
Towards Flexible Task & Team Maintenance∗

Ari Yakir and Gal A. Kaminka and Nirom Cohenov-Slapak
The MAVERICK Group

Computer Science Department
Bar Ilan University, Israel
{yakira,galk}cs.biu.ac.il

Abstract

There is significant interest in modeling teamwork
in synthetic agents. In recent years, it has be-
come widely accepted that it is possible to sepa-
rate teamwork from taskwork, providing support
for domain-independent teamwork at an architec-
tural level, using teamwork models. However, ex-
isting teamwork models (both in theory and prac-
tice) focus almost exclusive onachievement goals,
and ignoremaintenance goals, where the value of
a proposition is to be maintained over time. Such
maintenance goals exist both in taskwork (i.e.,
agents take actions to maintain a condition while
a task is executing), as well as in teamwork (i.e.,
agents take actions to maintain the team). This pa-
per presentsDIESEL, an implemented teamwork
and taskwork architecture, built on top of Soar,
that addresses maintenance goals in situated agent
teams. We provide details ofDIESEL’s structure,
and initial experiments demonstrating it in opera-
tion in a dynamic rich domain.

Introduction
There is significant interest in modeling teamwork
in synthetic agents, for training (Rickel & Johnson
1999) simulation (Tambe 1997), robotics (Parker
1998; Kaminka & Frenkel 2005), and entertain-
ment (Tambeet al. 1999; D.Vuet al. 2003). In re-
cent years, it has become widely accepted that it is
possible to separate teamwork from taskwork, pro-
viding support for domain-independent teamwork
at an architectural level, using teamwork models.

∗This research was supported in part by ISF grant
#1211/04
Copyright c© 2006, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

Existing teamwork models are informed by
studies of teamwork in humans, and have focused
on a subset of teamwork components, such as task
allocation and synchronized selection and termi-
nation of joint goals. These models enjoyed con-
siderable success in such environments, due to the
significant reuse opportunities they offer, and the
robustness of the resulting system.

However, existing models only account for a
subset of phenomena associated with human team-
work. Specifically, existing teamwork models
(both in theory and practice) focus almost exclu-
sive onachievement goals, where the value of a
proposition is to be changed from its current set-
tings to another. Agents form a team and agree
on a task to be executed (goal to be reached, i.e.,
proposition to hold in some future state), and then
dissolve the team once the task is completed. Se-
quences of tasks are carried out by constant dis-
solving and re-formation of the team in question,
per task (Tambe & Zhang 1998).

Human and synthetic teams, however, also
tackle maintenance goals, where the value of a
proposition is to be maintained over time. Such
maintenance goals exist both in taskwork (i.e.,
agents take actions to maintain a condition while
a task is executing), as well as in teamwork (i.e.,
agents take actions to maintain the team). Ex-
amples of maintenance goals in teamwork in-
clude robust service maintenance (Kumar, Cohen,
& Levesque 2000) and continual task allocation
(Parker 1998). Examples of maintenance goals in
taskwork includes continual information sharing
and monitoring for robotic formations (Kaminka
& Frenkel 2005) and in entertainment (D.Vuet al.



2003).
This paper addresses maintenance goals in situ-

ated agent teams. We developedDIESEL, an im-
plemented teamwork and taskwork architecture,
built on top of Soar (Newell 1990). The re-
sult allows agents to collaboratively maintain task-
execution conditions, and teamwork-structure con-
ditions, throughout the execution of a task. To
demonstrateDIESEL’s contribution, we carried out
experiments in the GameBots domain (Kaminkaet
al. 2002), evaluating the use of collaboratively-
maintained maintenance conditions in contrast to
existing approaches.

Motivation and Related Work
We use a simple team task to motivate our work,
especially in context of previous research in team-
work. In this task, a team of synthetic agents fol-
lows a leader that moves around, at a fixed dis-
tance. This is a simplified version of familiar
robotic formation-maintenance tasks, e.g., as re-
ported in (Kaminka & Frenkel 2005).

Most teamwork architectures to date have fo-
cused on achievement goals. Of those, most
closely related to our work is the BITE architecture
for multi-robot teamwork (Kaminka & Frenkel
2005). In BITE, agents automatically communi-
cate with their teammates during allocation and
synchronization, which take place when selecting
and terminating behaviors for execution. However,
BITE does not allow the specification of any team-
reorganization, nor does it allow to specify any
maintenance actions. BITE behaviors are seen as
one compact block, thus, there is no way to specify
any logic between the beginning and end of behav-
iors. So while the leader will start and stop with its
followers, this will happen when the agents trigger
end-conditions or preconditions for selected con-
trollers. There is no way to actually have the agents
take joint actions (through BITE) to maintain dis-
tances while behaviors are executing, e.g., by pre-
venting failures. In other words, all maintenance is
in fact carried out individually, instead of collabo-
ratively.

CAST (Yen et al. 2001) addressed the issue
of proactive information exchange among team-
mates, using an algorithm called DIARG, based on
petri net structures. CAST shows the importance
of team communication regarding information that
might assist task achievement for individual mem-

bers in a proactive manner, and aim to reduce com-
munication. This approach, based on the theory of
Joint Intentions, does not include maintenance of
goals. In particular, CAST’s communications fo-
cus on informing other teammates of discovered
facts that may trigger preconditions. The use of
communications (or other actions) to maintain cur-
rently existing tasks is not addressed.

ALLIANCE (Parker 1998) is a behavior-based
control architecture focused on robustness, in
which robots dynamically allocate and re-allocate
themselves to tasks, based on their failures and
those of their teammates. ALLIANCE offers con-
tinual dynamic task allocation facilities, which al-
locate and re-allocate tasks to agents while they are
collaborating. It uses fixed teams, in the sense that
addition and removal of robots from the team is
handled by human intervention and it assumes that
robots can monitor their own actions, and those of
others. Our work differs in that we focus on main-
tenance not only of assignment of agents to tasks,
but also of the joint execution itself.

STEAM (Tambe 1997) was a key step in team-
work architectures, implemented in Soar (Newell
1990). STEAM focused for the most part on
achievement goals, similarly to BITE. However,
a first step towards extending STEAM in terms
of maintenance goals was introduced in (Tambe
& Zhang 1998). In this work, four categories of
teams are introduced. PTPM, a persistent team
consisting of persistent members, PTNM, a per-
sistent team consisting of non-persistent members,
NTPM, a temporary form of a team consisting of
persistent members and NTNM, a temporary form
of a team consisting of non-persistent members.
This work was the first to discuss reorganization
(team hierarchy maintenance) in a team.

In (Tambe & Zhang 1998) persistence is referred
as the degree of commitment of agents to the team,
while executing a task. To enable such persistent
teams, they use a decision-theoretic technique. In
particular, their agents reason about expected team
utilities of future team states. To accommodate
real-time constraints, this reasoning is done in an
any-time fashion. This approach left many open
questions. First, their work only deals with mainte-
nance of the team but not with maintenance in task
execution. Second, due to the way the STEAM
architecture works, reasoning about team states is
not done in parallel to task execution, thus main-



taining the team structure must be done separately
to mission execution.

DIESEL, described in this paper, deals with
PTPM teams, i.e., persistence of team struc-
ture. We refer to this as teamwork mainte-
nance. However, in contrast to (Tambe & Zhang
1998), DIESEL also addresses maintenance in
tasks (which STEAM did not address). Moreover,
it proposes a single mechanisms for both, and of-
fers flexibility to the designer in deciding on pro-
tocols and behaviors to be used proactively and re-
actively.

Kumar and Cohen (Kumar, Cohen, & Levesque
2000; Kumar & Cohen 2000) extended the the-
ory of Joint Intentions in order to include main-
tenance as a part of it. They define maintenance
goals as follows:if the agent does not believep, it
will adopt the goal that p be eventually true. The
maintenance goal is persistent (PMtG) if this fact
remains true for the agent at least until the agent
either believes that it is impossible to maintain p
or that the maintenance goal is irrelevant.

(PMtG x p q) ≡ [¬(BEL× p) ⊂ (GOAL×
♦p)]∧

(UNTIL[(BEL×¤¬p) ∨ (BEL× ¬q)]
[¬(BEL× p) ⊂ (GOAL× ♦p)])
Further elaborations for persistence can be seen

in their Theorem 4.2.1:If an agent having a per-
sistent maintenance goal for p comes to believe
not p, it will adopt a persistent achievement goal
(PGOAL) for p in addition to the persistent main-
tenance goal.

Persistent achievement goal is thus defined as:
(PGOAL × p) ≡ (BEL × ¬p) ∧ (GOAL ×

♦p)∧
(UNTIL[(BEL × p) ∨ (BEL ×

¤¬p)](GOALx♦p))
While we build on the theoretical developments

of (Kumar, Cohen, & Levesque 2000; Kumar &
Cohen 2000), our work differs significantly, in sev-
eral ways. First, unlike previous work, we ex-
tend maintenance of team structure to hierarchical
teams, including team-subteam relations. We also
address goal maintenance in hierarchical task de-
composition. Second, our implementation allows
for arbitrary, context-dependent protocols for col-
laborative goal maintenance. Finally, while Ku-
mar and Cohen’s work has been applied to teams
of web services, our focus is on modeling synthetic
humans in virtual environments.

Maintenance In Teamwork
We propose a new architecture that allows the au-
tomation of maintenance both of the team structure
and of the behavioral structure. Our architecture
extends structures common to STEAM (Tambe
1997), MONAD (D.Vu et al. 2003), and BITE
(Kaminka & Frenkel 2005).

We use Soar for the implementation of our ar-
chitecture. Soar is a general cognitive architec-
ture for developing systems that exhibit intelli-
gent behavior (Newell 1990). Soar uses globally-
accessible working memory, and production rules
that test and modify this memory. Efficient algo-
rithms maintain the working memory in face of
changes to specific propositions. Soar operates in
several phases, one of which is a decision phase in
which all relevant knowledge is brought to bear to
make a selection of an operator, that will then carry
out deliberate mental (and sometimes physical) ac-
tions. A key novelty in Soar is that it automatically
recognizes situations in which this decision-phases
is stumped, either because no operator is available
for selection (state no-change impasse), or because
conflicting alternatives are proposed (operator tie
impasse). When impasses are detected, a subgoal
is automatically created to resolve it. Results of
this decision process can be chunked for future ref-
erence, through Soar’s integrated learning capabil-
ities. Over the years, the impasse-mechanism was
shown to be very general, in that general problem-
solving strategies could be brought to bear for re-
solving impasses.

Our architecture is composed of four structures:
1. A behavior graph, that defines the recipe struc-

ture by which agents achieve their goals. This is
described below in detail.

2. A team hierarchy tree, that defines the organiza-
tional structure and chain of command.

3. A set of domain-independent reusable task-
maintenance behaviors, referenced by the
recipe.

4. A set of domain-independent reusable team-
maintenance protocols, referenced by the team
hierarchy.

These structures are described below in detail.
Guided by existing work, we chose hierarchical

behaviors (in Soar terms,operators) as the basis
for our representation and for the underlying con-
trollers of the team members. Each behavior has



preconditions which enable its selection (the agent
can select between enabled behaviors), termina-
tion conditions (which determine when its execu-
tion must be stopped, if previously selected) and
application code containing the actual code for ex-
ecution while the behavior is still running.

DIESEL additionally allows adding task-
maintenance to each behavior. Task-maintenance
conditions can be a conjunction or disjunction
of predicates (referred to as events), needed to
be maintained or denied by the team throughout
the execution of a behavior. If a maintenance
condition is broken, the maintenance mechanism
will propose a specific maintenance behavior (in
fact, a maintenance recipe) best suited to deal
with such an occurrence. This will be done while
executing the original behavior.

Behavior graph. Behaviors are arranged in a be-
havior graph, a graphical representation of a recipe
for execution. A behavior graph is a connected,
directed graph, where vertices denote behaviors.
Vertical edges signifydecomposition(i.e., from a
behavior to sub-behaviors needed to execute it);
horizontal edges signifytemporal ordering, from a
behavior to those that should ideally immediately
follow it. The following is a simple recipe, as rep-
resented in Soar.

(<state> ˆrecipe <r>)
(<r> ˆname long-corridor

ˆroot <r1>)
(<r1> ˆname root

ˆchild <r2>
ˆchild <r3>)

(<r2> ˆname explore-decision
ˆfirst true
ˆchild <r4>
ˆchild <r5>
ˆnext <r3>)

(<r4> ˆname elaborate-target
ˆfirst true)

(<r5> ˆname elaborate-no-target
ˆfirst true)

(<r3> ˆname explore-movement
ˆchild <r7>)

(<r7> ˆname movement-to-target
ˆfirst true)

We used the conventions in (Kaminka & Frenkel
2005; Tambe 1997) to visualize the recipe above,

Figure 1:An example recipe.

as shown in Figure 1. This recipe, defines
a behavioral tree hierarchy with a root node,
and two child nodes calledexplore-decision
andexplore-movement. Explore-decision differs
from explore-movement by being a first child type
node. First child nodes can be proposed for exe-
cution right after their parent node is, and only if
he is still active. Since explore-movement is not a
first child type node it cannot be proposed simul-
taneously with its brother node (explore-decision).
Consequently, it can be chosen only as a next type
node. Next type nodes can be proposed only after
a previous node (behavior) succeeded in achiev-
ing proper endconditions. In the given example,
explore-movement will be proposed by the recipe
mechanism only after explore-decision endcondi-
tions were achieved. Several next nodes can be
proposed to deal either with success or failure of
each previous node. This can be done by extract-
ing data regrading the cause resulting in termina-
tion from a given endcondition.

Team hierarchy. To keep track of which behav-
iors are coordinated with which team-members,
each behavior is tagged with a team name, which
refers to a unique node in a team hierarchy repre-
senting team-subteam relations. For instance, a tag
on behavior<cn> will look like this:

(<cn> ˆteam agent-group)

will cause the behavior to be synchronized by
DIESEL within a team or sub-team calledagent-
group. Synchronization here is meant in the sense
that selection, maintenance, and termination of
those behaviors is automatically coordinated with
all teammates.

The following is an example of such a simplified
team hierarchy.

(<r0> ˆname agent-group



ˆmembers <m0>
ˆcoc <coc0>)

(<m0> ˆname bot1)
(<coc0> ˆlist <l1>)
(<l1> ˆname bot1)

The hierarchy above defines a team called agent-
group with only one agent calledbot1. bot1 is de-
fined as the sole coordinator of the team. He is the
only team member listed in the chain of coordina-
tors list named ˆcoc. The ˆcoc list is composed by
task or subtask teammates which are the current
teammates participating in the current task or sub-
task. The ˆcoc list usually contains a long list of
optional coordinators which represent alternatives
teammates for coordinating the task.

Maintenance behaviors . We have described
above the introduction of maintenance conditions
to each behavior. Such conditions can typically be
maintained in one or two ways: By taking proac-
tive actions to maintain the condition true; and
by taking reactive actions when the condition be-
comes false.

Though the use of maintenance conditions in in-
tegrated architectures is rare, the key novelty in
DIESEL is the ability to tie specificteam behaviors
to these conditions, and to specify the way they are
to be used: proactively or reactively. The behav-
iors will be triggered automatically byDIESEL, to
be executed by the associated team or subteam.

For example, suppose a task behavior that
moves the agents around has a maintenance condi-
tion on it to maintain visual tracking of the leader.
Because the behavior is a team behavior, it will be
executed by the leader and the follower jointly. As
a result, both leader and follower are mutually re-
sponsible for maintaining the condition. The main-
tenance behavior is itself a team-behavior, to be
executed jointly by the leader and follower even
as they are executing the task behavior (i.e., move
around). An example of such a maintenance be-
havior may have the leader continually communi-
cate its current position, and the follower orienting
itself towards this position.

In our recipe inDIESEL, this is done by adding
the following three lines to theexplore-decision
andexplore-movementbehaviors.

(<cn> ˆmaintenance <m2>)
(<m2> ˆname see-leader)

(<m2> ˆtype negative-logic)

Tagging see-leader maintenance as negative-logic,
means that maintenance actions for the see-leader
event will be proposed on top of a specific behav-
ior, as long as it is present.

Teamwork maintenance. Just as task-execution
behaviors can have associated maintenance con-
ditions, so can the team hierarchy be maintained
by the use of team-maintenance conditions. As
in the behavior hierarchy, these conditions are
a set of conjunctions and disjunctions of predi-
cates (referred to as events), needed to be main-
tained or denied throughout the execution of a task.
Since maintenance operators act in order to main-
tain a possible team state, they are suited to al-
low team reconfiguration, all under the same team-
work mechanism. For example, if during the exe-
cution of a recipe sub-tree it is critical to main-
tain the number of teammates in the group fixed,
such a team-maintenance condition could be eas-
ily defined, and the teamwork mechanism, can act
in turn if such a condition fails, by joining a new
team, recruiting new agents or even merging two
teams. All whilst continuing the execution of the
mission.

Evaluation
To evaluate the contribution offered byDIESEL,
we build a small two-agent team in the Game-
Bots domain (Kaminkaet al. 2002), an adversarial
game environment that enables qualitative compar-
ison of different control techniques (e.g., (D.Vuet
al. 2003)). In the first set of experiments, we fo-
cused on evaluating the effect ofDIESEL’s tech-
nique on the number of context-switches between
behaviors, in comparison with architectures such
as BITE (Kaminka & Frenkel 2005). We demon-
strate show how team reconfiguration occurs using
the same mechanism both on team hierarchy and
behavior hierarchy.

In all experiments, we used the same recipe
(Figure 1), with minor changes needed for each
scenario discussed. The recipe consists of ex-
ploration and movement. During the exploration
phase (behaviorexplore-decision), one of the two
child behaviors can be proposed:elaborate-no-
target in case there is no available target present,
andelaborate-targetin case there are one or more.



In the first case, the agent will tilt its pan-zoom
camera, scan or rotate, and in the second case, a
behavior will summarize target data, and propose
all available options.explore-decision’s endcon-
dition is that a target has been selected. Respec-
tively, this isexplore-movement’s precondition. In
this case, a child behavior will be in charge of all
movement actions taken by the agent in order to
reallocate itself to a given target location.

Maintenance versus Achievement Goals
We will begin by first focusing on the general is-
sue of supporting collaborative maintenance goals
in a behavior-based architecture. The first set of
experiments compares evaluates the use of individ-
ual maintenance goals and associated maintenance
operators. A second set of experiments examines
the difference between such individual goals and
collaborative maintenance goals.

Individual maintenance goals. Our first ex-
periment examinesDIESEL’s explicit support
for maintenance goals, using the idea of task-
maintenance behaviors that execute in parallel to
the task-achievement behaviors. In this experi-
ment, two agents are placed side by side on one
end of a long corridor, closed off by a wall at one
end. One agent is a leader, the other a follower.
The leader runs until reaching the wall and then
runs back. The follower’s task is to run after the
leader.

We are prohibiting any communications at this
stage, since the task is purely individual for now.
The follower will scan until it sees the leader, and
run towards it. During each time tick, if the fol-
lower agent sees the leading agent, an internal
event (see-leader) is fired and logged.

Figure 2 shows the event’s occurrence during
ten simulation runs. Each simulation’s duration
was about two minutes in real-time, 9000 decision-
sense-act Soar cycles and fifty seconds in Unreal
Tournament clock-time. In the figure, The X-axis
shows the time in Unreal Tournament. The Y-axis
separates the ten trials: Each dot shows the pres-
ence of the see-leader event in memory, at the give
time, for the given trial. The figure shows that in all
the experiments conducted without maintenance,
after a short period of time, the follower lost the
leader. This is due to the change in direction of
the leading agent (back to the start location after

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50

Time

E
xp

er
im

en
t 

N
o

.

event active

Figure 2:see-leaderevent logged by the follower
agent. No maintenance conditions.

reaching the wall) which occurred during the fol-
lower’s movement. In addition, sometimes when
the follower agent locates the leader right away, it
is only for a short period of time. This is due to the
fact that the leader agent chose its target and began
moving towards it, exiting from the follower’s line
of sight before the follower had a chance to react.
This forced the follower agent to switch behavior,
and re-locate its target.

Teamwork maintenance. Just as task-execution
behaviors can have associated maintenance con-
ditions, so can the team hierarchy be maintained
by the use of team-maintenance conditions. As
in the behavior hierarchy, these conditions are
a set of conjunctions and disjunctions of predi-
cates (referred to as events), needed to be main-
tained or denied throughout the execution of a task.
Since maintenance operators act in order to main-
tain a possible team state, they are suited to al-
low team reconfiguration, all under the same team-
work mechanism. For example, if during the exe-
cution of a recipe sub-tree it is critical to main-
tain the number of teammates in the group fixed,
such a team-maintenance condition could be eas-
ily defined, and the teamwork mechanism, can act
in turn if such a condition fails, by joining a new
team, recruiting new agents or even merging two
teams. All whilst continuing the execution of the
mission.

Figure 3 shows 10 additional trials, this time
when an explicit maintenance condition was put
in place. Here, we added an individual task-



�

�

�

�

�

�

�

�

	




��

0 10 20 30 40 50

Time

E
xp

er
im

en
t 

N
o

.

event active

Figure 3:Maintenance of thesee-leaderevent by
the follower agent.

maintenance condition to the recipe of the fol-
lower, instructing it to keep the leader in focus
while moving. This is done by adding the fol-
lowing three lines to explore-decision and explore-
movement behaviors.

(<cn> ˆmaintenance <m2>)
(<m2> ˆname see-leader)
(<m2> ˆtype negative-logic)

Tagging see-leader maintenance as negative-logic,
means that maintenance actions for the see-leader
event will be proposed on top of a specific behav-
ior, as long as it is present.

Figure 3 shows that now, the follower agent
no longer loses track of the leader, since it ac-
tively pans to track the leader. This is an ex-
ample of how task related goals can be set apart
from maintenance related goals, adding new flexi-
bility to behavior-based architecture and clarity to
the code: It was achieved without changing the
explore-movementor move-to-targetbehaviors, al-
lowing to keep them simple and compact.

One desired outcome of using maintenance be-
haviors in parallel to task execution is that the
number of behavior switches is significantly re-
duced. This allows for greater use of context in
Soar and similar architectures, reducing thrash-
ing. Figure 4 shows an the decrease in behavioral
switches during the tests conducted. The figure
shows the number of behavior switches in with and
without maintenance behaviors.

Collaborative maintenance goals. These re-
sults show the importance of maintenance during

maint.

no-maint.

0

20

40

60

80

100

120

b
eh

av
io

r 
sw

it
ch

Figure 4:The number of behavior switches with
and without maintenance behaviors.

behavior execution. However, one could point out
that no teamwork is really being tested in these
scenarios since no communication or coordina-
tion takes place, and argue that by the use of a
teamwork architecture such differences could be
solved.

To evaluateDIESEL’s support for collaborative
maintenance of goals, we chose a more complex
environment for our agent team, one that would
raise additional points of failure. Requiring the
agents to explicitly collaborate on a given recipe
is straight-forward inDIESEL: We simply add the
following lines, on the behaviors we wished syn-
chronized in the recipe:

(<cn> ˆteam agent-group)

This invokes DIESEL’s team-operators, mod-
eled after those in (Kaminka & Frenkel 2005;
Tambe 1997), in order to carry out task alloca-
tion and synchronization of agents during the task
execution. We chose a square-shaped corridor, in
which the leader could run indefinitely. With every
turn, the leader could potentially be blocked from
the view of the follower, the agents had many op-
portunities to lose each other.

In previous work, the fact that the agents are ex-
plicitly collaborating in this task means that they
will come to agreement as to the joint goal. Here,
this is carried out by the leader announcing its next
selected target point. Thus the leader move around,
announcing its changing target locations as soon
as it selects them. The follower agent can visu-
ally track the leader, and and can also run to the
announced locations. As seen in Figure 5, the per-



0

1

2

3

4

5

6

0 10 20 30 40 50

time

tr
ia

l

event active

Figure 5:see-leader event logged by the follower
agent while using teamwork and communica-
tion

0

1

2

3

4

5

6

0 10 20 30 40 50

time

tr
ia

l

event active

Figure 6:maintenance on see-leader event while
using teamwork and communication

formance of the team using this technique is not
impressive: The leader is rarely visually seen by
the follower.

Figure 6 shows the performance of the follower
agent using maintenance, in contrast to the results
shown in Figure 5. Here, the team was jointly re-
sponsible for keeping the leader in sight during
most of the mission. This was achieved by both
agents taking active actions in order to maintain
their formation. The two agents executed a pro-
tocol in which the follower proactively broadcast
its see-leaderevent status, and also panned to-
wards the leader. The leader agent monitored these
broadcasts, and stopped to wait for the follower
if the broadcasts stopped (i.e., it reactively main-
tained the condition). The figure shows significant
improvement insee-leadermaintenance durations.

0

500

1000

1500

2000

2500

time

d
is

ta
n

ce

individual maint.

team maint.

Figure 7:Distance between leader and follower,
in cases of individual and team goal mainte-
nance.

We stress the difference between individual and
collaborative maintenance goals. In individual
form, the leader would not be responsible for
maintenance of the goal, and it would be up to the
follower to carry out all actions necessary to main-
tain the distance. In collaborative maintenance,
both leader and follower share the burden for main-
taining the goals of the team. InDIESEL, this is
achieved without changing the original recipe or
behaviors.

To see this, we manually introduced a failure
into the scenario above, where the follower was
physically blocked from moving forward. While
the follower agent conducts negative-maintenance,
meaning it actively seeks to maintain the presence
of see-leader events, the leading agent conducts a
positive-maintenance, meaning it acts only when
such an event drops. In this failure case, once the
follower stopped tracking the leader, the leader’s
positive-maintenance is proposed (even while it
was heading to its designated target), and com-
manded it to wait.

Figure 7 shows the results of such a case. The
figure shows on the X-axis the passage of time (in
Unreal Tournament seconds). The Y-axis shows
the distance between the follower and leader.
With individual maintenance, the distance between
leader and follower continue to grow after the fail-
ure occurs. However, with team maintenance, dis-
tance between both agents is kept throughout the
artificially-introduced failure.



Teamwork Maintenance

The previous section has focused on maintenance
goals in the context of the task. One novelty
in DIESEL is that it re-uses the same mecha-
nism for maintaining the team hierarchy in face of
catastrophic failures to individual agents. We call
this teamwork-maintenance, to contrast with task-
maintenance described in the previous section..

To demonstrate team-maintenance, we divided
four agents into two groups, each consisting of a
leader and a follower. We defined a single team-
maintenance condition in each team, stating that
each agent should have a coordinator at any given
moment. In each team, the coordinator was ini-
tially set to be the leading agent. In team A, con-
sisting of bot1 and bot2, it was bot1, and in team B,
consisting of bot3 and bot4, it was bot3. This was
part of the team-hierarchy for each agent. Both
teams followed the same recipe previously de-
scribed, with the two leaders independently lead-
ing their respective followers in constant move-
ment along the corridor.

To show teamwork maintenance in action, we
deliberately blocked any contact with bot3 and hid
him during the first half of the experiment. As a re-
sult, bot4, changed its coordinator, and began fol-
lowing bot1, by joining team A. After running half
of the experiment in such a manner, we removed
the blocking on the original coordinator, bot3, thus
allowing bot4 to fall back to its original team, team
B.

Switching teams in this example is achieved by
a team-maintenance behavior (operator, in Soar),
which manipulates the chain of coordinators list
present in bot4’s team-hierarchy. The behavior
works by checking whether at any given time a co-
ordinator is unreachable. If so, then the behavior
finds a new team in which there is a team coordina-
tor and change the organizational membership of
the agent to be a part of the other team. Since this
is only a maintenance behavior, as opposed to a
regular one, if the exception is resolved, the main-
tenance behavior is terminated, and regular order
is restored.

In Figure 8 we can see an example run, in which
we as can be seen,

The maintenance condition for this operator

0

1000

2000

3000

4000

5000

6000

7000

0 50 100 150 200 250

time

d
is

ta
n

ce bot4-1

bot4-3

Figure 8: Maintenance of team hierarchy: Dis-
tance between bot4 and bot3, bot1.

Conclusions and Future Work
We presentedDIESEL, an implemented teamwork
architecture built on top of the Soar cognitive ar-
chitecture (Newell 1990). Compared to previous
work, DIESEL provides a novel single mechanism
for collaborative maintenance of task goals as well
as team structure. This allows the programmer
to focus more clearly on achievement and main-
tenance aspects of the task, and to separate com-
pletely the issue of how to maintain the team-
structure in face of catastrophic failures.

We provided results from initial trials using
DIESEL for simple team tasks in the GameBots en-
vironment, and demonstrated that it results in re-
duced behavior switching and improved coordina-
tion between the agents. Future work includes ex-
tending the evaluation to more realistic, complex,
tasks, and exploring a diverse set of maintenance
protocols for taskwork and teamwork.

References
D.Vu, T.; Go, J.; Kaminka, G. A.; Veloso, M. M.;
and Browning, B. 2003. MONAD: A flexible
architecture for multi-agent control. InProceed-
ings of the Second International Joint Conference
on Autonomous Agents and Multi-Agent Systems
(AAMAS-03).

Kaminka, G. A., and Frenkel, I. 2005. Flexible
teamwork in behavior-based robots. InProceed-
ings of the Twentieth National Conference on Ar-
tificial Intelligence (AAAI-05).

Kaminka, G. A.; Veloso, M. M.; Schaffer, S.; Sol-
litto, C.; Adobbati, R.; Marshall, A. N.; Scholer,
A.; and Tejada, S. 2002. GameBots: A flexible



test bed for multiagent team research.Communi-
cations of the ACM45(1):43–45.
Kumar, S., and Cohen, P. R. 2000. Towards a
fault-tolerant multi-agent system architecture. In
Proceedings of the Fourth International Confer-
ence on Autonomous Agents (Agents-00), 459–
466. Barcelona, Spain: ACM Press.
Kumar, S.; Cohen, P. R.; and Levesque, H. J.
2000. The adaptive agent architecture: Achiev-
ing fault-tolerance using persistent broker teams.
In Proceedings of the Fourth International Con-
ference on Multiagent Systems (ICMAS-00), 159–
166. Boston, MA: IEEE Computer Society.
Newell, A. 1990.Unified Theories of Cognition.
Cambridge, Massachusetts: Harvard University
Press.
Parker, L. E. 1998. ALLIANCE: An archi-
tecture for fault tolerant multirobot cooperation.
IEEE Transactions on Robotics and Automation
14(2):220–240.
Rickel, J., and Johnson, W. L. 1999. Animated
agents for procedural training in virtual reality:
Perception, cognition, and motor control.Applied
Artificial Intelligence13:343–382.
Tambe, M., and Zhang, W. 1998. Towards flexi-
ble teamwork in peristent teams. InProceedings
of the Third International Conference on Multia-
gent Systems (ICMAS-98).
Tambe, M.; Adibi, J.; Al-Onaizan, Y.; Erdem, A.;
Kaminka, G. A.; Marsella, S. C.; and Muslea,
I. 1999. Building agent teams using an explicit
teamwork model and learning.Artificial Intelli-
gence111(1):215–239.
Tambe, M. 1997. Towards flexible teamwork.
Journal of Artificial Intelligence Research7:83–
124.
Yen, J.; Yin, J.; Ioerger, T. R.; Miller, M. S.; Xu,
D.; and Volz, R. A. 2001. CAST: Collaborative
agents for simulating teamwork. InProceedings
of the International Joint Conference on Artificial
Intelligence (IJCAI-01), 1135–1144.


