
Multi-Robot Frequency-Based
Patrolling

Yehuda Elmaliach
Department of Computer Science

Ph.D. Thesis

Submitted to the Senate of Bar-Ilan University

Ramat Gan, Israel

January 2009

This work was carried out under the supervision of Prof. Gal A. Kaminka,

Department of Computer Science, Bar-Ilan University.

Acknowledgments

I would like to give special thanks to: Noa Agmon for helping me in many useful dis-

cussions and bringing some of the ideas to publication; Avi Rosenfeld for useful com-

ments early on; Ruti Schechter-Glick for discussing early ideas for fence patrolling. I

thank Hagai Cohen and Asaf Shiloni for carrying out significant programming tasks in

Part II. I would like to thank the other members of the MAVERICK lab for the friendly

atmosphere.

I would like to thank Sagit, my wife, for supporting me throughout the thesis and

taking care of the family needs in order to give me free time to focus on my thesis and

to my parents, for supporting me and sharing their life experience with me, thank you

for all their clever ideas.

Last but not least I would like to thank my advisor Prof. Gal Kaminka, to whom I

owe extraordinary thanks for his professional advice, for help over and beyond his duty,

for creating a wonderful feeling which made it a pleasure to work in his MAVERICK

lab, and for being more than an advisor—for being my best friend.

This work was supported in part by ISF Grant #1357/07.

i

Abstract

Mobile robots can save human lives and financial costs by replacing humans in mun-

dane, or dangerous tasks. Patrolling is one such task: It is often mundane, is inherently

repetitive, and may involve risk to human patrollers. One important type of patrolling

is frequency-based patrolling, which involves visiting all points within a target work

area at a fixed frequency (as much as possible).

Our focus in this dissertation is on frequency-based patrolling by teams of multiple,

cooperating, robots. First, it formally defines the frequency-based patrolling problem,

and distinguishes three different possible optimization criteria by which to evaluate

solutions. Second, it presents solutions that are provably robust to robot death, guar-

anteeing that patrolling will continue as long as at least one robot is functioning. It

also addresses event handling in patrolling, exploring algorithms that optimally se-

lect which robot should break the patrolling motion to respond to an event at a given

location, and how to distribute the event handling load among different robots.

The dissertation makes a clear distinction between patrolling areas (enclosed by

polygons), and patrolling polylines. In particular, the dissertation shows that patrolling

an open polyline (e.g., a two-ended fence) is inherently in conflict with the goal of

achieving uniform point visit frequency. Different algorithms are therefore presented

for patrolling areas and for patrolling polylines.

Finally, we allow each patrolling unit to include multiple robots that move in for-

mation. Unfortunately, known algorithms for formation maintenance typically utilize

the robots’ sensors to carry out the formation, thus prohibiting their use for carry-

ing out the surveillance task. We thus present a first step towards a novel formation-

maintenance technique which multiplexes the use of sensors and communications, and

allows the robots to utilize their sensors for monitoring their surroundings, while main-

taining the formation.

ii

Throughout the dissertation we utilize experiments with real and simulated robots

to evaluate the various techniques and demonstrate their effectiveness. Where possi-

ble, we analytically provide hard guarantees on the optimality and capabilities of the

different models.

iii

Contents

1 Introduction 1
1.1 Patrolling in Areas . 2

1.2 Patrolling of Open Polylines . 4

1.3 Additional Patrolling Challenges . 7

1.4 Thesis Overview . 7

1.5 Publications . 8

2 Related Work 10
2.1 Patrolling . 10

2.2 Formations . 13

2.3 Coverage and Other Related Works 16

I Patrolling Areas (Closed Polygons) 18

3 Frequency-Based Area Patrolling 20
3.1 The Area Patrol Problem . 20

3.2 Spanning-Tree Patrolling . 21

3.3 Allocating Robots to Initial Positions 27

3.4 Performance of STP . 31

3.4.1 Point-Visit Frequency . 32

3.4.2 Guaranteeing robustness . 32

4 Handling Events in Area Patrolling 34
4.1 Handling events along the patrol path 36

4.1.1 Procedure CooperateEvent 36

iv

4.1.2 Procedure SingleRoundEvent 39

4.2 Handling events outside of the patrol path 41

4.3 Summary . 45

II Patrolling an Open Polyline 47

5 Frequency-Based Patrolling of Polylines 49
5.1 Synchronizing Motions to Reduce Response Time 51

5.2 Overlapping Synchronized Polyline Patrolling 54

5.3 An Analysis of Point Visit Frequency 57

5.3.1 Middle Segments . 59

5.3.2 Edge Segments . 61

6 Realistic-Motion Polyline Patrolling 65
6.1 Handling Turning Durations . 65

6.1.1 Middle Segments . 66

6.1.2 Edge Segments . 67

6.2 Handling Motion Errors . 69

6.2.1 Optimizing average frequency 72

6.2.2 Maximal minimum frequency 73

6.2.3 Maximal frequency uniformity 74

6.3 Summary . 74

7 Handling Events in Polyline Patrolling 76

8 Experiments 81
8.1 Experiment Settings . 81

8.2 Experiment Results . 85

8.2.1 Point-level predictions . 85

8.2.2 Segment-level predictions 86

8.2.3 Polyline-level predictions 91

v

III Additional Patrolling Challenges 93

9 Patrolling in Formations 94
9.1 Introduction to Patrolling in Formations 94

9.2 Maintaining Robust Formations . 96

9.2.1 Open-Loop and Closed-Loop Formation Maintenance 96

9.2.2 Combining Controllers . 99

9.3 Combined-Control Experiments . 101

9.3.1 Detecting Obstacles . 101

9.3.2 Formation Precision . 105

9.4 Robust Formations: Conclusions . 108

10 Future Directions and Final Remarks 109
10.1 Summary of Key Contributions . 109

10.2 Future Directions . 111

vi

List of Figures

1.1 An illustration of the synchronized-overlap fence patrol technique. When

the overlap factor is 1, the technique reduces to synchronized patrolling. 6

1.2 Thesis Structure. 8

3.1 An example of spanning tree based coverage. Coarse grid is in bold,

and the spanning tree connects all coarse grid cells. The Hamiltonian

cycle over the fine grid is the dotted line along the spanning tree. . . . 22

3.2 Division of the area to clockwise (a.) and counterclockwise (b.) di-

rections. The graphs are built such that the movement is suitable for

traveling along a spanning tree. Union of the two graphs provide all

possible movement options from each cell: up, down, right and left. . 23

3.3 The assignment of weights to the undirected edges of the coarse grid

based on the directed edges of the fine grid (here in the CW direction). 24

3.4 Illustration of Lemma 1. 25

3.5 Illustration of Corollary 2, demonstrating the problem of combining

edges from the CW and the CCW world. 26

3.6 On the left: The basic Hamiltonian cycle HC. On the right: The sepa-

rated Hamiltonian cycle HC′ (in this example BW = 1) 29

3.7 Basic bipartite graph, and bipartite graph after conversion. 31

4.1 The robots patrol along the HC. An event occurred, and one robot (D)

crosses the HC and handles the event. 44

4.2 The robots’ location after HC
k time units. In order to recover from this

event, only robots A,D,B and C will need to move, while the others wait. 45

vii

4.3 The robots’ location after three additional cycles, each of duration
HC

k . The empty segment follows the robot that handles the event. In

order to recover from the event, robot E will only move to the empty

space. 45

5.1 Single robot polyline patrol. 50

5.2 Worst-case robot positions with respect to an event in an middle seg-

ment, in the non-synchronized and synchronized multi-robot patrolling

methods. Robots B and C are both maximally away from the event. . . 54

5.3 An illustration of the effect of overlap factor on patrolling behavior. . 55

5.4 An illustration of FOP running with o = 3 (four robots patrolling such

that three are assigned for each segment). 57

8.1 The RV-400 vacuum cleaner robot, with our lab’s computer overriding

its commercial control software. 82

8.2 A snapshot from experiments. The three robots are positioned at the

initial points for the three segments. 83

8.3 The deviation function d(x) which measures the extra time that the

robot delays when moving a distance x, as a result of uncertainty in

movement and accumulating errors. 84

8.4 Errors in predictions, and the sample standard deviation. Lower values

are better. The new model’s results are always better than those of the

old model. 86

8.5 Average time between visits, for different overlap factors. A lower

result is better on an absolute scale. 88

8.6 Maximal time between visits, for different overlap factors. A lower

result is better on an absolute scale. 89

8.7 Uniformity of patrolling frequency—measured by the standard devi-

ation of the results—for different overlap factors. A lower result is

better on an absolute scale. 90

8.8 Minimum, maximum and average visit frequencies with different over-

lap factors. 92

viii

9.1 A triangle formation of three Sony AIBO robots. Figure (a) shows the

ideal poses of the robots. Figures (b) and (c) illustrate the sensitivity

to heading; the leader is in the same x,y location in both figures, but its

heading is different, implying a radically different target position for

the right follower robot. 98

9.2 In (a) and (b) the x,y location of the follower is the same, as the target

position. However, the path taken by the right follower to the target

greatly affects the final orientation of its body with respect to that of

the leader. 99

9.3 Three obstacle courses used in experiments with the AIBO robots. . . 102

9.4 Fraction of undetected obstacles over multiple runs of each technique,

in different obstacle courses. 103

9.5 Obstacle course in the simulation experiments. The leader robot moves

in straight line, but its followers must detect the obstacles on their left

and right. 104

9.6 Fraction of undetected obstacles over 25 runs for each technique. . . . 104

9.7 Deviation from the ideal position in formation vs. the turn angle, with

no uncertainty in movement/odometry. 106

9.8 Deviation from the ideal position in formation vs. the turn angle, with

uncertainty levels set at 20%. 107

9.9 Deviation from the ideal position in formation vs. the turn angle, with

uncertainty levels set at 40%. 107

ix

List of Tables

8.1 Significance of comparison of the experiment results to the old and

new models. Each cell holds the results of a two-tailed z-test p value

for the corresponding segment (edge or middle), overlap factor o (1 or

2), for the different performance criteria. 87

x

List of Algorithms

1 Generate_Cycle . 27

2 Initialization(G,HC,RI,BW) . 29

3 Procedure PMPM(BG) . 30

4 CooperateEvent(ei < li, ti,Ti >,k,HC) 37

5 SingleRoundEvent(ei < li, ti,Ti >,k,HC) 40

6 Procedure IsolatedEvent(ei < li, ti,Ti >,k,HC) 42

7 Procedure IsolatedRecovery(ei < li, ti,Ti >,k,HC) 43

8 PatrolEvent(ei < li, ti,Ti >,k,HC) 46

9 FOP(overlap factor o, robot id i, number of robots r) 56

10 REMAINDEREVENT(tp,intervals,startIndex, Tj, t j) 79

xi

Chapter 1

Introduction

Mobile robots can save human lives and financial costs by replacing humans in mun-

dane, or dangerous tasks. For instance, robots may be used for cleaning (e.g., [16]),

hazardous waste removal (e.g., [47]), warehouse automation (e.g., [65]), and humani-

tarian de-mining (e.g., [56]). Recent applications of interest involve the use of robots

in patrolling, as part of surveillance tasks. Patrolling is often mundane, is inherently

repetitive, and may involve risk to human patrollers.

Patrolling is defined as “The act of walking or traveling around an area, at regu-

lar intervals, in order to protect or supervise it” [1]. It is a standard surveillance task

that is carried out by humans along borders and open-ended fences, around perimeters,

and in areas requiring continuous monitoring. In all three settings, we typically dis-

tinguish between frequency-based patrolling, which involves visiting all target points

at a fixed frequency (as much as possible), and adversarial patrolling, which involves

monitoring target points to detect an intrusion by a mobile adversary.

Our focus in this dissertation is on frequency-based patrolling by teams of mul-

tiple, cooperating, robots. Patrolling involves repeatedly visiting all points within a

target work area. If the entire terrain cannot be monitored at all times, each point

p in the target area is monitored once every tp time cycles. The frequency is, then,

fp = 1
tp

. Increased availability of multiple robots raises new opportunities for patrol

missions. First and foremost, patrolling can be made more time-efficient in the sense

that the frequency is potentially higher, i.e., t is smaller. In addition, robustness can be

attained in the sense that if at least one robot is active, the patrol mission can still be

accomplished.

1

Previous work on frequency-based patrolling in the context of multi-robot systems,

has left key challenges open. First, patrolling has been investigated largely in an ad-

hoc fashion, without a formal analysis of the quality of the task in light of its principal

visit frequency goals. Indeed, most previous work do not distinguish patrolling from

repeatedly covering the target area, without any regard to frequency constraints. Sec-

ond, the opportunity for increased robustness in the sense of overcoming robot failure

has not been investigated theoretically. Third, previous work does not distinguish be-

tween target work areas based on their topology (e.g., closed perimeter versus an area

enclosed by a simple polygon, versus an open-ended fence); however, the topology

of the work area makes a very significant difference in the patrolling algorithm to be

deployed by the robots. Chapter 2 discusses related previous work in detail.

This dissertation tackles these open challenges in multi-robot frequency-based pa-

trolling. First, it formally defines the frequency-based patrolling problem, and distin-

guishes three different possible optimization criteria by which to evaluate solutions.

Second, it presents solutions that are provably robust to robot death, guaranteeing that

patrolling will continue as long as at least one robot is functioning. It also addresses

event handling in patrolling, exploring algorithms that optimally select which robot

should break the patrolling motion to respond to an event at a given location, and how

to distribute the event handling load among different robots.

The dissertation makes a clear distinction between patrolling areas (enclosed by

polygons), and patrolling polylines. In particular, the dissertation shows that patrolling

an open polyline (e.g., a two-ended fence) is inherently in conflict with achievement

of the various patrolling optimization criteria. Different algorithms are therefore pre-

sented for each different topology. Section 1.1 below provides an overview of the first

part of dissertation, which explores patrolling areas. Section 1.2 provides an overview

of patrolling open polylines.

1.1 Patrolling in Areas

The first part of the dissertation discusses the problem of patrolling a target work area,

enclosed within a closed polygon. Patrolling involves repeatedly visiting all points

within the work area, to assess environmental state, e.g., by deploying sensors in those

points. If the entire terrain cannot be monitored at all times, each location in the target

2

area is monitored once every f time cycles. The frequency is, then, 1/ f . Increased

availability of multiple robots raises new opportunities for patrol missions. First and

foremost, patrolling can be made more time-efficient in the sense that the frequency is

potentially higher, i.e., f is smaller. In addition, robustness can be attained in the sense

that if at least one robot is active, the patrol mission can still be accomplished.

Previous work has offered several approaches to patrolling of areas [7,8,11,13,38,

52]. However key challenges in surveillance have been left open. First, patrolling has

mostly been done in ad-hoc fashion, without a formal analysis of the quality of the task

in light of its principal frequency-based goals. Second, the opportunity for increased

robustness has not been investigated theoretically. Third, handling non-uniform ter-

rains in terms of velocity and directional constraints has not been addressed.

Hence, this part deals with constructing patrol paths for a group of mobile robots

that are required to patrol in a non-uniform continuous target area (divided into a grid).

We base our solution on recent work in multi-robot coverage [2, 3, 44, 45], in which

the authors suggest a family of algorithm for generating cyclic paths for covering a

terrain once. The solution we present guarantees that every point will be attended at

the same frequency, by creating one cyclic patrol path visiting all points in the target

area (a Hamiltonian cycle in the grid), and instructing all robots to move along this

cycle while maintaining equidistant relative positions.

Robots have velocity limitations, which depends on both the terrain in a given

location, and direction in which they travel. For example, climbing a hill is typically

done in a lower velocity compared to climbing down the same hill. Therefore a cost

should be associated with each point (and direction) of the terrain, making the terrain

grid directionally non-uniform.

We therefore consider directionally non-uniform terrains. We first provide an algo-

rithm that finds the minimal cyclic path (minimal Hamiltonian cycle) given the terrain.

We then find points along the path from which the patrol will start, and find an optimal

assignment of robots to those locations in the sense that they will arrive at their start-

ing points in minimal time. Finally, we evaluate our derived patrol algorithm using

the frequency optimization criteria described in Section 3.1. By basing our solution on

the choice of minimal Hamiltonian cycle, we guarantee maximal uniform frequency in

the cycle. Similar to the robustness of the multi-robot coverage described in [44], our

solution is robust, therefore guarantees maximal uniform frequency for one or more

3

non-faulty robots.

This part also deals with the case in which while patrolling along the area, the

robots are required to handle events. An event is a transient addition to the area in

a specific location, such that it requires special attention by the robots as they pass

through it for a limited period of time. We assume that each event has an associated

urgency of handling it. This is expressed by a limit on the time during which this event

should be handled. For example, in security applications an event could be a detection

of an unauthorized personnel inside the area, and in cleaning missions it could correlate

to cleaning a broken glass in addition to the regular cleaning task.

We provide a set of algorithms that deal with a single event. The difference between

the algorithms lies in the urgency of handling the event. If there is enough time to

handle the event jointly by all robots, then it will be divided between the team of

robots uniformly. This division can guarantee that the event will be handled along with

minimizing the interference with the patrol path to other cells in the area. Specifically,

we are interested in minimizing the time it takes the robots to regain their uniform

distribution along the cyclic path. In addition, we would like to minimize the frequency

disturbance to other cells during the period of time the event is handled. We show that

the algorithms we provide guarantee these properties whenever possible.

This part is organized as follows. Chapter 3 formulates the area patrol problem

from the point of view of point-visit frequency optimization. It presents the spanning-

tree patrolling (STP) algorithm, and the initialization algorithm required to show op-

timal patrolling. Chapter 4 extends the original STP algorithm to account for events

which cause delays in patrolling.

1.2 Patrolling of Open Polylines

A common thread through much of existing work is reliance on the underlying work-

area to be enclosed by a polygon. A topologically-circular path is computed inside the

work area, and is used as the basis for the patrol. The robots move in a coordinated

fashion along the path, such that robots are equidistant in time from each other. This

improves performance in terms of the frequency optimization criteria, as well as min-

imization of travel time to any single point (e.g., in response to an event taking place

there).

4

In the second part of the dissertation we focus on multi-robot patrolling along a

polyline, e.g., a two-ended fence. Point-visit frequency is difficult to optimize along

a polyline, since inherently, towards the end-points of the polyline, the robot must

backtrack and therefore re-visit the points that it just visited when going towards the

endpoint. Thus maintaining uniformity of point visit frequency, for instance, is chal-

lenging. Moreover, as we show later, uncoordinated movements of the robots may

result in point arrival times that are unnecessarily large.

We make four concrete contributions in this part:

1. First, we show that to maintain minimal arrival time at any given point on the

polyline (e.g., responding to an alarm at a given point), robots must coordinate

to maintain fixed spatio-temporal distance between them.

2. Second, we present a parametrized distributed patrolling algorithm that divides

the fence into segments of equal motion time (i.e., the endpoints of segments

are temporally equidistant). Each robot then patrols one or more segments, such

that its associated segments may overlap with those of others (depending on the

parameters). We show how to incorporate real-world constraints such as velocity

errors and turning velocities into these algorithms, and analytically explore the

performance of the algorithms with respect to the different performance criteria.

3. Third, we present procedures for handling events in polyline patrolling. Events

are defined by their location along the polyline, their handling duration require-

ment, and their deadline. The procedures we develop allow distribution of event

handling among the robots, in order to minimize the inherent negative impact on

patrolling performance.

4. Finally, we demonstrate the use of the algorithms with laboratory robots, and

show that the addition of these real-world constraints leads to model predictions

that match actual results.

We introduce a coordinated multi-robot fence-patrol technique: The synchronized

patrolling method relies on dividing the fence into segments of equal motion time (i.e.,

the endpoints of segments are temporally equidistant). We then assign each segment

to a robot. Each robot repeatedly covers its own segment of the fence, while synchro-

nizing its velocity to its peers, such that the all begin and end segments jointly. We

5

show that this method reduces the maximal (worst-case) response time to any event on

the polyline, compared to a non-coordinated approach.

We then generalize the synchronized method, introducing the synchronized-overlap

method. Here, each robot is associated with more than one segment, such that its as-

sociated segments overlap with those of others. The robot therefore covers its peers’

segments, when they move out of them (see Figure 1.1 for illustration).

Figure 1.1: An illustration of the synchronized-overlap fence patrol technique. When

the overlap factor is 1, the technique reduces to synchronized patrolling.

We analyze and contrast the different patrolling methods, with respect to two sets

of performance criteria: Response time (arrival time to any single point of interest),

and frequency criteria described in this dissertation: Uniformity, maximal average fre-

quency, and maximal minimum frequency (under-bounding frequency). We exam-

ine the synchronized and synchronized-overlap methods with respect to the three fre-

quency optimization criteria, using naïve and realistic motion models (which include,

for instance, explicit treatment of robot turning durations, and velocity errors). We

show that in many cases, the use of an overlap leads to improved results in frequency

uniformity, without sacrificing average frequency or under-bounding frequency. How-

ever, this comes at a cost of worse performance in the extremities of the fence. We

provide the analytical tools that would allow selection of the patrolling algorithm most

suitable to given settings, and a detailed discussion of the trade-offs involved.

This part is organized as follows. Chapter 5 argues for the benefits of coordination

in polyline frequency-based patrolling, presents the general patrolling algorithm, and

discusses how to analytically choose optimal parameters for it, for given performance

6

criteria. Chapter 6 revisits the analytical model given more realistic robot motion mod-

els. Chapter 7 discusses procedures for event handling within the context of polyline

multi-robot patrolling. Chapter 8 provides the results of patrolling experiments with

real robots. These experiments validate the predictions of the analysis, given the more

realistic motion models.

1.3 Additional Patrolling Challenges

All existing investigations of multi-robot patrolling discuss the task under the assump-

tion that each of the patrolling robot is independently controlled, and monitors its as-

signed trajectory by itself, i.e., a patrolling unit consists of a single robot. However, in

large-scale realistic applications of patrolling, it may be desired to have multiple robots

in each patrolling unit. This allows improved sensing capabilities and survivability of

the patrol unit.

One way to bridge the gap between patrolling algorithms—which treat every pa-

trolling unit as a single controlled robot—and multi-robot patrolling units is by allow-

ing patrolling units to move in formation. Here, a single robot selected as the leader of

the robot formation follows the trajectory set by the patrolling algorithm. A group of

follower robots—the remainder of the patrolling unit—track its movements to main-

tain a geometric shape for the purposes of the patrol. Unfortunately, known algorithms

for formation maintenance typically utilize the robots’ sensors to carry out the forma-

tion, thus prohibiting their use for detecting obstacles and carrying out the surveillance

task.

We thus present, in Chapter 9, a first step towards a novel formation-maintenance

technique which multiplexes the use of sensors and communications, and allows the

robots to utilize their sensors for monitoring their surroundings, while maintaining

the formation. Experiments with real and simulated robots explore this technique and

demonstrate its effectiveness.

1.4 Thesis Overview

This dissertation is constructed of 10 chapters, organized in three main parts (see Fig-

ure 1.2). This chapter constitutes the introduction to this thesis. The next chapter sur-

7

veys the related work. Chapters 3–4 constitute Part 1 of the dissertation, which deals

with patrolling areas. Chapters 5–8 constitute Part 2, which deals with patrolling poly-

lines. In Part 3, Chapter 9 addresses formation maintenance. Chapter 10 concludes

and discusses future work.

Chapter 1: Introduction

Chapter 2: Related Work

Chapter 9: Patroll ing in Formations

Chapter 10: Future Directions and Final Remarks

Part 2: Polyline Patrolling

Chapter 5: Frequency-Based Patrolling of Polylines

Chapter 6: Realistic-Motion Polyline Patrolling

Chapter 7: Handling Events in Polyline Patrolling

Chapter 3: Frequency-Based Area Patrolling

Chapter 4: Handling Events in Area Patroll ing

Part 1: Area Patrolling

Part 3: Additional Patrolling Challenges

Chapter 8: Experiments

Figure 1.2: Thesis Structure.

1.5 Publications

Subsets of the results that appear in this dissertation were published in the proceedings

of the following refereed journals, conferences, books and workshops:

• Yehuda Elmaliach, Noa Agmon and Gal A. Kaminka. Multi-Robot Area Patrol

under Frequency Constraints. Annals of Mathematics and Artificial Intelligence,

2009 [27].

• Yehuda Elmaliach, Asaf Shiloni, and Gal A. Kaminka. A Realistic Model of

Frequency-Based Multi-Robot Fence Patrolling. In Proceedings of the Seventh

International Joint Conference on Autonomous Agents and Multi-Agent Sys-

tems (AAMAS-08), 2008 [30].

8

• Yehuda Elmaliach and Gal A. Kaminka. Robust Multi-Robot Formations under

Human Supervision and Control. Journal of Physical Agents, 2(1):31–52, 2008

[28].

• Yehuda Elmaliach, Asaf Shiloni, and Gal A. Kaminka. Frequency-Based Multi-

Robot Fence Patrolling. Technical Report MAVERICK 2008/01, Bar Ilan Uni-

versity, Computer Science Department, MAVERICK Group, 2008 [29].

• Yehuda Elmaliach, Noa Agmon, and Gal A. Kaminka. Multi-Robot Area Patrol

under Frequency Constraints. In Proceedings of IEEE International Conference

on Robotics and Automation (ICRA-07), 2007 [26].

Videos showing actual runs in which these techniques were used, as well as videos

of related techniques, are available at http://www.cs.biu.ac.il/∼maverick/Movies/ [53].

9

Chapter 2

Related Work

In this chapter, we present a detailed discussion on related work. As our work in

this dissertation is related to a number of different areas of research, we discuss each

separately. Section 2.1 discusses related work on patrolling areas, perimeters, and

polylines. Section 2.2 discusses related work on multi-robot formation maintenance.

Section 2.3 discusses other miscellaneous related investigations.

2.1 Patrolling

The patrolling task, sometimes referred to as repetitive sweeping or repetitive cover-

age, is relatively a recent challenge area for multi-agent and multi-robot researchers.

In general, three approaches can be found in the literature:

Cyclic Paths. A principled approach to patrolling, in which the algorithms plan cyclic

paths through the work area. By nature, points on the cyclic path are visited

repeatedly as long as the robots continue to move along the path.

Randomized Movement. A different approach to patrolling relies on continuously

executing randomized movement in the work area. The nature of the random-

ization results in uniform (given sufficient time) distribution of visits to each

point in the work area.

Hierarchical area division (partitioning). Not strictly a patrolling approach, but one

used often in connection with multi-robot patrolling. In this approach, the work

10

area is (recursively) partitioned into sub-areas. Each sub-area is allocated, using

some task-allocation mechanism, to different robots. Each robot then patrols

the sub-area using a single-robot patrol algorithm (Randomized Movement or

Cyclic Path). Robots may switch or take over areas as needed.

Mechado et al. in [52] describe the patrolling problem in terms of movement in a

general graph, and introduce a measure of patrolling quality, called idleness. Idleness

(of a graph) measures the average number of time steps between visits to all node. They

then utilize idleness in a number of heuristic patrolling algorithms for multiple robots,

based on local or global path-planning, which they compare empirically in simulations.

These are intended to balance average and worst-case idleness over time. In contrast

to their work, we provide in this thesis a formal treatment of patrolling and idleness,

which we translate to point-visit frequency. We introduce three different optimization

criteria that build on idleness (average frequency, uniformity of frequency, and worst-

case frequency) and analytically show that these criteria can all converge to optimal

in the case of area patrolling, using the algorithms we develop. We also argue that

specifically for polyline patrolling, uniformity of frequency is inherently impossible,

as cyclic paths cannot be generated. Thus in contrast to Mechado et al., we distinguish

between graphs of different topologies.

A survey by Almeida et al. [8] brings a discussion of different patrolling ap-

proaches, with respect to the idleness criteria. They compare paths based on machine

learning, agents using negotiation mechanisms, heuristic algorithms (based on local

idleness criteria), and an approach based on approximating the solution to the Trav-

eling Salesman Problem (TSP), i.e., finding a cyclic path through the graph. They

empirically demonstrate significant advantages to the TSP-based approach in average

idleness. Our work on area patrolling addresses patrolling formally and analytically,

in contrast to this work. We focus on a cyclic-path approach, and analytically show

its optimality. However, rather than examining general graphs, we focus on patrolling

in two-dimensional work-areas, in which we use approximate cellular decomposition.

Moreover, we address patrolling in polylines, where cyclic paths cannot be generated.

Chevaleyre [13] and Chevaleyre et al. [14] offer a theoretical analysis of the patrol

problem. They discuss two approaches to multi-robot patrolling in general graphs:

One in which the problem is treated as finding a cyclic path through all nodes (i.e.,

the Traveling Salesman Problem TSP); and another in which the general graph is par-

11

titioned into k sub-graphs (where there are k robots), and each partition is patrolled

independently. They examine the conditions under which a cyclic approach would be

preferable to a partition-based approach, in terms of the worst idleness criteria. While

we examine the optimality of other criteria as well (e.g., uniformity of point-visit fre-

quency), we specialize our techniques to specific graphs, grids that form approximate

cell decompositions of two-dimensional work areas. However, we also provide guar-

antees on robustness and efficiency of multi-robot solutions. In the case of polyline

target areas, as cyclic paths are not possible, we develop a graph-partitioning solution.

However, in contrast to [13, 14], we demonstrate the usefulness of maintaining right

coordination between the robots in different segments.

Empirical investigations of patrolling have often utilized a partitioning approach,

but often disregarded point-visit frequency, in favor of coordination and robustness

concerns. For instance, Guo et al divide the patrolling area between robots [42, 43].

This study focused on the robots’ localization and sensorial capabilities. This thesis’

goals are complementary, in the sense that we assume perfect sensors and localization,

but provide guaranteed frequency optimization.

Ahmadi and Stone [7] describe a negotiation-based approach for dividing the area

between the robots, dealing with events such as addition and removal of robots from

the system. We instead provide analytical treatment of robot removal and addition, and

provide algorithms that guarantee optimal patrolling frequency, as well as a procedure

to minimize the time for adjusting the patrolling to the removal or addition of robots.

Jung and Sukhatme describe in [48] a region based approach for tracking targets in

a system with multiple robots and stationary sensors. They explicitly discuss patrolling

frequency. We do not utilize stationary sensors in this work, and show that there are

several different frequency criteria possible.

It is also possible, in principle, to carry out patrolling by repeated movements

within the work area. Many swarm or ant-based coverage algorithms, when executed

indefinitely, may in practice result in uniform distribution of point visits, though the

frequency of their visits might not be easily guaranteed. One work that stands out

among these is work by Yanovski et al. [66] who have shown that an ant-like explo-

ration in a general graph, by multiple agents using simulated markings in the vertices,

can result in point visit frequency which is uniform up to a factor of two (i.e., the num-

ber of visits to the most visited edge is no more than twice the number of visits to the

12

least visited edge).

Ryale et al. [59] and Girard et al. [40] describe architectures for multiple robot

patrolling, using unmanned aerial vehicles. These systems focus on allowing a single

operator to operate and command multiple robots. In contrast to these investigations,

our work focuses on automatic optimization of frequency-based performance criteria,

in polylines. We take into account velocity constraints along the path, turning veloci-

ties, etc.

Correll and Martinoli [18, 19] describe a distributed coverage for swarm robots,

which combines elements of both area and boundary coverage. They implement their

idea on swarm robots to cover turbine elements aligned on a surface area. Thus the

robots have to cover the work area completely, yet each detected element is to be cir-

cumscribed by the robots. The main idea is to combine probabilistic and deterministic

models in order to achieve better real-world performance. However, this work does

not address frequency of repeated coverage.

We emphasize that patrolling, as studied in this thesis, is investigated from the

point of view of optimizing point-visit frequency. There are alternative optimization

criteria for patrolling. For instance, Agmon et al. [5, 6] study adversarial patrolling

of perimeters (closed polylines) where the objective is to detect an adversary that is

trying to evade the robots and penetrate a closed area. This work has recently been

extended to adversarial patrolling in open polylines [4]. Paruchuri et al. [58] study the

placement of checkpoints in adversarial environments, in which the robots’ goal is to

maximize their rewards. These rewards are received if the robots manage to observe

an evading adversary.

2.2 Formations

Maintaining formation while moving requires the robots to locate themselves accord-

ing to reference points. Balch and Arkin [9] examine three fundamental techniques for

formation maintenance, in experiments with up to four (4) homogeneous robots:

1. Unit-center-referenced is a technique where the robots place themselves accord-

ing to X ,Y coordinates, relative to their peers in the formation, and subject to the

geometric shape to be maintained. This technique relies on the ability of robots

13

to sense the locations of all others.

2. To address this requirement, the leader-referenced technique instead allows

robots to position themselves relative to the position of only a single robot, which

acts as a leader. However, all robots must orient themselves with respect to the

same leader.

3. Finally, the neighbor-reference technique relaxes this requirement further. Here,

each robot positions and orients itself with respecting to a single robot—called

the target—but different robots can choose different targets.

It was shown that the last two categories in Balch and Arkin’s work (Leader-

Referenced and Neighbor-Referenced) are both related to a general method for forma-

tion maintenance, called Separation-Bearing Control (SBC) [20, 21, 31, 33]. In SBC,

a single robot is chosen as the leader of the formation. Each robot (but the leader)

must maintain connectivity—a given distance (separation) and angle (bearing)—with

respect to an assigned target. There must be a path of such connected robots from

every robot in the team to the leader. It was shown that SBC controllers are sufficient

to maintain stable formations.

SBC is arguably the most practical formation-maintenance technique today for

real-world settings. This is likely due to its simple requirements of sensing (monitor-

ing) only one other robot, and to the wealth of opportunities it presents for optimizing

sensor usage [49, 55] and robot role assignment [51, 54].

There have been several works addressing the robustness of SBC-based formations.

Fredslund and Matarić [33] describe an algorithm for generating SBC monitoring rules

for robots in a given formation. The robots are assumed to have supporting sensing

capabilities, and the position of the leader is given. The monitoring rules are supple-

mented by communications for robustness against robot death.

Kaminka et al. [49] describe an algorithm that generates SBC monitoring rules

based on the sensor configuration of the robots, and dynamically adjusts these rules

to overcome sensor failures. They show that this leads to significantly improved ro-

bustness, as long as alternatives exist to prevent a robot from becoming completely

disconnected. Their approach is susceptible to latencies of the communication proto-

col used to switch between different monitoring rules.

14

Our approach relies on fusing SBC control with open-loop, communication-based

control of the formation, which relies on the localization of the robots and their ability

to accurately estimate their own movements. In this, we complement the techniques

outlined above, rather than compete with them.

Mourikis and Roumeliotis [55] discuss optimal sensor scheduling policies for for-

mations, in which sensor use for localization within the formation is optimally bal-

anced between resource consumption (e.g., energy) and localization accuracy. The

sensors themselves are assumed to be fixed in configuration, but the frequency in which

they are used is determined by the policies. Our work focuses on general sensor use,

not only for localization. However, we do not address load- and energy- balancing.

Most previous work on formation maintenance in the presence of obstacles has as-

sumed that obstacles are detectable in some unspecified fashion. Using the techniques

presented below, robots can use their sensors to detect obstacles, to a greater extent

than they do when they have to utilize their sensors to maintain the formation. In this,

we facilitate the use of techniques which rely on the use of obstacle-detection sensors,

and that are difficult to use in sensor-impoverished robots that utilize their robots for

formation maintenance.

For example, Chen and Li [12] propose a technique where obstacles are recognized

by the leader robot, which builds a path for the formation to avoid the obstacles. Thus

the leader is responsible for detecting any obstacles. Our approach complements this

technique, by allowing other robots to also detect obstacles.

Similarly, Ogren and Leonard [57] describe an approach for allowing a group of

robots moving in formation to avoid known obstacles. They show how to calculate a

path for each robot that best maintains the formation while avoiding obstacles. Our

work is complementary: The multiplexing technique we present is focused on detec-

tion of unknown obstacles; but we do not provide a method for calculating obstacle-

avoiding paths.

Balch and Hybinette [10] use social potential fields which use attraction and re-

pulsion to position robots within their relative positions in a defined formation. This

technique is robust to obstacles in the path of the robots, in the sense that the geometric

shape maintained by the formation is dynamically stretched to account for obstacles.

However, the techniques assumes that robots know of the positions of obstacles. The

technique we present in this thesis frees up the robots’ sensors for this purpose.

15

Dougherty et al. [24] and Balch and Arkin [9] address formation-maintenance, and

discuss it in the presence of obstacles. However, the question of how obstacles are

detected is left open. The techniques we present in this work can be useful for this

task, and thus complement their work.

2.3 Coverage and Other Related Works

The patrol problem is closely related to the area coverage problem, in the sense that

both require the robot or group of robots to visit all points in the given terrain. How-

ever, while coverage seeks to minimize the number of visits to each point (ideally,

visiting it only once), patrolling seeks to maximize it (while still visiting all points).

Therefore solutions that are used for the coverage problem might be used as basis for

patrolling.

For example, Yanovski et al.’s work on patrolling [66] builds on their earlier work

on ant-robot coverage [61–63]. Similarly, our own approach builds on earlier work in

coverage; specifically, on Spanning Tree Coverage (STC), first introduced by Gabriely

and Rimon [36] for single robots, and then extended to the multi-robot case by Hazon

and Kaminka [44–46] and by Agmon et al. [2, 3]. The key idea in this family of

algorithms is to approximate a two-dimensional work area using a grid, such that a

Hamiltonian cycle is guaranteed to exist through the grid, which can be found by

generating a spanning tree in the grid graph. This Hamiltonian cyclic path is used

as the basis for patrolling, as the next section shows. Although we build on MSTC,

our work here differs from it in three important ways. First, we allow modeling non-

uniform terrains, in the sense of velocity and direction constraints imposed on different

locations within the area. Second, we provide an algorithm for placing the robots such

that their patrolling can commence as quickly as possible, a stage only worthwhile in

patrolling. Finally, we address here also events that cause delay in patrolling, whereas

previous work ignored such events.

Williams and Burdick [64] report on a related coverage investigation. They inves-

tigate a boundary coverage technique, in which a path is planned that allows a single

robot to inspect (cover) the faces of multiple polygons located in a plane. The tech-

nique they develop allows for changes to the path, to allow for robot death failures or

changes in the environment. The generated path is circular (robots go back to to their

16

initial locations), and thus in principle can be used as a basis for repeated boundary

coverage, i.e., a type of patrolling path. However, the point visit frequency character-

istics of such an application are unknown.

There are additional related investigations. A key difference between our work

and all works discussed above is that we address the allocation of patrolling robots to

handle events. This allocation is an instance of the general task allocation problem for

multiple robots. There are many approaches used for solving this problem in various

domains; however, recently, market-based approaches seem to be of particular interest:

Smith created a system called Contract Net, a distributed problem solving in which the

nodes in the system negotiate and send their bid to the manager which allocates the task

for the lowest cost bid [60]. Dias et al. [22, 23] first used the concept of market based

for multiple robots that cooperate for achieving a common goal. Golfarelli et al. [41]

proposed a negotiation protocol in environment that the only possible contract could

be swapping the task between the agents.

In contrast to these general techniques, we take advantage of the cooperative nature

of the patrolling task (as described in this thesis), and specialize the task allocation

mechanism such that the load of handling events is divided between the robots equally.

Each event is handled by all robots using no negotiation, or other tools for determining

which robot will handle which part of the event. Our solution is, therefore, easy to

solve and is determined quickly.

17

Part I

Patrolling Areas (Closed Polygons)

18

The challenge of area patrolling involves generating patrol paths for a team of

mobile robots inside a designated target work area, such that every point in the area

is repeatedly covered. In this part of the dissertation, we address optimal multi-robot

patrolling algorithms for areas enclosed by polygons.

Chapter 3 begins by presenting formal frequency optimization criteria used for

evaluation of patrol algorithms. Then, we present a patrol algorithm that guarantees

maximal uniform frequency, i.e., each point in the target area is covered at the same

optimal frequency. This solution, called Spanning-Tree Patrolling (STP), is based on

finding a circular path that visits all points in the area, while taking into account terrain

directionality and velocity constraints. Robots are positioned uniformly along this path

in minimal time, using a second algorithm. Moreover, the solution is guaranteed to be

robust in the sense that uniform frequency of the patrol is achieved as long as at least

one robot works properly.

In Chapter 4, we present a set of algorithms for handling events along the patrol

path, which require the robots to stop at the event location to carry out some event-

handling activity. Events are thus described by their location, the total handling time

they require, and a deadline for handling them. Handling events is always in conflict

with optimal frequency-based patrolling, as it always requires robots to stop, rather

than continue their patrolling motions. The algorithms we develop differ in the way

they handle the event, as a function of the time constraints for handling them. The

advantage of these algorithms is that they handle the events as well as maintaining the

patrol path and minimizing the disturbance to the system as much as the time constraint

on the event permits.

19

Chapter 3

Frequency-Based Area Patrolling

We introduce our approach for patrolling of a two-dimensional work area. Section 3.1

introduces the area patrol problem, and the criteria used to assess patrolling quality.

Section 3.2 then introduces the basic ideas underlying spanning-tree patrolling, the

key idea in the algorithms we present. It also shows how to account for velocity and

directionality constraints in generating the patrolling paths, to guarantee optimal pa-

trolling frequency. Section 3.3 addresses the bootstrapping stage in which robots find

their initial positions along the patrolling path. Section 3.4 ties the generation of the

patrol paths, and the assignment of initial positions to robots, to discuss the optimality

and robustness guarantees on the algorithm.

3.1 The Area Patrol Problem

We are given a simple polygon enclosing a continuous work area. We are given k

robots, who are to repeatedly visit every point within the area. The work area may

contain obstacles, through-which robots cannot move. We denote the size of the area

that is not an obstacle by N. If k ≥ N, then all points can be visited at all times by the

team simply by assigning a robot to each point. Formally, the interval between visits

is 0, since each point is visited with every passing time unit, by at least one robot. In

the more common case, k ¿ N. Necessarily, at least some of the points ai, 1 ≤ i ≤ N

have a non-zero interval between visits.

Thus the frequency in which points are visited are the focal point for the area patrol

problem. There are several possible point visit frequency criteria according to which

20

patrol algorithms can be evaluated:

Uniform frequency: The goal is to decrease the variance between the frequencies

in which each point is visited, i.e., all targets should ideally be visited with uniform

frequency f .

Average frequency: The goal is to increase the average frequency f in which targets

are visited. Note that this is independent of achieving uniform frequency.

Under-bounded frequency: The goal is to increase the minimal frequency in which

any target is visited, such that every target is visited with frequency of at least f . In

other words, all points should be visited at least once every 1/ f cycles.

Given the goals above, the area patrol problem is to generate trajectories (veloc-

ity along paths) for each of the k robots, such that these achieve one or more of the

goals above (or maximize some given trade-off between them). As in work on multi-

robot coverage, different variations exist [15]: Offline (map of area and obstacles given

apriori) or online (work area unknown), using approximate coverage (area is patrolled

only up to some ε , typically due to division into a grid), or exact (all points in the area

visited). Patrolling may take into account directionality and velocity constraints (e.g.,

the velocity in one direction may be different than in another), priorities in patrolling,

etc.

3.2 Spanning-Tree Patrolling

This thesis addresses the area patrol problem as defined above, focusing on offline

trajectory planning and approximate cell decomposition (utilizing a grid). We also

take into account directional movement constraints, allowing the algorithms to model

different robot velocity constraints in different directions. The algorithms achieve all

three goals stated above: Uniformity of patrolling frequency, maximal average pa-

trolling frequency, and maximal minimum frequency. We do this by generating a

cyclic path visiting all target areas (a Hamiltonian cycle) and then place the robots

uniformly along the cyclic path. If all robots move at the same direction then clearly

each cell is visited at the same frequency (uniform frequency). Moreover, in uniform

terrains each cell is visited at least once every dcycle length
num robots e number of cycles, where

cycle length is simply the number of nodes plus one.

21

We base our work on Multirobot Spanning Tree Coverage (MSTC) [3, 44]. A

single robot is assumed to be equipped with a square-shaped tool of size D: Any

point within the tool’s area is taken to be visited. The robot moves by sliding the

tool over the area in any of the four basic directions (North, South, East, West). The

work area is approximately divided into a grid with cells of size D × D. The grid

is then made coarse, such that each new cell is of size 2D × 2D. The center-points

of all such cells are connected to those of their neighbors in the four basic directions

(North,South,East,West), to form a graph. A spanning tree is then induced from the

graph. The robots follow the tree around in a clockwise or counterclockwise direction,

creating a Hamiltonian cycle visiting all cells of the original grid (see example in

Figure 3.1).

tree
Hamiltonian cycle

2D

D

spanning

Figure 3.1: An example of spanning tree based coverage. Coarse grid is in bold, and

the spanning tree connects all coarse grid cells. The Hamiltonian cycle over the fine

grid is the dotted line along the spanning tree.

The key idea in Spanning-Tree Patrolling (STP) is to utilize the cyclic path for

repeated patrolling. By placing robots in equidistant positions along the cycle induced

by the spanning tree, synchronized movement by the robots will provide uniform,

maximal frequency of visits to all points along the path. However, in non-uniform

22

terrains, movement in the four different directions can occur in different velocities.

Moreover, terrain directionality constraints may mean that clockwise movement in

any given location may have different velocity than in the counterclockwise direction.

We assign a cost—signifying velocity—to a movement between any two adjacent

cells in the fine grid. Different costs may be assigned to two edges connecting the

vertices in opposite directions. Our objective is now to convert the directed edges of

the fine grid to undirected edges in the coarse grid while preserving the properties of

the edges such that a minimal spanning tree on the coarse grid will yield a minimal

Hamiltonian cycle on the fine grid. Then, placing the robots in equidistant spatio-

temporal positions along the cycle will guarantee uniform maximal frequency.

Since the patrol tour can be conducted in either clockwise (CW) or counterclock-

wise (CCW) directions along the spanning tree path, we divide our world to CW and

CCW. In general, there are four directed edges entering and four leaving each cell in

the fine grid. Since we follow some spanning tree path, the options decrease and each

cell have up to two incoming and two outgoing edges in each world (CW and CCW),

as described in Figure 3.2. We find a minimal spanning tree in each of the worlds

separately, and choose the minimal between both as base for the patrol path.

b.a.

Figure 3.2: Division of the area to clockwise (a.) and counterclockwise (b.) directions.

The graphs are built such that the movement is suitable for traveling along a spanning

tree. Union of the two graphs provide all possible movement options from each cell:

up, down, right and left.

Note that Figure 3.2 clearly illustrates that the CW and CCW worlds are comple-

mentary in the following sense. First, the intersection between the worlds is empty,

i.e., ∀e ∈ E, e ∈ CW(G) xor e ∈ CCW(G). Second, together they provide all con-

nections between adjacent edges in four possible directions: North, South, East, and

West.

23

In the following, we describe a principled assignment of weights (Assignment

Assign_Opt) to the undirected edges of the coarse grid based on the weights of the

directed edges of the fine grid. We then argue that using this assignment, finding a min-

imal spanning tree on the coarse grid representation guarantees determining a minimal

Hamiltonian cycle on the fine grid. In order to do that, we first prove that in our sce-

nario, a Hamiltonian cycle is created by each spanning tree and vice versa, i.e., each

Hamiltonian cycle in the fine grid is translated to a spanning tree in the coarse grid.

Based on that, we then prove, in Lemma 3, that Assignment Assign_Opt yields the

minimality property we seek1.

Assignment Assign_Opt: The cost assigned to the undirected edge (u,v) in the

coarse grid (see Figure 3.3) is the sum of the directed edges in the fine grid, parallel to

(u,v) from its two sides minus the sum of the directed edges perpendicular to (u,v) and

intersecting it, or: (a + b)− (c + d). Note that this can generate edges with negative

cost. In this case we shift the cost of all edges by the minimal negative value, and use

Kruskal’s algorithm ([17]) for finding an MST.

(a
+

b)
 −

 (
c+

d)

i

h

g

f
e

cb
a

j

d

v

u

v

u

Figure 3.3: The assignment of weights to the undirected edges of the coarse grid based

on the directed edges of the fine grid (here in the CW direction).

Lemma 1. Every spanning tree on the coarse grid can be translated to a Hamiltonian

cycle on the fine grid and vice versa, i.e., every Hamiltonian cycle on the fine grid can

be translated to a spanning tree on the coarse grid.

1Gabriely and Rimon discuss edge weights in single-robot STC [37]. In this work, each edge in the

coarse grid was given a different weight in order to favor movement in certain directions, and a minimal

spanning tree (MST) was found. However, they do not discuss the correspondence of these weights to

the fine grid, and minimality of the Hamiltonian cycle was not proven.

24

Proof. The first part of the Lemma is shown in the initial algorithm of Gabriely and

Rimon [36]. According to their algorithm, a Hamiltonian cycle is generated simply by

moving along the spanning tree path in the fine grid.

In order to prove the second direction, we will first show that the existence of

Hamiltonian cycle in the fine grid guarantees that only full edges are picked in the

coarse grid. We choose, without loss of generality, the CW case. Figure 3.4 illustrates

two adjacent vertices in the coarse grid, u and v, and their corresponding vertices in

the fine grid. Denote the edge (u2,v1) by a, (v3,v4) by b, (u2,u4) by d and (v3,v1) by

c. We must show that choosing edge a guarantees choosing also b and excludes c,d,

and vice versa, i.e., choosing c forces choosing d and excludes a,b. Assume, towards

contradiction, that a Hamiltonian cycle exists in the grid, but it uses only edge a and

not b. Therefore in order to visit vertex u4 d is chosen, contradicting the fact that they

are all part in a Hamiltonian cycle, as u2 cannot have two outgoing edges. The fact

that c and d cannot be chosen along with a and b is proven similarly.

It is left to show that the Hamiltonian cycle on the fine grid creates a spanning

tree on the coarse grid. Assume, towards contradiction, that there exists a Hamiltonian

cycle that does not translate into a spanning tree on the coarse grid. This means that

there exists a vertex in the coarse grid that is not covered by the spanning tree. This

can happen only if not all fine vertices are visited, contradicting the fact that we have

a Hamiltonian cycle.

v1 v2

v3 v4b

c

a

d

u1 u2

u3 u4

vu

Figure 3.4: Illustration of Lemma 1.

Corollary 2. A Hamiltonian cycle on the fine grid can include edges from either the

CW world or the CCW world, but not from both.

Figure 3.5 shows an example illustrating the corollary. A closed path is a Hamil-

tonian cycle if it covers all vertices of the graph once, meaning that the in-degree and

out-degree of vertices in this path is 1. In Figure 3.5, all edges in the path are from

25

the CCW world except for edge (v1,v2) (dashed), which is from the CW world. The

resulting path is not a Hamiltonian cycle, as v1 has in-degree 2 and v2 has out-degree

2.

v2

v1

Figure 3.5: Illustration of Corollary 2, demonstrating the problem of combining edges

from the CW and the CCW world.

Lemma 3. Using Assignment Assign_Opt, an MST on the coarse grid representation

yields a minimal Hamiltonian cycle (HC_Min) on the fine grid.

Proof. Assume, towards contradiction, that there exists a Hamiltonian cycle, HC′ with

total weight smaller than HC_Min. This can happen in one of two scenarios.

Case 1. has lower cost than the MST. This contradicts the minimality of the MST,

hence this case is impossible.

Case 2. The spanning tree ST′ (corresponding to HC′) has higher total weight

than the MST’s weight and still HC′ < HC_Min. Consider the case in which the

trees differ by one edge, e ∈ MST,e /∈ ST′ and e′ ∈ ST′,e′ /∈ MST. Denote the di-

rected edges forming e by a,b,c,d and the directed edges forming e′ by a′,b′,c′,d′

(as described in Assign_Opt). Since ST′ > MST and based on Lemma 1, it fol-

lows that that weight(e′) > weight(e). Therefore, according to Assign_Opt, a′ +
b′ − (c′ + d′) > a + b− (c + d) ⇒ a′ + b′− (a + b) > c′ + d′ − (c + d). Since we

assume that HC′ < HC_Min and they differ only by e and e′, if follows by the in-

clusion of e in HC and exclusion in HC_Min that a′ + b′ + c + d < a + b + c′ + d′

⇒ a′+b′−(a+b) < c′+d′−(c+d), leading to a contradiction. It can be shown sim-

ilarly for every spanning tree greater than the MST that this case is impossible.

As a corollary of Lemmas 1 and 3, algorithm Generate_Cycle(Algorithm 1) finds

the minimal Hamiltonian cycle over the work area. If robots move along this cycle

such that their spatio-temporal positions are equidistant, they will visit all points along

26

the path with uniform, maximal frequency. The next section examines an algorithm for

moving the robots from their initial positions into such equidistant positions as quickly

as possible.

Algorithm 1 Generate_Cycle
1: Divide the area into two CW and CCW scenarios.

2: for each scenario (CW and CCW) do
3: create a graph on the coarse grid by assigning weights to edges as described in

Translation A

4: Find a minimal spanning tree in the coarse grid using Kruskal’s algorithm.

5: Calculate the total length of the Hamiltonian cycle generated by the minimal span-

ning tree.

6: Report scenario (CW or CCW) and cycle with shorter total length.

Note that the construction of minimal Hamiltonian cycle for patrolling applies to

the coverage problem as well. The minimal cycle as found here for non-uniform ter-

rains can be used also for single- or multi- robot coverage, achieving minimal coverage

time with respect to the constraints on the terrain, as long as the robots move in either

CCW or in CW direction (as implied by the output).

3.3 Allocating Robots to Initial Positions

After establishing the minimal cyclic path for the patrol mission by the group of mo-

bile robots, it is left to determine the position of the robots along the cycle from which

they begin their patrol. Clearly, in order to achieve uniform frequency it is sufficient

to spread the robots uniformly along the cyclic path. The distance between every two

robots along the cyclic path should be the total weight of the cycle divided by the num-

ber of robots, yielding an equal distance between every two consecutive robots along

the patrol path. Since there is more than one possible assignment of the robots to

such positions, we want to find the assignment that requires minimal change from cur-

rent positions of the robots. Therefore we describe herein the algorithm Initialization,

which finds the locations from which the robots should start patrolling, while mini-

mizing the maximal distance a robot should travel in order to arrive at its location. As

the robots move simultaneously from their initial positions to their positions along the

27

cycle, this corresponds to minimizing the time it takes all robots to be positioned and

ready for the patrol mission.

We define the Minimal Path Matching (Min_Path_Match) problem as follows.

Given a weighted graph G = (V,E,W), a Hamiltonian cycle visiting all vertices in the

graph, and a set of initial positions of k robots on vertices of G. Find an assignment of

each robot to a position in the graph such that the following are fulfilled.

1. The distance between every two consecutive robots along the Hamiltonian cycle

is equal.

2. The maximal distance traveled by a robot from its initial position to the assigned

location is minimized.

We suggest the initialization algorithm Initialization (Algorithm 2) for solving the

Min_Path_Match problem. The input to the algorithm includes: (1) The fine graph

G; (2) the minimal Hamiltonian cycle HC found by Generate_Cycle; (3) the set of

initial locations of the robots on the graph RI; and (4) BW , the smallest unit of time by

which we measure the length of an edge, and which allows integer division of all edge

lengths2. We define the length of a Hamiltonian cycle by len(HC).

The algorithm works as follows. First, it generates HC′ by separating the edges of

the cyclic path into sub-edges, each of size BW (see Figure 3.6). Each vertex in HC′

represents an optional starting point. It then sets the initial positions of the robots along

the path such that the distance between them is len(HC′
)

k . Then, it finds the assignment

of robots to these locations such that the maximal distance traveled by a robot from its

initial position to the assigned location is minimized. It does that by using procedure

PMPM, and a subsequent check of the minimal maximal distance of all rotations of the

positions along the cycle. It returns the positions yielding minimal maximal distance.

We discuss these steps in detail below.

In step 3, algorithm Initialization creates optional starting points along the span-

ning tree path. In step 4 it arbitrarily selects a set of k starting points, one for each

robot, with equal weights from one to the next. In steps 5–6, it computes the lengths of

the shortest paths from each robot’s current location to all other vertices in HC′. These

lengths are used later on to weight the bi-partite graph used to compute the minimal

time for robots to take their place.
2This allows measurement at low or high temporal resolutions. However, generally, BW equals 1.

28

Algorithm 2 Initialization(G,HC,RI,BW)
1: L← /0 {output optimal match}

2: min← ∞ {minimal match weight}

3: HC′← separation of HC by BW .

4: V L← k vertices from HC′ with distance of len(HC′
)

k between consecutive vertices

along HC′

5: for all robots r do
6: Compute shortest path from r’s position to all vertices in HC′

7: for i← 1 to len(HC′
)

k do
8: Let BG be a full bipartite graph of the two sets RI and V L {the weights will be

based on the above Dijkstra calculation}

9: 〈ML,MatchValue〉 ← PMPM(BG)

10: if MatchValue < min then
11: L←ML

12: min←MatchValue

13: V L←V L⊕1 {update V L, see discussion}

14: return L

5

4

1

3

2

5

4

1

3

2

Figure 3.6: On the left: The basic Hamiltonian cycle HC. On the right: The separated

Hamiltonian cycle HC′ (in this example BW = 1)

In steps 7–13, algorithm Initialization goes through all len(HC′
)

k possible config-

urations of k starting points that are evenly spaced in HC′. For each configuration

(beginning with the first configuration set in step 4), the algorithm creates a bipartite

graph with k nodes on one partition (signifying the current locations of the robots in

RI, and the k possible target points in V L in the other. The edges connecting the two

partitions are weighted based on the lengths of the shortest paths computed in steps 5–

29

6. The algorithm calls algorithm PMPM (Algorithm 3), which receives the weighted

bipartite graph BG. Procedure PMPM returns a tuple: A set ML of optimal possible

match considering BG, and the value the match, MatchValue. An optimal match is

one in which the maximal weight of an edge in the bipartite graph is minimal, over all

possible permutations of maximal edges. MatchValue is the weight of this maximal

edge. The result is checked to see if it improves the current best match (steps 10–12).

Then the next configuration of k points is selected in step 13. The notation ⊕+ 1 is

used here to denote the operation of updating the set V L such that each original vertex

v in V L is replaced by the new vertex u, where the edge (v,u) exists in HC′. Note that

because HC’ is a circle, exactly one such edge must necessarily exist.

Procedure PMPM (Algorithm 3) uses the Hungarian algorithm [50] which finds a

match in bipartite graphs with minimal sum of edges. As illustrated in Figure 3.7, the

Hungarian algorithm finds a match between r1 and d1 and between r2 and d2 since this

is the minimal match sum. But in our application we would like to find the minimal

largest edge from all the possible permutations. In this example, we want to match r1

to d2 and r2 to d1. In this match the maximal edge weight is 9 while in the previous it

is 10. Steps 5−7 in the PMPM algorithm construct BG′ from BG. The BG′ graph, by

construction, causes the Hungarian algorithm call (in step 8) to prefer the permutation

in which the maximal edge is minimal.

Algorithm 3 Procedure PMPM(BG)
1: ML← /0

2: Let V be BG vertices

3: Sort the edges in BG

4: w← 1

5: for each edge e in BG by nondecreasing weight do
6: add it to BG′ with weight w

7: w← w∗ |V |2 (see Figure 3.7)

8: Run the Hungarian Algorithm(BG′,ML)

9: Let m be the largest edge weight from the match ML in the corresponding BG

edges

10: Return 〈ML,m〉

Lemma 4. The construction of BG′ in step 3 of PMPM assures that the Hungarian

30

Robot location

r1 d1

d2r2r2 d2

d1r1 8

4

2

1

10

9

8

3

DestinationRobot locationDestination

Figure 3.7: Basic bipartite graph, and bipartite graph after conversion.

algorithm returns a match with minimal maximal edge in BG.

Proof. First, we prove that the construction assures the selection of a match with mini-

mal maximal edge in BG′. For that, assume, towards contradiction, that the Hungarian

algorithm returns a minimal match with sum of edges M and maximal edge m but

there exists another match with sum of edges M′ that has a maximal edge m′ such that

m > m′. By the construction of BG′ in step 3 of PMPM it follows that any edge in BG′

is greater than the sum of all edges smaller than it. Specifically, by our assumption that

m > m′ it follows that m > M′⇒M > M′ contradicting the minimality of M returned

by the Hungarian algorithm.

It is left to show that the match found on BG′ yields a match on BG with minimal

maximal edge as well. This follows directly from the fact that the order of edges

remains through construction, hence minimal maximal edge in BG transforms to the

minimal maximal edge in BG′, and back.

The time complexity of Procedure PMPM is as the Hungarian algorithm [50]

k3 and Algorithm Initialization runs it |V |
k times. It also run Dijkstra’s shortest

path algorithm k times. Thus the overall run-time complexity of Initialization is

O(KV (K + logV).

3.4 Performance of STP

In this section we evaluate the performance of the patrol algorithm that is based on

procedures Generate_Cycle (Algorithm 1) and Initialization (Algorithm 2). We first

examine their combined performance according to the frequency optimization criteria

described in Section 3.1, and then discuss their robustness to robot death failures.

31

3.4.1 Point-Visit Frequency

We prove that the combination of Procedures Generate_Cycle and Initialization

guarantees optimality in all three point-visit frequency criteria.

Theorem 5. The patrol algorithm which is derived by the combination of Proce-

dures Generate_Cycle and Initialization guarantees: a. Perfectly uniform frequency

b. Maximal average frequency c. Optimal under-bounded frequency.

Proof. a. The first part of the Min_Path_Match problem requires the robots to be

placed initially, i.e., before they begin their patrol, in uniform distance along the cyclic

path. This requirement is clearly fulfilled by step 4 in Procedure Initialization, where

the only positions considered are the ones where all robots are equidistant along the

cyclic path. Since the robots are homogeneous and all target areas are covered by

the cyclic path, their movement along the cyclic path yields a uniform frequency of
1

len(HC)/k
, where k is the number of robots and len(HC) is the total length of the mini-

mal HC found by Generate_Cycle. Since all points are visited in this same frequency,

the standard deviation is 0, and the point-visit frequency is perfectly uniform.

b. and c. The cyclic path found by Generate_Cycle was proven by Lemma 3 to

be minimal. Therefore one robot traveling along this cycle has maximal frequency of
1

len(HC)
, hence the maximal possible frequency by k robots is k× 1

len(HC)
, which is

exactly the frequency guaranteed by our algorithm. All targets are monitored, then,

exactly once every len(HC)
k cycles, and by that optimal under-bounded frequency is

guaranteed. Since we have proven uniform and under-bounded frequency, maximal

average frequency is straightforward.

3.4.2 Guaranteeing robustness

We use the circular path not only for assuring uniform frequency while patrolling, but

for robustness as well. Specifically, we refer to robustness in the sense that as long

as at least one robot remains intact, the patrol mission is guaranteed to be performed

successfully (with all three optimality criteria maintained). This notion of robustness,

and the basis for its existence in circular paths, has been discussed also in multi-robot

coverage work [44].

32

Robustness is clearly guaranteed: If one robot fails the other robots simply divide

the circular path again between them by re-running Procedure Initialization. Theorem

5 is, then, guaranteed for the new number of robots. In this statement we have a hidden

assumption that the system is stable in the sense that the uniform, maximal-average,

optimal under-bounded frequency is guaranteed as long as the system performs prop-

erly, and if a failure occurs it again guarantees the above properties after a short reorga-

nization time. This reorganization time is the period of time necessary for the robots to

execute the algorithm and arrive at their new initial positions. If all robots are to move

along the cyclic path following the current direction, then this period of time will not

exceed len(HC)
6 (see Lemma 6 for the proof). If the system is unstable, i.e., robots fail

one after the other, then Theorem 5 is guaranteed for the final number of robots after

stabilization.

Lemma 6. The reorganization time required when decreasing the number of robots

from k to k− 1 is at worst the time required to travel the distance len(HC)
6 if robots

follow the circular path on their way towards their new initial positions.

Proof. Consider the case in which there are three robots, and one fails. The length of

the HC is divided by the three robots prior to the failure, and is divided by two after

the failure. Therefore, if only one robot travels along the path, it has to travel from

len(HC)/3 to len(HC)/2, which is exactly len(HC)/6. For any other k, the distance

traveled is smaller: len(HC)
k−1 − len(HC)

k < len(HC)
2 − len(HC)

3 for any k > 2. Clearly, for

k = 2 the remaining robot has no reorganization phase, as it simply patrols along the

circular path alone.

33

Chapter 4

Handling Events in Area Patrolling

In environments in which a team of robots is required to continuously visit target lo-

cations for various missions, it is likely that the team will need to handle events. We

define an event as a location in the environment that requires special treatment by the

robots for a limited period of time. For example, if the robots patrol in an area in order

to clean it, then an event could be cleaning a broken glass (in addition to the regular

cleaning duties). These events are transient additions to the cost of traveling through

one or more a cells in the grid. Because of their transient nature, it is highly important

that they will not effect the system in the following sense. (i), the frequency criteria

should be maintained as much as possible for the entire area during the time the event

is handled; and (ii), the recovery time, i.e., the time it takes to stabilize the system

to the situation in which the robots are dispersed with equivalent distance (in time)

around the HC should be minimal.

Definition: An event is a tuple 〈li, ti,Ti〉, where li is the location in which the event

occurs; ti is the time that a robot needs to attend and handle the event (duration of

handling), and Ti is the deadline for handling the event. We assume that an event can

occur only in one cell, otherwise it is handled separately for each cell.

The key idea in the algorithm is to divide the time it takes to handle event ei (ti)

uniformly between all the robots. Therefore the total time invested by each robot in

handling the event is ti
k . However, if each robot will spend ti

k the first time it reaches

li, then it will starve the other cells along the cycle HC. Therefore, handling the event

could be done along a number of rounds, depending on the overall time allocated for

34

handling the event (Ti).

When an event occurs, the first step is to check if the system can handle it. Let

Feasible(ei) be a Boolean variable that represents the possibility of the system to

handle event ei, and let dmin be the shortest distance (in time) between any robot from

the team to the event’s location (li). Therefore,

Feasible(ei) =

{
True if dmin + ti ≤ Ti

False otherwise
(4.1)

In other words, if the minimal time it takes the robot closest to li to arrive to the

event plus the time it takes to handle the event is greater than the time restriction on

this event, then the system will fail to handle it.

As mentioned above, the main goal of our algorithm is to keep handling the fre-

quency criteria of other points in the area by dividing the event between all the robots,

and adding some extra cost to the cost of traveling along the HC in that location. How-

ever, there are cases in which the structure of the robots that travel along the HC is

broken, i.e., one of the robots has to leave its course and travel directly to li. Denote

the minimal distance (in time) between the location of the event (li) and the robot

next to arrive at li on its path along the HC by dNmin. Note that always dmin ≤ dNmin.

Therefore we define the Boolean variable NoBreak that represents the possibility of

handling the event while maintaining the movement of all robots along the original

patrol path (the HC). NoBreak is defined as follows.

NoBreak(ei) =

{
True if dNmin + ti ≤ Ti

False otherwise
(4.2)

The algorithm CooperateEvent (Algorithm 4) deals with an event ei in case

NoBreak(ei) = True. The algorithm IsolatedEvent (Algorithm 6) deals with cases

in which NoBreak(ei) = False, yet Feasible(ei) = True.

We define the success criteria for handling an event ei as follows (priority in de-

scending order):

a. ti time units were invested in handling the event jointly by the team members

within Ti time units, i.e., the event is handled on time.

b. Recovery time is minimized.

c. Frequency criteria is maintained throughout the patrolled area.

35

4.1 Handling events along the patrol path

In this section, we describe Procedures CooperateEvent and SingleRoundEvent

that handles the simplest events from the robot team’s perspective. These events do

not require any of the robots to divert from their patrol path, and can be handled co-

operatively between the robots (all of them or only part of them). This is possible for

all events ei where Ti is large enough (the event should not be handled urgently), i.e.,

if NoBreak(ei) = True.

We divide this case into two sub-cases. In the first, Ti is large enough to allow ti
to be divided between the k robots. Here, Procedures CooperateEvent is executed.

If this is not the case, then Procedure SingleRoundEvent is called. We first describe

Procedure CooperateEvent and prove how it achieves the successful event handling

criteria, and then turn to discuss Procedure SingleRoundEvent and its characteristics.

4.1.1 Procedure CooperateEvent

The key idea in algorithm CooperateEvent (Algorithm 4) is to divide the handling

time of an event ei (ti) between all robots. First, the procedure will calculate the number

of cycles along the HC that the robots will patrol while handling ei, denoted by ri.

Then, it will find the amount of time each robot should attend the event during each

cycle, denoted by xi. Denote the case in which the event cannot be divided between all

the robots by the Boolean variable NoDivision. The following formula describes the

condition in which this case exists.

NoDivision(ei) =

{
True if HC(1− 1

k)+dNmin + ti > Ti

False otherwise
(4.3)

NoDivision(ei) is true in case ei cannot be divided between all the robots,

and there is less than a single round to handle the event. In this case procedure

SingleRoundEvent will be called.

For a given event ei, if NoDivision(ei) is false, then Procedure CooperateEvent

will divide the handling time of the event (ti) between all the robots. The procedure

gives all the robots the same amount of time xi to handle the event for each round along

all ri rounds.

36

Since ri represents the number of rounds, it should be an integer. Therefore if the

optimal solution requires a fraction of a round, then the number is rounded to the first

integer below, and the number of time units invested by each robot during the cycles

increases. This is done in order to maintain a fair division of ti between the robots,

which also leads to a recovery time of zero from handling ei.

In case xi >
HC

k , i.e., the time that each robot should invest in handling the event is

greater than the distance between consecutive robots along the cycle, then a neighbor

robot will arrive to the event location that currently handled by a robot. In this case,

the period of time the robots will handle the event per round will be HC
k and not as

calculated at the beginning of the procedure. The number of rounds will also change

(see procedure CooperateEvent).

Algorithm 4 CooperateEvent(ei < li, ti,Ti >,k,HC)

1: ri ← bTi−ti
HC c

2: xi ← ti
rik

3: if xi ≤ HC
k then

4: for j ← 1 to ri, for each robot Ri do
5: Move along HC until arrive at location li.

6: Handle event for xi time units.

7: else
8: visitCounter ← rixi

9: while visitCounter > 0, for each robot Ri do
10: Move along HC until arriving at location li.

11: handle← min(HC
k ,visitCounter)

12: Handle event for handle time frame.

13: visitCounter ← visitCounter−handle

Procedure CooperateEvent first finds the value of ri and xi. Then (in line 6) it

checks whether xi is less (or equal) than the time it takes to neighbor robot (along the

HC) to arrive the event location. If so, then the robot handles the event for xi time

units and proceeds its area patrol along the HC. This happens iteratively for ri rounds.

When the time xi of handling event is greater than the time it takes a neighbor robot

to arrive the event location, then at each round a robot will handle the event without

interfering it neighbor robot, i.e., HC
k time units (the distance in time between two

37

robots along the HC path). Now, the number of rounds will change to ri = ti
HCk

.

Lemma 7. For an event ei, if NoDivision(ei) = False, then CooperateEvent (Algo-

rithm 4) guarantees that ei will be handled within Ti time units, i.e., on time.

Proof. Since NoDivision(ei) is false, then the robots can share the event and handle

it during at least one round. If xi ≤ HC
k (the distance between two consecutive robots

along the patrol path), then according the assignment to xi by CooperateEvent , the

robots will finish handling the event on time. If xi > HC
k the algorithm changes xi

value to be exactly HC
k . Now, a robot handles the event for a duration of HC

k per

round, and the time that the event is handled per round (by all the robots) is HC: A

robot handles the event, then its neighbor replaces it, and handles the event and so on.

That means that the event is always being handled, for a total duration of ti + dNmin.

Where dNmin is the time it took to the closest robot (along the HC path) to arrive the

event location and ti is the time that should invest the event. Since NoDivision(ei) is

false, we can be sure that ti +dNmin ≤ Ti which says that the robot will finish handling

the event on time.

Recall that we defined the recovery time from handling an event ei as the time it

takes to stabilize the system to the situation in which the robots are dispersed with

equivalent distance (in time) around the HC after handling ei. The following Lemma

8 ensures that using procedure CooperateEvent, the recovery time of the system will

be zero.

Lemma 8. The recovery time from handling event ei using Procedure

CooperateEvent is zero.

Proof. Since ti is divided equally between all the robots, each robot invests the same

period of time on handling ei. Moreover, each robot handles the event for exactly

the same amount of time during each round. This ensures that all robots will finish

handling the event during the same round. Thus the robots will be again with the same

distance (in time) between them after the last robot finishes handling the event.

Lemma 9. Procedure CooperateEvent guarantees minimal interference to the fre-

quency of visits to other cells other than li, under the restriction that the recovery time

is zero.

38

Proof. Assume, towards contradiction, that there exists a Procedure B different than

CooperateEvent that handles the event on time and with recovery time zero, yet the

robots visit a cell c 6= li with higher frequency during the handling time of ei. Denote

by xB
i the number of time units B instructs the robots to invest in handling the event, in

each round. If xB
i > xi, then necessarily the frequency of visiting c decreases. Therefore

xB
i ≤ xi. Denote the number of rounds during which ei is handled according to B by rB

i .

If xB
i < xi, then necessarily rB

i > ri. However, ri ← bTi−ti
HC c, which gives the maximal

number of rounds possible to complete handling ei within Ti time units if we assume

all robots handle ei uniformly. Hence if xB
i < xi, then handling ei by B exceeds Ti,

contradicting the assumption that B handles ei on time. If B instructs some robots to

work more than the others (for example in the last round), then the recovery time is not

zero, again leading to a contradiction. Therefore xi = xB
i , i.e., B = CooperateEvent,

leading again to a contradiction.

By combining Lemmas 8, 7 and 9, it follows that Procedure CooperateEvent

handles event ei successfully. Therefore we turn to consider cases in which Procedure

CooperateEvent cannot be used, i.e., if Ti is to small to allow cooperation between

the robots.

4.1.2 Procedure SingleRoundEvent

The best possible case for the team of robots is if Ti is large enough to permit the divi-

sion of ti uniformly between the robots. However, this is not always possible. There-

fore if NoBreak(ei) = True yet Feasible = True, then procedure SingleRoundEvent

will be activated. Since NoBreak(ei) = True, at least one robot that patrols along the

HC can handle the event. If NoDivision(ei) is true, then not all robots can share the

event as described in CooperateEvent procedure. Procedure SingleRoundEvent

handles this situation.

dNmin + HC
k ni ≤ Ti− ti (4.4)

ni = bk(Ti−ti−dNmin)
HC c (4.5)

In order to achieve the good frequency performance, procedure

39

SingleRoundEvent (Algorithm 5) needs to share the event handling by maxi-

mal number of robots. Let ni be the number of neighbor robots that will help the

closest robot to the event location along the HC path to handle the event. Since

NoBreak(ei) is true, then also dNmin ≤ Ti− ti (where Ti− ti is the slack time available),

allowing the event can be abandoned from the moment it occurs until its deadline.

dNmin is the time it takes the first robot (the closet one along the HC) to arrive the

event location - while traveling along the cycle. We would like to find the number of

neighbor robots ni that can assist the event handling. This is formulated in Equation

4.4 and the goal is to find the maximal integer ni number which is shown in Equation

4.5. Now, the number of robots that will share the event will be ni + 1 (the closest

robot plus the ni neighbors). The amount of time that each of the ni + 1 robots will

devote to the event will be ti
ni+1 . If this calculated time is greater than HC

k then it will

be adjusted to be exactly HC
k and the number of robot that will handle the event will

grow to be tik
HC as shown in procedure SingleRoundEvent

Algorithm 5 SingleRoundEvent(ei < li, ti,Ti >,k,HC)

1: ni ← b k(Ti−ti−dNmin)
HC c

2: ri ← ni +1

3: xi ← ti
ri

4: if xi > HC
k then

5: xi ← HC
k

6: ri ← tik
HC

7: for all ri closest robots along HC (on the selected direction) do
8: patrol along HC until arriving at location li.

9: handle event for the duration of xi.

Algorithm SingleRoundEvent ensures that the robots will not bump into each

other, since the robots that handle the event will do so only in their path along the HC.

They will not bump into their neighbor since the distance (in time) between neighbor

is HC
k which is also the limit time to handle an event for a robot. The procedure

also ensures that each point in the area will be patrolled optimally as before the event

occurred, but with maximal delay of HC
k from the time they finish handling the event,

as proven in the following lemma.

40

Lemma 10. The maximal recovery time from event ei using Procedure

SingleRoundEvent is HC
k .

Proof. Let xi be the time that a robot handles an event ei using procedure

SingleRoundEvent. The robots that share the event are in distance (in time) xi

from the place they should be if the event did not occur. In order to recover from

the event (when it is finished) all the robots that share the event should move xi while

the other robots should stop their movement before they could patrol again. In pro-

cedure SingleRoundEvent the maximal time that robot can handle event is HC
k thus

the maximal recovery time is HC
k .

4.2 Handling events outside of the patrol path

Procedures SingleRoundEvent and CooperateEvent will be executed when the

robots can attend the event while still patrolling along the HC path. In case where

this situation is not possible, i.e., NoBreak = False, yet Feasible = True, then a

robot can handle the event by breaking out of the HC path. In this case algorithm

IsolatedEvent (Algorithm 6) is executed.

Algorithm IsolatedEvent finds the preferred robot to send to handle the event.

This robot will move to event location, handle it and proceed the patrol when its neigh-

bor along the HC will arrive. The neighbor will now handle the event until its neighbor

arrives and so on. This procedure finishes when the event was handled for ti time units,

i.e., finished completely.

IsolatedEvent finds the preferred robot that should handle the event by calculating

the minimal time it takes a robot to arrive at the event location by crossing the HC. If

there are few robots with the same minimal time to arrive at the event location, the

chosen robot will be the one whose shortest path is as much as possible along its

original path of the HC.

The procedure IsolatedEvent ensures that the robots will not bump into each other

when they are attending to the event. Where they are moving along the HC they cannot

meet since they are in different locations. The only way that two robots can meet is

when one of the robots crosses the HC to the event’s location, but as shown in Lemma

11, this situation is impossible.

41

Algorithm 6 Procedure IsolatedEvent(ei < li, ti,Ti >,k,HC)
1: S← /0

2: for all robots r do
3: d ← the shortest path from the current robot location to event location li
4: S← S∪{〈d,r〉} {add the distance and associated robot to S}

5: D←mind(S) {all tuples with minimum distance}

6: if | D |= 1 then
7: The corresponding robot r will move on its (calculated) shorted path to li
8: else
9: Choose from D the corresponding robot that has the longest path to move on its

HC path.

10: This robot will move to li
11: repeat
12: The robot in li handles the event until replaced or ti reached.

13: until event was handled ti

Lemma 11. The robots will not bump into each other when the selected robot crosses

the HC path to attend an event ei using Procedure IsolatedEvent

Proof. Procedure IsolatedEvent computes for each robot the shortest path to the

event location. Let Ra be the robot chosen to first handle the event by Procedure

IsolatedEvent. We first assume that Ra has the minimal path to li (and shares this

minimal value with no other robot). Assume, towards contradiction, that there is a

robot Rb that will bump into Ra on its way to li, i.e., Ra and Rb lie at the same location

along the HC at the same time. Therefore at that time the distance between Ra and li
is equal to the distance between Rb and li, which leads to a contradiction (since Ra has

minimal distance to li).

Assume now that there are several robots Ra,Rb, . . . ∈ D with the same shortest

path length to li. If we choose arbitrarily some Ra ∈ D, then it could indeed possibly

bump into some other member of D on its way to li. Thus, procedure IsolatedEvent

selects the robot whose shortest path (with respect to the other robots in D) is mostly

a subset of its regular path along the HC. This ensures that this robot will never bump

any robot while it crosses the HC.

42

Lemma 11 and algorithm IsolatedEvent deal with the robot that is sent to handle

the event. However, a question remains as to what the robots do once the event is

handled, to stabilize the system.

Algorithm IsolatedRecovery (Algorithm 7) describes the recovery stage, exe-

cuted once the event handling procedure IsolatedEvent is triggered. Note that once a

robot moves outside of the HC then necessarily, a segment of length HC
k is left without

an associated robot (Figure 4.1). We call this segment the empty segment. The recov-

ery procedure moves some of the robots along the HC to re-fill this empty segment

such that again one robot is assigned to each of the k segments.

The algorithm works as follows. First, it computes the distance d between the event

location (and the robot currently handling it, r0), to its nearest neighbour r1 along the

path HC. If this distance d is greater than HC
k , then the empty segment is between r0

and r1. In this case, r0 needs to move until it is exactly at a distance of HC
k from r1; it

needs to move d− HC
k . However, if d is smaller than or equal to HC

k , then this means

that there are more robots between r0 and the empty segment. All of these robots

(except for r0 should move exactly one segment (i.e., HC
k), and then r0 should move a

distance of d forward along HC, to reposition itself. Then the recovery is complete.

Algorithm 7 Procedure IsolatedRecovery(ei < li, ti,Ti >,k,HC)
1: Let r0 be the robot at the event location.

2: Let r1 be r0’s nearest neighbour along the path HC.

3: Set d to be the distance between r0 and r1.

4: if d > HC
k then

5: move r0 a distance of d− HC
k .

6: else
7: Let R be the set of robots along the HC, starting with r0, such that the distance

between them is equal or smaller than HC
k .

8: for all r ∈ R do
9: if r = r0 then

10: move r a distance of d.

11: else
12: move r a distance of HC

k .

The algorithm’s operation is illustrated in Figures 4.1, 4.2 and 4.3. Figure 4.1

43

shows the state of the system after a robot D crosses the HC path and handles the

event, a decision made by IsolatedEvent. Suppose, first, some time passes, the robots

move clockwise, and now handling the event is taken over by A, which completes

handling the event, i.e., now recovery can commence (Figure 4.2). Since the distance

d here (between A and D) is smaller than HC
k , A,D,B,C are in the set R (line 7).

Robots D,B, and C should move ahead a distance of HC
k , while robot A should move

the distance of d ending up where D used to be. Then the system is stabilized and can

patrol as usual.

Now suppose that A did not finish handling the event. In this case, the empty

segment continues to shift around HC, until we reach the situation in Figure 4.3. If E

completes handling the event, then the distance d (between E and F) will be greater

than HC
k , which means that only E needs to move forward, a distance of d− HC

k , to

stabilize the system.

B

C

D

Event

A

E

F

Figure 4.1: The robots patrol along the HC. An event occurred, and one robot (D)

crosses the HC and handles the event.

Given an event handled by algorithms IsolatedEvent and IsolatedRecovery, we

can bound the recovery times for the system, following the decision to handle an event.

Lemma 12. The maximal recovery time from procedure IsolatedEvent is HC
k .

Proof. When robot attend event and cross the HC there could maximum one empty

segment (as shown above). The robot that attend event is far from its neighbor (along

the HC) maximal HC
k or the empty segment is the neighbor. If the empty segment is

the neighbor it take maximal HC
k to arrive the relative location of the other robots in

the other segments as shown above. If there is neighbor robot in the next segment, the

44

 Event

A
D

B

C

E

F

Figure 4.2: The robots’ location after HC
k time units. In order to recover from this

event, only robots A,D,B and C will need to move, while the others wait.

Event

E

D

F

A

B

C

Figure 4.3: The robots’ location after three additional cycles, each of duration HC
k .

The empty segment follows the robot that handles the event. In order to recover from

the event, robot E will only move to the empty space.

maximal distance is HC
k . Since the robot that behind the robot that handle the event

location should keep the same HC
k distance from the robot located in the neighbor

segment. Which insure that the maximal distance for recovery is HC
k .

4.3 Summary

Algorithm PatrolEvent (Algorithm 8) ties all the different conditions together, to fully

address a new event and stabilize the system following its handling. The algorithm

checks the values of Feasible(ei) and NoDivision(ei), and decides which procedure

45

to execute for a new event. Be aware that after running procedures IsolatedEvent

and SingleRoundEvent the robots needed to be ordered again along the HC, before

patrolling can be resumed completely.

Algorithm 8 PatrolEvent(ei < li, ti,Ti >,k,HC)
1: D← /0

2: for all robots do
3: Compute Dijkstra’s shortest path where the source is the current robot location

and the destination is the event location li
4: Add the distance to D

5: if min(D)+ ti > Ti then
6: return "cannot handle event"

7: else if dNmin + ti > Ti then
8: execute IsolatedEvent(ei < li, ti,Ti >,k,HC)

9: else if HC(1− 1
k)+dNmin + ti > Ti then

10: execute SingleRoundEvent(ei < li, ti,Ti >,k,HC)

11: else
12: execute CooperateEvent(ei < li, ti,Ti >,k,HC)

46

Part II

Patrolling an Open Polyline

47

Frequency-based patrolling—sometimes referred to as repeated coverage—is a

task where points in a target work-area are repeatedly visited by robots. Frequency-

based patrolling algorithms optimize various performance criteria, such as frequency

of point visits, minimization of travel time to arbitrary points of interest, etc. A poly-

line (e.g., a two-ended fence) inherently poses challenges for existing algorithms, since

no circular paths exists, and thus some points necessarily are visited more often than

others. In this part of the dissertation, we propose a general technique for frequency-

based patrolling in polylines.

First, in Chapter 5 we show that in general, a coordinated approach to multi-robot

patrolling, where robots are equidistant from each other in travel time, outperforms

uncoordinated methods. We then present FOP (Frequency-based Overlapping Patrol),

a general coordinated patrolling algorithm, in which robots move back and forth along

the polyline, in an synchronized manner, such that they are assigned overlapping areas

of movement, in a parametrized fashion. We analyze the performance of this coordi-

nated method in depth, with respect to different performance goals, and investigate key

trade-offs.

In Chapter 6 we extend the analysis of the FOP algorithm to account for more

realistic settings. In particular, we extend the analysis to account for turn durations,

and errors in the robot motion velocity. These extensions change the predictions of the

optimal overlap settings to be used in applications, based on the measureable physical

performance of the robots in practice.

In Chapter 7 we explore the effects of events on polyline patrolling. We provide

algorithms for determining which robots are to be assigned to handling events, and

under what conditions.

Finally, in Chapter 8, we use the developed models to predict the independently-

programmed patrolling movements of physical robots, in extensive experiments con-

ducted in our laboratory. We show that the extended models predicts the behavior of

the robots accurately, supporting the compatibility of the analytical model with actual

robot performance.

48

Chapter 5

Frequency-Based Patrolling of
Polylines

We have earlier introduced three frequency-based performance criteria [26, 27]:

• Uniformity. The goal is to decrease the variance between the frequencies in

which each target is visited, i.e., all targets should ideally be visited with uniform

frequency f .

• Maximal average. The goal is to increase the average frequency f in which

targets are visited.

• Maximal minimum frequency (under-bounded frequency). The goal is to

increase the minimal frequency f with which any target point is visited, such

that every target is visited with frequency of at least f . In other words, all targets

are monitored at least once every 1/ f cycles.

For a single robot, perfect uniformity of point visit frequency is impossible to

achieve in polyline patrolling. The fact that the polyline is not circular prevents the

robot’s trajectory from being continuous; at some point (at the very least, at the outer-

most edge point) the robot needs to change direction. The direction change forces the

robot to immediately backtrack over points in the path that it has visited only moments

before, and therefore the visit frequency is non-uniform along the path.

From a more formal perspective, the argument is as follows. The basic motion for

a single robot along a polyline is necessarily a monotonic movement from left to right

49

robot

L

X

Figure 5.1: Single robot polyline patrol.

and vice versa. Figure 5.1 shows a robot at a distance X from the left edge of the poly-

line (the length of the polyline is L). Even assuming turning does not take any time, the

times in which the point is visited form the series 2t(X),2t(L−X),2t(X),2t(L−X) . . .

(where t(a) is used here to denote the time for traveling distance a). The frequency

will be uniform only in the midpoint of the polyline (when X = L/2), while any point

towards the endpoints of the polyline will have a large frequency variance.

The addition of robots can, in principle, improve the point-visit frequency. For

instance, The variance in patrolling frequency is tied to the length of the segment

assigned to each robot. With more robots, there are more segments possible, and the

length of each segment—and the respective time to traverse it—is shortened.

The following sections explore the use of multiple robots to improve the perfor-

mance of patrolling. Section 5.1 argues for uniform spatio-temporal distribution of the

robots along the polyline, and synchronizing their motions to maintain them equidis-

tant from each other. Section 5.2 presents the generalized synchronized patrolling

algorithm (FOP). Section 5.3 analytically examines this model and shows that it can

improve patrolling frequency uniformity in middle segments, at the expense of edge

segments, without reducing from other performance criteria.

50

5.1 Synchronizing Motions to Reduce Response Time

The first performance criterion that we consider in polyline patrolling is the time it

takes for a robot to arrive at an arbitrary point of interest. We refer to the arrival of a

robot at a target point on the polyline as response to an event.

For a single robot, the worst time it takes to respond to an event is the time it takes

the robot to traverse the entire length of the polyline. This occurs when the robot is at

one end of the polyline and an event happens at the other end.

With multiple robots, it is possible to rely on others to assist in responding to

events. A simple uniform spatio-temporal distribution of the robots along the polyline

would of course ensure that any event can be responded to in minimal time. If the only

optimization criterion were in fact response time to events, then a fixed placement of

the robots, such that they remain stationary until an event occurs, is easily computable.

However, other performance criteria (e.g., maximization of point-visit frequency) ex-

ist, and thus the robots must actually visit all points along the polyline, i.e., the robots

must move.

We begin by making some basic observations about the underlying characteristics

of multi-robot polyline patrolling. Under the assumption that robots have a physical

mass that is moving on the line segments composing the polyline, robots cannot occupy

the same point on the polyline at the same time. Thus they cannot overtake each other

going in the same direction, or pass by each other when going in opposite directions.

However, under the assumption that the robots are homogeneous, this does not at all

limit the behavior of the robots, as they can exchange roles when they meet, one simply

taking over the trajectory of the other from the point of meeting.

Since the spatio-temporal trajectories of robots cannot actually intersect, assigning

trajectories to different robots is a matter of spatio-temporal division of the polyline

into r sub-trajectories. These are assigned to the r robots, such that the union of the

paths underlying the trajectories is equal to the polyline. The challenge is in planning

the sub-trajectories to optimize patrolling performance.

Theorem 13. For r robots patrolling a polyline, the worst-case arrival time, at an ar-

bitrary point on the polyline is minimized when the polyline is divided into r segments

that have an equal traversal time ts.

Proof. Let T the maximal time to traverse the polyline by single robot (i.e., endpoint to

51

endpoint). The time to traverse the entire polyline by r robots which are distributed—

equidistant in travel time—along the polyline is T
r = ts (each robot traverses one of r

segments along the polyline once). Thus the worst time to attend an event is ts (one

endpoint of a segment to the other). Assume towards contradiction that a different

distribution of the robots along the polyline would have resulted in a maximal arrival

time at an arbitrary point of tC < ts. Then the total polyline traversal time for a single

robot would be, at worst, tC× r < ts× r, i.e., tc× r < T . But this contradicts T being

the time for a single robot traversal.

We now examine two underlying approaches to patrol trajectory-planning, where

the r robots are allocated segments whose traversal time is fixed, ts. In the non-

synchronized patrol, the robots’ movements are independent of each other, and each

robot patrols inside a different segment without temporally coordinating its movement

with the other robots. In contrast, in the synchronized patrol, the temporal behavior of

all robots is coordinated, such that all robots move to left or right together, maintaining

fixed relative distances. We examine the worst-case behavior of these two approaches.

To do this, we distinguish between middle segments (which have other segments on ei-

ther side of them), and edge segments, which have segments only to one side of them.

By definition, for r > 1, there are two edge segments, and r−2 middle segments.

Non-synchronized patrol suffers from high response time to events. The robots

are not synchronized in their movements and each robot patrols along its assigned

segment. We denote the time it takes a robot to travel along its segment by ts. Therefore

the worst time to respond to an event is ts . This worst time occurs, for instance, when

two adjacent robots are at the opposite ends of their respectively assigned segments,

and the event takes place at the point which adjoins their segments. This worst case is

portrayed in Figure 5.2(a). Here, Robot B is at the left end of its segment and the event

occurs at the right end. Assistance from robot C will not be useful since it is the same

distance from the event point. Note that the worst-case time ts is true regardless of

which segments are involved. In particular, the worst-case time is true of both middle

and edge segments.

Theorem 14. Non-synchronized patrolling has, r +1 points in which the arrival time

is, in the worst case, ts, where ts is the time for traversing a segment.

Proof. The polyline is broken into r segments, of equal traversal time. Each segment

52

has two endpoints, left and right (where left and right are arbitrarily set). Each robot

can be at most ts time units away (the traversal time for for a whole segment) from an

endpoint in its segment; this is when it is at the other endpoints. There are r segments,

and therefore r right endpoints, which are ts time units away from their corresponding

segments’ left endpoint. In addition, there exists one left endpoint which is not a right

endpoint for a neighboring robot. This is the leftmost endpoint, i.e., an endpoint for

the polyline. This endpoint is ts time units away from its own right endpoint. Thus in

total there are r +1 points whose arrival time in the worst case is ts.

To improve the worst-case response time of ts, we introduce the synchronized patrol

technique in which the robots are temporally synchronized in their movements. The

polyline is divided into equal-time segments, i.e., the traversal of each segment takes

the same amount of time. Each robot is then assigned a single segment, which it

patrols while synchronizing its velocity with that of its peers. All robots thus move in

the same direction (i.e. left to right, right to left) and maintain uniform distance (that of

a segment) between a robot and its left and right neighbors. Since the distance between

two robots is always the length of a segment, then the worst time it takes to arrive to

an event point between two robots is ts
2 in the middle segments. For the edge segments,

the worst case time of ts still applies. However, only two such segments exist.

Theorem 15. Synchronized patrolling has only two points in which the worst case

arrival time is ts, where ts is the time for traversing a segment.

Proof. Since all the robots keep the same traversal time ts between their neighbors

(from right and left), the time to attend a point along the polyline which is between two

neighbor robots is bounded by ts
2 . The only points along the polyline which have no

neighbor from right or left are the endpoints of the polyline, i.e., the leftmost endpoint

and the rightmost endpoint. The time to arrive at these points in the worst case is ts.

Thus there are only two points that have a ts worst case attending time when the robots

are synchronized.

Figure 5.2(b) shows an example of the synchronized patrol where an event occurred

at a point between robots B and C. The middle segment’s worst case occurs when the

event point is exactly in the middle, and thus it takes ts
2 for one robot to arrive. If the

event is close to the left edge then robot B can reach it in time less than ts
2 . Similarly,

53

D B A

Event

C

(a) Non-synchronized patrolling. Events in middle segments may be a segment-length away

from the nearest robots.

D B A

Event

C

(b) Synchronized patrolling. Due to the synchronization, no event in the middle segments is

ever more than half a segment away. The edge segments have the same worst-case response

time as in the non-synchronized method.

Figure 5.2: Worst-case robot positions with respect to an event in an middle segment,

in the non-synchronized and synchronized multi-robot patrolling methods. Robots B

and C are both maximally away from the event.

if the event is closer to the right edge, then robot C will handle the event (in time less

than ts
2). Note that if the event would have occurred at the outermost point of one of

the edge segments, the response time would have been ts.

5.2 Overlapping Synchronized Polyline Patrolling

Let us consider the visit time-series for such an edge point p, a point on the edge of

a segment assigned to a robot B in the synchronized patrolling algorithm described

earlier. Assume the time for traversing the segment is ts. Then the point visit time

series for p is 2ts,2ts,

Imagine now that we allow the adjacent robot A to venture out into B’s segment,

such that instead of stopping short of point p, A will continue its movement infinites-

imally, such that it also includes the point p. Now, in the synchronized patrolling

method, A will visit p when B is at its farthest from it; and B will visit p when A is at

its farthest. p’s visit time-series is now ts, ts,

54

Inspired by this observation, we propose the synchronized-overlap patrol method.

Synchronized-overlap patrolling generalizes over the simple synchronized method in-

troduced earlier. Here, the robots’ movements are synchronized as before (all robots

move to the right/left together), however more than one segment is assigned to each

robot, such that the segments assigned to the robots overlap (intersect) in space. Each

robot enters its neighbors’ segments, depending on the size of overlap. This is a gener-

alization of the simple synchronized patrolling method, which can be seen as a special

case where there is no overlap between the segments.

For instance, Figure 1.1 shows the trajectories assigned to a fixed set of robots,

for a given open polyline, using different overlap factors. The simple synchronized

patrolling method corresponds to an overlap factor of 1. The others are generalized

overlapping forms.

Figure 5.3: An illustration of the effect of overlap factor on patrolling behavior.

The frequency-based overlapping patrol (FOP) procedure is shown in Algorithm

9. All robots execute this algorithm in a distributed fashion, utilizing communications

to synchronize their decision. The key idea in FOP is that each robot patrols more

than a single segment. Each robot begins by moving along its own segment, but then,

depending on the overlap factor, may move into adjacent segment (while the robot

in this segment is moving into the next segment, etc.). Thus the robots trajectories

overlap in space, but not in time.

FOP (Algorithm 9) controls the patrol movement for a robot in a fence where the

overlap factor is o, robot i is initially located in segment i, and the number of segments

is r (equal to the number of robots). Each robot i (of the r robots that participate in

55

Algorithm 9 FOP(overlap factor o, robot id i, number of robots r)
1: Move min(o,r− i+1) segments, using the velocity constraints of each segment.

2: Turn in place and synchronize with others

3: if you are in the right edge segment then
4: wait until your left robot neighbor is one segment farther

5: Move to your base segment

6: Turn in place and synchronize with others

7: Return to step 1.

the patrol) runs this algorithm in a distributed fashion. The algorithm assumes that

the open polyline has already been divided into r equal-time segments, and that all

robots start at the beginning of their assigned segments, facing towards the direction of

movement. Also, the algorithm assumes perfect communications (to allow the robots

to synchronize their turns) and localization along the fence.

The behavior of the robots in FOP is dictated by a single parameter, the overlapping

factor o. The first step of the algorithm moves the robot o segments (by the overlap

factor). In case where the robot arrive to the right last segment, the r− i + 1 value

ensure that the robot will not move beyond the fence boundary (see robots C and D

in Figure 5.4(b)). The second step ensures that the robots will synchronized and wait

until the entire robots arrive to their destination. The third step occurs only for the

robots that collect at the fence endpoint. They must wait until the other robots have

left the segment. In the fourth step each robot returns to the segment that it started

from. Finally, all robots turn in place, synchronized again, and repeat the process.

Figure 5.4 shows an illustration of the robots movements in a synchronized-overlap

patrol, with an overlap factor of 3 (each robot visits 3 segments) segments. In Figure

5.4(a), the robots are in their initial locations. In 5.4(b) they have moved to the edge of

their first assigned segment. In 5.4(c), the robots continued their movement into their

second segment, overlapping with one other member. In 5.4(d), they reach the last of

their segments, in an area overlapping with two of their neighbors’.

56

D B A C

(a) Initial location.

D B A C

(b) Edge of first segment.

D B A C

(c) Edge of second segment, overlapping with the first segments.

D B A C

(d) Edge of third segment, overlapping with the first and second segments.

Figure 5.4: An illustration of FOP running with o = 3 (four robots patrolling such that

three are assigned for each segment).

5.3 An Analysis of Point Visit Frequency

We now turn to analyzing the synchronized-overlap patrol under a naïve motion model,

in which turning—changing direction at the edges of segments—is done instanta-

neously. The only time influencing the frequency is therefore time spent traversing

the segments. In analyzing the synchronized-overlap patrol technique under the fre-

quency criteria, we utilize the following notations and definitions.

Definition 1 (Overlap Factor). When using the synchronized-overlap patrol technique,

then the overlap factor is the number of segments visited by each robot. We denote this

factor by o. Note that in the synchronized model, where no overlap occurs, o = 1. In

all of the analysis, we assume the overlap factor o is a positive integer o ∈ N.

Let l be the polyline length, r the number of robots (hence the number of segments),

p a point on a segment, defined by a fraction of the length of the segment, p ∈ [0,1),

57

where for the left-most point, p = 0. We use v to denote the robots’ velocity (we

assume homogeneous robots, and thus the same velocity to all), and si the number of

robots that visit a specific segment i.

Definition 2 (Edge and Middle Segments). A segment i is called an edge segment if

o 6= si, or middle segment, otherwise.

Note that edge and middle segments are not proper generalizations of our earlier

informal definitions of the same, as an edge segment may have other segments to both

sides of it. For instance, In Figure 5.3, for o = 1, all segments are middle segments.

For o = 2 (second set of trajectories), segment A is covered by a single robot and is

an edge segment, while the others are middle segments. For o = 3, segments A,B are

edge segments.

For the purpose of the analytical discussion, we allow robots to occupy the same

space at the endpoints of the polyline. For instance, we treat the positions of robots

B,C,D in Figure 5.4 as being superimposed.

The function timep(l,r, p,v,o,s,n) calculates the time that passed between the (n−
1)th visit to the point p, and nth visit. By minimizing this function we can improve

the frequency of visits to the point p; by minimizing its variance over time, we can

improve its uniformity. The function is defined as follows.

timep(l,r, p,v,o,s,n) =

2 l
r

p
v if n mod 2s = 1

2(1− p) l
rv +2(o− s) l

rv if n mod 2s = s+1 or s = 1
l

rv otherwise
(5.1)

The first condition in the formula is satisfied when the robots change direction

at the left edge of a segment (l
r is a length of a segment). The second condition is

satisfied when the robots change direction at the right edge of the segment, and the

third condition is satisfied in the overlapping regions.

We use the function timep to develop the time-series of visits to any point p. Based

on the series, we will be able to analyze the behavior of the synchronized-overlap

patrol. We do this separately for the middle segments (Section 5.3.1) and the edge

segments (Section 5.3.2).

58

5.3.1 Middle Segments

The following cyclic series represents the time iteration of visiting a point p on a

middle segment when using the synchronized-overlap patrol technique:

l
vr

, · · · , l
vr︸ ︷︷ ︸

o−1

,
2l(1− p)

vr
,

l
vr

, · · · , l
vr︸ ︷︷ ︸

o−1

,
2l p
vr

, · · · (5.2)

In the synchronized technique o = 1, since each robot patrols only in one segment

and the robots do not overlap. Thus the time-series of visiting a point p by the syn-

chronized technique is given in the following cyclic series, which is a special case of

the above:

2l(1− p)
vr

,
2l p
vr

, · · · (5.3)

Based on this series, we can analyze the theoretical behavior of the patrolling al-

gorithms according to different point-visit frequency optimization criteria. We begin

by discussing the maximum minimal frequency criteria (under-bounding frequency).

Lemma 16. Suppose we are given a middle segment M. For all o ∈ N, where N
denotes the set of positive integers, the maximal minimum point visit frequency in M,

fmaxmin(o), is equal to fmaxmin(1). In other words, ∀o ∈ N, fmaxmin(o) = fmaxmin(1).

Proof. Let p be a point in M, defined as a fraction of the length of M, p ∈ [0,1). If

0 < p ≤ 1
2 then the longest period of time the point is left unvisited when o = 1 and

when o > 1 is 2l(1−p)
vr . If 1

2 < p < 1 then the longest period of time p is left unvisited

when using o = 1 and when o > 1 is 2l p
vr . Thus in both cases, the longest period of time

in which p is unvisited is equal for all o ∈ N.

In other words, for a middle segment, there is no difference between the standard

synchronized patrolling method, and any of its generalizations using integer overlaps.

This of course pertains to the under-bounding frequency criterion.

We now turn to the average frequency criteria. Lemma 17 shows that a similar

result holds.

Lemma 17. Suppose we are given a middle segment M. For all o∈N, the average visit

frequency in M, favg(o), is equal to favg(1). In other words, ∀o ∈N, favg(o) = favg(1).

59

Proof. Let p be a point in M, defined as a fraction of the length of M, p ∈ [0,1). The

average frequency of visiting p using o = 1 is

(
2l(1− p)

vr
+

2l p
vr

)/2 =
l

vr
.

The average frequency when using o > 1 is

(
2l(o−1)

vr
+

2l(1− p)
vr

+
2l p
vr

)/2o = (
2lo−2l +2l−2l p+2l p

vr
)/2o =

l
vr

and therefore

favg(o) = favg(1) =
l

vr
. (5.4)

Finally, we examine the visit frequency uniformity criterion. Here, we find that the

use of an overlap improves the uniformity of frequency.

Lemma 18. Suppose we are given a middle segment M. Given an overlap factor o∈N,

the standard deviation of the visit intervals to any point p ∈M, σp(o), decreases as o

increases.

Proof. Let p be a point in M, defined as a fraction of the length of M, p ∈ [0,1). The

average l
vr is known from Eq. 5.4. The standard deviation of the point interval in p is

given by:

σp(o) =

√√√√√
1

2o
((

l
vr
− l

vr
)2 + · · ·

︸ ︷︷ ︸
o−1

+(
2l(1− p)

vr
− l

vr
)2 +(

2l p
vr
− l

vr
)2 +(

l
vr
− l

vr
)2 + · · ·

︸ ︷︷ ︸
o−1

)

=

√
1

2o
((

2l−2l p− l
vr

)2 +(
2l p− l

vr
)2) (5.5)

=

√
1

2o
((

l−2l p
vr

)2 +(
l−2l p

vr
)2) (5.6)

= (

√
1
o
)| l(1−2p)

vr
| (5.7)

Note the transition from step (5) to step (6). The transition from (2l p−l
vr)2 to (l−2l p

vr)2

relies on (a)2 = (−a)2.

Clearly, increasing o decreases σp(o).

60

Now let us examine the mean standard deviation along the segment M, for a given

overlap factor o. It is given by:

σp(o) =
1
l

∫

p
σp(o).

Corollary 19. In the middle segments, as the overlap between the robots increases,

the frequency becomes more uniform, i.e., the mean standard deviation decreases.

Thus for the naive motion model (instantaneous turns), as the overlap factor in-

creases, patrolling becomes better from the perspective of visit frequency. However,

this does not come without a cost, which we will see below for the edge segments.

5.3.2 Edge Segments

We will analyze the quality of the synchronized-overlap patrol approach along the edge

segments. First, we clarify that as the overlap factor increases in the synchronized-

overlap approach, there will be more edge segments. As we already mentioned, an

edge segment is a segment where s 6= o. The number of edge segments is o− 1. The

synchronized approach is a private case of the synchronized-overlap approach in which

s = o = 1 , i.e., there are no edge segments in it.

Series 5.8 below shows the times of visiting a point p in the edge segments.

l
vr

, · · · , l
vr︸ ︷︷ ︸

s−1

,
2l(o− s)+2l(1− p)

vr
,

l
vr

, · · · , l
vr︸ ︷︷ ︸

s−1

,
2l p
vr

, · · · (5.8)

Lemma 20. Suppose we are given an edge segment E. For all o ∈N, where o > 1, the

maximal minimum point visit frequency in E, fmaxmin(o), is smaller than fmaxmin(1). In

other words, ∀o > 1 ∈ N, fmaxmin(o) < fmaxmin(1).

Proof. Let p be a point in E, defined as a fraction of the length of E, p ∈ [0,1). Based

on the Series 5.8 above, we show that the longest interval for which synchronized-

overlap technique (o > 1) neglects p is

2l(o− s)+2l(1− p)
vr

.

61

First, since o≥ s+1, and 1 > p≥ 0, then

2l(o− s)+2l(1− p)
vr

>
2l +2l(1− p)

vr
=

4l−2l p
vr

>
2l
vr

and we know
2l
vr

>
l

vr
,

2l
vr

>
2l p
vr

Thus 2l(o−s)+2l(1−p)
vr is the longest interval for which p is neglected when o > 1.

In the case when o = 1, however, the worst case for the synchronized technique

depends on the point p. It is

2l(1− p)
vr

, if 0≤ p≤ 1
2

and
2l p
vr

, if
1
2

< p < 1.

Since s+1≤ o, and 1 > p≥ 0 the following inequalities hold:

2l p
vr

<
2l(o− s)+2l(1− p)

vr
2l(1− p)

vr
<

2l(o− s)+2l(1− p)
vr

. (5.9)

Thus the maximal duration between visits when o > 1 is greater than in o = 1, or

fmaxmin(o) < fmaxmin(1) for o > 1.

A similar result holds for the average visit frequency. The average interval between

visits is shorter when o = 1 than when o > 1.

Lemma 21. Suppose we are given an edge segment E. For all o ∈ N, where o > 1,

the average point visit frequency in E, favg(o), is smaller than favg(1). In other words,

∀o > 1 ∈ N, favg(o) < favg(1).

Proof. Based on the Series 5.8 above, we know the average time of visiting a point in

the edge segment E, when o > 1, is
o
s

l
vr

The average for the synchronized technique (o = 1) is

l
vr

Since s+1≤ o the inequality o
s

l
vr > l

vr holds. Thus the point visit interval in edge

segments when o = 1 is shorter, and as a result, favg(o) < favg(1) when o > 1.

62

Finally, we show that in edge segments, frequency uniformity is better (the standard

deviation decreases) when using the synchronized technique (o = 1), compared to the

synchronized-overlap technique (o > 1).

Lemma 22. Suppose we are given an edge segment E. For all o ∈ N, where o > 1,

the standard deviation of point visit frequency in E, σ(1), is smaller than σ(0), where

o > 1. In other words, ∀o > 1 ∈ N,σ(o) > σ(1).

Proof. Let p be a point in E, defined as a fraction of the length of E, p∈ [0,1). Because

The standard deviation of visiting p when o > 1 is:

σedge =

√
1
s

l
vr

√
2(o− s)2 +(1−2p)2 +(3−4p)(o− s)+o(1− 1

s
).

Since 0≤ p < 1 and o≥ s+1, it follows that

σedge >

√
1
s
| l(1−2p)

vr
|

To see this, we show that

2(o− s)2 +(3−4p)(o− s)+o(1− 1
s
) > 0.

First, since o and s are positive integer numbers,

o(1− 1
s
)≥ 0.

And since p ∈ [0,1), it follows that

2(o− s)2 +(3−4p)(o− s)≥ 2(o− s)2− (o− s).

Finally, since o≥ s+1,

2(o− s)2− (o− s) > 0.

Thus 2(o− s)2 +(3−4p)(o− s) > 0.

But, since o≥ s+1, it follows that

√
1
s
| l(1−2p)

vr
|>

√
1
o
| l(1−2p)

vr
|=⇒ σedge > σmid

where σmid is the standard deviation of the synchronized technique with o = 1 in both

edge and middle segments.

63

Corollary 23. As overlap increases, the frequency criteria become worse in the edge

segments. The under-bounding frequency, average frequency, and frequency unifor-

mity all decrease.

By Corollary 19 we can see that there is advantage on increasing the overlap in the

patrol. The advantage affected only in middle segments. However, Corollary 23 shows

that there is a disadvantage of increasing the overlap in edge segments. For relatively

long fences, where the number of middle segments is significantly higher than edge

segments, this trade-off might be beneficial. This may especially be true if the edge

segments (who are positioned at the extremities of the polyline) can be patrolled or

monitored via some other means.

64

Chapter 6

Realistic-Motion Polyline Patrolling

Most realistic robots cannot turn instantaneously. Turning around requires time. In

this section, we consider a more realistic motion model, and analyze its impact on

the frequency of the visited points. In particular, not only does turning time influence

the visit frequency directly, but it also becomes an important factor. The greater the

overlap, the less turns are taken. We address turns in Section 6.1. In addition, real

robots have velocity errors, due to interruptions and small corrections, which result in

different distances being traveled. We address this additional constraint in Section 6.2.

6.1 Handling Turning Durations

We extend the timep function (Equation 5.1) to support arbitrary turning times. We

denote the time it takes the robots to turn as t. Note that we still assume homogeneous

robots, and thus all robots turn at the same velocity. The revised formula is shown in

Equation 6.1 below:

timep(l,r, p,v,o,s,n, t)=

2 l
r

p
v + t if n mod 2s = 1

2(1− p) l
rv +2(o− s) l

rv + t if n mod 2s = s+1 or s = 1
l

rv otherwise
(6.1)

We analyze the performance of the patrol techniques (synchronized and

synchronized-overlap) using the more realistic motion model in Section 6.1.1 (mid-

dle segments) and Section 6.1.2 (edge segments).

65

6.1.1 Middle Segments

The cyclic series 6.2 shows the times of visiting a point p in a middle segment, as

computed by formula 6.1, for the case of the synchronized-overlap technique (o > 1).

As before, p is given as a fraction of the size of the segment, 0≤ p < 1. We can easily

see that it identical to series 5.2 but t is added to account for the robots’ turning times.

l
vr

, · · · , l
vr︸ ︷︷ ︸

o−1

,
2l(1− p)

vr
+ t,

l
vr

, · · · , l
vr︸ ︷︷ ︸

o−1

,
2l p
vr

+ t, . . . (6.2)

The cyclic series 6.3 shows the point visit time-series generated by the synchro-

nized technique. It similar to series 6.2, but the difference is in the overlap factor o.

Since there is no overlap (in synchronized) and o = 1.

2l(1− p)
vr

+ t,
2l p
vr

+ t, . . . (6.3)

Lemma 24. There is no difference between the synchronized and synchronized-overlap

patrol techniques in terms of the under-bounding frequency criterion in the middle

segments.

Proof. Let p be a point in a middle segment, expressed as a fraction of the segment’s

length p ∈ [0,1). If 0 ≤ p ≤ 1
2 then the worst duration of neglecting p in the syn-

chronized and synchronized-overlap techniques is 2l(1−p)
vr + t. If 1 > p > 1

2 then the

worst time to abandon point by the synchronized and synchronized-overlap techniques

is 2l p
vr + t. Thus in both cases the maximal minimum frequency is the same.

Lemma 25. The synchronized-overlap patrol techniques get better results (the aver-

age time iteration is lower) than the synchronized technique in the average frequency

criterion in middle segments.

Proof. The average frequency of visiting a point using the synchronized technique

is l
vr + t (by averaging the series 6.3). The average of the point visit frequency us-

ing synchronized-overlap is l
vr + t

o (by averaging series 6.2). Since in synchronized-

overlap technique o > 1 =⇒ l
vr + t > l

vr + t
o

Lemma 26. Let p be a point in a middle segment, expressed as a fraction of the seg-

ment’s length p ∈ [0,1). The frequency of the synchronized-overlap patrol technique

is more uniform than the synchronized patrol when t < (
√

o)| l(1−2p)
vr |.

66

Proof. The standard deviation of the frequency in a middle segment is
√

(o−1)(
t
o
)2 +

1
o
(
l−2l p

vr
)2.

Since in the synchronized technique o = 1, then its standard deviation is | l(1−2p)
vr | (it is

the same as in the 0-time turning model). In order to achieve the following inequality√
(o−1)(t

o)2 + 1
o(l−2l p

vr)2 <| l(1−2p)
vr |, the following must hold t <

√
o | l(1−2p)

vr |.

Corollary 27. By using the synchronized-overlap technique we increase the aver-

age frequency of a point, and also the overall average frequency in the middle seg-

ments. By increasing the overlap factor o we can achieve more uniform patrol in the

synchronized-overlap technique. However, this depends also on t (the time it takes the

robot to turn). Given t and o, we can determine which patrolling technique is more

uniform (synchronized-overlap or synchronized).

6.1.2 Edge Segments

We analyze the different patrolling algorithms in the edge segments, when turning

durations are taken into account. As we already mentioned (in Section 5.3.2), the

number of edge segments in synchronized-overlap technique is o−1 (the synchronized

technique does not contain edge segments since o = 1). si is thus possibly different in

each of the edge segments i. Series 6.4 shows the times of point visits in the edge

segments, based on Equation 6.1.

l
vr

, · · · , l
vr︸ ︷︷ ︸

s−1

,
2l(o− s)+2l(1− p)

vr
+ t,

l
vr

, · · · , l
vr︸ ︷︷ ︸

s−1

,
2l p
vr

+ t, . . . (6.4)

Lemma 28. In edge segments, the synchronized-overlap shows worse results in the

under-bounding frequency criterion, compared to the synchronized technique.

Proof. Let p be a point in an edge segment, expressed as a fraction of the segment’s

length p ∈ [0,1). The longest duration for which the synchronized-overlap technique

neglects p is given by (see Series 6.4)

2l(o− s)+2l(1− p)
vr

+ t.

67

The worst-case for the synchronized technique depends on the point p, 2l(1−p)
vr + t if

0 ≤ p ≤ 1
2 , or 2l p

vr + t if 1 > p > 1
2 . Since s + 1 ≤ o the inequalities in (Equation 6.5

below) always hold.

2l(1− p)
vr

+ t <
2l(o− s)+2l(1− p)

vr
+ t

2l p
vr

+ t <
2l(o− s)+2l(1− p)

vr
+ t. (6.5)

We have shown earlier that the average frequency of a point on edge segment is

always better in synchronized patrolling than in the synchronized-overlap patrolling.

However, in the realistic model, the time it takes the robot to turn (t) changes this

conclusion in several cases, favoring the synchronized-overlap patrolling.

Lemma 29. When s > 1 and t > l(o−s)
(s−1)vr the average frequency of a point in edge

segments is lower in the synchronized-overlap rather than synchronized technique.

Proof. The average frequency of a point by the synchronized technique is l
vr + t.

The average frequency in the synchronized-overlap technique is o
s

l
vr + 1

s t. In order

to achieve the inequality in Equation 6.6 below the following must hold t > l(o−s)
(s−1)vr for

s > 1.
o
s

l
vr

+
1
s

t <
l

vr
+ t. (6.6)

Corollary 30. There is only one edge segment in which the synchronized technique will

always achieve better results in terms of average frequency: The leftmost segment. In

the other segments, the other edge segments average criteria depends on o,s, t values.

In conclusion, we have seen that the synchronized technique, and especially its

generalization using an overlap factor o has interesting properties with respect to the

different frequency-optimization criteria. In particular, the performance of the algo-

rithms depends significantly on the segments chosen: Edge segments result in quali-

tatively different performance, compared to middle segments. We have shown that in

many cases in the middle segments, the increase in overlap results in improved uni-

formity, without hurting the average and under-bounding frequencies. However, this

68

comes at a cost of greater neglect (and thus worse performance) in the edge segments.

Moreover, the greater the overlap, the greater the neglect of points in edge segments,

such that in those segments, performance is also reduced significantly in terms of the

response time.

6.2 Handling Motion Errors

The selection of an optimal overlap factor critically depends on the model for the

robot motion characteristics. In reality, robots not only take time to turn, but also have

motion errors, which cause their actual velocity to diverge from the planned velocity

v.

We add to the above discussion the function d(x) to account for the accumulation of

errors in robot motion. Let T (x) denote the time it would take a robot to pass a distance

x. Under assumption of no errors, T = x
v where v is the robot’s constant velocity.

However, in realistic settings, due to acceleration changes and accumulating errors in

motion, the actual travel time is going to be different: T = x
v + d(x). By choosing

to represent the error in travel time directly in terms of time, we bypass modeling

the different factors accounting for delays, and focus on the symptoms. Note that we

assume the d(x) is non-decreasing function. Although in principle it is possible that a

robot will travel too fast due to errors, in reality, this is rarely the case. For instance,

a common source of velocity errors in laboratory robots is battery decay. This causes

slowed motion, rather than acceleration.

We now analyze the visit frequency of a given point p using FOP, given the robots’

motion characteristics t and d. The function timep(l,r, p,v,o,s,n, t,d) calculates the

time that passes between two subsequent visits (n− 1,n) to the point p in a given

segment i. By minimizing this function we improve the frequency of visits to the point

p. The function timep(l,r, p,v,o,si,n, t,d) is defined as follows.

69

2 l
r

p
v + t +d(o l

r)−d((o− p) l
r)

+d(p l
r) if n mod 2si = 1

2(1− p) l
rv +2(o− si) l

rv + t

+d(o l
r)−d((si + p−1) l

r) if n mod 2si = si +1

+d((1− p+o− si) l
r) or si = 1

l
rv +d(l

r ([(n−1) mod si]+ p))

−d(l
r ([(n−2) mod si]+ p)) otherwise

(6.7)

The first condition in Eq. 6.7 is satisfied when the robots change direction at the left

edge of a segment (l
r is a length of a segment). The second condition is satisfied when

the robots change direction at the right edge of the segment, and the third condition is

satisfied in the overlapping regions.

Using Eq. 6.7, we can now construct the cyclic series which describes the times at

which a point p is visited. The series is given in Eq. 6.8 below.
The first element is:

2
l
r

p
v

+ t +d(o
l
r
)−d((o− p)

l
r
)+d(p

l
r
)

Then the next si−1 elements are of the form:

si−1

l
rv +d((1+ p) l

r)−d(p l
r)

l
rv +d((2+ p) l

r)−d((1+ p) l
r)

...
l

rv +d((si−1+ p) l
r)−d((si−2+ p) l

r

Then, one element:

2(1− p) l
rv +2(o− si) l

rv + t +d(o l
r)

−d((si + p−1) l
r)+d((1− p+o− si) l

r)

70

And finally, si−1 elements of the form:

si−1

l
rv +d((1+ p) l

r)−d(p l
r)

l
rv +d((2+ p) l

r)−d((1+ p) l
r)

...
l

rv +d((si−1+ p) l
r)−d((si−2+ p) l

r

(6.8)

The first element of the series is the result of the first condition in Eq. 6.7. It

matches the situation where a robot returns to its base segment and turns back until it

meets the point p again: 2 l
r

p
v + t +d(o l

r)−d((o− p) l
r)+d(p l

r). It is constructed from

three components: (i) The time to arrive at p, based on the distance and robot velocity,

the time it takes the robot to turn and the time error function, d; (ii) the time t it takes the

robot to turn around; and (iii) the error (in travel time) due to the robot motion. The first

component is given by 2 l
r

p
v where l

r
p
v is the time it takes the robot to arrive from point p

to the left edge of the segment. We multiply it by 2 since the robot needs to return from

this edge to point p. The third component is given by d(o l
r)− d((o− p) l

r)+ d(p l
r),

which is a reduction of d(o l
r)− d((o− 1) l

r +(1− p) l
r)+ d(p l

r). This value has two

parts: Error in travel time from point p to the left edge and the error in travel time

from the left edge back to point p. The error in traveling from point p to the left edge

is equal to d(o l
r)− d((o− 1) l

r +(1− p) l
r) which is the error of moving along all the

(overlap) segments (d(o l
r)) minus the uncertainty of moving along all the (overlap)

segments until point p. The uncertainty of moving from the left edge to point p is

equal to d(p l
r). Note that this model assumes that motion time errors are set to zero

once a robot halts and turns.

The second element in the cyclic series (Eq. 6.8), corresponds to a neighboring

robot that visits the point p, due to any overlap. The value is l
rv +d((1+ p) l

r)−d(p l
r).

It is composed of two factors: The time to arrive at the point (based on the distance and

velocity), and the travel-time error function d. Since the robots are in l
r distances from

one another, the pure time it takes an adjacent robot to arrive the point p (after it has

just been visited by another robot) is l
rv . The component d((1 + p) l

r) comes from the

adjacent robot’s movement until it reaches point p. We then subtract from it d(p l
r), the

error in time originating with the first robot movements as it leaves the point p behind

it.

71

Overall, the segment i in question is visited by si robots, each twice (when moving

left to right, and when moving right to left). The previous two paragraphs described

the visit times due to the first two of these visits: The visit by original (first) robot, and

a visit by an adjacent robot. Any other si−2 robots follow the behavior of the adjacent

robot, thus overall there are si− 1 elements due to adjacent robots in the first part of

the series, as robots move left to right.

The other si elements in the cycle of series are due to the robots turning and repeat-

ing the movement, but from right to left. The next value (number si +1) is 2(1− p) l
rv +

2(o− s) l
rv + t + d(o l

r)−d((s + p−1) l
r)+ d((1− p + o− s) l

r). This is a reduction of

2(1− p) l
rv +2(o− s) l

rv + t +d(o l
r)−d((s−1) l

r + p) l
r)+d((1− p) l

r +(o− s) l
r). This

value is similar in form to the first value of the series.

6.2.1 Optimizing average frequency

The average time to visit a point p in the i’th segment is given the function avgp,

shown in Eq. 6.9. The function avgp averages the previously shown series in Eq. 6.8,

by relying on the function sump (Eq. 6.10) to sum the times between visits to point p

in segment i.

avgp(l,r, p,v,o,si, t,d) =
1

2si
sump(l,r, p,v,o,si, t,d) (6.9)

sump(l,r, p,v,o,si, t,d) =
2ol
rv

+2t +2d(o
l
r
)−d(p

l
r
)−d((o− p)

l
r
)

+d((si−1+ p)
l
r
)+d((1− p+o− si)

l
r
) (6.10)

In order to find the optimal overlap factor o that minimizes the global average along

all fence, we need to summarize all visit sequence of each point in all fence segment

and minimizing this value respectively to o. We do this in two stages. First, we use an

integral from 0 to 1 on function sump, with respect to p, to sum all of the visit intervals

of all points in a specific segment. We then sum all such integrals in all segments, and

divide by the length of the entire polyline.

Equations 6.11–6.12 show this process. The function sum in equation Eq. 6.11

sums all the visit intervals of all points in all segments. Here, S is the set of all si.

72

Then, the function avg (Eq. 6.12) divides the sum by l to get the average time between

visits, over the entire length of the open polyline.

sum(l,r, p,v,o,S, t,d) =
r

∑
i=1

1∫

0

sump(l,r, p,v,o,si, t,d) dp (6.11)

avg(l,r, p,v,o,S, t,d) =
1
l

sum(l,r, p,v,o,s, t,d). (6.12)

To find the optimal o value that minimizes the avg function 6.12 by looking for

a minimal value, e.g., by using the first and second derivative with respect to o to

determine minimum points. Since in this article we did not place any restrictions on

the structure of d, we refrain from doing so here. In practice, it should be done only

once d is known.

6.2.2 Maximal minimum frequency

For the under-bounded frequency criteria it is easy to determine that the segment i for

which o− si is greatest, has the lowest frequency of visits to segment points. The edge

where this occurs is known in advance—it is the leftmost edge segment (i = 1), which

is left alone for long periods of time when the robot responsible for it is busy in the

overlapping portions of its trajectory, and no other robots visit it. As we move right,

and more robots patrol the segments, the better this measure becomes.

The worst time to visit a point in the leftmost segment is (as appears in Eq. 6.8):

2(1− p)
l

rv
+2(o− s1)

l
rv

+ t +d(o
l
r
)−d((s1 + p−1)

l
r
)+d((1− p+o− s1)

l
r
)

Thus if the maximal minimum criteria is important at the polyline level (i.e., across

all segments), then no overlap should be used. setting o = 1 maximizes the minimal

frequency in this case.

However, suppose we are instead seeking to examine the maximal minimum fre-

quency per segment. In middle segments (where o = si) the lowest frequency (the

greatest time between visits) of visiting a point will be the maximal value from the

following options:

73

1. 2 l
r

p
v + t +d(o l

r)−d((o− p) l
r)+d(p l

r)

2. maxo−1
i=1 (l

rv +d((i+ p) l
r)−d((i−1+ p) l

r))

3. 2(1− p) l
rv + t +d(o l

r)−d((o−1+ p) l
r)+d((1− p) l

r)

The maximal value depends on the form of d function and the point p.

6.2.3 Maximal frequency uniformity

As before, we measure the uniformity of visit frequency by the standard deviation of

frequency values. Lower values indicate improved uniformity, as it means that the

frequency values for different points p are clustered more closely around the average

frequency.

The standard deviation of visiting a point along the polyline is shown in Eq. 6.13.

In order to find the o value that minimizes the function.

σ(o) =

√√√√√√√

r
∑

i=1
(

1∫
0
(

2si
∑
j=1

(timep(l,r, p,v,o,si, j, t,d)−avg(l,r, p,o,si, t,d))2) dp)

l
r
∑

i=1
2si

(6.13)

6.3 Summary

The analysis in this section has shown how to extend the FPO algorithm beyond a naïve

motion model, to account for robot turning durations, and velocity errors. The result of

this analysis, however, shows that there is no longer a clear-cut trade-off between edge

and middle segments, and the overlap factor is increased. Rather, the optimization

depends critically on the actual error function d(x) and the turn duration t. Indeed,

in Section 8, we will demonstrate that both parameters are necessary to predict the

behavior of real robots.

In principle it is possible to optimize the selection of the overlapping factor o to

maximize performance across three frequency-based criteria. Thus given environment

parameters (e.g., length of fence, number of available robots) and robot motion charac-

teristics (turning duration t, the error function d), it is possible to determine the optimal

74

o. Naturally, by manipulating the analysis, it might be possible to instead determine

the optimal number of robots for a given overlapping factor, or the optimal turn dura-

tion for a given number of robots and overlapping factor, etc. We leave this for future

work.

We note that all the models described above assume that the robot size is insignifi-

cant relative to the fence size, which is not true in typical laboratory conditions (see our

own experiments below). This assumption is, however, true in many target patrolling

applications, where the patrolling unmanned ground vehicles (UGVs) are a few meters

long, and patrol a fence that is at least a few kilometers in length.

75

Chapter 7

Handling Events in Polyline Patrolling

In the fence patrol task, we expect the system to execute nothing but the patrolling

motion for most of the time. However, the purpose of the patrol is to be able to respond

to events. We follow earlier work [26] in accounting for event handling duration within

the algorithms. On the other hand, we would like to keep an optimal frequency of

visiting in most of the fence locations. This requires robots to spend as little time as

possible handling event, so as to interrupt the patrolling motion as little as possible.

On the other hand, We want to make sure events are handled by specific deadlines, and

are not ignored.

Definition 3 (Polyline event). An event e j is tuple 〈i, p, t j,Tj〉, where i is the segment

number where the event occurs; p is a point in the segment where the event takes

place, given as a fraction of the length of the segment, p ∈ [0,1); t j is the time it takes

to handle the event and Tj is the time-limit to finish handling the event from the moment

it occurred. Tj− t j is thus the duration for which the event point can be neglected from

the moment the event occurred until it is fully handled.

The key to optimal event handling is to share the event handling between the robots

that are already patrolling along the segment in which the event occurs. This will allow

the robots to stay in their original patrol path and stay synchronized in their movement

most of the time the event is handled.

The first step of the event handling procedure is to check if the event location can

be feasibly reached, i.e., the event is feasible. We define t f to be the time it takes the

closest robot to the event point to arrive the event. Let Feasible(e j) be a Boolean

76

variable that represents the feasibility of the event. If the Tj − t j is less then t f the

closest robot (to the event) will not succeed to arrive the event and handle it in less

than Tj. In such situation the event cannot be handled without changing the velocity of

the robots or some other external intervention.

Feasible(e j) =

{
False if Tj− t j < t f

True otherwise
(7.1)

The robot motion model must be taken into account when deciding on how to

best allocate robots to handling an event. In the discussion below, we assume a naïve

motion model where robot turns are instantaneous, and no velocity errors occur. The

extension to the more realistic models is technically straightforward.

We use the robots that are assigned to patrol (in overlap, if any) the specific segment

in which the event occurs, to handle the event. The number of robots that could handle

the event by our algorithm is si if the event occurs in segment i. In order to minimize the

effect on the patrolling trajectories, we divide the event handling over many patrolling

passes as possible, as this necessarily means that we deviate minimally from the current

patrol schedule. We define rounds to be the number of visits the robots make to the

event locations, either left to right or vice versa. The time series below (Series 7.2)

shows the point visit times at point p on segment i, which compose a complete set of

visits (a round) by all the robots that patrol and overlap within the segment. Our goal

is therefore to maximize rounds.

2
l
r

p
v
,

l
rv

, · · · , l
rv︸ ︷︷ ︸

si−1

,2(1− p)
l

rv
+2(o− si)

l
rv

,
l

rv
, · · · , l

rv︸ ︷︷ ︸
si−1

, · · · (7.2)

Let series be the total duration of a round (the sum a cycle in Series 7.2). It is

always 2o l
rv for any point p. This is the time it takes the robots to pass the event

location from right to left and vice versa. The number of such rounds is

Tj

series
.

Therefore at each round each of the robots should attend the event for period of

t j

si(rounds)

77

which is divided into two halves; one in passing left to right, and one in passing right

to left. Thus in each pass, regardless of direction, each robot should spend a time of

t j

2si(rounds)

on handling the event. The number of complete rounds the robots will do so will be

broundsc. Later on in this section, we will explain how the event is handled at the last,

incomplete, round.

During the broundsc complete rounds, the robots that attend the event should move

the same period of time to one direction (right to left and left to right) as before the

event occurred. This, to ensure that all the robots (and not only those that attend the

event) continue moving in a synchronized manner as before. Specifically, each of robot

moves to one direction for period of o l
rv time. When a robot attends the event, it must

move for a time of only o l
rv −

t j
2si(rounds) . The rest of the time (t j

2si(rounds)) it will attend

the event. This will keep the robot patrol synchronized.

It might be that there is a need for a final, incomplete round, where only some

of the robots should attend the event (the time is not sufficient for all to participate).

Algorithm REMAINDEREVENT (Algorithm 10) calculates the maximal time that the

event can be attended to by the passing robots in the last incomplete round. Each robot

here moves for a time of o l
rv in each direction, as before the event occurred.

Let 〈tp, intervals,startIndex,Tj, t j〉 be the input of algorithm REMAINDEREVENT.

tp is the time it takes the closest robot to arrive the event point without breaking its

regular patrol path. intervals is an interval array of visiting the event point p, as shown

in Series 7.2. startIndex is the index of the visiting interval of the event point after the

closest robot attends to it. Tj is as described above, but we update it to be the residual

from the previous rounds. So Tj is updated to be: Tj ← Tj−broundsc× series. t j is as

described above but also decrease with the time that the robots handle the event at the

previous rounds. So t j is updated to be t j ← t j−broundsc t j
rounds

The algorithm calculates the number of visits needed to handle the event during

the last (incomplete) round. The time to attend to the event, by each robot, is easy to

calculate. It is t j divided by the number of visits, i.e., t j/NumberO fVisits.

Line 2 of the algorithm initializes the variable sum to be the time it takes the closest

robot (in its regular pass) to arrive at the event location. The variable sum represent

the time that the event location is neglected. The while loop (lines 3–15) iteratively

78

Algorithm 10 REMAINDEREVENT(tp,intervals,startIndex, Tj, t j)
1: NumberO fVisits← 1.

2: sum← tp.

3: while Tj− t j ≥ sum do
4: sum← tp.

5: i← startIndex

6: NumberO fVisits← NumberO fVisits+1

7: HandleTime← t j
NumberO fVisits

8: for visits← 1 to NumberO fVisitis−1 do
9: i← i mod intervals.length

10: if i = 0 or i = intervals.length
2 then

11: sum← sum+ intervals[i]

12: else
13: sum← sum−HandleTime

14: i← i+1

15: visits← visits+1

16: NumberO fVisits← NumberO fVisits−1

17: return NumberO fVisits

increase the number of times the event handled (line 6), updates the influence on the

system (lines 8–13) and makes sure that we do not go over the time limit (line 3).

Event handling will always decrease the patrol performance since the robots need

to dedicate some of their patrol time to handling events. Given the above algorithm, the

segments that could suffer from such decreasing frequency (but will not abandon) will

be, at most, the o neighboring segments to the segment in which the event occurred.

This because the robots, while they attend to the event, need to move to one side (left

to right or right to left) for o l
rv time, exactly as before the event occur. Now, the robots

that handle the event could not succeed to pass all the o segments they should pass

during this time, but only part of them.

The above leaves one possible case unexplored. It might be that an event is

Feasible, but the time to arrive the event by the regular patrol path tp is not suffi-

cient to arrive at the event location (plus handling time). In other words, Tj− t j < tp.

In this situation the closest robot to the event location must break the patrol trajectory

79

and travel to the event location. There, it will handle the event until its neighbor robot

will arrive and take over. From that point, the regular event handling procedure can

continue.

80

Chapter 8

Experiments

To evaluate the usage of the patrolling algorithm FOP (Algorithm 9, we conducted a

series of experiments on physical robots, during which the robots are performing pa-

trols of o = 1 and o = 2, using the algorithm. The purpose of the experiments was

to evaluate the predictions of the different models as to the actual patrolling frequen-

cies of the robots. For instance, the realistic-motion model discussed in Section 6.2

predicted that an overlap of one (o = 1) would be better for the given length of the

polyline used in the experiments, while the original, more abstract model predicted

that an overlap of two (o = 2) would work better.

To carry out these experiments, the robots were programmed by students, without

knowledge of the motion models developed. The experiment settings are discussed in

Section 8.1. We recorded the point visit frequencies in extensive trials, and conduct

post-hoc analysis, in which we compare the predictions of the different models to the

actual behavior of the robots (Section 8.2).

8.1 Experiment Settings

Our experiments utilized a team of three robots, patrolling a mock fence, using

Friendly Robotics’ RV-400 [35] vacuum cleaning robots (Figure 8.1). Each commer-

cial robot was modified to be controlled by a small Linux-running computer, sitting

on top of it. A generic interface driver for the RV-400 robot was built in the Player

robotics API [39], and a client program was built to control it, implementing FOP

(Algorithm 9). The robots have 8 short-range sonar sensors, pointing forward and

81

sideways, which we utilize for maintaining distance to the mock fence. The robot in-

terface also provides rudimentary odometry readings (coordinates and heading), which

are unfortunately fairly inaccurate.

Figure 8.1: The RV-400 vacuum cleaner robot, with our lab’s computer overriding its

commercial control software.

The experiment settings consisted of a carton-box mock fence, 5.40 meters in

length. The fence was divided into three equal-length segments (180cm each). Figure

8.2 shows a birds-eye view of the mock fence. The three robots are equidistant from

each other, though it might be difficult to see because the picture was taken at an angle.

The FOP algorithm—in its abstract form—was described to students carrying out

course projects in the laboratory. Thus their implementation of the FOP algorithm is

untainted by our expectations, given our own knowledge of the motion characteristics

model. This is a critical point in the design of the experiment.

Independent variables. We ran two sets of patrolling runs. In the first set of nine

patrol runs, the robots had to complete one back and forth round with an overlapping

factor of 1, i.e., no overlap at all (o = 1). In the second set of seven trials (originally,

nine, but two were dismissed because a weak battery caused noticeable slowdown in

their movements), the robots also had to complete one round trip, but this time with an

82

Figure 8.2: A snapshot from experiments. The three robots are positioned at the initial

points for the three segments.

overlapping of 2 (o = 2), in which the leftmost and middle robot are also responsible

for the segment to their right.

Dependent variables. To measure frequency, we recorded movies of the robots pa-

trolling the fence, and later analyzed the video recordings to determine the duration

between subsequent visits to points within each segment. Four sampling points p were

selected at a distance of 45cm, 225cm, 255cm, and 285cm from the left edge of the

fence. The points were selected for their visibility in the videos. The 45cm point is on

the leftmost edge segment, at p = 45
180 = 1

4 . The other three points are respectively in

the middle segment. Each patrolling run consisted of a number of visits to each point,

the results (below) are averaged over approximately 30 data-points (when o = 2), or

20 data-points (o = 1).

Each set of results from the robots’ patrols was contrasted with the predictions of

two different analytical models: The realistic model described in Section 6.1 which

83

Figure 8.3: The deviation function d(x) which measures the extra time that the robot

delays when moving a distance x, as a result of uncertainty in movement and accumu-

lating errors.

accounts for turning durations, and the more abstract model described in Section 6.2

which adds also explicit accounting for motion errors affecting segment travel times.

To compute the predictions of the models, we estimated the t and d parameters for

the robots, from a small subset of the recorded videos. We determined that the turning

duration t for the robots was approximately 6 seconds. The travel time error function

d(x) is shown in Figure 8.3. It was estimated based on measurements of 10 different

distances, in a subset of the experiments. Here, the x-axis shows the distance x, and

the y-axis measures the error in travel time, compared to the predictions based on the

robot velocity alone. Note the monotonically increasing error function: We remind the

reader that this error function was not intentionally built in, but was discovered post-

hoc, providing empirical support for the assumptions we made earlier on regarding the

monotonically-increasing nature of d.

84

8.2 Experiment Results

We calculated the predicted intervals of visitation according to two models:

New Model. The full realistic motion model (which includes turning durations and

motion uncertainty, as described in Section 6.2).

Old Model. The motion model allowing only for turning durations (i.e., as described

in Section 6.1).

We contrasted the predictions of both models with the empirical results observed in

practice. In this comparison, adjustments were made to the predictions of both models,

to account for the size of the robot compared to the length of its segment (essentially,

the robot size was deducted from the distance traveled).

8.2.1 Point-level predictions

We begin by a direct comparison of the two models, by specifically focusing on the

errors in their predictions for the sampling points we chose earlier. In Figure 8.4 we

present the average errors of each model with respect to the observed results, and the

standard deviation for the observed results. In both sub-figures, the x-axis shows the

four sampled points along the fence, denoted by their distance in centimeters from the

left edge of the fence. In the y-axis, we present the error in seconds. The left bar shows

the average error in the prediction of the old model. The middle bar shows the error in

prediction for the new model, described in Section 6.2. The right bar shows the sample

standard deviation for the observed results, for comparison.

Several conclusions can be reached based on Figure 8.4. First, for both overlapping

factor settings, the new model is clearly more accurate than the simpler old model; both

Figure 8.4(a) and Figure8.4(b) clearly show a substantial reduction in prediction error

in the new model (middle bar), compared to the old model (left bar).

Second, in most cases, the average errors of the new model are approximately equal

to the standard deviation of the observed results. This suggests that the new model is

not just relatively accurate (being superior to the other model), but also absolutely

accurate, in that the error is indistinguishable from the normal observed varying mea-

surements. We will revisit this point later, when discussing the statistical significance

of differences.

85

(a) o = 2

(b) o = 1

Figure 8.4: Errors in predictions, and the sample standard deviation. Lower values are

better. The new model’s results are always better than those of the old model.

8.2.2 Segment-level predictions

We now abstract away from specific points along the fence, and turn to examine the

predictions of the model at the segment level. Figures 8.5–8.7 contrasts the segment

86

level average frequency (Figure 8.5), maximal minimum frequency (Figure 8.6), and

uniformity (as measured by the frequency standard deviation) for two segments: The

leftmost segment (which, when o = 2 is an edge segment), and the middle segment.

Each sub-figure shows two groups of bars. The left group of bars shows the results

for the leftmost (edge) segment. The right group of bars shows the results for the

middle segment. Within each group, the leftmost bar shows the predictions of the old

model, the middle bar shows the predictions of the new model, and the final bar shows

the actual results (averaged over the different runs). Sub-figures should be contrasted

vertically: The top sub-figures show the frequency criteria measurements for o = 1,

and the bottom sub-figures show the measurements for the same criteria, for o = 2.

Multiple issues are raised by the comparison. First, by contrasting predictions

of the old and new models with the actual results (i.e., within each group of bars), we

again see that the new model, developed in this thesis, accurately predicts the observed

behavior of the robots in practice, regardless of the overlap factor. To see this, we

look at the statistical significance of the differences between the predictions of the old

model and the experiment results, versus the significance of the difference between the

predictions of the new model and the results. These results are shown in Table 8.1.

Performance Overlap Old Model New Model

Criteria Factor Edge Middle Edge Middle

Uniformity o = 1 0.00008 0.032 0.9991 0.4674

o = 2 < 1×10−14 0.000001 0.7001 0.0041

Average o = 1 0.0047 0.00765 0.5586 0.701

o = 2 0.3215 0.00361 0.9994 0.969

Maximal o = 1 < 1×10−14 0.570 0.9987 0.9999

o = 2 < 1×10−14 0.675 0.9973 0.9999

Table 8.1: Significance of comparison of the experiment results to the old and new

models. Each cell holds the results of a two-tailed z-test p value for the corresponding

segment (edge or middle), overlap factor o (1 or 2), for the different performance

criteria.

We find in Table 8.1 that generally, in terms of average frequency and uniformity of

frequency, the predictions for the old model are statistically significantly different than

87

(a) Average time between visits in segments, o = 1.

(b) Average time between visits in segments, o = 2.

Figure 8.5: Average time between visits, for different overlap factors. A lower result

is better on an absolute scale.

the experiment results (two-tailed Z-test, p < 0.05). This implies that the old model

does not accurately predict the experiment results. However, there is in general no sta-

tistically significance difference between the predictions of the new model and and the

results. While this does not prove they are the same (i.e., that the new model is accu-

rate), it does lend support to this hypothesis. This is especially true given the high val-

ues of the null hypothesis probability (p) values. For the maximal minimal-frequency

88

(a) Maximal time between visits, o = 1.

(b) Maximal time between visits, o = 2.

Figure 8.6: Maximal time between visits, for different overlap factors. A lower result

is better on an absolute scale.

criteria, both the old and new model’s predictions are not significantly different than

the robot results.

A second issue is raised when examining the left and right groups of bars within

each sub-figure, and contrasting them vertically. We see a clear qualitative difference

between the middle and edge segments (when o = 2), which is not present in the

case o = 1. This distinction between the results of the FOP algorithm in middle and

89

(a) Sample standard deviation of segments, o = 1.

(b) Sample standard deviation of segments, o = 2.

Figure 8.7: Uniformity of patrolling frequency—measured by the standard deviation

of the results—for different overlap factors. A lower result is better on an absolute

scale.

edge segments, for o > 1, is theoretically predicted by the analytical models developed

earlier. In this respect, selecting o = 1 may be a better choice, if one does not allow

variability in patrolling frequency at the segment level.

Lastly, by contrasting individual groups of bars vertically, we can begin to see

where there may be an advantage to the overlapping group (o = 2). For the middle

90

segments, the results of the average and maximum minimum frequency are essentially

the same for o = 2 as for o = 1. However, we can also see that the uniformity of the

middle segments in the case of o = 2 is much improved compared to the case of o = 1

(Figures 8.7(a) and 8.7(b)).

8.2.3 Polyline-level predictions

Finally, we discuss the results of the experiments in terms of the entire length of the

polyline, encompassing all three segments. Based on Equation 6.13 above, the model

predicts that for the given length (5.40cm), number of robots (3), and their motion

parameters, an overlap of 1 (o = 1) is preferable. Figures 8.8(a) and 8.8(b) show the

minimum, average, and maximum time between every 2 consecutive visits when o = 2,

and o = 1, respectively. In the x-axis we present the 4 points sampled. In the y-axis

we present the time in seconds between every 2 consecutive visitations.

Here, the disadvantage in using an overlap greater than 1 is evident, where the

maximum between 2 visitations in the 45cm point is almost 3 times all other points

sampled, in Figure 8.8(a) (where o = 2). In contrast, the results are much more uniform

in all criteria, when o = 1 (Figure 8.8(b)).

Indeed, the results of the experiments with real robots show that the standard devi-

ation of visits in the case of o = 1 is 10.945, while in the case of o = 2, the standard

deviation is 19.745. Thus as predicted, an overlap factor one is preferable in terms of

uniformity of point-visit frequency.

Note that these results are for the specified parameters. For instance, if there were

5 robots, an overlap of two (o = 2) would have been better. And had there been a

longer polyline, the overlap could have changed as well: The longer the polyline—the

greater the number of middle segments—the more advantageous it would likely be to

use o > 1: The effects we are seeing here for the middle segment would be the same

for all middle segments, however many; while there will only be a few edge segments

regardless of the length of the polyline.

91

(a) o = 2.

(b) o = 1.

Figure 8.8: Minimum, maximum and average visit frequencies with different overlap

factors.

92

Part III

Additional Patrolling Challenges

93

Chapter 9

Patrolling in Formations

We depart from the standard assumption that each patrolling unit is made of a single

robot. Instead, we now allow multiple robots that move coherently, in formation, in

each patrolling unit. Previous work on formation-maintenace assumes that the robots

have enough sensors to maintain the formation and to avoid obstacles or carry out

their surveillance goals. A challenge arises when robots do not have sufficient sensors

to both track their peers and their environment at the same time. Our work explore

a controller-multiplexing technique in which the robots alternate between open- and

closed- loop control. The work also explores a fusion technique in which the robots

merge the open- and closed- loop controllers. This allows the robots to maintain for-

mation and avoid obstacles when their sensors are limited and their odometry is noisy.

We evaluate those techniques with physical robot (Sony AIBO ERS-7) experiments

and also in simulation. We show that multiplexing and fusion techniques reduce the

number of obstacles that the robots hit and also maintains the formation more robustly

than the constituent controllers by themselves.

9.1 Introduction to Patrolling in Formations

There is significant interest in formation-maintenance tasks, where robots move to-

gether (maintaining a geometric shape), while avoiding obstacles. For instance,

Dougherty et al. [25] and Matarić and Fredeslund [32, 34] describe algorithms which

allow robots to move in formation and to avoid obstacles. They do so under the as-

sumption that the robots have sufficient sensing capabilities to maintain the formation

94

via closed-loop control (tracking their peers) and also recognize obstacles or otherwise

sense the area around the robot.

A challenge arises when robots do not have sufficient sensors to both track their

peers and their environment at the same time. This could be, for example, if the limited

sensors are kept busy providing input to another method that needs them. For instance,

on the Sony AIBO ERS robots, the sensors used for formation maintenance are on a

single pan-tilt component (the head). The robot cannot follow a leader (at some fixed

angle) and simultaneously scan for obstacles.

One obvious alternative is to utilize open-loop control in formation maintenance,

to free up robots’ sensors for other uses such as obstacle avoidance. While operating in

open-loop control, the leader of the formation transmits its movements, while its fol-

lowers translate these into corresponding movements of their own, without relying on

sensors. However, this relies on odometry reading in both the leader and the follower.

In principle, translating the movements of the leader into each follower’s actions, via

communications, is sufficient. However, in practice, accumulating odometry errors

prohibit this technique from being used exclusively.

We therefore explores ways to multiplex and/or fuse closed-loop and open-loop

formation control. Multiplexing is done in time, giving the alternative methods differ-

ent periods of time in which they control each robot. Switching between the different

methods utilized the following principle: Each robot relies on visual tracking (closed-

loop control) until it is within tolerance levels of its position in the formation. When

this occurs, the robot switches to communication-based open-loop control, and uses its

sensors to scan for obstacles, while communicating with the leader. To verify its posi-

tion and inhibit accumulating errors, the robot switches back to visual tracking after a

fixed period of time. We also explore combining controllers by fusion, by merging the

output commands of each open-loop and close-loop controllers.

To evaluate the contribution of those approaches, we compare the multiplexing

and fusing methods with their closed-loop and open-loop components, by themselves.

The experiments are carried out using physical (Sony AIBO) and simulated robots. We

carried out two separate repeated-trials experiments. The first experiment evaluated the

benefit offered by the combining methods, by showing the formation’s ability to detect

objects surrounding the formation (e.g., obstacles). A second experiment explores

the hypothesized costs of this ability: The stability and accuracy of the maintained

95

formation, in the four methods.

The results of the experiments show that indeed, the combination techniques (mul-

tiplexing and fusing) are able to significantly reduce the number of undetected obsta-

cles, and thus increase the robustness of the formation to obstacles, even with limited

sensing. Moreover, the combination technique also works to more robustly reduce the

error in the positions of robots in the formation, in contrast to the hypothesis. The re-

sults also show that using multiplexing is preferable to fusing when the robot odometry

is more accurate, and/or when the formation path includes sharp turns. The advantage

of the fusing technique over the multiplexing technique is shown clearly when uncer-

tainty grows in the odometry.

9.2 Maintaining Robust Formations

The operator of a formation is inherently limited by the capabilities of the robots to

sense their surroundings, and provide information about potential failures. A challenge

arises when robots do not have sufficient sensors to both track their peers and their

environment at the same time. This could be, for example, if the limited sensors are

kept busy providing input to the closed-loop controller that is used to maintain the

formation. This section addresses this challenge.

We first differentiate sensor-based closed-loop formation maintenance from

communication-based open-loop formation maintenance (Section 9.2.1). We then

(Section 9.2.2) discuss the two key methods used to combine open- and closed-loop

maintenance (multiplexing and fusing controllers). Finally, we report on experiments

evaluating the different methods (Section 9.3).

9.2.1 Open-Loop and Closed-Loop Formation Maintenance

In the sensor-based formation-maintenance algorithm, each follower but the leader is

to maintain a specific distance and angle to another robot (called the anchor). This is

called Separation-Bearing formation-maintenance control, and is proven to be stable

[31]. A problem arises when the robot’s sensors are limited and the robot also needs

to detect obstacles: If the follower does not scan for obstacles, it may fail to discover

them. And if it scans for obstacles, it may lose sight of its anchor, and thus lose its

96

place in the formation.

For instance, on the Sony AIBO ERS robots, the sensors used for formation main-

tenance are on a single pan-tilt component (the head). The robot cannot follow a leader

(at some fixed angle) and simultaneously scan for obstacles.

One obvious alternative is to utilize open-loop control in formation maintenance,

to free up robots’ sensors for other uses such as obstacle avoidance. While operating

in communication-based open-loop control, the leader of the formation broadcasts its

movement vector (velocity and heading changes). Based on this communication, and

their predefined ideal positions in the formation, all other robots calculate their own

relative movements, without relying on sensors. However, this relies on odometry

reading in both the leader and the follower. In principle, translating the movements of

the leader into each follower’s actions, via communications, is sufficient. In practice,

accumulating odometry errors prohibit this technique from being used exclusively.

This is indeed an open-loop controller for the formation: Messages cannot in prac-

tice be sent continuously, and thus a projection is made as to the anticipated position of

the leader (and by implication, the follower), using affine transformations [67]. Once

the anticipated position is known, the follower can set it as a goal position, and use

simple motion planning to generate a movement vector of its own. This movement

vector is maintained until a new broadcast from the leader initiates this calculation

once again.

The translation of target position to movement vector has two factors. The first is

handled by the affine transformation. The second requires additional corrective actions

by the follower robots. We describe these factors below.

The first factor is the effect of the leader’s heading on the path chosen by its fol-

lower. Figure 9.1-b,c show cases where the position of the leader is identical, but its

heading is different. As a result, the target location for the follower, and the path to

it (both indicated by the arrow in the figures) are radically different. This also im-

plies that the affine transformations are sensitive to errors in their inputs, as even small

deviations in the heading may result in large difference in the computed movement

vectors.

The second factor in correctly computing the movement vector is tied to the dif-

ference in the body orientations of the leader and follower robots, after the latter reach

their target positions. Ideally, the orientation of the leader and followers should be

97

(a) Ideal positions of the robots.

(b) Leader changed heading. (c) Leader did not change heading.

Figure 9.1: A triangle formation of three Sony AIBO robots. Figure (a) shows the

ideal poses of the robots. Figures (b) and (c) illustrate the sensitivity to heading; the

leader is in the same x,y location in both figures, but its heading is different, implying

a radically different target position for the right follower robot.

equal at that point. However, depending on the path taken by the follower, the orienta-

tion of its body might be different from that of the leader (see Figure 9.2).

To maintain the orientation error in the followers as small as possible, we rec-

ommend explicitly tracking the difference in orientation between the leader and the

follower, and correcting it in each time step. However, this approach can result in

jerky movement on the part of the robots, when they attempt to correct a large error

within a single time-step. To address this, the controller should limit itself to correc-

tions that are only of a limited range, and instead apply them over multiple time-steps,

if necessary.

The advantage of the communication-based controller is that it can free up some

of the robot’s sensors. Instead, the follower robot maintains the formation only by

98

(a) Follower orientation maintained at

end of path.

(b) Follower orientation not maintained

at end of path.

Figure 9.2: In (a) and (b) the x,y location of the follower is the same, as the target

position. However, the path taken by the right follower to the target greatly affects the

final orientation of its body with respect to that of the leader.

communication. The disadvantage of this technique is that it requires perfect odometry,

a requirement that cannot be fulfilled in realistic settings. If the anticipated position

of the leader and the follower are computed based on imperfect, noisy odometry, the

errors quickly accumulate. Moreover, as we have seen, slight differences in values of

the heading can imply radically different movement vectors.

9.2.2 Combining Controllers

To allow limited-sensor robots to maintain formation while still recognizing obsta-

cles, we propose to combine the two controllers described above, in settings where

the robots’ sensors are limited, but communication between robots is possible. In

such settings we propose to combine two formation controllers types: A closed-loop

formation-maintenance algorithm using sensors, and an open-loop algorithm using in-

ternal navigation (odometry) and communications.

We compare between two combination approaches: multiplexing the controllers

(using one at a time), and fusing them (using both in parallel). The idea in combining

the controllers is to offset their disadvantages, and gain from their complementary

advantages.

The multiplexing technique works as follows. Each follower robot relies on the

sensor-based algorithm until it arrives to its predefining position in the formation. We

99

therefore explore ways to multiplex and/or fuse closed-loop and open-loop formation

control. Multiplexing is done in time, giving the alternative methods different periods

of time in which they control each robot. Switching between the different methods

utilized the following principle: Each robot relies on visual tracking (closed-loop con-

trol) until it is within tolerance levels of its position in the formation. When this occurs,

the robot switches to communication-based open-loop control, and uses its sensors to

scan for obstacles, while communicating with the leader. To verify its position and

inhibit accumulating errors, the robot switches back to visual tracking after a fixed pe-

riod of time. We also explore combining controllers by fusion, by merging the output

commands of each open-loop and close-loop controllers.on (within some tolerance ra-

dius, to allow for uncertainty in sensing). When this occurs, the robot switches to the

communication-based formation-maintenance behavior. Now, the robot’s sensors are

free and the robot can search for obstacles. The follower robot moves in this mode

for a fixed period of time (which we vary in the experiments, see Section 9.3). It then

switches back to the sensor-based algorithm, and the cycle repeats.

In the fusing technique, the robots multiplex between the open- and closed- loop

controllers (otherwise, they cannot hope to detect obstacles). However, during the time

when both sensor-based and communication-based controllers are active, the output

commands of the controllers are fused: The average of the two controllers is taken as

the output.

There are competing goals in using the open-loop controller, with both combina-

tion techniques. On one hand, the more the robots rely on open-loop control, the more

they can scan for obstacles, and provide improved performance. On the other hand,

the longer they remain in open-loop control, the more errors in position are accumu-

lated (in relative positions of the robots, with respect to their teammates), and thus the

formation degrades.

Thus the timeout period, which limits the amount of time robots remain under

communication-based open-loop control must be determined. We take an empirical

approach to determining this value. We note that it might be possible to set theoretical

bounds on this value, depending on expected obstacle density. We leave this direction

of research to future work.

100

9.3 Combined-Control Experiments

To evaluate the contribution of these approaches, we compare the multiplexing and

fusing methods with their closed-loop and open-loop components, by themselves. The

experiments are carried out using physical (Sony AIBO) and simulated robots.

We carried out two separate repeated-trials experiments. The evaluation has two

facets. First, in Section 9.3.1, we evaluate the impact of the combination techniques

on the ability of sensor-limited AIBO robots to detect obstacles, the motivation for the

techniques. Second, in Section 9.3.2, we evaluate the hypothesized costs of combina-

tion, i.e., the hypothesized decrease in precision.

9.3.1 Detecting Obstacles

This section report on experiments carried out with physical Sony AIBO robots mov-

ing in formation. The goal of the experiment is to evaluate to what degree does con-

troller combinations (e.g., multiplexing) allow robots to detect obstacles that may oth-

erwise be undetectable.

Here, three Sony AIBO ERS-7 robots were arranged in a triangular formation (Fig.

9.1-a). While operating in sensor-based separation-bearing control mode, the two fol-

lowers in the rear monitor the leader using their head-mounted camera and infra-red

range sensors. The robots utilize the color patch on the rear of the leader for identifi-

cation, and maintain the distance and angle to it [49]. Otherwise (when using commu-

nications) they scan for obstacles and maintain the formation by communication.

The leader actively scans for obstacles. On detection, it finds a path around them

that considers its own physical body, rather than the entire team (as proposed in [12]).

Such a path cannot be considered safe for the followers, and indeed we intentionally

place obstacles such that such a path would put them in the way of the followers. This

is done so as to examine the followers’ ability to detect obstacles.

We use three different obstacle courses for this experiment (see Fig. 9.3). In the

Right obstacle course the robots walk in a straight line; the right follower robot needs

to recognize the obstacle blocking its path. The Left obstacle course poses the same

challenge to the left follower. Finally, in the Diagonal course the right follower needs

to recognize the right obstacle and the left follower needs to recognize the left obstacle

(the leader will try to pass between the obstacles).

101

a

c b

60 cm

60 cm

(a) Right.

90 cm

15 cm

a

c b

(b) Left.

135 cm

60 cm

a

c b

(c) Diagonal.

Figure 9.3: Three obstacle courses used in experiments with the AIBO robots.

In each of the obstacle courses, the formation was run five times, in both the vi-

sual sensing control mode, and the multiplexing mode, for a total of 30 runs (10 in

each course). We did not experiment with the open-loop control in these experiments;

as it essentially frees up all the robots sensors to focus only on the task of detect-

ing obstacles, it serves as a theoretical upper limit. We therefore assumed that with

pure communication-based control, all obstacles are detected. We note also that there

are no separate results for the fusion method, because it is identical to the multiplex-

102

ing method in terms of time available for detecting obstacles (since then only one

controller is generating output). The distinction between them is explored in Section

9.3.2.

Fig. 9.4 shows the result of the comparison between the multiplexing technique

and the sensor-based formation maintenance. The X axis shows the obstacle course.

The Y axis shows the fraction of the undetected obstacles over all trials, thus a lower

value indicates improved performance. We can see that the multiplexing technique

performs better than the sensor-based algorithm used earlier, though statistical testing

shows that the difference is only moderately significant (one-tailed t-test, p = 0.07).

0

0.2

0.4

0.6

0.8

1

left right diagonal
obstacle course

 n
o

t
re

co
g

n
iz

ed
/

o
b

st
ac

le
s

multiplexing sensor based

Figure 9.4: Fraction of undetected obstacles over multiple runs of each technique, in

different obstacle courses.

A one-tailed t-test significance test of the experiments with the robots (above)

showed that multiplexing was only moderately significantly better (p = 0.07). We be-

lieve this is due to the relatively small number of experiments. We thus ran additional

experiments with simulated AIBO robots, using the player/stage environment [39],

where many more trials could be run. Figure 9.5 describes the obstacle course used in

the simulated environment. Each of the techniques (multiplexing, sensor-based) was

run 25 times.

Figure 9.6 shows the fraction of unrecognized obstacles (Y axis) in this experiment,

for each of the techniques, over 25 runs. The Y axis shows the fraction. We again

see that the multiplexing approach significantly decreases the fraction of undetected

obstacles. The results are significant at a level of p = 0.00000000164 (one-tailed t-

test).

Thus both in simulation and in experiments in the real world, we see that the mul-

tiplexing approach decreases the number of undetected obstacles, though it does not

103

200 cm

100 cm

a

c b

90 cm

Figure 9.5: Obstacle course in the simulation experiments. The leader robot moves in

straight line, but its followers must detect the obstacles on their left and right.

0

0.2

0.4

0.6

0.8

1

obstacle course

n
o

t
 r

ec
o

g
n

iz
ed

/
o

b
st

ac
le

s

multiplexing sensing based

Figure 9.6: Fraction of undetected obstacles over 25 runs for each technique.

perform as the theoretical best (i.e., with perfect open-loop control and perfect knowl-

edge of obstacles). This happens because the multiplexing technique, while giving

more opportunity to the followers to detect obstacles, occasionally switches back to

sensor-based closed-loop control, for correcting the accumulating odometry errors. In

such cases, the follower robots cannot use its sensors to detect obstacles.

104

9.3.2 Formation Precision

An hypothesis underlying the combination approach is that the gains it offers (as the

previous section demonstrates) will come at a price of decreased precision. The re-

liance on open-loop control, even if only for limited periods of time, should in prin-

ciple cause some degradation in the ability of robots to position themselves in the

formation. It might therefore be hypothesized that selecting fusion as the combination

method may lead to improved results.

This section examines this hypothesis. We compare the quality of the formation

maintenance with different formation techniques, under varying conditions of noise

in movement. The quality of the formation maintenance is measured as the average

absolute deviation of the follower robots from their ideal location in the formation.

Our expectation is that combination would fare worse than its constituent techniques,

especially with increased noise.

We compare the multiplexing and fusing combination techniques, presented earlier,

to the two constituent techniques: Open-loop formation control (communication-based

maintenance), and closed-loop formation control (visual formation maintenance). For

the combination technique, we use a timeout of 8 seconds for the period in which

the robot scans for obstacles, relying only on open-loop control. The timeout was

determined empirically, but experimenting with different timeout values.

Precise positioning in formations is relatively easy when the formation moves in a

straight line. It becomes more difficult to achieve in realistic settings, when formation

(and robots) have to turn. We thus examine the precision resulting from each forma-

tion control technique, when the angle of the leader’s turn is varied. In the following

experiments, the leader robot moves in a straight line for 20 seconds and then turns

in place and proceeds. We control the leader’s turn angle (0,15,30,90 degrees), and

measure the resulting position errors in the followers once the turn is complete.

Given that we wanted to control the amount of uncertainty in the movements of the

robots, we chose to run these experiments in simulation. We used a Gaussian to model

the noise in the movements of the robots, at several qualitative levels of 0%,20% and

40%. The percentages signify the uncertainty in terms of standard deviation, i.e., a

level of 20% Gaussian noise means that the standard deviation of target value X will

be 20% of X .

105

Figures 9.7, 9.8 and 9.9 show the results of these experiments, for noise levels 0%,

20% and 40%, respectively. In these figures, the X axis shows the sharpness of the

leader’s turn in degrees. The Y axis represents the average absolute deviation (error)

of the follower robots from their ideal position in the formation. The line marked visual

shows the results of the closed-loop sensor-based visual maintenance. The line marked

communication corresponds to the open-loop communication-based maintenance. The

lines marked multiplexing and fusing correspond to the multiplexing and fusing (the

combination approaches). Each one of the points is an average over 40 data points (20

runs, two follower robots).

200

300

400

500

600

700

800

0 10 20 30 40 50 60 70 80 90

turn angle(degree)

d
is

ta
n

ce
(m

m
)

visual multiplexing communication fusion

Figure 9.7: Deviation from the ideal position in formation vs. the turn angle, with no

uncertainty in movement/odometry.

The results in Figure 9.7 show that the worst results are achieved by the visual

formation maintenance (closed-loop control, by itself), and by the fusing technique.

As the sharpness of the turn increases, use of these techniques lead to increasing

errors in the positioning of the follower robots. In contrast, the multiplexing and

communication-based maintenance are quite similar in most cases and they have the

best results. This happens since in a world where there are fewer odometry errors, a

technique that is based on mathematical calculations can calculate the exact location

where the follower robot should be and with accurate odometry (i.e. lack of noises)

can lead the follower robot to its ideal position in the formation.

However, as odometry noise levels increase, we can see that visual formation main-

tenance achieves good performance, except for the sharpest (90-degree) turn. Simi-

larly, the fusing technique improves as well, and achieves good performances even in

106

200

300

400

500

600

700

800

0 10 20 30 40 50 60 70 80 90 100
turn angle(degree)

d
is

ta
n

ce
(m

m
)

visual multiplexing communication fusion

Figure 9.8: Deviation from the ideal position in formation vs. the turn angle, with

uncertainty levels set at 20%.

200

300

400

500

600

700

800

0 10 20 30 40 50 60 70 80 90

turn angle(degree)

d
is

ta
n

ce
(m

m
)

visual multiplexing communication fusion

Figure 9.9: Deviation from the ideal position in formation vs. the turn angle, with

uncertainty levels set at 40%.

sharp turns. Indeed, the gap between visual maintenance and communication-based

maintenance increases (see Figures 9.8, 9.9).

Thus one conclusion of these experiments is that the two constituent controllers

work well, but not for the same settings. In sharp turns, open-loop control is best (even

at higher noise settings). But for robustness to noise, closed-loop control is preferable.

We remind the reader that our hypothesis was that the combination variants would

result in decreased precision compared to their constituents. The intuition was that as

the combination methods gain the ability to detect obstacles, they sacrifice precision.

The results show that instead, the multiplexing technique emerges as a good con-

107

troller when the odometry noise level decreases, and is robust in sharp turns as well

(a benefit compared to the communication-based controller). It is indeed never the

best performer, but it is also never the worst. In fact, this technique seems to be ro-

bust both to the noise settings (like its visual maintenance constituent) and to the turn

angle sharpness (like the communication-based maintenance constituent). These re-

sults thus provide evidence that for robustness, multiplexing controllers (alternating

between them) may be a good strategy.

We additionally see that the fusing technique performs well and is robust when the

odometry noise level increases. Thus if the robots can recognize its odometry noise

level in the environment, it can switch from fusing to multiplexing, and vice versa

(depending the noise) and behave ideally. This second level of multiplexing, however,

is beyond the scope of this thesis.

9.4 Robust Formations: Conclusions

We introduce here a combination approach (involving either multiplexing or fusing

of controllers) to formation maintenance. The approach combines two different for-

mation maintenance controllers: One open-loop and one closed-loop. Our technique

helps to maintain a formation and detect obstacles when the robots’ sensors are limited,

and therefore cannot easily detect obstacles and track their peers at the same time.

In experiments with real and simulated Sony AIBO robots, we have found that the

combination approach decreases the number of undetected obstacles (compared to the

closed-loop visual formation maintenance controller), and maintains the precision of

the formation more robustly than either of its constituent controllers by itself.

We also conclude that the level of odometry errors influences the best performer

between the multiplexing and fusing methods. In particular, we find that the multi-

plexing technique is better when the odometry error decreases, and that the fusing is

preferable otherwise. Thus, we propose to switch between those two methods when

the robots know their odometry error level (e.g., use multiplexing in flat surfaces, and

fusing in rocky terrains. Both techniques allow the robots to use their sensors to detect

obstacles and survey their surroundings, something not possible with their constituent

methods.

108

Chapter 10

Future Directions and Final Remarks

We summarize the key contributions of this thesis in Section 10.1. We discuss future

directions for this research in Section 10.2.

10.1 Summary of Key Contributions

Our first contribution in this work is a formalization of the multi-robot patrol problem

and its frequency optimization goals. We have discussed point-visit frequency criteria

according to which a patrol mission can be evaluated. We additionally examine an

independent measure, of event response time.

In the first part of this dissertation, we focus on multi-robot patrolling in areas

enclosed by polygons. We describe a spanning-tree patrolling (STP) approach for

area patrolling. STPis based on finding a minimal Hamiltonian cyclic path in a non-

uniform, directional, terrain. Based on this cyclic path, we analytically demonstrate

that an algorithm that assigns locations to the robots along the path such that the time

necessary to arrive to those locations is minimal, and patrolling from those locations

create a uniform maximal-frequency patrol. Last, we show that this algorithm is robust

in the sense that it guarantees patrol at uniform frequency as long as at least one robot

works properly.

We then turn to discuss the problem of allocation robots to handling events along

the patrol path. Given the projected duration of handling an event, and the deadline

by which handling the event must complete, we investigate different conditions and

different methods for allocating robots to events. We describe a set of algorithms for

109

dividing the time it takes to handle the event between the robots, depending on the time

constraint for finishing handling the event.

In the second part of the dissertation we focus on patrolling along an polyline, e.g.,

a two-ended fence. Because cyclic paths are not possible in polyline patrolling, there

are inherent challenges to maintain uniformity of point visit frequencies, and other

performance criteria.

We first examine individual and coordinated patrolling algorithms. We show that in

general, the synchronized approach to multi-robot patrolling outperforms the individ-

ual, unsynchronized methods in response-time minimization. We then introduce a gen-

eralized coordinated patrolling method, Frequency-based Overlapping Patrol (FOP) in

which robots have patrolling trajectories that intersect in space, but not in time; their

assigned segments overlap. We analyze the performance of FOP methods in depth,

with respect to different performance goals, and investigate key trade-offs.

We develop a more realistic analytical treatment of the performance of the algo-

rithm with multiple patrolling robots. We develop a realistic model of robot motion,

that considers real-world uncertainties and accumulating motion errors. We mathemat-

ically analyze the model, and then use it to predict the empirically observed behavior

of robots patrolling with different overlapping factors; robots that have not been devel-

oped with the model in mind. The results of extensive experiments show that the new

model is not only more accurate relative to previous models, but is also accurate on an

absolute scale.

We have shown that the selection of an optimal overlap factor depends significantly

on the segments chosen, as well as the parameters of motion (e.g., turning time, ve-

locity errors). In addition, edge segments result in qualitatively different performance,

compared to middle segments. We have shown that in many cases in the middle seg-

ments, the increase in overlap results in improved uniformity, without hurting the aver-

age and under-bounding frequencies. However, this comes at a cost of greater neglect

(and thus worse performance) in the edge segments.

Lastly, we consider the case where the patrolling unit is not a single robot, but a for-

mation of multiple robots that move together, maintaining a fixed geometric shape. To

free up sensors for surveillance and obstacle detection we introduce here a multiplex-

ing formation control technique that combines sensor-based closed-loop formation-

maintenance, and communication-based open-loop formation maintenance, by either

110

fusion or multiplexing in time.

Our technique helps to maintain a formation and detect obstacles when the robots’

sensors are limited, and cannot easily detect obstacles and track their peers at the same

time. In experiments with real and simulated Sony AIBO robots, we have found that

the multiplexing approach decreases the number of undetected obstacles (compared to

the closed-loop visual formation maintenance controller), and maintains the precision

of the formation more robustly then either of its constituent controllers by itself. More-

over, we have shown that the power of the technique comes from the decision to switch

(multiplex) controllers, rather than fuse their actions. The experiments show that this

allows robots to better utilize their sensors for detecting and avoiding obstacles, while

still maintaining their positions in the formation.

10.2 Future Directions

There are still several areas that are left open, and we plan to pursue them in future

work.

Priorities in patrolling. An important requirement in applications of patrolling is be-

ing able to set priorities to different portions of the patrolling work area, be in

an area enclosed by a polygon, or a polyline. These priorities are to be used

by the patrolling algorithms such that the resulting under-bounded and average

frequencies in different segments (or sub-areas) are proportional to the priorities.

Heterogeneous Robots. We have not considered, in this dissertation, the case of het-

erogeneous robots, e.g., in terms of their maximal velocities or sensorial capa-

bilities. This would be another important consideration, especially in assigning

robots to respond to events in patrolling.

Uncertainty in Event Handling Durations. Our events are defined as tuples com-

posed of location, handling duration, and deadline. In reality, many applications

would not be able to provide these values with certainty. Instead, a distribution

over possible values would be available, at best. The event handling techniques

would necessarily need to be changed to account for such uncertainty.

111

Velocity Ranges. In considering non-uniform terrains, we have modeled changes to

the velocity in which robots travel in different segments in the polyline, or sub-

areas in the polygon. However, it is more realistic to model different terrains as

having different maximal velocities (i.e., having different velocity ranges). The

algorithms would then be able to slow down (and possibly, speed up) robots as

needed to maintain improved uniformity of point visit frequency, etc.

Physical Constraints. The physical properties of robots should be better taken into

account. For instance, we assumed thus far that robots can turn anywhere on

the polyline, which is not necessarily true. Moreover, we would like to take

into consideration turns when we generate cyclic paths for area patrol, e.g., to

minimize the number of turns.

Patrolling in Formations. In this dissertation, the values for the multiplexing interval

were determined empirically. In the future, we hope to provide an analytical

framework to help guide selection of this value. Also, the multiplexing technique

complements existing work which computes obstacle-free paths for all team-

members [12]. Multiplexing offers opportunity for increasing the effectiveness

of such techniques, by providing them with more sensorial capabilities.

112

Bibliography

[1] F. R. Abate. The Oxford Dictionary and Thesaurus: The Ultimate Language

Reference for American Readers. Oxford Univ. Press, 1996.

[2] N. Agmon, N. Hazon, and G. A. Kaminka. Constructing spanning trees for effi-

cient multi-robot coverage. In Proceedings of IEEE International Conference on

Robotics and Automation (ICRA-06), 2006.

[3] N. Agmon, N. Hazon, and G. A. Kaminka. The giving tree: Constructing trees for

efficient offline and online multi-robot coverage. Annals of Math and Artificial

Intelligence, 2009.

[4] N. Agmon, G. A. Kaminka, and S. Kraus. Multi-robot fence patrol in adversarial

domains. In Proceedings of the Tenth Conference on Intelligent Autonomous

Systems (IAS-10). IOS Press, 2008.

[5] N. Agmon, S. Kraus, and G. A. Kaminka. Multi-robot perimeter patrol in ad-

versarial settings. In Proceedings of IEEE International Conference on Robotics

and Automation (ICRA-08), 2008.

[6] N. Agmon, V. Sadov, G. A. Kaminka, and S. Kraus. The impact of adversarial

knowledge on adversarial planning in perimeter patrol. In Proceedings of the

Seventh International Joint Conference on Autonomous Agents and Multi-Agent

Systems (AAMAS-08), volume 1, pages 55–62, 2008.

[7] M. Ahmadi and P. Stone. A multi-robot system for continuous area sweeping

tasks. In Proceedings of IEEE International Conference on Robotics and Au-

tomation (ICRA-06), 2006.

113

[8] A. Almeida, G. L. Ramalho, H. P. Santana, P. Tedesco, T. R. Menezes, V. Corru-

ble, and Y. Chevaleyre. Recent advances on multi-agent patrolling. In Advances

in Artificial Intelligence SBIA 2004: 17th Brazilian Symposium on Artificial In-

telligence, volume 3171 of Lecture Notes in Computer Science, pages 474–483.

Springer-Verlag, 2004.

[9] T. Balch and R. Arkin. Behavior-based formation control for multi-robot teams.

IEEE Transactions on Robotics and Automation, 14(6):926–939, 1998.

[10] T. Balch and M. Hybinette. Social potentials for scalable multirobot formations.

In Proceedings of IEEE International Conference on robotics and automation

(ICRA-00), 2000.

[11] D. M. Carroll, C. Nguyen, H. R. Everett, and B. Frederick. Development and

testing for physical security robots. In SPIE, Orlando, 2005.

[12] X. Chen and Y. Li. Smooth formation navigation of multiple mobile robots for

avoiding moving obstacles. International Journal of Control, Automation, and

Systems, 4(4):466–479, August 2006.

[13] Y. Chevaleyre. Theoretical analysis of the multi-agent patrolling problem. In Pro-

ceedings of the IEEE/WIC/ACM International Conference on Intelligent Agent

Technology (IAT), 2004.

[14] Y. Chevaleyre, F. Sempé, and G. L. Ramalho. A theoretical analysis of multi-

agent patrolling strategies. In Proceedings of the Third International Joint Con-

ference on Autonomous Agents and Multi-Agent Systems (AAMAS-04), 2004.

Short Paper.

[15] H. Choset. Coverage for robotics—a survey of recent results. Annals of Mathe-

matics and Artificial Intelligence, 31:113–126, 2001.

[16] J. Colegrave and A. Branch. A case study of autonomous household vacuum

cleaner. In AIAA/NASA CIRFFSS, 1994.

[17] T. Corman, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT Press,

1990.

114

[18] N. Correll and A. Martinoli. Robust Distributed Coverage using a Swarm of

Miniature Robots. In Proceedings of IEEE International Conference on Robotics

and Automation (ICRA-07), pages 379 – 384, 2007.

[19] N. Correll, S. Rutishauser, and A. Martinoli. Comparing Coordination Schemes

for Miniature Robotic Swarms: A Case Study in Boundary Coverage of Regu-

lar Structures. In The 10th International Symposium on Experimental Robotics

(ISER), Springer Tracts in Advanced Robotics, 2006.

[20] J. P. Desai. A graph theoretic approach for modeling mobile robot team forma-

tions. Journal of Robotic Systems, 19(11):511–525, 2002.

[21] J. P. Desai, J. P. Ostrowski, and V. Kumar. Modeling and control of formations of

nonholonomic mobile robots. IEEE Transactions on Robotics and Automation,

17(6):905–908, 2001.

[22] M. B. Dias and A. Stentz. A free market architecture for distributed control

of a multirobot system. In Proceedings of the Sixth Conference on Intelligent

Autonomous Systems (IAS-6), pages 115–122, 2000.

[23] M. B. Dias, R. M. Zlot, N. Kalra, and A. Stentz. Market-based multirobot co-

ordination: a survey and analysis. Proceedings of the IEEE, 94(7):1257–1270,

2006.

[24] R. Dougherty, V. Ochoa, Z. Randles, and C. Kitts. A behavioral control approach

to formation-keeping through an obstacle field. In Proc. of the IEEE Aerospace

Conference, volume 1, pages –175, March 2004.

[25] R. Dougherty, V. Ochoa, Z. Randles, and C. Kitts. A behavioral control ap-

proach to formation-keeping through an obstacle field. In proc. of the 2004 IEEE

Aerospace Conference, 2004.

[26] Y. Elmaliach, N. Agmon, and G. A. Kaminka. Multi-robot area patrol under

frequency constraints. In Proceedings of IEEE International Conference on

Robotics and Automation (ICRA-07), 2007.

[27] Y. Elmaliach, N. Agmon, and G. A. Kaminka. Multi-robot area patrol under

frequency constraints. Annals of Math and Artificial Intelligence, 2008.

115

[28] Y. Elmaliach and G. A. Kaminka. Robust multi-robot formations under human

supervision and control. Journal of Physical Agents, 2(1):31–52, 2008.

[29] Y. Elmaliach, A. Shiloni, and G. A. Kaminka. Frequency-based multi-robot fence

patrolling. Technical Report MAVERICK 2008/01, Bar Ilan University, Com-

puter Science Department, MAVERICK Group, 2008.

[30] Y. Elmaliach, A. Shiloni, and G. A. Kaminka. A realistic model of frequency-

based multi-robot fence patrolling. In Proceedings of the Seventh International

Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS-08),

volume 1, pages 63–70, 2008.

[31] R. Fierro, A. K. Das, V. Kumar, and J. P. Ostrowski. Hybrid control of formations

of robots. In Proceedings of IEEE International Conference on Robotics and

Automation (ICRA-01), 2001.

[32] J. Fredslund and M. J. Matarić. A general algorithm for robot formations using

local sensing and minimal communication. In IEEE Transactions on Robotics

and Automation, Special Issue on Multi Robot Systems, 18(5):837–846, October

2002.

[33] J. Fredslund and M. J. Mataric. A general algorithm for robot formations using

local sensing and minimal communications. IEEE Transactions on Robotics and

Automation, 18(5):837–846, 2002.

[34] J. Fredslund and M. J. Matarić. Robots in formation using local information.

In proc. of the 7th International Conference on Intelligent Autonomous Systems

(IAS-7), Marina del Rey, California, USA, March 25-27 2002.

[35] Friendly Roboticsr, Ltd. Friendly robotics vacuum cleaner.

http://www.friendlyrobotics.com/friendly_vac/.

[36] Y. Gabriely and E. Rimon. Spanning-tree based coverage of continuous areas

by a mobile robot. Annals of Mathematics and Artificial Intelligence, 31:77–98,

2001.

[37] Y. Gabriely and E. Rimon. Competitive on-line coverage of grid environments

by a mobile robot. Comp. Geometry, 24:197–224, 2003.

116

[38] D. W. Gage. Command control for many-robot systems. In The Nineteenth

Annual AUVS Technical Symposium (AUVS-92), 1992.

[39] B. P. Gerkey, R. T. Vaughan, and A. Howard. The player/stage project: Tools for

multi-robot and distributed sensor systems. In Proceedings of the International

Conference on Advanced Robotics, pages 317–323, Coimbra, Portugal, Jul 2003.

[40] A. Girard, A. Howell, and J. Hedrick. Border patrol and surveillance mission us-

ing multiple unmanned air vehicles. In Proceedings of the 43rd IEEE Conference

on Decision and Control, pages 620–625, 2004.

[41] M. Golfarelli, D. Maio, and S. Rizzi. A task-swap negotiation protocol based on

the contract net paradigm. Technical Report 005-97, CSITE, 1997.

[42] Y. Guo, L. Parker, and R. Madhavan. Towards collaborative robots for infrastruc-

ture security applications. In Proceedings of the 2004 International Symposium

on Collaborative Technologies and Systems (CTS-04), pages 235–240, 2004.

[43] Y. Guo and Z. Qu. Coverage control for a mobile robot patrolling a dynamic and

uncertain environment. In Proceedings of the Fifth World Congress on Intelligent

Control and Automation (WCICA-04), volume 6, pages 4899–4903, 2004.

[44] N. Hazon and G. Kaminka. On redundancy, efficiency, and robustness in cover-

age for multiple robots. Robotics and Autonomous Systems, 2008.

[45] N. Hazon and G. A. Kaminka. Redundancy, efficiency, and robustness in multi-

robot coverage. In Proceedings of IEEE International Conference on Robotics

and Automation (ICRA-05), 2005.

[46] N. Hazon, F. Mieli, and G. A. Kaminka. Towards robust on-line multi-robot

coverage. In Proceedings of IEEE International Conference on Robotics and

Automation (ICRA-06), 2006.

[47] S. Hedberg. Robots cleaning up hazardous waste. AI Expert, pages 20–24, 1995.

[48] B. Jung and G. Sukhatme. Tracking targets using multiple robots: The effect of

environment occlusion. Autonomous Robots, 13(3), 2002.

117

[49] G. A. Kaminka, R. Schechter-Glick, and V. Sadov. Using sensor morphology for

multi-robot formations. IEEE Transactions on Robotics, pages 271–282, 2008.

[50] H. W. Kuhn. The hungarian method for the assignment problem. In Naval Re-

search Logistics Quarterly, volume 2, pages 83–97, 1995.

[51] M. Lemay, F. Michaud, D. Létourneau, and J.-M. Valin. Autonomous initializa-

tion of robot formations. In Proceedings of IEEE International Conference on

Robotics and Automation (ICRA-04), 2004.

[52] A. Machado, G. Ramalho, J.-D. Zucker, and A. Drogoul. Multi-agent patrolling:

An empirical analysis of alternative architectures. In Third International Work-

shop on Multi-Agent Based Simulation (MABS-02), Lecture Notes in Computer

Science, 2002.

[53] MAVERICK. The MAVERICK Group movies page, Computer Sci-

ence department, Bar Ilan University; last checked: Feb 24, 2008.

http://www.cs.biu.ac.il/∼maverick/Movies/, 2005.

[54] F. Michaud, D. Létourneau, M. Gilbert, and J.-M. Valin. Dynamic robot for-

mations using directional visual perception. In Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2002.

[55] A. I. Mourikis and S. I. Roumeliotis. Optimal sensor scheduling for resource con-

strained localization of mobile robot formations. IEEE Transactions on Robotics,

22(5):917–931, October 2006.

[56] J. Nicoud and M. Habib. The pemex autonomous demining robot: Perception

and navigation strategies. In IROS, pages 419–424, 1995.

[57] P. Ogren and N. E. Leonard. Obstacle avoidance in formation. In Proc. of the

IEEE Int. Conf. on Robotics and Automation (ICRA), Taipei, Taiwan, 2003.

[58] P. Paruchuri, J. P. Pearce, M. Tambe, F. Ordonez, and S. Kraus. An efficient

heuristic approach for security against multiple adversaries. In Proceedings of

the Sixth International Joint Conference on Autonomous Agents and Multi-Agent

Systems (AAMAS-07), 2007.

118

[59] A. Ryan, X. Xiao, S. Rathinam, J. Tisdale, M. Zennaro, D. Caveney, R. Sen-

gupta, and K. Hedrick. A modular software infrastructure for distributed control

of collaborating UAVs. In Proceedings of the AIAA Conference on Guidance,

Navigation, and Control, Keystone, 2006.

[60] R. G. Smith. The contract net protocol: High-level communication and control in

a distributed problem solver. IEEE Transactions on Computers, C-29(12):1104–

1113, 1981.

[61] I. A. Wagner, M. Lindenbaum, and A. M. Bruckstein. Efficiently searching a

graph by a smell-oriented vertex process. Annals of Mathem and Artificialatics

Intelligence, 24:211–223, 1998.

[62] I. A. Wagner, M. Lindenbaum, and A. M. Bruckstein. Distributed covering by

ant-robots using evaporating traces. IEEE Transactions on Robotics and Automa-

tion, 15(5):918–933, 1999.

[63] I. A. Wagner, M. Lindenbaum, and A. M. Bruckstein. MAC vs. PC: Determinism

and randomness as complementary approaches to robotic exploration of continu-

ous unknown domains. International Journal of Robotics Research, 19(1):12–31,

2000.

[64] K. Williams and J. Burdick. Multi-robot boundary coverage with plan revision.

In Proceedings of IEEE International Conference on Robotics and Automation

(ICRA-06), 2006.

[65] P. R. Wurman, R. D’Andrea, and M. Mountz. Coordinating hundreds of cooper-

ative, autonomous vehicles in warehouses. AI Magazine, Spring, 2008.

[66] V. M. Yanovski, I. A. Wagner, and A. M. Bruckstein. A distributed ant algorithm

for efficiently patrolling a network. Algorithmica, 37:165–186, 2003.

[67] D. Zwillinger, editor. CRC Standard Mathematical Tables and Formulae, chapter

4.3, pages 312–314. CRC press, 30th edition, 1995.

119

