
Coverage Under Dead Reckoning Errors: A Hybrid Approach

Victor Shafran, Gal A. Kaminka, Sarit Kraus
Bar Ilan University

{shafrav,galk,sarit}@cs.biu.ac.il
Alcherio Martinoli

Swiss Federal Institute of Technology Lausanne
alcherio.martinoli@epfl.ch

Abstract
Coverage is a task, where a robot is to move about
a given a target area until every point in it is visited.
Many efficient coverage algorithms cannot be used
in practice, because they assume accurate move-
ments by the robot; unfortunately, real robots have
navigational errors. A standard costly solution is
to utilize a robot that continuously localizes, so as
to make course corrections. In this work we present
TRIM SAIL , a novel hybrid coverage algorithm that
takes as input an exact-movement coverage algo-
rithm, and a maximal dead-reckoning error bound.
It optimizes use of the exact-movement algorithm,
so as to execute its coverage plan while minimiz-
ing movement and localization costs. TRIM SAIL
guarantees complete coverage, even under dead-
reckoning errors. We present several variants of
TRIM SAIL and demonstrate their efficacy in ex-
periments using data collected from real robots.

1 Introduction
Coverage[4] is a canonical robotics task, where robots are
given a target work area, and move about the area until ev-
ery point in the area is covered by a coverage tool associated
with each robot. This tool is assumed to be the robots’ sen-
sors or specific actuator. There exist a number of elegant
and efficient algorithms for single- and multi-robot cover-
age, that all assume accurate and exact movements by the
robot. Among these we include essentially all grid-based
and cell-decomposition methods, that divide the target area
into smaller cells.[14; 10; 5; 9; 8]. These algorithms out-
put a coverage plan, which—if followed without movement
errors—results in complete coverage of the work area.

Unfortunately, real robots have navigation errors—called
dead reckoning errors[2], which prohibit the direct use of
exact-movement algorithms. The problem is that accumu-
lating position errors cause the robot to drift away from its
planned trajectory. There are several task-independent ap-
proaches to tackling dead-reckoning errors: Calibration or
mechanical means[2]; compensation by using relative lo-
cations of multiple robots[11]; or using a hybrid system
which executes the exact-movement algorithm’s coverage
plan while continuously executing localization procedures
(e.g.,[12; 7; 3; 13]) to correct the motion errors. Coverage
presents a unique challenge and opportunity related to dead-

reckoning, which is not addressed by task-independent meth-
ods. On one hand, coverage requires more accurate move-
ments; unlike other navigation tasks, when a robot is tocover
some area betweenA andB, each point in its trajectory must
be covered. On the other hand, if the coverage tool is suf-
ficiently large, then some motion errors can be ignored, as
long as the points on the trajectories are within the area of the
coverage tool.

We present a novel hybrid coverage algorithm, called
TRIM SAIL . TRIM SAIL takes as input an exact-movement
algorithm, the coverage tool size, and a maximal dead-
reckoning error bound. It optimizes use of the exact-
movement algorithm, so as to execute its coverage plan while
minimizing localization checks and corrections, i.e., mini-
mizing movement and localization costs (e.g., in terms of
time and battery). Given the error bound, TRIM SAIL guar-
antees complete coverage, even under dead-reckoning errors.
We present several variants of TRIM SAIL , including a worst-
case variant, and average-case heuristics to reduce costs.

To evaluate TRIM SAIL , we experiment using data col-
lected from real robots. We show that the analytical pre-
dictions for execution costs match the actual performance
of the robot. We additionally show that all versions of
TRIM SAIL outperform a task-independent hybrid approach,
in which localizations are continuously performed to correct
dead-reckoning errors. Finally, we show that TRIM SAIL ’s
performance is not sensitive to cost estimates—thus even if it
uses incorrect estimates as to the movement and localization
costs, it will still perform well in practice.

2 Related Work
Early investigations of dead reckoning explored mechanical
methods that reduce errors, a-priori by mounting additional
specialized hardware and calibration of the robot to reduce
systematic odometry errors[2]. However, dead-reckoning
errors cannot be completely eliminated. There are non-
systematic errors that are caused by environmental uncertain-
ties, e.g., wheel slippage.

Increasingly, probabilistic methods[12; 7] are used to carry
out the process of fusing information from sensors, over time,
to reduce the localization errors (which otherwise accumulate
with movement). These technique successfully reduce odom-
etry error by comparing the data obtained from the sensors in
a different point of time, taking into account the movements
of the robot and the noise in the readings. They also utilize

absolute location information (e.g., from GPS), if available.
In general, such methods require significant resources, and

may also interfere with the robot’s operation. For instance, in
the RoboCup AIBO soccer league, the robots have to physi-
cally stop tracking the ball and the opponents, in order to free
the camera to identify landmarks for localization. Our work
thus focuses on optimizing the use of localization procedures.
In particular, our work attempts to schedule localization re-
quests during coverage tasks, so as to reduce costs.

An important motivation for our work is the prevalence of
exact-motion coverage algorithms that are highly efficient,
yet assume no dead reckoning errors. Choset[4] provides
a survey of coverage algorithms. The Boustrophedon cover-
age algorithm is an efficient method, which relies on perfect
localization[5; 9]. Spanning Tree Coverage (STC)[8] is an-
other good example. STC-based algorithms divide the work-
ing area into cells of size equal to the robot tool, and build
a Hamiltonian cycle that goes through all cells. While STC-
based algorithms are efficient and easy to implement, they as-
sume zero dead-reckoning errors, and fail in robots that have
restricted capabilities[6].

Simultaneous Localization and Mapping[13] is a related
task in which robots are required to map an unknown area,
while also overcoming localization errors. The process re-
quires making fusing sensory readings over time, and this
puts additional constraints on the movements of the robots,
which are not present in coverage. The techniques presented
here do not target mapping.

3 Dead-Reckoning in Coverage
We restrict ourselves tooffline complete coverage, where a
map of the work areaW , of sizeM ×M , is given, and the
algorithms seek to guarantee that a robot visits every pointin
W . We focus on grid tessellation of the work-area, though
in principle the techniques can be extended to other regular
tessellation as well.

The robot’s tool size isD × D. Thus, when placed at a
point p in the work-area, the robot covers a square of size
D × D, whose center is atp. The robot is assumed to be
omnidirectional, or alternatively, be capable of moving for-
ward and turning in place. We are given the angleα, which is
the maximal deviation due to motion error (either left or right
of the direction of the movement) as the robot moves in a
straight line of a unit distance. The robot has a cost associated
with a distance it travels, denoted byCdrive for each unit dis-
tance. This cost abstracts real-world cost components, such
as execution time, battery usage, etc. Table 1 summarizes the
notation used in this work.

Now, suppose we have an exact-motion coverage algo-
rithm, denotedAlgexact. This algorithm takesW andD as an
input and computesa coverage plan—an ordered sequence
of movements and heading changes (turns), which take the
robot through cells, to completely coverW . Denote bydist1
the distance the robot travels in order to perform this task.
Then, the total cost of this coverage task would be equal to
CAlgexact

= Cdrive · dist1. If D grows, the robot cover more
area in each one of the steps. As a result, the robot needs to
travel less to cover the environment, under the assumptions
that its movements are accurate.

Notation Definition
M ×M The size of the work areaW
D ×D The size of the tool coverage

α The dead reckoning error bound
Algexact The exact-motion coverage algorithm
Cdrive The cost of drive
Cloc The cost of one active localization

Ctotal The total cost of the algorithm
q The maximal localization precision error

Table 1: Notations used in this work.
However, dead-reckoning errors interfere in executing the

coverage-plan. A robot blindly following the sequence of
moves may not go through the intended cells, because dead-
reckoning errors will cause its actual course to deviate.

Thus to execute the coverage plan, the robot must use lo-
calization procedures to assert its position on the intended
trajectory, and to make corrections if necessary. We refer
to this process aslocalization. We abstract away from the
actual method of localization, and consider only the cost of
this operation—in terms of time and battery power—which
is denotedCloc. In addition, localization has only a limited
precision, bounded byq ≪ D. If robot is localized at some
positionp, all we know is that robot stays in a square of size
q × q that is centered atp.

The number of localizations made during coverage is de-
noted byN . When the robot deviates, it accumulates the ad-
ditional travel distance. This accumulated distance (which
includes course corrections) is denoted bydist2. Then, the
total cost of the algorithm is given by:

Ctotal = Cdrive · dist2 + Cloc ·N (1)
To minimize this total cost (Eq. 1), the robot must carefully

balance its use of localization. When such localization checks
are relatively expensive (e.g., in the RoboCup AIBO league,
where robots must stop tracking the ball in order to local-
ize), increasing the number of localization checks (N) signif-
icantly increases overall costs. On the other hand, reducing
N too much requires larger corrections after each localiza-
tion, and thus increasesdist2, the travel distance including
deviations and their correction. We do this by considering the
error boundα, and its relation toN .

Assuming an omnidirectional robot, we address movement
in straight lines in arbitrary headings1. Without loss of gen-
erality, suppose that the path of the robot is in the direction
of the x-axis. The ideal robot, without dead reckoning er-
rors, will simply move in a straight line along the x-axis. A
realistic robot will diverge from the straight line, with the ac-
cumulating dead-reckoning errors accelerating its departure
from the x-axis.

Note, however, that localizations—and subsequent
corrections—are notconstantly required, i.e., are only
required at some key locations. Suppose the size of each cell
in the grid isd, 0 ≤ d ≤ D − q. Then the straight line that
Algexact generates goes through a number ofd × d-sized

1This is equivalent to assuming error-less turns in a robot that can
move forward and turn in place. The relaxation of this assumption is
straightforward, e.g., by requiring the robot to localize (and correct
its position) with every turn.

cells. But because its coverage areaD×D is actually greater
than d × d, it can in fact allow some deviation from the
intended course. For instance, suppose the robot is to cover
cells of sized × d (d = D

2). The robot can deviate byD4
along the y-axis and still cover the cells (Figure 1).

Robot Sensing Area

Step 1

Dd

(C
o
rr
id
o
r
th
a
t
s
h
o
u
ld
 b
e
 c
o
v
e
re
d
)

Robot Sensing Area

Step 2

Robot Sensing Area

Step 3

Robot Sensing Area

Step 4

Robot moving direction (referred as x-axis)

Figure 1: Example of robot motion which covers all cells,
while still deviating.

This example presents an opportunity. We can control
the value ofd (the size of the grid used by an exact-motion
coverage algorithmAlgexact), such that it optimizes the use
of localizations to minimize total cost. A hybrid algorithm
would schedule localization actions (and their corrections) for
Algexact’s coverage plan, augmenting it by periodic localiza-
tion actions (and subsequent corrections, as necessary), and
resulting in a complete coverage, at a minimal cost.

4 A Hybrid Coverage Algorithm
In this section we present an algorithm that utilizes a given
grid-cell size parameterd, to provide complete coverage un-
der dead-reckoning, using localizations only when necessary.

The TRIM SAIL algorithm (Algorithm 1) takes as input the
exact-motion coverage algorithmAlgexact; the grid-size pa-
rameterd; the robot coverage tool sizeD; the work areaW ;
andα, the maximal dead-reckoning error bound (this assumes
the left and right error bounds are equal; this assumption is
relaxed in the experiments). It executesAlgexact to create a
coverage plan, and then executes the coverage plan while in-
terleaving localization and course-corrections actions,as nec-
essary. This results in movements as in Figure 1.

Algorithm 1 TRIM SAIL (W, d, D, l, α, Algexact)

1: CP ← Algexact(W,d){Exact-motion coverage plan}
2: for all Plan stepstp ∈ CP (in order)do
3: if stp is a turn or heading changethen
4: executestp (and localize until pose is correct).
5: else { stp is a corridor}
6: while corridorSq is not covereddo
7: (x, y, φ)← Localize()
8: if |Sq

⋂
Sqrobot| = d× d then

9: (r, δ)← CALCULATE (d,D, α, x, y, φ)
10: Change heading by angleδ
11: Set robot to travel distance ofr.
12: else back-track until|Sq

⋂
Sqrobot| = d× d

The algorithm first calls onAlgexact to receive a coverage-
plan, which assumes no dead-reckoning errors (line 1). This
coverage plan is an ordered sequence ofturn (heading change
for omnidirectional robots) andcorridor steps, defined as for-
ward movement of some length. For each plan step, TRIM
SAIL executes necessary localizations. Turns are executed in
lines 3–4). For corridor steps, it interleaves calls to the lo-
calization action LOCALIZE() (line 7) with short movements
(lines 10–11), whose angle and distance are computed in

CALCULATE (), discussed below. TRIM SAIL continues this
interleaved execution until the corridor is completely covered.

The robot pose (in the 2D area) is defined by three param-
eters(x, y, φ), which can be read by calling LOCALIZE().
x, y define the robot position, whileφ defines the robot yaw
(heading). We assume LOCALIZE() returns localization in-
formation with a precision defined byq.

The interleaving condition (line 8) checks whether the
robot is still covering the corridor, or has possibly moved out-
side of it. The area that the robot currently covers is denoted
by Sqrobot, and the corridor (of widthd) is denoted bySq,
|Sq| denoting the size of the area. If|Sq

⋂
Sqrobot| = d × d

then the robot continues to cover the defined corridor. If
|Sq

⋂
Sqrobot| < d× d then the robot deviation is too big

and there is some portion of the corridor which is not cur-
rently covered. In this case, the robot needs to back-track to
its previous location to re-cover the corridor (line 12).

CALCULATE (Algorithm 2) calculates the maximum dis-
tancer and heading-changeδ the robot can travel until the
next localization is required, under the assumption of the
maximal error boundα. Using CALCULATE ensures that
|Sq

⋂
Sqrobot| = d× d is always true, and line 12 in Al-

gorithm 1 is never reached. However, line 12 will be used
whenα is heuristically estimated (Section 5). Theorem 4.1
asserts the correctness and completeness of TRIM SAIL .

Algorithm 2 CALCULATE (d, D, l, α, x, y, φ)

1: m← cos 2α(|y|+ 0.5(D − l − d)) + 0.5(D − d)− |y|
2: n← sin 2α(|y|+ 0.5(D − l − d))
3: θ ← tan−1(m

n
)

4: δ ← π
2 + φ− θ − α, butδ ← −δ if y < 0.

5: r ← |y|+0.5(D−l−d)
cos θ

6: returnr, δ

Theorem 4.1 If |Sq
⋂

Sqrobot| = d× d holds at the initial
position of the robot, then Algorithm 1 achieves complete cov-
erage of the environment.

Proof Not shown for lack of space.

The following corollary is used in Section 5. It is used in
alternative methods for determiningd, which affects the cost
of the coverage.

Corollary 4.2 For a distancex planned byAlgexact, a robot
using Algorithm 1 travels the distancer ≤ x

cos 2α
.

5 Reducing Localization Cost
Some of the parameters to TRIM SAIL can be arbitrarily set
(d, provided toAlgexact, and the error boundα). Larger val-
ues ofd will result in smaller sequences of moves, but re-
quire more frequent localizations (N increases). Smallerd
values allow for less frequent localizations (smallerN) but
increase the correction distance. We first analytically deter-
mine the optimal valuedmin for d, based on the maximal
dead-reckoning errorα, defined earlier. We then discuss esti-
mating an average-cased, which would work well in practice.

Choosing d: Worst Case Analysis. Since the size of the
map isM × M , the number of cells of sized × d is M2

d2 .
Under assumption of no errors, a robot travels distanced for

each cell; the total distance the robot travels is thereforeM2

d
.

Based on Corollary 4.2, using TRIM SAIL to overcome errors,
we can conclude that the total distance including corrections
is bounded by M2

d·cos 2α
. Also, the total number of localizations

is bounded by M2·sin 2α
d·(D−d−l)·cos 2α

.
DenoteD′ = D−q. We extend Equation 1 and write down

the expression for the total cost of the robot’s work:

Ctotal = Cdrive·
M2

d · cos 2α
+Cloc·

M2 · sin 2α

d · (D′ − d) · cos 2α
(2)

Equation 2 is a function ofd, which provides an upper bound
on the cost of the coverage under dead reckoning errors. To
determine an optimald, we find d values (in the interval
[0.D − q]) that minimize this function. Note we used a worst
caseα to find dmin value. Because it relies on a worst-case
analysis, this variant of TRIM SAIL never makes corrections,
but may be more expensive than a riskier variant.
Using a Heuristic α Estimate. Observing the dead-
reckoning errors of real robots, we find that most of the errors
are much smaller than the worst case robot errorα. Thus,
we can use smaller values of theα in the TRIM SAIL algo-
rithm (and Equation 2), to reduce the number of localizations.
However, this risks greater travel costs, as corrections might
be required. When the actual error is larger then theα value
used, the robot will need to back-track to the point where its
deviation was less or equal to the one allowed by the current
dmin andα values (Line 12 in Algorithm 1). Thus the selec-
tion of a smallerα value must be carefully balanced against
the cost incurred for corrections.

We estimateα using error data measured on a real robot.
We propose (and empirically compare in Section 6) three
heuristics, all based on analysis of the robot errors. Given
an estimatedα, we utilize the analysis fordmin value (Eq. 2):
—Simple Symmetric Heuristic.Use the mean of the distri-
bution, ignoring the error sign (errors left of heading havea
positive sign, others negative). This mean value is used asα.
—Absolute-Value Symmetric Heuristic.Estimate the mean
from all errors, while ignoring the sign of the error.
—Non-Symmetric Heuristic.Collect the errors of the left and
right sides separately; estimate their means separately.

6 Experiments
In this section we complement the analysis from previous
sections with experiments with data from real robots. The
experiment settings are described in Section 6.1. The first ex-
periment (Section 6.2) compares the data obtained from real
robot with the analytic estimates. Then, we compare the per-
formance of the TRIM SAIL coverage algorithm—and the dif-
ferent heuristic estimates forα—with a naïve hybrid, which
uses localization continuously (Section 6.3). Finally, wecon-
duct sensitivity analysis to examine the robustness of the tech-
niques to inaccuracies in cost estimates.

6.1 Experiment Settings
In order to evaluate the techniques described above, we ob-
tained error data from a Friendly Robotics RV-400 robot, and
used it to simulate the robot’s movements across the hundreds
of robot runs used in the experiments below. To limit re-
liance on the choice of the exact-motion coverage algorithm

Algexact, we chose to use a corridor environment, in which
all algorithms behave similarly. The robot and coverage al-
gorithm settings are described below.
Robot settings. The RV-400 is a commercial vacuum-
cleaning robot, which we fitted with our own control software
(Figure 2). The RV-400 runs its own coverage software, but
this software was disabled in these experiments. Instead, we
run our own coverage algorithms.

Figure 2: An RV-400 robot,
used in experiments.

To generate a data set
of dead-reckoning errors,
the RV-400 robot was
commanded to move in
a straight line, for a dis-
tance of 40cm. This
was repeated 50 times, re-
sulting a data set of 50
measurements. For each
movement, we measured
the error in the robot po-
sition at the end of the
movement, and calculated
the resulting error in heading (angle). This data set forms the
basis for the motion error models that we use in this section.

Evaluating the techniques presented above requires mea-
suring a large number of configurations, multiple times. For
instance, to evaluate the upper bound computed based on
Equation 2, we varyd in the range[0,D− q], and repeat each
setting 50 times. We additionally vary the heuristic technique
used withAlgexact. This would have made for an impractical
number of runs with the physical robots. We therefore chose
to conduct controlled experiments by simulating the move-
ments of the robot, using the motion errors described above.
With each simulated forward movement (each step) required
by the controlling algorithm (TRIM SAIL , Algexact, etc.), we
randomly picked one of the error values and moved the robot
under the influence of this error. The simulated robot’s move-
ments accurately simulate its movements in our lab.

We use 40cm as the basic distance unit in all experiments,
and in reporting all results. The real sensor rangeD was set
to 2 meters (5 40cm units). Using the collected errors, we
found that the maximal robot deviationαmax is bounded by
15.6◦. All experiment results are averages over 50 trials.
Coverage algorithm settings. For simulation purposes we
set the environment area to be equal to400m2 (2500 tiles,
40cm each side). Since the robot’s sensors have a range
of 2 meters, this corresponds to a corridor of 200m by 2m
(500 by 5 of the 40cm steps). The use of a corridor was
motivated by two factors: First, all coverage algorithms be-
have similarly (if not identically) in this environment, and
thus the results would not depend on our choice ofAlgexact.
Second, as TRIM SAIL ’s localization in turns is the same
as any other exact-motion algorithm, this environment high-
lights TRIM SAIL ’s differences with existing work. Unless
otherwise noted, the different costs were set with a 1:5 ratio
(i.e.,Cdrive = 100 andCloc = 500).

6.2 Calculating d: The Basic Technique
We first evaluate the upper bound in Eq. 2 with real-world
data. We compare the cost of using TRIM SAIL (Algo-

rithm 1), with the values obtained from Eq. 2. We vary
the virtual sensor sized. This will ensure that the mini-
mum dmin computed based on Eq. 2 corresponds to the
minimum in the real runs. We setd to 1, 2, 2.5, 3, 3.16
(the dmin value, computed based onα = 15.6◦ in the
data), 3.5, 4, and 4.5 40cm steps. For each one of these
’virtual’ grid sizes, we run a coverage algorithm for 50
times using the error data we obtained from the real robot.

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 1 1.5 2 2.5 3 3.5 4 4.5

C
os

t to
ta

l

d

Analytical Prediction
Real-world Robot Data

Figure 3: Comparison of running Al-
gorithm 1 with real-world data (av-
eraged over 50 trials), with the pre-
dicted cost obtained from Eq. 2.

Figure 3 presents
the data obtained in
these experiments.
This figure com-
pares the cost func-
tion of Algorithm 1
run in our simula-
tion with the cost
obtained from Eq.
2. It shows that in-
deed the real cost is
bounded by the re-
sults from Eq. 2, by
14% in all the mea-
sured points. The qualitative behavior of both functions is
identical. For both,d = 3.16 is a the minimum.

6.3 Comparing Complete Coverage Algorithms
To establish a baseline for the experiments, we first run
Algexact, as is, to measure its cost and coverage success. Be-
cause there are no localizations,Algexact never turns or trav-
els to correct its location. However, its coverage percentage
is poor; in the different trials,Algexact coverage percentage
ran from 13.5% to 73% of the area, with a mean of 43.25%.

These results demonstrate the impact of violating the
perfect dead-reckoning assumptions of many exact-motion
coverage algorithms. Here, a provably-complete algorithm
fails—by a significant margin—to provide complete coverage
because its motion is erroneous. Many elegant exact-motion
solutions to the coverage problems would suffer from simi-
lar problems. Direct comparison of TRIM SAIL to Algexact

therefore does not make sense:Algexact would fail to provide
complete coverage, which TRIM SAIL provides.

TRIM SAIL hybridizes exact-motion coverage algorithms,
modifying their use in real-world settings, to maintain their
proven properties of efficiency, robustness, etc.while guar-
anteeing 100% (complete) coverage. However, a more di-
rect approach is possible in principle, where an exact-motion
algorithm would simply be used together with continuous
(repeating) localization. For instance, if landmarks are al-
ways sensed by the robot, then the robot can—in principle at
least—run localization procedures without pause, resulting in
continuous error corrections, and complete coverage.

We therefore turn to empirically evaluate TRIM SAIL and
its heuristic variants (Section 5), against a naive use of an
exact-motion algorithm with persistent localization. We com-
pare the following techniques:Algloc, which isAlgexact used
with persistent localization (to create the best possibleAlgloc,
we assume perfect localization);TSmax is the worst-case
TRIM SAIL using the maximal heading error boundαmax;

andTSsimple, TSabs, TSns are TRIM SAIL variants using
the simple-symmetric, absolute-value symmetric, and non-
symmetric heuristics. We remind the reader that these heuris-
tic variants attempt to reduce the number of localizations,at
the risk of added travel distance for corrections.

The three heuristic methodsTSsimple, TSabs, andTSns

all rely on estimating the distribution(s) underlying the er-
ror measurements. To do this, we used standard distribution-
fitting procedures. We found that the results are best fit-
ted by Pearson’s Type 5 distributions, also known asPear-
son5 [1]. The distribution fit was done separately for each
heuristic. The fitted mean (in the case of symmetric heuris-
tics) or means (non-symmetric heuristic) were taken as the
α value(s) used in the algorithms. For instance, for the sim-
ple symmetric heuristic, the fitted distribution had a mean of
αsimple = 1.4703◦.

The results of the comparison appear in Table 2. Each
row corresponds to a single algorithm, and the values in
it are averaged over 50 trials. We use horizontal lines
to distinguish the analytically-motivated algorithmsAlgloc

and TSmax from the heuristic-based algorithmsTSsimple,
TSabs, andTSns. The columns (left to right) provide the
total distance traveled (in units of 40cm steps), the numberof
localization actions, and the distance/localization ratio. The
final column indicates the total cost resulting from using the
algorithm in question. Table 2 leads to several conclusions,
explored below.

Name Distance Number of Dist-Loc Total Cost
Localizations Ratio

Algloc 790.35 251 3.14 204544.98
TSmax 792.15 231.00 3.43 194715.00

TSsimple 1418.09 21.04 67.4 152329.00
TSabs 973.28 33.12 29.39 113888.00
TSns 977.25 34.57 28.27 115010.41

Table 2: A Comparison of coverage results by different algo-
rithms. All algorithms resulted in 100% coverage. Two best
costs are in bold. Results averaged over 50 trials.

First, we see that under the cost ratio defined (100:500),
even the worst-performing variant of TRIM SAIL —TSmax is
better than using the exact-motion algorithmAlgexact with
continuous localization calls (Algloc). The distance traveled
by Algloc is almost the same asTSmax, with a much greater
number of localizations. This is becauseAlgloc makes unnec-
essary corrections. Because it does not consider the geome-
try/size of the coverage tool, it repositions even if the area is
already covered. Thus TRIM SAIL indeed offers a much more
effective hybridization of the original algorithm.

Second, the results reveal a qualitative significant differ-
ence between the analytical method which seeks to guarantee
performance using only the maximal error bound (TSmax),
and the heuristic methods (TSsimple, TSabs, and TSns)
which seek to minimize cost by relying on additional knowl-
edge (here, about the distribution of heading errors). The
heuristic methods significantly outperform their worst-case
counterpart, demonstrating their effective utilization of the
additional knowledge they have. In particular, given that all
three methods relying on our fitting the error distribution to

the Pearson5 distribution, we believe that this indicates that
indeed this distribution type is appropriate for modeling dead-
reckoning errors. To check this, we also experimented with
other distribution types, and showed that Pearson5 is indeed
superior. We do not provide the details here for lack of space.

Third, while the Absolute Symmetric (TSabs) and Non-
Symmetric (TSns) algorithms are significantly better than all
others, their results are in fact non-distinguishable (two-tailed
t-test results inp = 0.32).

6.4 Sensitivity to Cost Estimations
The distance-localization ratio of the best algorithms (Table
2) is lower than that ofTSsimple, though higher than that of
TSmax. The conclusion is that the results in Table 2 might be
dependent on the actual cost estimates (travel cost and local-
ization cost), which are used in TRIM SAIL . Here, we explore
the sensitivity of the results to errors in the cost estimates pro-
vided to the algorithms.

Ratio−→ 1:10 (0.1) 1:5 (0.2) 1:1 (1)
Name↓ (original)
Algloc 330035.00 204535.00 104135.00
TSmax 310215.00 194715.00 102315.00
TSabs 130448.00 113888.00 100640.00
TSns 132296.12 115010.41 101181.84

TSsimple 162849.00 152329.00 143913.00

Table 3: A Comparison of total costs for each algorithms,
under different travel-to-localization cost ratios. Bestcosts
are in bold.

Table 3 shows the total costs for the different algorithms,
when the travel-to-localization cost ratio is systematically
changed from the original settings (marked, fourth column
from left). First, we note that theTSabs, which we found
earlier to be the best, remains so under extreme changes to
the cost ratio: The result holds from a cost ratio of 1:25 until
a cost ratio of 1:1. Thus one conclusion is that the top per-
forming heuristic technique is in fact extremely robust to cost
estimate errors.

A second important conclusion is reached contrasting the
the top two rows (Algloc and TSmax). We see that TRIM
SAIL provides superior performance to that of the other hy-
brid approach,in all cost ratios. This again demonstrates the
efficacy of the methods we presented in this paper.

7 Conclusions
In this paper we presented TRIM SAIL , a hybrid coverage al-
gorithm (and associated heuristics, geometric optimizations)
for real-world settings. TRIM SAIL takes an exact-motion
coverage algorithm, which assumes no dead-reckoning er-
rors, and uses it to guide angled movements that guarantee
complete coverage of the target work area, while minimiz-
ing the use of localization to that strictly necessary. We pre-
sented an analytical worst-case version of TRIM SAIL , and
three heuristics which further reduce total coverage costs. We
then reported on extensive experiments with TRIM SAIL , us-
ing data collected from the RV-400 robot. The experiments
demonstrated that (1) the analytical methods accurately pre-
dict an upper bound for total costs, and minimum cost, given

robot error bounds and coverage range; (2) the heuristic meth-
ods outperform the analytical methods in the cost ratio cho-
sen; (3) TRIM SAIL variants are not sensitive to errors in
cost estimates; and (4) that the TRIM SAIL algorithmalways
outperforms naive coverage hybridization, where the exact-
motion algorithm is simply coupled with continuous local-
ization. In the future, we hope to explore new heuristic di-
rections which take more risks in terms of completeness of
coverage, but provide reduced costs.

References
[1] M. Abramowitz and I. A. Stegun.Handbook of Mathe-

matical Functions with Formulas, Graphs, and Mathe-
matical Tables. Dover, New York, 1964.

[2] J. Borenstein., H. Everett, and L. Feng.Navigating Mo-
bile Robots: Sensors and Techniques. A. K. Peters, Ltd.,
Wellesley, MA, 1996.

[3] A. Burguera, G. Oliver, and J. Tardos. Robust scan
matching localization using ultrasonic range finders. In
IROS-05, pages 1367–1372, 2005.

[4] H. Choset. Coverage for robotics - A survey of recent
results. 31(1–4):113–126, 2001.

[5] H. Choset and P. Pignon. Coverage path planning: The
Boustrophedon decomposition. InInternational Con-
ference on Field and Service Robotics, 1997.

[6] N. Correll and A. Martinoli. Distributed coverage: From
deterministic to probabilistic models. pages 379–384,
2007.

[7] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte
carlo localization for mobile robots. InICRA, pages
1322–1328, 1999.

[8] N. Hazon and G. Kaminka. On redundancy, efficiency,
and robustness in coverage for multiple robots.Robotics
and Autonomous Systems, 2008.

[9] W. H. Huang. Optimal line-sweep-based decomposi-
tions for coverage algorithms. volume 1, pages 27–32,
2001.

[10] F. Preparata and M. Shamos.Computational Geometry:
An Introduction. Springer, 1985.

[11] I. M. Rekleitis, G. Dudek, and E. E. Milios. Multi-robot
exploration of an unknown environment, efficiently re-
ducing the odometry error. InIJCAI97, pages 1340–
1345, 1997.

[12] S. Thrun. Finding landmarks for mobile robot naviga-
tion. In ICRA, pages 958–963, 1998.

[13] S. Thrun, W. Burgard, and D. Fox. Probabilistic
Robotics. MIT Press, 2005.

[14] A. Zelinsky, R. A. Jarvis, J. C. Byrne, and S. Yuta. Plan-
ning paths of complete coverage of an unstructured en-
vironment by a mobile robot. InIn Proceedings of Inter-
national Conference on Advanced Robotics, pages 533–
538, 1993.

