
quality and defect frequency. Greater CC is correlated with a greater number of defects
in the software, persistent bugs, and other indications of poor design and code quality.
Indeed, the correlation is sufficiently accepted, that there exists recommended practices
for the maintenance of CC values of new software within accepted safe range, below the
ACCM measurements we generally see here.

Code Metrics Predicts Performance The second track of this research was done based
on the proven impact of code metrics values on functional quality of software. The results
of learning to predict the winning team a dual Robocup match presents fair performance
based only on the code metrics. Taking into account the limitations of doing statistics on
low number of data points we can suggest an evidence that code metrics values can be
used for estimating performance of AI code. The lack of better results in performance
prediction is explainable by the clear understanding that for winning an AI competition
the quality of code itself is not enough, A domain knowledge, algorithmic superiority and
other attributes are at least as important. Still, being able to have some evaluation of the
quality of an AI program based on generic measurements that are not unique to any AI
architecture as we present in this research can be utilize for many purposes in the software
engineering of AI and agent based software

62

7.0.1 Future Work

The results, data and conclusions described above are hopefully a better starting point for
several directions of study considering different researches on the same data, extending to
other sources of data, using different techniques of analysis than used in this research and
applying on practical guidelines and tooling.

Other measurements Optionally evaluating measurements other than code metrics on
topics we presented might expose different attributes of the clustering we have presented.
We suggest applying analysis of other measurements on the code like code smells, dy-
namic code analysis, data flow analysis or even other static code metrics that were not in-
cluded in our research. Reevaluating our data sources and results to detect those attributes
can greatly donate to the robustness of the outcomes. For example, running code smells
analysis to explore the ability to classify between Agents and other software, can bring the
creation of stronger highly preforming classifier that would be able work better in cases
where the code metrics classifier were failing. Additionally, the data sources we used can
be augmented with different types of data like cost of development, developers experience
and other attributes of the data we used to address different aspect of our research question
about the unique and common between AI code to other domains of software.

More Data As this research was focusing on the Robocup agents code for his unique
characteristics, There are probably other unique repositories we weren’t able to achieve
and might as well be subject to such a similar research. Another approach of getting
larger amount of data and reduce noises is to have one or more repositories in the the
data source manually to tagged to differentiate between AI code and regular code. This
type of resulting data source is a great way to approve or reject the research suggestion to
differentiate. Lastly, the methods, results and data in this research can be used to conduct
similar researches on other domains. The knowledge of general software architecture can
be extended by revealing the unique characteristics of different software domains, different
architectures, development groups etc.

Different analysis techniques The research describes several methods of using cluster-
ing and classification to answer the research questions there are other methods available to
explore the data further. Running classical clustering algorithms like K-Means or GMM
on specific metrics that were highlighted by our research to support the classifier decisions,
might further reveal the relation between some metrics and the explored classes (Agents,

63

general software). Furthermore, even though while running the analysis we explored sys-
tematically several approaches and algorithm architectures, There are many others known
or unique techniques that can be used to improve the results of this research.

Tools and guidelines This research highlights a difference between the unique domain
of autonomous agent and other software domains based on a common measurement. As
AI and autonomous agents in particular are becoming more and more widespread in many
areas of the digital world, we suggest a potential adjustment to the tools being used to
measure software quality and development efficiency when it comes to those areas of de-
velopment. A further research is needed to evaluate the effect of our findings on quality
metrics like number of defect, time to repair and others but this foundations for those ad-
justment are presented in the results presented in this paper. Another direction of practical
extension for our research is the usage of the difference we presented between AI code
to other domains, is to create automatic method to identify programs or portions of code
inside a program that behaves differently that expected and implements a more AI like
behaviors. This abilities can be used to detect potential threats in the cyber security front
or for creating an automatic indexing of software in code repositories

64

References

[1] A. J. Albrecht. Measuring application development productivity. In IBM Applica-
tions Development Joint SHARE/GUIDE Symposium, pages 83–92, Monterey, Cali-
fornia, 1979.

[2] F. Alonso, J. L. Fuertes, L. Martinez, and H. Soza. Towards a set of Measures for
Evaluating Software Agent Autonomy. In Mexican International Conference on Ar-
tificial Intelligence, pages 73–78, Nov. 2009.

[3] F. Alonso, J. L. Fuertes, L. Martínez, and H. Soza. Measuring the Pro-Activity of
Software Agents. In International Conference on Software Engineering Advances,
pages 319–324, 2010.

[4] Y. Alsultanny. Using McCabe Method to Compare the Complexity of Object Ori-
ented Languages. IEEE Transactions on Software Engineering, Jan. 2009.

[5] B. W. Boehm. Software Engineering Economics. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 1st edition, 1981.

[6] O. Boissier, R. H. Bordini, J. F. Hübner, and A. Ricci. Unravelling Multi-agent-
Oriented Programming. In Agent-Oriented Software Engineering, pages 259–272.
Springer, 2014.

[7] L. Briand, J. Daly, and J. Wust. A unified framework for coupling measurement in
object-oriented systems. IIEEE Trans. Software Eng., 25(1):91–121, Jan. 1999.

[8] D. Brugali. Software Engineering for Experimental Robotics. Springer, 2007.

[9] H. Bruyninckx. Open robot control software: the OROCOS project. In Proceedings
of IEEE International Conference on Robotics and Automation, volume 3, pages
2523–2528, 2001.

65

[10] D. Calisi, A. Censi, L. Iocchi, and D. Nardi. OpenRDK: A modular framework
for robotic software development. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 1872–1877, 2008.

[11] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design. IEEE
Transactions on Software Engineering, 20(6):476–493, 1994-06.

[12] M. Cossentino, C. Lodato, S. Lopes, P. Ribino, and V. Palermo. Metrics for Evaluat-
ing Modularity and Extensibility in HMAS Systems. In AAMAS, 2015.

[13] R. D’Agostino and E. S. Pearson. Tests for Departure from Normality. Empirical
Results for the Distributions of b2 and b1. In a, volume 60, pages 613–622, 1973.
Publisher: [Oxford University Press, Biometrika Trust].

[14] N. T. Dantam, K. Bøndergaard, M. A. Johansson, T. Furuholm, and L. E. Kavraki.
Unix Philosophy and the Real World: Control Software for Humanoid Robots. Fron-
tiers in Robotics and AI, 3, 2016.

[15] L. B. L. De Souza and M. D. A. Maia. Do software categories impact coupling met-
rics? In Proceedings of the Working Conference on Mining Software Repositories,
pages 217–220. IEEE Press, 2013.

[16] S. A. DeLoach. O-MaSE: An Extensible Methodology for Multi-agent Systems. In
Agent-Oriented Software Engineering, pages 173–191. Springer, 2014.

[17] A. Elkady and T. Sobh. Robotics Middleware: A Comprehensive Literature Survey
and Attribute-Based Bibliography. Journal of Robotics, 2012:1–15, 2012.

[18] N. Fenton and J. Bieman. Software Metrics: A Rigorous and Practical Approach,
Third Edition. CRC Press, 2014.

[19] I. garcia magarino, M. Cossentino, and V. Seidita. A Metrics Suite for Evaluating
Agent-oriented Architectures. In Proceedings of the ACM Symposium on Applied
Computing, pages 912–919, New York, NY, USA, 2010. ACM.

[20] B. P. Gerkey, R. T. Vaughan, and A. Howard. The player/stage project: Tools for
multi-robot and distributed sensor systems. In Proceedings of the International Con-
ference on Advanced Robotics, 2003.

66

[21] J. J. Gomez-Sanz. Ten Years of the INGENIAS Methodology. In Agent-Oriented
Software Engineering, pages 193–209. Springer, 2014.

[22] M. H. Halstead. Elements of Software Science. Operating and Programming Systems
Series. Elsevier Science, 1977.

[23] M. Hitz and B. Montazeri. Measuring coupling and cohesion in object-oriented sys-
tems. In Proceedings of International Symposium on Applied Corporate Computing,
pages 25–27, 1995.

[24] R. V. Hudli, C. L. Hoskins, and A. V. Hudli. Software metrics for object-oriented
designs. In Proceedings of the IEEE International Conference on Computer Design:
VLSI in Computers and Processors, pages 492–495, 1994.

[25] N. R. Jennings. On agent-based software engineering. Artificial Intelligence,
117(2):277–296, 2000.

[26] C. Jones. Applied Software Measurement: Global Analysis of Productivity and Qual-
ity. McGraw-Hill, New York, 3rd edition, 2008.

[27] G. A. Kaminka and I. Frenkel. Flexible teamwork in behavior-based robots. In
Proceedings of the Twentieth National Conference on Artificial Intelligence (AAAI-
05), 2005.

[28] G. A. Kaminka and I. Frenkel. Integration of coordination mechanisms in the
BITE multi-robot architecture. In Proceedings of IEEE International Conference
on Robotics and Automation (ICRA-07), 2007.

[29] R. V. Kumar and R. Chandrasekaran. Classification of software projects using k-
means, discriminant analysis and artificial neural network. International Journal of
Scientific & Engineering Research, 4(2):7, 2013.

[30] R. L and H. L. Software Quality Metrics for Object-Oriented System Environments.
a, 1995.

[31] M. Luck, P. McBurney, O. Shehory, and S. Willmott, editors. Agent Technology:
Computing as Interaction—A roadmap for Agent-Based Computing. University of
Southampton/Agentlink III, 2005.

67

[32] T. J. McCabe. A complexity measure. IEEE Transactions on Software Engineering,
SE-2(4):308–320, 1976.

[33] P. Meirelles, C. Santos Jr., J. Miranda, F. Kon, A. Terceiro, and C. Chavez. A study
of the relationships between source code metrics and attractiveness in free software
projects. In Proceedings of the Brazilian Symposium on Software Engineering, pages
11–20. IEEE, 2010.

[34] P. R. M. Meirelles. Monitoramento de metricas de codigo-fonte em projetos de soft-
ware livre. PhD thesis, Universidade de São Paulo, May 2013.

[35] M. Montemerlo, N. Roy, and S. Thrun. Perspectives on standardization in mobile
robot programming: the Carnegie Mellon Navigation (CARMEN) Toolkit. In Pro-
ceedings of the IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, volume 3, pages 2436–2441, Oct. 2003.

[36] L. Padgham, J. Thangarajah, and M. Winikoff. Prometheus Research Directions. In
Agent-Oriented Software Engineering, pages 155–171. Springer, 2014.

[37] E. K. Piveta, A. Moreira, M. S. Pimenta, J. Araújo, P. Guerreiro, and R. T. Price.
An empirical study of aspect-oriented metrics. Science of Computer Programming,
78(1):117–144, 2012.

[38] E. Platon, N. Sabouret, and S. Honiden. An architecture for exception management in
multiagent systems. International Journal of Agent-Oriented Software Engineering,
2(3):267, 2008.

[39] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler,
and A. Ng. ROS: an open-source Robot Operating System. In Proceedings of IEEE
International Conference on Robotics and Automation, 2009.

[40] Y. Shoham. Agent-oriented programming. Artificial Intelligence, 60(1):51–92, Mar.
1993.

[41] M. Stojkovski. Thresholds for software quality metrics in open source android
projects. Master’s thesis, NTNU, 2017.

68

[42] A. Sturm and O. Shehory. Agent-Oriented Software Engineering: Revisiting the
State of the Art. In Agent-Oriented Software Engineering, pages 13–26. Springer,
2014.

[43] E. Tsardoulias and P. Mitkas. Robotic frameworks, architectures and middleware
comparison. arXiv:1711.06842 [cs], Nov. 2017.

[44] M. Winikoff. Future Directions for Agent-Based Software Engineering. Interna-
tional Journal of Agent-Oriented Software Engineering, 3(4):402–410, May 2009.

69

A Code Example

1 // basic.cxx

2 //

3 ///

4

5 #include "common.hxx"

6 #include "basic.hxx"

7

8 #ifndef NDEBUG

9 # include "basic.inl"

10 #endif

11

12 ///

13 // PlayModeHelper

14

15 PlayModeHelper playModeHelper;

16

17 const char* const PlayModeHelper :: m_playmodeStrings[PLAYMODE_MAZ] =

{

18 "kick_off_l",

19 "kick_off_r",

20 "kick_in_l",

21 "kick_in_r",

22 "free_kick_l",

23 "free_kick_r",

24 "corner_kick_l",

25 "corner_kick_r",

26 "goal_kick_l",

27 "goal_kick_r",

28 "goal_l",

29 "goal_r",

30 "offside_l",

31 "offside_r",

32 "goalie_catch_ball_l",

70

33 "goalie_catch_ball_r",

34 "before_kick_off",

35 "time_over",

36 "play_on",

37 "drop_ball",

38 };

39

40 PlayModeHelper ::~ PlayModeHelper ()

41 {

42 }

43 PlayModeHelper :: PlayModeHelper ()

44 {

45 }

46

47

48 ///

49 // RefreeMessageHelper

50

51 RefreeMessageHelper refreeMessageHelper;

52

53 const char* const RefreeMessageHelper :: m_refreeMessageStrings [] = {

54 "time_up_without_a_team",

55 "time_up",

56 "time_extended",

57 "half_time",

58 0,

59 "faul_l",

60 "faul_r",

61 "goalie_catch_ball_l",

62 "goalie_catch_ball_r",

63 0,

64 };

65

66

67 ///

68 // FlagHelper

69

70

71

72

73 FlagHelper :: FlagHelper ()

74 {

75 #ifndef NDEBUG

71

76 for(int i=0; i<FLAG_MAZ; i++) {

77 ASSERT(i == m_flagToSymmetric[m_flagToSymmetric[i]]);

78 }

79 #endif

80 m_initialized = false;

81 }

82 void FlagHelper :: initialize(double goalWidth)

83 {

84 ASSERT(goalWidth > 0);

85 m_initialized = true;

86 int x, y, i;

87 for(y=0; y<3; y++) {

88 for(x=0; x<3; x++) {

89 i = FLAG_LT + y*3 + x;

90 m_flagToPosition[i] = Vector ((x-1) * server ().PITCH_LENGTH ()

/2,

91 (y-1) * server ().PITCH_WIDTH ()/2);

92 }

93 }

94 for(y=0; y<3; y++) {

95 for(x=0; x<2; x++) {

96 i = FLAG_PLT + y*2 + x;

97 m_flagToPosition[i] = Vector ((x*2-1) * (server ().PITCH_LENGTH

()/2 - server ().PENALTY_AREA_LENGTH ()),

98 (y-1) * server ().PENALTY_AREA_WIDTH ()/2);

99 }

100 }

101 for(y=0; y<2; y++) {

102 for(x=0; x<2; x++) {

103 i = FLAG_GLT + y*2 + x;

104 m_flagToPosition[i] = Vector ((x*2-1) * server ().PITCH_LENGTH ()

/2,

105 (y*2-1) * goalWidth /2);

106 }

107 }

108 for(y=0; y<2; y++) {

109 for(x=0; x<11; x++) {

110 i = FLAG_TL50 + y*11 + x;

111 m_flagToPosition[i] = Vector ((x-5) * 10.0,

112 (y*2-1) * (server ().PITCH_WIDTH ()/2 + 5.0));

113 }

114 }

115 for(y=0; y<7; y++) {

72

116 for(x=0; x<2; x++) {

117 i = FLAG_LT30 + y + x*7;

118 m_flagToPosition[i] = Vector ((x*2-1) * (server ().PITCH_LENGTH

()/2 + 5.0),

119 (y-3) * 10.0);

120 }

121 }

122 }

123

124 static Flag nameToFlagSimple(const char* name)

125 {

126 ASSERT(name [0] != '\0');

127 int p1 = name [0];

128 int p2 = (name [1] == '\0') ? 0 : name [2];

129 int p3 = (p2 == 0 || name [3] == '\0') ? 0 : name [4];

130 switch(p1) {

131 case 'c':

132 switch(p2) {

133 case 't': return FLAG_CT;

134 case 0: return FLAG_C;

135 case 'b': return FLAG_CB;

136 }

137 break;

138 case 'p':

139 switch(p2) {

140 case 'l':

141 switch(p3) {

142 case 't': return FLAG_PLT;

143 case 'c': return FLAG_PLC;

144 case 'b': return FLAG_PLB;

145 }

146 break;

147 case 'r':

148 switch(p3) {

149 case 't': return FLAG_PRT;

150 case 'c': return FLAG_PRC;

151 case 'b': return FLAG_PRB;

152 }

153 break;

154 }

155 break;

156 case 'g':

157 switch(p2) {

73

158 case 'r':

159 switch(p3) {

160 case 't': return FLAG_GRT;

161 case 'b': return FLAG_GRB;

162 }

163 break;

164 case 'l':

165 switch(p3) {

166 case 't': return FLAG_GLT;

167 case 'b': return FLAG_GLB;

168 }

169 break;

170 }

171 break;

172 case 'l':

173 switch(p2) {

174 case 0: return GOAL_L;

175 case 't':

176 switch(p3) {

177 case 0: return FLAG_LT;

178 case '3': return FLAG_LT30;

179 case '2': return FLAG_LT20;

180 case '1': return FLAG_LT10;

181 }

182 break;

183 case '0': return FLAG_L0;

184 case 'b':

185 switch(p3) {

186 case '1': return FLAG_LB10;

187 case '2': return FLAG_LB20;

188 case '3': return FLAG_LB30;

189 case 0: return FLAG_LB;

190 }

191 break;

192 }

193 break;

194 case 'r':

195 switch(p2) {

196 case 0: return GOAL_R;

197 case 't':

198 switch(p3) {

199 case 0: return FLAG_RT;

200 case '3': return FLAG_RT30;

74

201 case '2': return FLAG_RT20;

202 case '1': return FLAG_RT10;

203 }

204 break;

205 case '0': return FLAG_R0;

206 case 'b':

207 switch(p3) {

208 case '1': return FLAG_RB10;

209 case '2': return FLAG_RB20;

210 case '3': return FLAG_RB30;

211 case 0: return FLAG_RB;

212 }

213 break;

214 }

215 break;

216 case 't':

217 switch(p2) {

218 case 'l':

219 switch(p3) {

220 case '5': return FLAG_TL50;

221 case '4': return FLAG_TL40;

222 case '3': return FLAG_TL30;

223 case '2': return FLAG_TL20;

224 case '1': return FLAG_TL10;

225 }

226 break;

227 case '0': return FLAG_T0;

228 case 'r':

229 switch(p3) {

230 case '1': return FLAG_TR10;

231 case '2': return FLAG_TR20;

232 case '3': return FLAG_TR30;

233 case '4': return FLAG_TR40;

234 case '5': return FLAG_TR50;

235 }

236 break;

237 }

238 break;

239 case 'b':

240 switch(p2) {

241 case 'l':

242 switch(p3) {

243 case '5': return FLAG_BL50;

75

244 case '4': return FLAG_BL40;

245 case '3': return FLAG_BL30;

246 case '2': return FLAG_BL20;

247 case '1': return FLAG_BL10;

248 }

249 break;

250 case '0': return FLAG_B0;

251 case 'r':

252 switch(p3) {

253 case '1': return FLAG_BR10;

254 case '2': return FLAG_BR20;

255 case '3': return FLAG_BR30;

256 case '4': return FLAG_BR40;

257 case '5': return FLAG_BR50;

258 }

259 break;

260 }

261 break;

262 }

263 ASSERT(false);

264 return FLAG_C;

265 }

266

267 Flag FlagHelper :: nameToFlag(const char* name , Side teamSide)

268 {

269 ASSERT(name);

270 ASSERT(teamSide == SIDE_LEFT || teamSide == SIDE_RIGHT);

271 #if 1

272 Flag flag = nameToFlagSimple(name);

273 ASSERT (0 <= flag && flag < FLAG_MAZ);

274 ASSERT(strcmp(name , m_flagNames[flag]) == 0);

275 if(teamSide == SIDE_RIGHT)

276 flag = m_flagToSymmetric[flag];

277 return flag;

278 #else

279 int i = 0;

280 for(;i < FLAG_MAZ ; i++) {

281 if(strcmp(name , m_flagNames[i]) == 0) {

282 if(teamSide == SIDE_RIGHT)

283 i = m_flagToSymmetric[i];

284 ASSERT (0 <= i && i < FLAG_MAZ);

285 return (Flag)(Flag_t)i;

286 }

76

287 }

288 ASSERT(false);

289 return FLAG_C;

290 #endif

291 }

77

78

