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Abstract

Most work on navigation minimize travel effort or compu-
tational effort of the navigating agent, while assuming that
unknown components of the environment are sensed by the
agent at no cost. We introduce a framework for navigation
where the agent needs to minimize a global cost function
which includes both the travel cost and the sensing cost. At
each point in time, the agent needs to decide whether to per-
form sense queries or to move towards the target. We develop
the SN (Sensing-based Navigation) framework that utilizes
heuristic functions to determine when and where to sense the
environment in order to minimize total costs. We develop sev-
eral such heuristics, based on the expected total cost. Experi-
mental results show the benefits of our heuristics over existing
work, and demonstrate the generality of the SN framework.

Introduction.
Navigation—finding a path through an unknown environ-
ment to a known goal—is a fundamental task in AI and ro-
botics. The agent starts at a given position, and knows the
position of the goal. The task is to efficiently reach the goal
(as defined by a cost function). At every step, the task of
the navigator is to find a path from its current location to
the goal, until the goal is reached. In many circumstances
the environment may change dynamically, and may be only
partially known to the agent.

Previous papers on navigation falls into two categories:
Some focus on minimizing the travel cost (Felneret al.
2004), while assuming a static environment and no global
sensing abilities. Others allow for a changing environment,
but assume that all changes are immediately visible to the
agent (Stentz 1994; Koenig & Likhachev 2002a). Both cat-
egories ignore realistic navigation tasks for robots whichal-
low for some a-priori knowledge of the environment (e.g.,
a map of roads), but where changes to the environment can
only be sensed at a cost (e.g., by physically operating sen-
sors).

We introduce a novel, more general problem formulation
for navigation, which accounts for sensing costs, as well as
physical travel cost. The task of the agent is to minimize a
total cost function which includes both components. At each
point of time, the agent needs to decide whether to move
towards the goal, or perform sensing queries. We introduce
theSensing-based Navigation(SN) framework. SN models

the task as navigation in a given weighted graph, where some
of the edges may become untraversable, with some known
probability. First, SN generates a path to the goal based on
its current knowledge. Then, SN uses a policy, which allows
the agent to decide between trusting just the default sensing
and following the shortest path found (risking traveling into
untraversable regions) on the ine hand, and sensing before
moving, but paying the sensing cost, on the other hand.

This problem has several realistic scenarios, for example,
an agent who buys a map of the city (G), knowing that some
of the roads can be blocked by the police, However, the agent
does not know which of the roads are blocked. The agent
can perform some actions to get that information (such as
calling the city info center, or sending a scout to a given
place). These actions have costs which can be factored into
its global cost function for the entire task. Another exam-
ple could be a robot equipped with sensor devices, trying to
navigate to a known goal in an uncertain terrain. The robot
can choose to follow the path in its original map or operate
the sensor devices to explore the path. Both traveling the
path and using the sensor devices cost energy which the ro-
bot tries to minimize. This problem could also be relevant to
on-line routing algorithms in big networks, instead of rout-
ing a packet through an existing routing table which could
be out-dated, the sender of the packet can decide to check a
certain path and fine-tune its current routing tables.

As computation of an optimal policy has a worst-case ex-
ponential run-time, SN uses heuristics to make this choice.
We provide several heuristics based on the expected total
cost and compare them to two brute-force heuristics which
are equivalent to existing approaches to navigation. One
hexisting heuristic never senses distant objects and thus nav-
igates by following a pre-computed path until it fails. An-
other existing heuristic always senses all edges in its path
ahead of time. We evaluate the benefits of using the ex-
pected cost heuristics across different types of sensing costs
and travel costs, in systematic experiments.

Related Work
Much of the literature on navigation deals with physical ro-
bots that move in real environments. Surprisingly, it is usu-
ally assumed that sensing is free, and therefore only travel
cost is considered. Some works deal with local navigation,
where sensors have limited range, and thus can only sense



within the robot’s immediate environment, while others as-
sume global sensing. See (Burgardet al. 2005) for an ex-
tensive survey; we focus here on closely related work.

Many navigation algorithms ignore the sensing cost (as-
suming it is sensing free and without range limits). The
agent-centered searchframework (Korf 1990; Koenig 2001)
covers an important class of navigation algorithms, which
interleave exploration and exploitation and address the com-
bined plan-execution (travel) cost and the planning compu-
tation cost. These methods restrict the planning to the part
of the domain around the agent; a step is selected and taken
and the process repeats. These methods assume that infor-
mation about unknown parts of the environment, or changes
to it, are available with no sensing cost. In contrast, our
framework considers both sensing and travel costs.

Another class of algorithms are theincremental searchal-
gorithms which handle dynamically-changinggraphs. LPA*
(Koenig & Likhachev 2002b) is activated every time the
graph is changed, in order to find the current shortest path
from the same given start and goal nodes. LPA* utilizes
old data explored by previous runs, and thus computational
effort is saved. D* (Stentz 1994) and D*-lite (Koenig &
Likhachev 2002a) are intended for dynamically changing
environments (e.g., where edges are continuously added and
deleted). They modify LPA* to the case that the robot moves
along the path and calculates a new shortest path from its
new current location. These algorithms assume that graph
changes are perceived by the agent with no cost.

An approach similar to our work is theShortest path dis-
coveryframework (Szepesvri 2004). In that work, the task
is to find the shortest path between two vertices, while as-
suming that edge costs are revealed by performing a special
query. This work does not deal with online navigation as it
is an offline shortest-path search task. It tries to minimize
computation cost and the number of edge queries.

Our work is also closely related to theCanadian traveler
problem(Bar-Noy & Schieber 1991). In theCanadian trav-
eler problem(CTP), a traveler that has to travel from some
locations to locationt in some environment, represented as
a weighted graphG(V, E). However, this graph is unreli-
able, some of the roads might be blocked (due to snowfall
for example). Finding such a blockage can only be done
upon physically reaching an adjacent node. The task is to
devise a traveling strategy which yields an optimal expected
travel cost. The main extension in our current problem is in
the way blocked roads are revealed. In our problem, finding
a blockage can still be done by physically travelling to an
adjacent node. However, our model allows agents to have
the additional capability of remote sensing (e.g. the traveler
can use his mobile telephone to call a friend who lives near
the unreliable road to get additional information about its
condition), thereby generalizing the CTP.

Partially Observable Markov Decision Processes
(POMDP) offer a model for cost optimization of graph
problems under uncertainty, where the objective is to
find a policy (mapping from belief states, or obser-
vation histories, into actions) that provides optimal
expected reward (Puterman 1994). While it is possible
to model our problem as a POMDP (e.g., as unbounded-

horizon POMDPs (Hansen 2007)), these problems are
PSPACE-hard in the general case. Although some
approximation techniques, such as point-based approxi-
mations, show promise (Pineau, Gordon, & Thrun 2003;
Shani, Brafman, & Shimony 2006), the size of the state-
space of our problem is beyond the current state of the art
of POMDP approximation. This necessitates specialized
algorithms as we propose. The action model we use is
deterministic, and the uncertainty in world comes from the
state of the graph alone. Like traditional POMDPs, our
observation model could be stochastic.

A body of work exists on computing or approximating
the value of information (Heckerman, Horvitz, & Middle-
ton 1993), which is another way of looking at the problem
under the decision-theoretic setting. These are not directly
applicable to our problem; fitting them to our domain is one
of the methods employed in this paper.

Problem Description
We concretely describe our problem as follows. We are
given a connected directed graphG = (V, E), a source ver-
tex of the agent (s ∈ V ), and a target vertex (t ∈ V ). The
task of the agent is to travel froms to t. For example, the
agent is given a map of a city and its current position, and
needs to plan its path to a given goal location.

However, we allow the input graphG to undergo a num-
ber of changes that are not known to the agent. In particular,
in this paper we allow some of the edges inE to become
blockedand thus become untraversable. Note that it is suf-
ficient to deal only with blocking ofedges, since a blocked
vertex would have all of its incident edges blocked. Our
framework can be easily extended to arbitrary edge weight
distributions, thus allowing edges whose weight can change
arbitrarily, rather than become completely blocked.

The current traversable graph is a subset ofG called the
current graph(CG) in this work.CG includes just the ver-
tices and edges fromG that are currently traversable. We
assume thatCG is otherwise fixed throughout the problem
solving process, but thatCG is not known to the agent. We
also assume that for each edgee in G there is ablocking
probabilityp(e) (known to the agent) thate is blocked. For
simplicity, we assume in this paper that the blocking events
are independent, but this can be easily generalized.

Once the agent is situated in a vertexv it can perform
actions of the following two types:
1) Sense:The agent can query the status of any given edge
e ∈ G. This action is calledsense(v, e). We assume that
sensing provides a correct answer, but incurs asensing cost
c(v, e). As described below, the cost of sensing edges is do-
main dependent and might be a function of many attributes,
such as the distance fromv to e etc. In addition, we assume
that when an agent is situated in a vertex it can see the status
of each of its outgoing edges at no cost. For example, a road
traveler can see with his eyes that the road it wishes to en-
ter is blocked. This can be considered asdefault sensingor
local sensing. Thus, we assume that default sensing is done
any time the agent enters a new vertex.2) Move: The agent
can move along any of the known traversable edges, outgo-



ing fromv. This action incurs atravel costwhich equals the
weight of the edge.

The task of the agent is to reach the target while minimiz-
ing a total costCtotal = Ctravel + Csensing .

SN: Sensing-based Navigation
Sensing-based Navigation (SN) is a general scheme for nav-
igating in physical graphs, while allowing for interleaved
sensing actions at additional sensing cost. It allows plug-
ging in different policies for deciding if and when to sense a
remote edge.

In all of our algorithms, the agent maintains a belief graph
(BG), initially a copy ofG. Each edgee is annotated with
the probably of traversablity,pt(e) = 1 − p(e). After a
sensing query (either remote or local) edges are re-annotated
according to the sensing outcome. If the outcome is that the
edge is traversable it is re-annotated withpt(e) = 1. If the
outcome is that the edge is blocked, it is dropped from the
graph (pt(e) = 0). The belief graph is thus a special case of
a POMDPbelief state.

The agent first plans a pathP onBG from v to t with any
known path finding algorithm such as Dijkstra’s algorithm
or a heuristic search algorithm (e.g., one based on A*). We
adopt thefree space assumptionfrom (Koenig, Smirnov, &
Tovey 2003), meaning that every edge inBG is assumed to
be traversable for this purpose. The agent can then attempt
to traverseP , without sensing. However, since edges inBG
may turn out to be blocked (i.e., they do not exist inCG),
this may result in wasted travel cost if a blocked edge onP
is physically reached. Alternatively, the agent may decideto
interleave sensing actions into its movements to updateBG
prior to continuing along the path. IfBG changes, the agent
recalculates the shortest path to the goal without extra travel
cost but at the additional cost of the sensing it performed.

SN works as follows. After pathP is planned the agent
first checks that the next edge is not blocked (local sensing).
Then, it considers some remote sensing of edges inP . The
decision on which edges to sense is done by a decision pol-
icy procedure. If no blocked edges are detected by either
of these sensing queries, it moves one step alongP and the
process is repeated. If a blocked edge inP is detected, a new
path to the goal is calculated and the process is repeated.

The pseudo-code for SN is presented in Algorithm 1, and
works in three phases:
Calculate shortest path:In this phase a shortest path is cal-
culated onBG from the current vertexv to the target vertex
t. It is invoked by themainprocedure in line 5.
Traverse the path: In this phase (invoked by themainpro-
cedure in line 6) the agent travels step by step along the path
(line 14) until the target is reached. However, before the
physical move, two checks are performed. First, if the next
edge to follow is found (by the default local sensing) to be
blocked(in CG) then the rest of the path becomes invalid.
This might happen if the agent decided not to remotely sense
this edge in previous steps. Control is passed back to pro-
ceduremainandCalculatePathis invoked again on the new
BG but from the new location to which the agent returned in
line 11. The second check is to verify that the rest of the path
is valid by performing some remote sensing. This is done by

Algorithm 1 Pseudo-code for SN
procedure main (GraphG, vertexs, vertext)

{01} BG = G;

{02} v = s;

{03} UpdateBG based on local sensing;

{04} while(v 6= t) do

{05} P=CalculatePath(BG,v,t);

{06} v=TraversePath(P );

{07} endwhile

vertex function TraversePath(PathP )

{08} While P 6= ∅ do

{09} (x, y)=pop first edge fromP .

{10} if ((x, y) is blocked)

{11} return (x);

{12} if (VerifyPath (P )==FALSE)

{13} return (x);

{14} Traverse(x, y) and place Agent aty;

{15} UpdateBG based on local sensing;

{16} endwhile
{17} return (t);

bool function VerifyPath (PathP )

{18} foreach(e ∈ P | e ∈ BG)

{19} if (shouldSense(e))

{20} r=sense(e);

{21} if (r==TRUE)

{22} mark (e) as probability 1

{23} else
{24} deletee from BG;

{25} return (FALSE);

{26} endif
{27} endfor
{28} return (TRUE);

invoking theVerifyPathprocedure (lines 12–13). Only then
when no blocked edges are detected does the agent move
along the first edge of the path (line 14).
Verify the path: In this phase the agent verifies that edges
of the calculated path are traversable. It is invoked by the
TraversePathprocedure in line 12. An edge inBG with tra-
versability probabilitypt < 1 is verified by performing a
sensequery for this edge (line 20). It is not mandatory in
the framework to sense all the edges, and SN can choose to
skip sensing some of these edges. The decision on whether
to sense an edge is done by callingShouldSense(line 19).
The different sensing policies presented below differ in their
decision of which edges of the path to sense while in this
phase, and thusShouldSenseis a key function: different im-
plementations determine the actual behavior of SN. We de-
scribe several such implementations below.

If one of the edges of the path are sensed as blocked, the
path becomes invalid,BG is updated accordingly (lines 24–
25) and the control is passed to proceduremainwhereCal-
culatePathis invoked again for the new updatedBG.

Brute-Force Sensing Policies
We now turn to describe the sensing policies. Perhaps the
two simplest heuristics forShouldSenseare those that ig-



nore the sensing costs altogether. These approximate many
existing approaches to navigation.

The brute forceNever Sense(NS) policy never senses any
remote edges (ShouldSensealways returnsFalse). As lo-
cal edges are sensed automatically and freely (with default
sensing), NS approximates the approach of local navigation
techniques in robotics, where a robot uses its body-mounted
sensors to form an egocentric view of its surroundings, and
navigates using this information. No sensing cost is ever in-
curred by NS, but it may lead to increased travel costs. NS
works as follows. From any given location, the agent calcu-
lates the shortest path onBG and starts traversing that path
without any sensing performed. The possible pitfall here is
that the agent can reach an edge on the calculated shortest
path inBG that turns out to be blocked. In this case the
edge is removed fromBG and a new shortest path is calcu-
lated onBG from its current location to the target vertex.
This is done until the target is reached.

In contrast, the brute-forceAlways Sense(AS) policy
takes the opposite direction. In AS, the agent queriesall
remaining edges in the path before it moves through it
(ShouldSensealways returnsTrue). As soon as it discov-
ers that an edge is known to be blocked, it recomputes
the shortest path to the goal. Only after the entire path
is proved to be traversable does the agent perform a se-
quence of moves along the calculated path. The AS pol-
icy optimally minimizes the travel cost, but may incur a
large sensing cost. This behavior approximates the ap-
proach taken by global navigation algorithms (Stentz 1994;
Koenig & Likhachev 2002a), which are designed to deal
with dynamically-changing environments, but make the as-
sumption that all changes in the environments are immedi-
ately available to the agent, at no cost.

Expected Total-Cost Policies
We now present heuristics to approximate the expected
costs. The idea in considering whether and what to sense
is traditionally based onvalue of information, or at the least
some tractable approximation thereof (e.g.,myopic/single
step value of information), for a sensing operation. In the
single-step assumption, we compute value of information
(of sensing a given edgee) under the assumption that no ad-
ditional information is gathered before the agent acts. How-
ever, in SN this type of approximation is infeasible, be-
cause “local sensing” information is gathered during traver-
sal, even without additional sensing operations.

Residual Value of Information (RVOI) Suppose that the
agent were given the state of the entire graphCG, except
for that of edgee under consideration. What would be the
value of knowing whethere is blocked in this case? This is
essentially a computation of theresidualvalue of informa-
tion of knowing the state of edgee. Now suppose that there
arek edges inBG whose exact status is unknown. There
are2k different possible ways to turnBG into a fully known
graph. Ideally, we should consider each of these possibilities
in turn, calculate the value of information of sensing edges
for it (as described below for theimproved expectedcost pol-

icy) and make the decision on whether to sense based on the
entire set of2k graphs. Since this may be intractable, we
further approximate the value of sensing by randomly gen-
eratingn (=100 in our experiments) such graph samples. We
calculate the costs and make the decisions based on these
sampled graphs. We call this method theresidual value of
information policy(RVOI).

Expected Total Cost with Free Space Assumption A
more computationally efficient heuristic adopts thefree
space assumptionfor the purpose of computing the value
of sensing. The idea is to assume (for the sake of the de-
cision making about sensing) that every edge inBG is tra-
versable, except for the edgee under consideration. Thus,
unlike RVOI above, we make our calculations using one
graph, the one with the free space assumption.

To demonstrate the dilemma of whether to sense or not
consider Figure 1 which shows an abstract situation in the
course of running SN, where it needs to decide on a sensing
query. The figure refers to the following components: (1)
v is the current location of the agent; (2)e = (x, y) is the
edge under consideration; (3) inBG segmentsv → x and
y → t are the shortest paths fromv to x and fromy to t,
respectively; and (4) ife is blocked then segmentd(v) is the
shortest path fromv to t (in BG) andd(x) is the shortest
path fromx to t.

20

16

d(x)
20

e
u

444
yx tv

d(v)

4
d(u)

Figure 1: The expected cost heuristic.

In Figure 1, if e is traversable, the shortest path is
(v, u, x, y, t) and its cost is 16. We label this path asv → t.
If e is blocked, the shortest path isd(v) and its cost is 20.
The agent may choose not to sense edgee from v and to
take the risk and travel tox. If it then realizes (fromx) that
e is traversable the travel cost will be 16. However, if it finds
e to be blocked it will need to use segmentd(x) with cost of
20 and the total travel cost will be 28.

Alternatively, the agent might choose to sensee from v,
and pay the sensing cost. Then, ife is traversable the total
cost will be 16 plus the sensing cost and ife is blocked, the
total cost will be 20 (segmentd(v)) plus the sensing cost.

Theexpected costheuristic calculates the expected cost of
these options is as follows:
E(¬sense(v, e)) = (1− p)×(v → t)+p×(v → x+d(x))
E(sense(v, e)) = (1 − p)×(v → t)+p×d(v)+SC(v, e)
whereSC(v, e) is the cost of sensinge from v andp is the
probability that edgee is blocked. The action with the min-
imal expected cost is chosen. In our example, suppose that
SC(v, e) = 2 and thatp = 0.5. The expected cost for sens-
ing e from v is E(sense(v, e)) = 0.5×16+0.5×20+2 =



20. Likewise, the expected cost of not performing the sens-
ing is E(¬sense(v, e)) = 0.5 × 16 + 0.5 × 28 = 22. Ac-
cording to the expected cost policy the agent will choose to
perform the sensing.

Improved Expected Total Cost Suppose that ife is
blocked, the alternative path fromv to t deviates from the
original shortest path in vertexu (labeledd(u) with cost
16 in the figure), and suppose thatSC(u, e) = 1 (while
SC(v, e) = 2). As shown above, it is worthwhile to perform
the sensing in vertexv. However, observe that the outcome
of the sensing will not influence the next action of the agent.
This is because for both outcomes (whethere is traversable
or blocked) the next move of the agent will be to go to vertex
u. Only in u does the outcome of the sensing determine to
where the agent will continue: tox if e is traversable, and
the detour tot otherwise. Since the sensing cost fromu is
cheaper, the total cost will decrease if the agent waits and
only performs the sensing at vertexu.

The improved expected costpolicy accounts for such
cases. This policy also calculates the expected cost of per-
forming the sensing ofe in all the vertices that appear later
in the shortest path. It will choose to perform the sensing at
the current vertex only if the expected cost of this sensing
now is smaller than not sensinge at all, but is also smaller
than waiting and performing this sensing at a later vertex.

Experiments

To evaluate SN, we have performed systematic experiments
on a number of different sensing cost functions, using the
different policies described earlier.

A sensing cost function for real world applications relies
on many attributes of the environment and on the agent’s
capabilities. For example, in a city, a car driver might call
up a roadside assistance agency which charges a constant
amount per call and in each call only a fixed amount of in-
formation is given. In this case, the sensing cost is a pre-
defined constant. If the sensing is done by a robot, then the
sensing cost is proportional to the distance between the ro-
bot and the sensed item. Note also, that the total composite
cost made up of travel and sensing cost might be defined in
different units of measurements, and we need to bring them
together into a common unit; use the constantc as a scaling
coefficient below. In the experiments we define two possible
sensing cost functions inspired by real-world settings:

• Constant cost. Here we assume that the cost of each
sensing query isSC(v, e) = c (e.g., a phone call). If
c = 0 then the expected cost policies converge to theal-
ways sensepolicy, since there is nothing to lose by sens-
ing. Similarly, if c = ∞ then the expected cost policies
converge to thenever sensepolicy, since any travel cost is
smaller than a single query.

• Distance cost. Here we assume that the cost is propor-
tional to the distance from the current location of the agent
to the sensed item. In this work we used the distance from
v to the closest vertex adjacent toe = (x, y). Formally,
SC(v, e) = c · min(dist(v, x), dist(v, y)).

Figure 2: Delaunay graph of 20 nodes.

Our simulated environments were generated from Delau-
nay graphs (Okabe, Boots, & Sugihara 1992), over 1000
points generated with uniformly distribution in a square of
100x100. Our experimental setting aims to simulate graphs
that could correspond to a small city. A Delaunay triangu-
lation was constructed by creating a line segment between
each pair of points(u, v) for which there exists a circle pass-
ing throughu andv that encloses no other point. This causes
each point to be joined by a line segment to each of its near-
est neighbors, but not to other points.

Figure 2 illustrates a 20-node Delaunay graph. The exper-
iments were performed as follows. First, a Delaunay graph
G of 1000 vertices was created by placing the vertices in a
square of size100×100 units. Then, two of its vertices were
randomly selected as the start and target vertices. Now each
edge of the graph was blocked with a constant fixed prob-
ability BP (of 0.1, 0.3 , 0.5 and 0.6) to attain the current
graphCG (varying edges probabilities would not change the
behavior). We ran the different policies on each of these 100
cases and report the average cost below.

Results
Tables 1-2 give the results of the different techniques and for
different sensing cost functions. Sections in the tables, cor-
respond to a different cost and a different scaling factorc.
Within each section, the tables are separated by double-lines
into groups of three columns, titledtravel, sense, andtotal
which refer to costs. Each such group of three is associated
with a value of the blocking probabilityBP (0.1, 0.3, 0.5,
0.6). There are five rows of values in each part, correspond-
ing to the five policies discussed in the paper:Never sense
(NS),Residual Value of Information(RVOI), Expected cost
(EXP), Improved expected cost(I-EXP) andAlways sense
(AS). The important column is of course thetotal costcol-
umn.

In general, theI-Expectedpolicy outperformed theex-
pectedand RVOI policies which are based on the same prin-
ciple. The RVOI policy tends to grossly underestimate the
value of information of sensing operations resulting in a
much worse travel cost and turned to behave almost similar
to the cheap and simple NS policy. Thus, the current version
of RVOI is an impractical policy due to its large computa-
tional overhead.

Constant sensing cost:Section 1 of table 1 corresponds
to a small constant cost of 0.01 (with a map size of100 ×
100). In this case, the relative cost of sensing is much
cheaper than the cost of traveling. Thus, there is almost
no reason not to sense a questionable edge. Indeed, the AS



Constant sensing cost of c=0.01
Policy travel sense total travel sense total travel sense total travel sense total
BP p=0.1 p=0.3 p=0.5 p=0.6
Never 57.54 0.00 57.54 70.06 0.00 70.06 115.56 0.00 115.56 286.45 0.00 286.45
RVOI 56.24 0.36 56.60 62.81 0.92 63.73 112.80 0.26 113.06 286.45 0.00 286.45
Exp 56.05 0.33 56.38 61.53 1.21 62.73 74.90 3.37 78.27 110.05 7.90 117.94
I-Exp 56.05 0.31 56.36 61.26 0.98 62.24 79.74 2.49 82.23 123.50 5.81 129.31
Always 55.96 0.36 56.32 60.33 1.85 62.18 72.09 7.86 79.95 97.31 20.33 117.64

Constant sensing cost of 0.1
Policy travel sense total travel sense total travel sense total travel sense total
BP p=0.1 p=0.3 p=0.5 p=0.6
Never 57.54 0.00 57.54 70.06 0.00 70.06 115.56 0.00 115.56 286.45 0.00 286.45
RVOI 57.08 0.60 57.69 65.53 5.00 70.53 112.50 2.17 114.67 286.45 0.00 286.45
Exp 56.37 1.43 57.80 61.89 9.33 71.22 80.26 31.77 112.03 122.51 79.23 201.74
I-Exp 56.37 1.37 57.74 62.15 7.84 69.99 81.89 21.25 103.14 134.81 54.91 189.72
Always 55.96 3.56 59.52 60.33 18.49 78.82 72.09 78.65 150.74 97.31 203.34 300.65

Constant sensing cost of 3
Policy travel sense total travel sense total travel sense total travel sense total
BP p=0.1 p=0.3 p=0.5 p=0.6
Never 57.54 0.00 57.54 70.06 0.00 70.06 115.56 0.00 115.56 286.45 0.00 286.45
RVOI 57.54 0.00 57.54 70.03 0.06 70.09 115.55 0.54 116.09 286.45∗ 0.00∗ 286.45∗

Exp 57.54 0.00 57.54 69.94 0.03 69.97 116.63 2.45 119.09 293.15 20.30 313.45
I-Exp 57.54 0.00 57.54 69.94 0.03 69.97 116.55 2.64 119.19 293.28 19.15 312.43
Always 55.96 106.79 162.75 60.33 554.64 614.97 72.09 2359.42 2431.51 97.31 6100.18 6197.49

Table 1: The best sensing policy in each group is highlightedin bold * marks an approximate value, based on NS.

policy resulted in the lowest total cost for almost all val-
ues ofBP . Note however, that theI-Expectedpolicy did
relatively very well. When the blocking probabilityBP in-
creases more work is needed by all policies as more dead-
ends are introduced. The NS policy incurs the extra work in
traveling. Since the relative travel cost is high its total cost
increases dramatically. The AS and theI-Expectedpolicies
incur much of the extra work in sensing cost and their to-
tal cost does not increase significantly because of the cheap
sensing.

The second section of table 1 corresponds to a constant
cost of 0.1. In this case, the relative cost of sensing is within
the same range of the cost of traveling. The table shows that
for all values ofBP AS and NS incur relatively similar total
costs. In the cases whereBP > 0.1 the I-Expectedpolicy
outperforms all other policies in its total cost. ForBP = 0.1
it was nearly equal to the NS policy.

Finally, the third section of the table corresponds to an
extremely expensive constant cost of 3. In this case, it is
not worthwhile to sense and the table clearly shows that in
all cases ofBP , NS significantly outperforms AS in terms
of total cost. WithBP of 0.1, 0.3 both theExpectedandI-
Expectedpolicies are equal or even better than the NS policy
which means that they choose to sense rarely. It is surprising
to note that whenBP ≥ 0.5 the expected cost policies are
a little worse than the NS policy, not just in their sensing
costs, but also in their travel costs, resulting in an inferior
total cost. The pitfall is thefree space assumption. These
policies assume that all the other edges exist, but with a large
blocking probability this is a bad assumption. The travel cost
of I-Expectedis larger because if a given sensing returned
that the edge is blocked, then a detour is suggested but that

detour can later prove invalid.
Costs proportional to distance: Table 2 also shows re-

sults for the distance cost function. The top part corresponds
to coefficient of 0.01 while the bottom part corresponds to a
coefficient of 0.04. In all the possible cases, NS and RVOI
were better than AS, but both expected costs policies sys-
tematically outperformed the two brute force polices in their
total costs. In this case the expected cost policies tend to
sense nearer edges. This proves useful as the error of the
free space assumption is smaller.

Summary and Conclusions
We introduced the sensing-based navigation problem where
the task is to navigate to a target when trying to minimize
a compound total cost of both travel and sensing. We pre-
sented SN, the Sensing-based Navigation algorithm, a gen-
eral framework that solves this problem. We then proposed
several heuristic policies for SN, and have investigated their
use in hundreds of trials, and under a variety of conditions.

The improved expectedcost policy turned out to outper-
form all other policies on the vast majority of test cases.
Only in the constant sensing cost where the sensing is ex-
tremely cheap or extremely expensive together with extreme
large values ofp did one of the brute force policies do better.
However, even in these cases theI-Expectedcost policy—
based on the free space assumption—is not significantly
worse. This is encouraging as this policy is computation-
ally very cheap.

Future work will continue in the following directions.
More sensing cost variation can be used. For example, we
can assume that the sensing cost is proportional to the weight
of the edge. Similarly, inspired by rules of physics, the sens-



Sensing cost of distance * 0.01
Policy travel sense total travel sense total travel sense total travel sense total
BP p=0.1 p=0.3 p=0.5 p=0.6
Never 57.54 0.00 57.54 70.06 0.00 70.06 115.56 0.00 115.56 286.45 0.00 286.45
RVOI 57.29 0.29 57.58 65.51 2.74 68.25 114.50 2.56 117.06 286.45 0.00 286.45
Exp 56.49 1.20 57.69 63.03 13.14 92.17 83.89 48.35 132.24 142.20 141.27 283.47
I-Exp 56.57 0.52 57.08 64.06 2.12 66.18 95.40 6.31 101.71 190.88 14.65 205.52
Always 55.96 10.02 65.98 60.33 48.68 109.01 72.09 207.35 279.43 97.31 549.76 647.07

Sensing cost of distance * 0.04
Policy travel sense total travel sense total travel sense total travel sense total
BP p=0.1 p=0.3 p=0.5 p=0.6
Never 57.54 0.00 57.54 70.06 0.00 70.06 115.56 0.00 115.56 286.45 0.00 286.45
RVOI 57.48 0.14 57.62 68.29 1.59 69.88 109.66 1.57 111.24 269.49 0.00 269.49
Exp 57.17 0.39 57.55 65.02 6.22 71.24 98.09 35.94 134.03 204.11 126.40 330.51
I-Exp 57.16 0.30 57.46 65.93 2.29 68.22 100.03 8.19 108.22 221.61 24.47 246.08
Always 55.96 40.10 96.06 60.33 194.71 255.04 72.09 829.39 901.47 97.31 2199.04 2296.35

Table 2: Results with different distance sensing costs. Thebest sensing policy in each group is highlighted inbold.

ing cost can be proportional to the distance squared. Sec-
ond, more policies can be developed to handle dependencies
of the existence of the sensed edge with other edges. An-
other direction is attempting to find the truly optimal policy,
but we believe that this will prove intractable. Third, other
possible combined costs (e.g., fuel costs, energy consump-
tion, computation cost etc.) might be considered. Fourth,
we might consider solving other graph problems (not nec-
essarily navigating) under this general framework. Finally,
the last direction is to generalize this to the multi-agent case
where a team of agents need to cooperate when solving such
problems. Here, other costs such as communication costs
might be added to the total cost.
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