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) Abstract ) reckoning, which is not addressed by task-independent-meth
Coverage is a task, where a robot is to move about  ods. On one hand, coverage requires more accurate move-
a given atarget area until every pointin it is visited. ments; unlike other navigation tasks, when a robot isower

Many efficient coverage algorithms cannot be used  some area betweetand B, each point in its trajectory must
in practice, because they assume accurate move- pe covered. On the other hand, if the coverage tool is suf-
ments by the robot; unfortunately, real robots have ficiently large, then some motion errors can be ignored, as

navigational errors. A standard costly solution is long as the points on the trajectories are within the arehef t
to utilize a robot that continuously localizes, so as coverage tool.

to make course corrections. In this work we present We present a novel hybrid coverage algorithm, called
TRIM SAIL, a novel hybrid coverage algorithm that TRIM SAIL. TRIM SAIL takes as input an exact-movement
takes as input an exact-movement coverage algo-  g|gorithm, the coverage tool size, and a maximal dead-
rithm, and a maximal dead-reckoning error bound.  reckoning error bound. It optimizes use of the exact-
It optimizes use of the exact-movement algorithm, movement algorithm, so as to execute its coverage plan while
S0 as to execute its coverage plan while minimiz- minimizing localization checks and corrections, i.e., imin
ing movement and localization costsriM SAIL mizing movement and localization costs (e.g., in terms of

guarantees complete coverage, even under dead- time and battery). Given the error bounckif SAIL guar-
reckoning errors. We present several variants of  antees complete coverage, even under dead-reckoning.error
TRIM SAIL and demonstrate their efficacy in ex- We present several variants ok SAIL, including a worst-
periments using data collected from real robots. case variant, and average-case heuristics to reduce costs.

1 Introduction To evaluate RIM SAIL, we experiment using data col-

Coveragd4] is a canonical robotics task, where robots arele.‘:t_eOI from real ro_bots. We show that the analytical pre-
given a target work area, and move about the area until edictions for execution costs match the actual performance
ery point in the area is covered by a coverage tool associatdyf the robot. We additionally show that all versions of
with each robot. This tool is assumed to be the robots’ sen: R'M.SA”‘ ou_tpe_rform a task-|_ndependent hybrid approach,
sors or specific actuator. There exist a number of elegarlfl Which localizations are continuously performed to corre
and efficient algorithms for single- and multi-robot cover- d4€@d-reckoning errors. Finally, we show thaiWi SAIL'S
age, that all assume accurate and exact movements by tRE'formance is not sensitive to cost estimates—thus even if i
robot. Among these we include essentially all grid-based'SeS incorrect estimates as to the movement and locafizatio
and cell-decomposition methods, that divide the targea areCOSts: it will still perform well in practice.
into smaller cells.[14; 10; 5; 9; 8. These algorithms out- 2 Related Work
put a coverage plan, which—if followed without movement Early investigations of dead reckoning explored mechanica
errors—results in complete coverage of the work area. methods that reduce errors, a-priori by mounting additiona
Unfortunately, real robots have navigation errors—calledspecialized hardware and calibration of the robot to reduce
dead reckoning error$2], which prohibit the direct use of systematic odometry errof®]. However, dead-reckoning
exact-movement algorithms. The problem is that accumuerrors cannot be completely eliminated. There are non-
lating position errors cause the robot to drift away from itssystematic errors that are caused by environmental uticerta
planned trajectory. There are several task-independent afies, e.g., wheel slippage.
proaches to tackling dead-reckoning errors: Calibration o Increasingly, probabilistic methofi$2; 7] are used to carry
mechanical meank]; compensation by using relative lo- out the process of fusing information from sensors, oveetim
cations of multiple robotg§11]; or using a hybrid system to reduce the localization errors (which otherwise accuateul
which executes the exact-movement algorithm’s coveragaith movement). These technique successfully reduce odom-
plan while continuously executing localization procedure etry error by comparing the data obtained from the sensors in
(e.g.[12; 7; 3; 13) to correct the motion errors. Coverage a different point of time, taking into account the movements
presents a unique challenge and opportunity related to-deadf the robot and the noise in the readings. They also utilize



absolute location information (e.g., from GPS), if avaléab Notation Definition

In general, such methods require significant resources, and M x M The size of the work ared’
may also interfere with the robot’s operation. For instamte D xD The size of the tool coverage
the RoboCup AIBO soccer league, the robots have to physi- o The dead reckoning error bound
cally stop tracking the ball and the opponents, in orderde fr Algezact The exact-motion coverage algorithm
the camera to identify landmarks for localization. Our work Clrive The cost of drive
thus focuses on optimizing the use of localization proceslur Cloc The cost of one active localization
In particular, our work attempts to schedule localizatien r Ctotal The total cost of the algorithm
quests during coverage tasks, so as to reduce costs. q The maximal localization precision error
An important motivation for our work is the prevalence of
exact-motion coverage algorithms that are highly effigient Table 1: Notations used in this work.
yet assume no dead reckoning errors. Chd4keprovides However, dead-reckoning errors interfere in executing the

a survey of coverage algorithms. The Boustrophedon covercoverage-plan. A robot blindly following the sequence of
age algorithm is an efficient method, which relies on perfecinoves may not go through the intended cells, because dead-
localization[5; 9]. Spanning Tree Coverage (ST[8] is an-  reckoning errors will cause its actual course to deviate.
other good example. STC-based algorithms divide the work- Thus to execute the coverage plan, the robot must use lo-
ing area into cells of size equal to the robot tool, and buildcalization procedures to assert its position on the inténde
a Hamiltonian cycle that goes through all cells. While STC-trajectory, and to make corrections if necessary. We refer
based algorithms are efficient and easy to implement, they ato this process akcalization We abstract away from the
sume zero dead-reckoning errors, and fail in robots that havactual method of localization, and consider only the cost of
restricted capabilitieks) . this operation—in terms of time and battery power—which
Simultaneous Localization and Mappifit@d is a related  is denotedCy,.. In addition, localization has only a limited
task in which robots are required to map an unknown areadrecision, bounded by < D. If robot is localized at some
while also overcoming localization errors. The process rePositionp, all we know is that robot stays in a square of size
quires making fusing sensory readings over time, and thig % q that is centered at
puts additional constraints on the movements of the robots, The number of localizations made during coverage is de-
which are not present in coverage. The techniques present@@ted byN. When the robot deviates, it accumulates the ad-

here do not target mapping. ditional travel distance. This accumulated distance (tvhic
L includes course corrections) is denotedddyt,. Then, the

3 Dea_d'ReCkon'ng In Coverage total cost of the algorithm is given by:

We restrict ourselves toffline complete coveragevhere a Chotar = Civive - dists + Croe - N 1)

map of the work ared’, of size M x M, is given, and the To minimize this total cost (Eq. 1). the robot i full
algorithms seek to guarantee that a robot visits every oint Iomln_![mlze ﬁ 0 ell. CCF' ( 3\}h ), erk?l 0 nljust_carsgu y
W. We focus on grid tessellation of the work-area, though alance Its use of localization. €n such localizalion kaec

in principle the techniques can be extended to other regulaf'?re relatively expensive (e.g., In the RObOC.:uP AIBO league,
tessellation as well. where robots must stop tracking the ball in order to local-

The robot's tool size isD x D. Thus, when placed at a ize), increasing the number of localization checkd €ignif-

oint » in the work-area. the robot covers a square of Sizeicantly increases overall costs. On the other hand, reducin
P p o ; a ‘N too much requires larger corrections after each localiza-
D x D, whose center is gt. The robot is assumed to be

omnidirectional, or alternatively, be capable of moving fo tion, and thus increasefist,, the travel distance including
o Y, b€ cap VING 10 jeviations and their correction. We do this by considerirgy t
ward and turning in place. We are given the anglevhich is

the maximal deviation due to motion error (either left ohtig erfésbfrﬁ?nda;nodnﬁéﬁ?éit?;ngvrbb ot we address movement
of the direction of the movement) as the robot moves in a 9 y

straight line of a unit distance. The robot has a cost astatia g;ti{algszt Ilnoessel?hzibtlrt]réarya?ﬁ %?'tn%s‘r/xm?ﬁ Iiﬂsagfd?regti o
with a distance it travels, denoted BY;,.;,, for each unit dis- Y, Supp P

. of the x-axis. The ideal robot, without dead reckoning er-
tance. This cost abstracts real-world cost components, suEmS, will simply move in a straight line along the x-axis. A

as execution time, .battery usage, etc. Table 1 summariees t ealistic robot will diverge from the straight line, witheltac-
notation used in this work. . ; T
. cumulating dead-reckoning errors accelerating its depart
Now, suppose we have an exact-motion coverage alggz, the x-axis

_r|thm, denotedilge;q.. This algorithm takesl” andD as an Note, however, that localizations—and subsequent
input and computea coverage plas-an ordered SEQUENCE ., vactions—are notconstantly required, i.e., are only
of movements and heading changes (turns), wh|ch.take thr%quired at some key locations. Suppose the size of each cell
rgbo(;_through ﬁells,tt)o compllete_'ly coa/Hf. Denofte bwﬁtl (Jn the grid isd, 0 < d < D —q. Then the straight line that
the distance the robot travels in order to perform this task.,, e :

; enerates goes through a numberdok d-sized
Then, the total cost of this coverage task would be equal t6 Gexact 9 g g
Clgeyaer = Carive - disty. It D grows, the robot cover more 1This is equivalent to assuming error-less turns in a robot that can
area in each one of the steps. As a result, the robot needs #ove forward and turn in place. The relaxation of this assumption is
travel less to cover the environment, under the assumptiongraightforward, e.g., by requiring the robot to localize (and correct
that its movements are accurate. its position) with every turn.



cells. But because its coverage afex D is actually greater CALCULATE(), discussed below. HAiMm SAIL continues this
thand x d, it can in fact allow some deviation from the interleaved execution until the corridor is completelyed.
intended course. For instance, suppose the robot is to cover The robot pose (in the 2D area) is defined by three param-
cells of sized x d (d = %). The robot can deviate bg eters(z,y, ¢), which can be read by callingdcALIZE().
along the y-axis and still cover the cells (Figure 1). x,y define the robot position, whilé defines the robot yaw
(heading). We assumedcALIze() returns localization in-

] e = e formation with a precision defined hy
i I e The interleaving condition (line 8) checks whether the
B O e robot is still covering the corridor, or has possibly movedo
e side of it. The area that the robot currently covers is dahote
Fovot g drecton (e 2 ox% by Sq¢..00:, @nd the corridor (of widthil) is denoted bySq,
Fig_ure 1: Exgmple of robot motion which covers all cells, |S¢| denoting the size of the area.|Bq () Sqrobot| = d x d
while still deviating. then the robot continues to cover the defined corridor. If

This example presents an opportunity. We can contro|Sq (N Sq,.p0¢| < d x d then the robot deviation is too big
the value ofd (the size of the grid used by an exact-motion and there is some portion of the corridor which is not cur-
coverage algorithnilg....:), such that it optimizes the use rently covered. In this case, the robot needs to back-track t
of localizations to minimize total cost. A hybrid algorithm its previous location to re-cover the corridor (line 12).
would schedule localization actions (and their correct)dar CALCULATE (Algorithm 2) calculates the maximum dis-
Algezact's cOverage plan, augmenting it by periodic localiza- tancer and heading-changé the robot can travel until the
tion actions (and subsequent corrections, as necessary), anext localization is required, under the assumption of the
resulting in a complete coverage, at a minimal cost. maximal error boundy. Using CALCULATE ensures that
4 A Hybrid Coverage Algorithm 15[V Sarobot| = d x d is always true, and line 12 in Al-

In this section we present an algorithm that utilizes a givergorithm 1 is never reached. However, line 12 will be used
grid-cell size parametet, to provide complete coverage un- Whena is heuristically estimated (Section 5). Theorem 4.1
der dead-reckoning, using localizations only when necgssa asserts the correctness and completenes®of BAIL .

The TRiM SaiLalgorithm (Algorithm 1) takes as input the
exact-motion coverage algorithiig.,...;; the grid-size pa- Algorithm 2 CALCULATE (d, D,l, o, z,y, ¢)
rameterd; the robot coverage tool siz@; the work aredV; 1: m — cos2a(|y| + 0.5(D — I — d)) + 0.5(D — d) — |y|
ando, the maximal dead-reckoning error bound (this assumesy. , . gin 2a(|y| + 0.5(D — | — d))
the left and right error bounds are equal; this assumption isg. g . tan—1(m)
relaxed in the experiments). It exeCut@sye o tOCreAte 8 4. 5. 7 4 20—, buts — —6if y < 0.
coverage plan, and then executes the coverage plan while in- f140.5(D—1—d)
terleaving localization and course-corrections actiass)ec- "
essary. This results in movements as in Figure 1.

. cos @
6: returnr, o

- Theorem 4.1 If |Sq() Sqrobot| = d x d holds at the initial
Algorithm 1 TRIM SAIL (W, d, D, 1, @, Algesact) position of the robot, then Algorithm 1 achieves complete co
1: CP «— Algeqact(W, d){Exact-motion coverage plan} erage of the environment.
2: for all Plan stepstp € CP (in order)do
3: if stpisaturn or heading changken

Proof Not shown for lack of space.

4 executestp (and localize until pose is correct). The following corollary is used in Section 5. It is used in
5. else{stpisa corridor} alternative methods for determinimlgwhich affects the cost
6: while corridor Sq is not coveredlo of the coverage.

6 (.9, ¢) « Localize() Corollary 4.2 For a distancer planned byAlg.,q.;, a robot

8: if |Sq() Sqrobot| = d x d then : : : -

' using Algorithm 1 travels the distance< —=%—.

9: (r,0) « CALCULATE(d, D, o, ,y, ®) ] T cos 2a
10: Change heading by angle 5 Reducing Localization Cost
11: Set robot to travel distance of Some of the parameters t@Riv SAIL can be arbitrarily set
12: else back-track untillSq () Sqrobot| = d x d (d, provided toAlgc,.qct, @nd the error bound). Larger val-

ues ofd will result in smaller sequences of moves, but re-
_ i ) quire more frequent localizationgv(increases). Smallef
The algorithm first calls odllge.q.: t0 receive a coverage- yajyes allow for less frequent localizations (smalléy but
plan, which assumes no dead-reckoning errors (line 1). Thi,crease the correction distance. We first analyticallgdet
coverage plan is an ordered sequendeiof (heading change  mine the optimal valuel,,;, for d, based on the maximal
for omnidirectional robots) ancbrridor steps, defined as for- dead-reckoning errat, defined earlier. We then discuss esti-

ward movement of some length. For each plan stepMT  mating an average-cadewhich would work well in practice.
SAIL executes necessary localizations. Turns are executed in

lines 3-4). For corridor steps, it interleaves calls to e | Choosing d: Worst Case Analysis.  Since the size of the
calization action locaLize() (line 7) with short movements map isM x M, the number of cells of sizé x d is %.
(lines 10-11), whose angle and distance are computed ignder assumption of no errors, a robot travels distahioe



each cell; the total distance the robot travels is therei’éie Algeract, We chose to use a corridor environment, in which
Based on Corollary 4.2, usingRTM SAIL to overcome errors, all algorithms behave similarly. The robot and coverage al-
we can conclude that the total distance including corrastio gorithm settings are described below.

is bounded b%. Also, the total number of localizations Robot settings.  The RV-400 is a commercial vacuum-

is bounded b M2.sin 20 cleaning robot, which we fitted with our own control software
) Y&D—a—1)-cos2a" _ ) (Figure 2). The RV-400 runs its own coverage software, but
DenoteD’ = D —q. We extend Equation 1 and write down thjs software was disabled in these experiments. Instead, w
the expression for the total cost of the robot’s work: run our own coverage algorithms.
M? M? - sin 2« To generate a data set
Ctotar = Cdrm’d . cos 2a+cloc'd, (D' — d) - cos 2a @ of dead-reckoning errors,

the RV-400 robot was

Equation 2 is a function af, which provides an upper bound commanded to move in
on the cost of the coverage under dead reckoning errors. TQ straight line, for a dis-
determine an optimadl, we find d values (in the interval tance of 40cm. This
[0.D — q]) that minimize this function. Note we used a worst was repeated 50 times, re-
casex to find d,,.;, value. Because it relies on a worst-casesulting a data set of 50
analysis, this variant of RiM SAIL never makes corrections, measurements. For each
but may be more expensive than a riskier variant. movement, we measured
Using a Heuristic o Estimate. Observing the dead- the error in the robot po- _.
reckoning errors of real robots, we find that most of the &rror sition at the end of the 19Yré 2: An RV-400 robot,
are much smaller than the worst case robot esrorThus,  movement, and calculated US€d i €xperiments.
we can use smaller values of thein the TRIM SAIL algo-  the resulting error in heading (angle). This data set fotres t
rithm (and Equation 2), to reduce the number of localization basis for the motion error models that we use in this section.
However, this risks greater travel costs, as correctiorghmi Evaluating the techniques presented above requires mea-
be required. When the actual error is larger thendh@lue  suring a large number of configurations, multiple times. For
used, the robot will need to back-track to the point where it§nstance, to evaluate the upper bound computed based on
deviation was less or equal to the one allowed by the currertquation 2, we varyi in the rangd0, D — ¢], and repeat each
dmin anda values (Line 12 in Algorithm 1). Thus the selec- setting 50 times. We additionally vary the heuristic tecfuei
tion of a smaller value must be carefully balanced againstused withAlge,qc:. This would have made for an impractical
the cost incurred for corrections. number of runs with the physical robots. We therefore chose

We estimatex using error data measured on a real robot.to conduct controlled experiments by simulating the move-
We propose (and empirically compare in Section 6) thregnents of the robot, using the motion errors described above.
heuristics, all based on analysis of the robot errors. Givenith each simulated forward movement (each step) required
an estimated;, we utilize the analysis fat,,,;,, value (Eq. 2): by the controlling algorithm (Rim SAIL, Algezact, €1C.), We
—Simple Symmetric HeuristidUse the mean of the distri- randomly picked one of the error values and moved the robot
bution, ignoring the error sign (errors left of heading have under the influence of this error. The simulated robot’s move
positive sign, others negative). This mean value is used as ments accurately simulate its movements in our lab.
—Absolute-Value Symmetric Heuristi€stimate the mean  We use 40cm as the basic distance unit in all experiments,
from all errors, while ignoring the sign of the error. and in reporting all results. The real sensor rafjeas set
—Non-Symmetric HeuristicCollect the errors of the leftand  to 2 meters § 40cm units). Using the collected errors, we
right sides separately; estimate their means separately.  found that the maximal robot deviatian,,.. is bounded by
6 Experiments 15.6°. All experiment results are averages over 50 trials.
In this section we complement the analysis from previousCoverage algorithm settings. For simulation purposes we
sections with experiments with data from real robots. Theset the environment area to be equak€@®m? (2500 tiles,
experiment settings are described in Section 6.1. The first e 40cm each side). Since the robot’s sensors have a range
periment (Section 6.2) compares the data obtained from reaif 2 meters, this corresponds to a corridor of 200m by 2m
robot with the analytic estimates. Then, we compare the per500 by 5 of the 40cm steps). The use of a corridor was
formance of the RIM SAIL coverage algorithm—and the dif- motivated by two factors: First, all coverage algorithms be
ferent heuristic estimates fa—with a naive hybrid, which have similarly (if not identically) in this environment, @n
uses localization continuously (Section 6.3). Finally,a@a-  thus the results would not depend on our choicelbf, ;-
duct sensitivity analysis to examine the robustness offtlet Second, as ®IM SAIL’s localization in turns is the same

nigues to inaccuracies in cost estimates. as any other exact-motion algorithm, this environment high
] ) lights TRIM SaiL’s differences with existing work. Unless
6.1 Experiment Settings otherwise noted, the different costs were set with a 1:® rati

In order to evaluate the techniques described above, we offi-€., Cirive = 100 andCi,. = 500).

tained error data from a Friendly Robotics RV-400 robot, and . . . .

used it to simulate the robot's movements across the huadre®-2 ~ Calculating d: The Basic Technique

of robot runs used in the experiments below. To limit re-We first evaluate the upper bound in Eq. 2 with real-world
liance on the choice of the exact-motion coverage algorithndata. We compare the cost of usingrift SAIL (Algo-



rithm 1), with the values obtained from Eq. 2. We vary andT Sgimpies T'Saps, T'Sns are TRIM SAIL variants using
the virtual sensor sizé. This will ensure that the mini- the simple-symmetric, absolute-value symmetric, and non-
mum d,,,;, computed based on Eq. 2 corresponds to thesymmetric heuristics. We remind the reader that these $ieuri
minimum in the real runs. We setto 1, 2, 2.5, 3, 3.16 tic variants attempt to reduce the number of localizatias,
(the d,;» value, computed based am = 15.6° in the the risk of added travel distance for corrections.
data), 3.5, 4, and 4.5 40cm steps. For each one of these The three heuristic method8Ss;.,pic, T'Saps, aNdT'Sy,s
virtual’ grid sizes, we run a coverage algorithm for 50 all rely on estimating the distribution(s) underlying the e
times using the error data we obtained from the real robotror measurements. To do this, we used standard distribution
500000 fitting procedures. We found that the results are best fit-
Figure 3 presents 1 Reawota Robo baa —— ted by Pearson’s Type 5 distributions, also knowrPaar-
the data obtained in ) son5[1]. The distribution fit was done separately for each
these experiments. heuristic. The fitted mean (in the case of symmetric heuris-
This figure com- tics) or means (non-symmetric heuristic) were taken as the
pares the cost func- « value(s) used in the algorithms. For instance, for the sim-

400000

350000

Costiogy

300000

tion of Algorithm 1 260000 ple symmetric heuristic, the fitted distribution had a mefn o
run in our simula- 200000 Osimple = 1.4703°.

tion .With the cost 150000 e The results of the comparison appear in Table 2. Each
obtained from Eq. ¢ row corresponds to a single algorithm, and the values in

2. It shows that in-
deed the real cost is
bounded by the re-

it are averaged over 50 trials. We use horizontal lines
to distinguish the analytically-motivated algorithmg;,.
and T'S,,.q, from the heuristic-based algorithnisS;.pie.
sults from Eq. 2, by TSups, andT'S,,,. The columns (left to right) provide the
14% in all the mea- total distance traveled (in units of 40cm steps), the nuraber
sured points. The qualitative behavior of both functions islocalization actions, and the distance/localizationoraffhe

Figure 3: Comparison of running Al-
gorithm 1 with real-world data (av-
eraged over 50 trials), with the pre-
dicted cost obtained from Eqg. 2.

identical. For bothd = 3.16 is a the minimum. final column indicates the total cost resulting from using th
i i algorithm in question. Table 2 leads to several conclusions

6.3 Comparing Complete Coverage Algorithms explored below.

To establish a baseline for the experiments, we first run

Algezact, @s is, to measure its cost and coverage success. BE= Name  Distance Number of Dist-Loc  Total Cost

cause there are no localization§g.,...; hever turns or trav- Localizations Ratio

els to correct its location. However, its coverage per@mta — Alg,,. 790.35 251 3.14 204544.98

is poor; in the different trialsAlg.....; coverage percentage  7'Simax 792.15 231.00 3.43 194715.00

ran from 13.5% to 73% of the area, with a mean of 43.25%. 7T Ssimpie 1418.09 21.04 67.4 152329.00
These results demonstrate the impact of violating the 7'Sass 973.28 33.12 29.39 113888.00

perfect dead-reckoning assumptions of many exact-motion_"Sns 977.25 34.57 28.27 115010.41

coverage algorithms. Here, a provably-complete algorithm ] . :
fails—by a significant margin—to provide complete coverageTabIe 2: A Comparison of coverage results by different algo-

because its motion is erroneous. Many elegant exact-motiofthms. All algorithms resulted in 100% coverage. Two best
solutions to the coverage problems would suffer from simi-COStS are in bold. Results averaged over 50 trials.

lar problems. Direct comparison ofRTM SAIL t0 Algerqct First, we see that under the cost ratio defined (100:500),
therefore does not make seng8y....: would fail to provide  even the worst-performing variant oRTM SAIL—T'S,,,4 iS
complete coverage, whichrRTM SAIL provides. better than using the exact-motion algorittig,,..; with

TRIM SAIL hybridizes exact-motion coverage algorithms, continuous localization calls4(g;..). The distance traveled
modifying their use in real-world settings, to maintainithe by Alg;,. is almost the same &s5,,,,, with a much greater
proven properties of efficiency, robustness, attile guar-  number of localizations. This is becausgy;,. makes unnec-
anteeing 100% (complete) coveragelowever, a more di- essary corrections. Because it does not consider the geome-
rect approach is possible in principle, where an exactanoti try/size of the coverage tool, it repositions even if theadee
algorithm would simply be used together with continuousalready covered. ThusrRIM SAIL indeed offers a much more
(repeating) localization. For instance, if landmarks dre a effective hybridization of the original algorithm.
ways sensed by the robot, then the robot can—in principle at Second, the results reveal a qualitative significant differ
least—run localization procedures without pause, regyitin - ence between the analytical method which seeks to guarantee
continuous error corrections, and complete coverage. performance using only the maximal error boufithy,,,.),

We therefore turn to empirically evaluatRiM SAIL and  and the heuristic methods'Gsimpie, T'Saps, and I'S;,s)
its heuristic variants (Section 5), against a naive use of amwhich seek to minimize cost by relying on additional knowl-
exact-motion algorithm with persistent localization. Véere ~ edge (here, about the distribution of heading errors). The
pare the following techniquestig;,., which isAlg....: used  heuristic methods significantly outperform their worssea
with persistent localization (to create the best possiilg,.., counterpart, demonstrating their effective utilizatiointloe
we assume perfect localization];S,,.. iS the worst-case additional knowledge they have. In particular, given that a
TRIM SAIL using the maximal heading error bound,,; three methods relying on our fitting the error distribution t



the Pearson5 distribution, we believe that this indicates t robot error bounds and coverage range; (2) the heuristic-met
indeed this distribution type is appropriate for modeliegd-  ods outperform the analytical methods in the cost ratio cho-
reckoning errors. To check this, we also experimented wittsen; (3) TRIM SAIL variants are not sensitive to errors in
other distribution types, and showed that Pearson5 is thdeecost estimates; and (4) that th& M SAiL algorithmalways
superior. We do not provide the details here for lack of spaceoutperforms naive coverage hybridization, where the exact
Third, while the Absolute SymmetricI(S,;s) and Non-  motion algorithm is simply coupled with continuous local-
Symmetric ['S,,,) algorithms are significantly better than all ization. In the future, we hope to explore new heuristic di-

others, their results are in fact non-distinguishable {taited
t-test results ip = 0.32).

6.4 Sensitivity to Cost Estimations

The distance-localization ratio of the best algorithmsb(&a
2) is lower than that 0of'Sg;mpie, though higher than that of
T Smaz- The conclusion is that the results in Table 2 might be
dependent on the actual cost estimates (travel cost and Iocet
ization cost), which are used irRTm SAIL . Here, we explore 2]
the sensitivity of the results to errors in the cost estimate-

vided to the algorithms.

(1]

(3]

Ratio—  1:10(0.1) 1:5(0.2) 1:1(1)
Name (original)
Algoe  330035.00 204535.00 104135.00 [4]
TSpmar  310215.00 194715.00 102315.00
T'Saps 130448.00 113888.00 100640.00 5]
TSps 132296.12 115010.41 101181.84
TSsimple 162849.00 152329.00 143913.00

Table 3: A Comparison of total costs for each algorithms,[6l
under different travel-to-localization cost ratios. Beests
are in bold.

Table 3 shows the total costs for the different algorithms,[7]
when the travel-to-localization cost ratio is systemdiyca
changed from the original settings (marked, fourth column
from left). First, we note that th&S,;s, which we found [g]
earlier to be the best, remains so under extreme changes to
the cost ratio: The result holds from a cost ratio of 1:25lunti
a cost ratio of 1:1. Thus one conclusion is that the top per[g]
forming heuristic technique is in fact extremely robustdstc
estimate errors.

A second important conclusion is reached contrasting the
the top two rows Qlg;,. andT'S,,,...). We see that RIM [10]
SaIL provides superior performance to that of the other hy-
brid approachin all cost ratios This again demonstrates the [11]
efficacy of the methods we presented in this paper.

7 Conclusions

In this paper we presentedRTm SAIL, a hybrid coverage al-
gorithm (and associated heuristics, geometric optinopaii
for real-world settings. RIM SAIL takes an exact-motion
coverage algorithm, which assumes no dead-reckoning ef-
rors, and uses it to guide angled movements that guarantiég‘]
complete coverage of the target work area, while minimiz-
ing the use of localization to that strictly necessary. We pr [14]
sented an analytical worst-case version &M SAIL, and

three heuristics which further reduce total coverage cdgés

then reported on extensive experiments withiml SAIL, us-

ing data collected from the RV-400 robot. The experiments
demonstrated that (1) the analytical methods accurately pr
dict an upper bound for total costs, and minimum cost, given

[12]

rections which take more risks in terms of completeness of
coverage, but provide reduced costs.
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