
A Study of Dynamic
Coordination Mechanisms

Avi Rosenfeld

Department of Computer Science

Ph.D. Thesis

Submitted to the Senate of Bar-Ilan University

Ramat-Gan, Israel

February 2007

This work was carried out under the supervision of

Dr. Gal A. Kaminka and Prof. Sarit Kraus

Department of Computer Science

Bar-Ilan University

This work is dedicated to my loving wife, Esther.

Acknowledgments

In Hebrew there is a blessing typically said around holidays and special occasions,

“shehecheyanu vekiyimanu vehigianu lazman hazeh”, or thanking God for allowing

us to reach certain events within our lives. Whether or not this blessing should

be said when one submits their PhD dissertation is an interesting and technical

question. Nonetheless, I believe submitting this thesis is quite a milestone in my

life, and requires many acknowledgements of thanks.

First, and foremost, I must thank God. I have considered myself very fortunate

in life, and have been blessed by many supportive family members and friends.

Foremost, I give thanks to God for guiding my decisions and bringing my path in

contact with such supportive people.

Almost six years ago (nearly to this day) I decided to move to Israel, and pursue a

PhD. At the time, I knew the direction I wanted to take, but did not truly understand

the magnitude of this undertaking. There were many challenges along way: a new

country with a new language and different cultural norms, loss of family support,

long hours spent with challenging courses and research, just to name a few. Despite

all of these challenges, I must admit that I do not regret the decision to move to

Israel or to pursue my PhD at Bar-Ilan.

My advisors, Gal Kaminka and Sarit Kraus were of invaluable help and support.

I am grateful for having two wonderful mentors who guided me. Gal was always

full of enthusiasm and interesting ideas. He was the one who recommended first

pursuing the robotic domain within the first two chapters of this dissertation. In

addition to his academic support, he was extremely helpful in smoothing out some

of the personal bumps along way. I still remember some of his advice from our first

conversation about moving to Israel. Sarit is one of the most extraordinary people

I have ever met. She seems to have an infinite amount of time for her family and

students. I am amazed by the amount she is able to accomplish. I would also like to

thank her for connecting me with NSF and DARPA funding which was my primary

support during this process. Without this financial support, I would not have been

able to complete this program. I am truly indebted to both of you.

I would also like to acknowledge the other funding I have received through-

out my PhD. First, the Computer Science Department of Bar-Ilan was extremely

generous, and provided me funding and an exemption from tuition from my first

semester. Starting in my second year, I received a fellowship from Israel’s Absorb-

i

tion department for funding new Israeli (Olim) PhD students. In my last full year I

received the Schupf fellowship, which generously supports PhD students with lead-

ership potential. In addition to the sponsors of these grants, I am grateful to all of

the administrators who helped insure that my funding was transferred in a timely

fashion.

I would also like to acknowledge all of my collaborators. First, the Maverick

and DAI labs at Bar-Ilan were always my academic home. All of the lab members

are talented researchers who stimulated many fruitful discussions. I would especially

like to mention Noa Segel-Argamon, Michal Chalamish, Ariel Felner, Meirav Hadad,

Meir Kalech, Efrat Manister, Dudi Sarne, Osher Yadgar and Aner Yarden for their

help throughout my time at Bar-Ilan. I would like to single out Noa who was

extremely helpful in formulating several concepts in Chapters 2 and 3.

The NSF and DARPA projects I worked on introduced me to many interesting

people outside of Bar-Ilan. I am indebted to Barbara Grosz of Harvard who spent

many hours giving encouragement, and stimulating many interesting conversations.

Willem-Jan van Hoeve of Cornell developed the scheduler used in Chapter 4 of this

thesis. Charlie Ortiz, Regis Vincent, and Roger Mailler of SRI stimulated several

interesting conversations of this chapter well. I consider myself fortunate for having

the opportunity to work with these people and their groups.

Finally, my family has been a source of strength and support throughout this

process. I thank my children, Eliyahu, Hadassah and Shelomoh for their under-

standing of the long hours that have accompanied this process. Netanel arrived

fairly late into this process (only two months ago). I would like to thank all of

them for making sure I never needed to worry about oversleeping. My parents and

grandparents were always very supportive of me. I am sure my father-in-law will be

happy there will be another PhD in the family! Finally, I am deeply in gratitude

to my wife, Esther. She has been extremely loving and supportive throughout this

entire process, at many times, at her own expense. Time after time, she coached me

through the ups and downs of this process. This PhD could never have happened

without her. It is for this reason I am dedicating this work to her.

ii

Contents

1 Introduction 1

1.1 Background . 3

1.1.1 Teamwork Models . 3

1.1.2 Algorithm Selection . 6

1.1.3 Dynamic Coordination . 9

1.2 Thesis Structure and Overview . 10

1.3 Publications . 13

2 A Study of Mechanisms for Improving Robotic Group Performance 15

2.1 Introduction . 15

2.2 Productivity Increases in Robotic Groups 18

2.2.1 Group Differences in Performance 19

2.2.2 The Impact of Coordination on Robot Density 23

2.3 Quantifying the Cost of Coordination: the CCC Measure 30

2.3.1 Measuring Combined Coordination Costs 30

2.3.2 Measuring CCC from Various Resources 32

2.3.3 Coordination Conflicts: The Trigger for Large CCC Values . . 37

2.4 Improving Productivity through Coordination Metrics 40

2.4.1 Adaptive Coordination Algorithms 41

2.4.2 Quickly Setting the Weight Values 43

2.5 Adaptation Experimental Results . 47

2.5.1 Adaptation in Multi-Robot Foraging 48

2.5.2 Adaptation in Multi-Robot Search 54

2.5.3 Quickly and Significantly Improving Performance 56

2.5.4 Large Productivity Gains . 58

2.6 Conclusion and Future Work . 62

iii

3 Adaptive Robotic Communication Using Coordination Costs 64

3.1 Introduction . 64

3.2 Existing Communication Schemes . 66

3.3 Using Coordination Costs to Adapt Communications 69

3.3.1 Uniform Switching Between Methods 70

3.3.2 Adaptive Neighborhoods of Communication 72

3.4 Implementation Details . 73

3.5 Experimental Results . 77

3.6 Conclusion and Future Work . 83

4 Algorithm Selection for Constraint Optimization Domains 85

4.1 Introduction . 85

4.2 Using Phase Transitions to aid Algorithm Selection 86

4.2.1 Modeling Constraint Satisfaction and Optimization 86

4.2.2 Phase Transitions within Constraint Satisfaction and Opti-

mization Problems . 88

4.3 Algorithm Selection in Graph Coloring 90

4.4 Algorithm Selection in TAEMS Scheduling Problems 96

4.4.1 The TAEMS Scheduling Domain 96

4.4.2 Algorithms for Coordinating TAEMS Decisions 98

4.5 Scheduling Tightness Model . 100

4.6 Evaluating Algorithm Selection Scheduling Policy 102

4.6.1 Training the Scheduling Algorithm Selection Policy 102

4.6.2 Evaluating Scheduling Policy with and without Cost 105

4.7 Conclusion and Future Work . 107

5 Adaptive Full-text Search in Peer to Peer Networks 109

5.1 Introduction . 109

5.2 Related Work . 111

5.3 PHIRST Overview . 115

5.4 The Publishing Algorithm . 118

5.5 The Search Algorithm . 120

5.6 Dealing with Network Churn . 125

5.6.1 The Churn Challenge . 126

5.6.2 Addressing Churn in a P2P Application 127

5.7 Experimental Results . 132

iv

5.7.1 Publishing Experiments . 133

5.7.2 Query Experiments . 135

5.7.3 Churn Experiments . 140

5.8 Conclusion and Future Work . 142

6 Final Remarks 144

v

List of Algorithms

1 Hill Climbing . 46

2 Gradient Learning . 47

3 Publishing Algorithm(Document Doc) 119

4 Hybrid Search Algorithm(String Query1 . . . Querymax) 121

5 Calculate-Tradeoff(Space, Termi . . . T ermnum, Frequency) . . 123

6 Unpublishing Algorithm(Document Doc) 128

7 Replicating Data Under Churn(Node D) 130

vi

List of Figures

2.1 Motivating results comparing seven foraging groups. Each data-point

represents the average pucks returned to the domain’s home-base us-

ing that coordination method (Y-Axis) given that group size (X-axis). 22

2.2 Three robots within A(r) where r = 1.5. Picture is taken from the

Teambots simulator and is drawn to scale. 25

2.3 Robotic density for four coordination methods for groups of 10 robots

(on left) and 30 robots (on right) . 28

2.4 Comparing robotic density for coordination methods Repel50, Re-

pel100, Repel200, and Repel500 in groups of 10 (top), 20 (middle)

and 30 (bottom) . 29

2.5 Comparing foraging groups’ coordination costs 33

2.6 Comparing group productivity and coordination fuel cost measures

in foraging groups . 34

2.7 Comparing group productivity and multi-attribute coordination cost

measures . 34

2.8 Comparing group productivity and coordination time cost measures

in search groups . 36

2.9 Modified foraging and search domains 39

2.10 Productivity graphs in Repel (left) and CCC measure for all groups

(right). Each data-point represents average productivity levels taken

from 50 trials. 50

2.11 Productivity in adaptive timeout group 52

2.12 Adaptation between static groups for PT ime = 1 and PFuel = 0

(on left) and adaptation between static groups for PT ime = 0.7 and

PFuel = 0.3 (on right) . 53

2.13 Search adaptation within TimeRand method using multi-attribute

coordination costs . 55

2.14 Search adaptation using multi-attribute coordination costs 56

vii

2.15 Three adaptive repel groups with different values for Vinit 57

2.16 Three iterations of the adaptive repelling groups using gradient learning 58

2.17 Average threshold values, V , between robots using adaptive coordi-

nation method when PT ime = 1.0 and PFuel = 0.0 60

2.18 Fluctuations in collisions over time 61

3.1 Comparing levels of time spent on communication in different group

sizes. Results averaged from 100 trials per datapoint. 78

3.2 Comparing latency differences and productivity levels for centralized

method in time (left) and energy (right) experiments. Results aver-

aged from 100 trials per datapoint. 80

3.3 The impact of varying neighborhood sizes (d) on productivity levels

and costs in energy experiments. Results averaged from 100 trials per

datapoint. 82

3.4 Comparing adaptive communication methods based on time and en-

ergy costs to static methods. Results averaged from 100 trials per

datapoint. 82

4.1 Graph coloring performance with ABT, AWC, DBO, and OptAPO

algorithms with random graphs with 5-100 nodes (X-axis) and edges

= 2.0n (left) and 2.7n (right). Each datapoint represents averaged

results from 30 runs with 100 cycles per run. 91

4.2 Graph coloring performance with ABT, AWC, DBO, and OptAPO

algorithms with random graphs with 5-100 nodes (X-axis) and edges

= 2.0n (left) and 2.7n (right). Each datapoint represents averaged

results from 30 runs with 10 cycles per run. 93

4.3 The impact of cost on graph coloring algorithms 94

4.4 Comparing the cost of communication on algorithm selection 95

4.5 A sample TAEMS scheduling problem. Note that the optimal solution

is not evident by greedy selection. 97

4.6 Comparing scheduling utility yielded from algorithms that involve

agents forwarding all information (CA1) and local decisions (CA2) in

problems of different tightness complexity 103

4.7 Comparing average scheduling utility yielded from algorithms with

no communication cost . 106

viii

4.8 Comparing average scheduling utility yielded from algorithms with

communication cost of 0.05 units per TAEMS message 108

5.1 An example of a Chord ring with m=3 116

5.2 Calculating the probability all k nodes will fail. 132

5.3 Comparing publishing requirements of full publishing versus publish-

ing limited to d=75. 134

5.4 Distribution of words by rank order within a movie corpus. 136

ix

List of Tables

5.1 Example of several words (keys within the DHT), and their inverted

lists. 117

5.2 Average number of inverted entries if 1 document published for every

2 peers. 135

5.3 Comparing cost levels of SS, US, TTL, and PHIRST methods in LL,

LM, LH, MM, MH, and HH artificial queries. 137

5.4 Comparing recall levels of SS, US, TTL, and PHIRST methods in LL,

LM, LH, MM, MH, and HH artificial queries. 139

5.5 Comparing recall levels of SS, US, TTL, and PHIRST methods with

regard to different numbers of results (T). 140

5.6 Comparing cost levels of SS, US, TTL, and PHIRST methods with

regard to different numbers of results (T). 140

5.7 Comparing the impact of redundant nodes on publishing load, query

results, and search cost within the Hybrid method with d=75 and

T=20 when node failure results in search termination. 141

5.8 Comparing the impact of redundant nodes on publishing load, query

results, and search cost within the Hybrid method with d=75 and

T=20 when node failure results in using unstructured search. 142

x

Abstract

Coordination, or the act of managing interdependencies between ac-

tivities, is a key issue within the field of multi-agent systems. Be-

cause of the importance of this issue, many theoretical and practi-

cal frameworks have been proposed for addressing coordination chal-

lenges. However, finding the optimal coordination method for a given

group of agents and domain task is a computationally difficult, if not

intractable, problem in most real-world domains. Solving the “coor-

dination problem” is thus an important open challenge for researchers

in this field.

Towards addressing this issue, this thesis presents an algorithm

selection approach for creating adaptive coordination methods. We

study several types of coordination problems from robotic foraging and

search domains, constraint satisfaction and optimization domains, and

Peer to Peer networks. We find that novel teamwork measures can be

developed for quantifying the effectiveness of coordination algorithms

in all of these domains. These measures can be autonomously and lo-

cally measured by team members, even without any communication.

The significance of this result is its ability to effectively quantify co-

ordination in a clear, tractable fashion. Next, we find that these mea-

sures can be used to switch between coordination methods as needed.

Robots or agents can effectively select the best coordination method to

their localized domain conditions, online during task execution. The

net result is a significant productivity improvement of these adaptive

methods over the static methods they are based on.

xi

Chapter 1

Introduction

Coordination can be defined as “managing dependencies between ac-

tivities” [49]. Effective coordination is required to manage the depen-

dencies that naturally occur when agents have inter-linked objectives

or share a common environment or resources in a multi-agent system

(MAS) [17]. Coordination is a cross-discipline topic researched within

the fields of organization theory, psychology, economics, and artificial

intelligence [49].

However, while there are a number of theoretical definitions for co-

ordination across these fields, generally finding optimal or near optimal

coordination techniques remains an open question. Within artificial

intelligence, several coordination frameworks have been suggested to

date for reasoning about teamwork and coordination [25, 39, 69]. For

example, one approach is to use decision theoretic models such as

Markov Decision Processes (MDP) [60] within any of these formalized

frameworks. This could potentially allow robots to choose the optimal

coordination method as needed during task completion.

However, while each of these approaches has been shown to be

effective under certain conditions, in many real-world applications

the problem of making the optimal coordination decision is compu-

tationally intractable [60]. The inherent complexity in using these

1

approaches demonstrates the necessity of creating novel approaches

to effectively deal with real-world coordination issues in a tractable

fashion.

Towards addressing this issue, this thesis presents an algorithm se-

lection approach for creating adaptive coordination methods. Similar

to previous work [17], we assume an agent has a library of coordina-

tion algorithms at its disposal, with each algorithm having different

attributes. These differences make each algorithm best suited to dif-

ferent types of tasks and environments. As a result, the key question

is how can one select the best algorithm given a specific coordination

problem instance at hand.

The first step towards addressing this challenge is to develop novel

teamwork measures to quantify the relative effectiveness of coordi-

nation methods. Once these measures have been identified, we can

identify what is the best coordination algorithm given a specific in-

teraction between agents. This allows us to tractably analyze which

coordination methods to use. This information can then be applied to

create effective dynamic coordination heuristics that selects the best

coordination method. This approach has several key advantages:

• Quick Analysis of Coordination - Differences between algo-

rithms are quickly identified during very short learning periods.

This allows us to create adaptive coordination policies without

exhaustive learning in a state space that is often exponentially

large.

• Online adaptation - The coordination adaptation policies cre-

ated in this approach are suitable for online use. There is no need

to preplan or preprocess all possible group interactions.

• Significant Productivity Gains - We find that this approach

2

consistently achieved a significant improvement in productivity

over the static methods they were based on in a variety of real-

world domains.

This thesis describes how this approach was applied to several di-

verse coordination domains including: robotic groups with and with-

out communication, optimization domains such as scheduling and graph

coloring, and full text search within Peer to Peer networks. In all

cases, we were able to identify key attributes that differentiated be-

tween that domain’s coordination algorithms. Using this information

we then successfully created dynamic coordination methods that sig-

nificantly improved the group’s performance.

1.1 Background

The contributions in this thesis are related to a variety of existing

research topics including: teamwork models [25, 39, 49, 69], teamwork

measures [7, 26, 35], algorithm selection [2, 23, 38, 40], and dynamic

coordination [17]. To understand the significance of the contribution

of this thesis, we first present related work from these areas.

1.1.1 Teamwork Models

Because of the importance of coordination problems, a variety of team-

work frameworks and formalizations have been proposed within the

multi-agent research community [39, 25, 69]. The SharedPlans ap-

proach [25] consists of creating teamwork Recipes based on modeling

agents’ beliefs and intentions. Jenning’s joint intentions model [31] in-

volves flexible reasoning about joint commitments and their associated

social conventions. Tambe’s STEAM teamwork engine [69] provides a

3

generalized teamwork engine. The TAEMS framework [39] consists of

a rule based approach to quantifying coordination relationships.

However, within each of these frameworks, individual agents must

reason about the next action it will take, and how this action will

impact the group. One popular formalization is to modeling this co-

ordination action problem as a multi-agent Markov Decision Process

(MMDP). This process was previously modeled as follows [60]:

Every agents’ actions can be described as a tuple, <S,AN
i=1, Pr, R>

where:

• N is a group of agents engaged in some cooperative behavior.

• S is the set of all possible environment states for these agents.

• Ai is the set of all possible joint actions applicable in the envi-

ronment by agent i.

• Pr models the system’s dynamics. Pr takes the form: S × A × S

→ [0,1]; with Pr(si, a, sj) denoting the probability that action a

executed in state si, will transition to state sj.

• R is the reward function for each agent’s possible action.

The advantage to this model is in its clarity and ability to describe

optimal behavior. Formally, for any time horizon T, a policy π can be

created such that π: S × (1, . . ., T) → A is associated with every state

s, and for all future time steps, t, such that t ≤ T. An optimal policy

requires that for every action, a, taken in A, the reward function R(a)

≥ R(a′) for all a′ ǫ A.

However, practically using this model to find an optimal policy is an

intractable problem in all but the most basic domains for the following

reasons [60]:

4

• Even the basic MDP model requires the system designer to quan-

tify the state values, S, of all possible actions, Ai, and the proba-

bility functions Pr associated with every agent’s possible action.

Many real-world domains cannot be quantified in this fashion.

• In MMDP models, the designer must additionally quantify the

impact other agent’s actions will have on its own actions – another

difficult factor to model, often resulting in an exponential jump

in the state space size. Finding an optimal solution in many of

these problems is NEXP-complete – a class of one of the hardest

problems sets currently known to computer scientists.

• Both MDP and MMDP models assume agents can accurately

quantify its current state. Once this assumption fails, a Partially

Observable model (PoMDP) must be used, further increasing the

complexity of the problem.

This intractability is one of the motivations for our approach.

The first contribution of this thesis is in identifying and developing

novel teamwork measures that can be used to quantify interactions

between agents. To date there have been very few studies contrasting

a group’s composition and its task performance. Balch [7] presented

a metric of social entropy which can measure the level of diversity

or how heterogeneous a group is. He claimed that certain tasks are

intrinsically better suited for homogeneous groups, with others for het-

erogeneous ones. He found his measure positively correlated with the

group’s productivity in some domains, and negatively correlated in

others. Kaminka and Tambe [35] used an average time to agreement

(ATA) measure to study a team’s behavior in Robocup and ModSAF

agent domains. This measure was used to evaluate the relative effec-

tiveness of social monitoring of team behaviors. Similar to this work,

5

the ATA measure aims to provide feedback about team effectiveness.

However, again the question of correlation between productivity and

the ATA measure was left open.

Hogg and Jennings [26] introduce a willingness to cooperate factor

which defines the degree to which a social agents engage in individual

versus group considerations. Similar to the approach we present, they

use their measure to alter agents’ activity to resource constraints that

are sensed during run-time. However, their formalized structure is

less flexible to change than ours and requires a Q-learning model to

allow for adaptation. As a result, they left for future work how their

model could be applied for quickly reacting to domain dynamics, or

how agents can manage activities between different subgroups they

might be a part of. These are issues that critical to the coordination

problem we study.

1.1.2 Algorithm Selection

Once we have demonstrated that we can quantify the relative effec-

tiveness of coordination methods, this information is used to select

the best method for a given group composition and domain. This can

be viewed as a contribution within the field of algorithm selection.

Previously, Rice defined this problem as the process of choosing the

best algorithm for any given instance of a problem from a given set of

potential algorithms [63].

Following this approach, we define the coordination algorithm se-

lection process used in this thesis as follows: Let G = {a1, . . . , aN} be a

group on N agents engaged in some cooperative behavior. Each agent,

a, can choose out of a library of coordination algorithms, {CA1 . . . CAk}.

We denote this selection CAaj
, where 1 ≤ aj ≤ k.

6

Using CAaj
affects the group’s utility by a certain value, UT a(CAaj

).

UT a(CAaj
) is composed of a gain, G(CAaj

), that the group will realize

by using algorithm CAaj
, and the agent’s cost, C(CAaj

), by using that

same algorithm. As this thesis deals with groups of cooperative agents,

the goal is to maximize
∑N

a=1 UT
a(CAaj

). To achieve this, each agent

must select the algorithm CAaj
from the k possible algorithms in the

library whose value G(CAaj
) - C(CAaj

) is highest.

The correct algorithm to use is likely impacted by the problem state

that agent faces. In coordination problems, these problem states repre-

sent the set of possible coordination problems between members of the

group. To formalize this problem, let S = {s1, . . . , sM} be a group of

M states representing all possible coordination problems agents within

G may encounter. For every state, the values of G(CAaj
) - C(CAaj

)

realized through using algorithms {CA1 . . . CAk} can potentially be

different. Thus, the question is not simply which algorithm to choose

for one specific problem instance, but which algorithm to choose in all

potential problem states.

One possible approach is to loop through all possible actions an

agent can choose, and for each state calculate the potential utility,

UT a(CAaj
), or the values of G(CAaj

) and C(CAaj
) from using each

of the possible k algorithms. This information could then be ap-

plied within decision frameworks such as an MDP. In fact, work by

Lagoudakis and Littman [38] demonstrates that the algorithm selec-

tion problem can be modeled as an MDP for certain types of problems.

However, the assumption of this approach is that is possible to effec-

tively quantify all possible state interaction within the algorithm set.

This is not possible for most coordination problems as the state space

is very large, and not necessarily discreet.

Other possible approaches involve performing no learning in ad-

7

vance and instead attempt to identify the best algorithm exclusively

during run-time. For example, Allen and Minton [2] suggested run-

ning all algorithms {CA1 . . . CAk} in the portfolio for a short period

of time on the specific problem instance. Secondary performance char-

acteristics are then compiled from this preliminary trial to select the

best algorithm. Gomes and Selman [23] suggested running several al-

gorithms (or randomized instances of the same algorithm) in parallel

creating an algorithm portfolio. However, assuming running each al-

gorithm incurs costs C(CA1) . . .C(CAk), these approaches are likely

to be ineffecient as the cumulative costs of running all algorithms are

likely to be higher than the potential gain of finding even the optimal

choice.

By using novel teamwork measures, we are able to more effec-

tively address the coordination algorithm selection problem. Instead

of studying a large set of possible agent actions, we use teamwork

measures to evaluate the effectiveness of how selecting that algorithm

will effect that agent’s interaction within the group. Assuming differ-

ences in these measures can be found between the various coordination

algorithms agents can choose, the complexity within the intractable

MMDP model can be quickly reduced. Furthermore, learning which

algorithm to choose can be done after a short learning period, allowing

for effective online decisions. Several key advantages emerge from the

simplified decision model used in the coordination selection approach

in this thesis:

• A reduced space of actions. By defining all possible actions as

the selection of algorithms {CA1 . . . CAk}, we reduce the set of

all possible actions to only the k coordination algorithms.

• A simplified performance measure. By creating novel teamwork

8

measures, we are able to equate the relative effectiveness of the al-

gorithms {CA1 . . . CAk}. This facilitates creating a relative rank-

ing of each algorithm which can be used instead of a difficult to

compute reward value.

• Clustered state spaces. We found that each algorithm is typically

best for large groups of similar problems. As such, one does not

have to study reward functions for each and every state S, but

can create large clusters of similar problems. After these similar

problems are identified, the important question becomes when

does one transition between these clusters. All of the individual

states found within each of the clusters no longer need to be

stored.

1.1.3 Dynamic Coordination

Finally, this thesis presents dynamic coordination approaches that sig-

nificantly improve performance over the static methods they are based

on. To date, very few works exist that explored this idea. The concept

of switching between groups of coordination methods was previously

described as part of the TAEMS theoretical framework [39]. Their

approach encodes tasks and potential relationships between agents. If

any dynamics exist within the system, they must be formally encoded

in advance. As such, their work concedes the necessity of preplanning

or replanning for contingencies, making the system unable to adapt to

runtime dynamics unless all possibilities have been formally modeled

in advance. The work by Toledo and Jennings [17] present a frame-

work where coordination mechanisms are selected at run-time based

on the prevailing domain conditions. This is accomplished through

abstracting the coordination problem as utility based functions that

9

can be reasoned about during task execution. This work is similar to

ours in that we also create dynamic coordination methods that can

operate online.

Several key points separate these approaches with the one presented

here. First, the previous approaches [17, 39] require that interactions

must be formally modeled, either in advance or during task execution.

It is not clear how the formalized theoretical models can be trans-

ferred from the theoretical TAEMS statements or grid world domains

they studied to real-world domains or actual groups of coordination

algorithms. Similarly, it is unclear how one can take real-world prob-

lems and create tractable utility functions that quantify the utilities of

the various coordination methods being used. We address these issues

through the use of novel teamwork measures and simplified algorithm

selection model. Finally, the approach of Toledo and Jennings [17] did

not always improve the group’s performance. In contrast, the dynamic

approach we present was successful in consistently improving perfor-

mance, typically by significant amounts beyond the static methods

they are based on in a variety of domains.

1.2 Thesis Structure and Overview

The first chapter of this thesis addresses how one can create adap-

tive coordination methods for robots without communication. Many

collaborative multi-robot application domains have limited areas of op-

eration that cause spatial conflicts between robotic teammates. These

spatial conflicts can cause the team’s productivity to drop with the

addition of robots. This phenomenon is impacted by the coordination

methods used by the team-members, as different coordination meth-

ods yield radically different productivity results. However, selecting

10

the best coordination method to be used by teammates is a formi-

dable task. This chapter presents techniques for creating adaptive

coordination methods, to address this challenge: 1) We first present a

combined coordination cost measure, CCC, for quantifying the cost of

group interactions. This measure is useful for facilitating comparison

between coordination methods, even when multiple cost factors are

considered. We consistently find that as CCC values grow, group pro-

ductivity falls. 2) Based on the CCC, we create adaptive coordination

techniques that are able to dynamically adjust the efforts spent on co-

ordination to match the number of perceived coordination conflicts in

a group. We present two adaptation heuristics that are completely dis-

tributed and require no communication between robots. Using these

heuristics, robots independently estimate their CCC, and adjust their

coordination methods to minimize it, thus increasing group productiv-

ity. 3) We used a simulated robots to perform thousands of experiment

trials, to demonstrate the efficacy of this approach. We show that us-

ing adaptive coordination methods creates a statistically significant

improvement in productivity over static methods, regardless of the

group size.

The second chapter studies how the CCC measure can be extended

to address adaptation between robotic groups using communication.

Communication between robots is one mechanism that can at times

be helpful in such systems, but can also create a time and energy

overhead that reduces performance. In dealing with this issue, various

communication schemes have been proposed ranging from centralized

and localized algorithms, to non-communicative methods. We argue

that using the CCC measure can be useful for selecting the appropriate

level of communication within such groups. We show that this measure

can be used to create adaptive communication methods that switch

11

between various communication schemes. In extensive experiments

in a robotic foraging domain, teams that used these adaptive meth-

ods were able to significantly increase their productivity compared to

teams that used only one type of communication scheme.

In the third chapter we investigate methods for creating dynamic

coordination methods in classic distributed constraint optimization

problems. While these are NP-complete problems, many heuristics

have been proposed for solving these problems. We found that the

best method to use can change radically based on the specifics of a

given problem instance. Thus, dynamic methods are needed that can

chose the best approach for a given problem. Towards this goal, we

present a dynamic algorithm selection approach where agents quan-

tify the expected utility transmitting information will have. We found

that large differences in this expected utility typically exist between

algorithms, allowing for a clear policy with very short training pe-

riods. We present the results of thousands of trials within general

graph coloring and TAEMS scheduling domains that demonstrate the

strong statistical improvement of this dynamic method over the static

methods they based on.

In the fourth chapter we study various coordination algorithms

within distributed peer to peer search algorithms. Recent advances

have presented viable structured and unstructured approaches for full-

text search. We posit that these existing approaches are each best

suited for different types of queries and present a hybrid system that

leverages their relative strengths. Similar to structured approaches,

peers within the network first publish terms stored within their docu-

ments. However, frequent terms are quickly identified and not exhaus-

tively stored, resulting in a significant reduction in the system’s storage

requirements. During query lookup, peers rely on using unstructured

12

searches to compensate for the lack of fully published terms. Addition-

ally, they explicitly weigh between the costs involved with structured

and unstructured approaches, allowing for a significant reduction in

query costs. We evaluated the effectiveness of this approach using both

real-world and theoretical queries. We found that in most situations

this approach yields near perfect recall. We discuss the limitations of

this system, as well as possible compensatory strategies.

1.3 Publications

Subsets of the results that appear in this dissertation were published

in the proceedings of the following refereed journals, book chapters,

conferences and workshops:

Journal Articles

• Avi Rosenfeld, Gal A Kaminka, Sarit Kraus and Onn Shehory.

A study of mechanisms for improving robotic group performance,

accepted to Artificial Intelligence Journal (under revision), 2006.

Rigourous Refereed Conference Papers

• A. Rosenfeld, G. Kaminka, and S. Kraus. Adaptive robot co-

ordination using interference metrics. In The Sixteenth Euro-

pean Conference on Artificial Intelligence, pages 910–916, August

2004.

Book Chapters

• Avi Rosenfeld, Gal Kaminka, and Sarit Kraus. A study of scala-

bility properties in robotic teams. In Coordination of Large-Scale

Multiagent Systems, pages 27–51, 2005.

13

• Avi Rosenfeld, Gal Kaminka, and Sarit Kraus. Adaptive robotic

communication using coordination costs. In The 8th Interna-

tional Symposium on Distributed Autonomous Robotic Systems

(DARS), pages 165–175, 2006.

Workshop and Other Proceedings

• A. Rosenfeld, G. Kaminka, and S. Kraus. A study of marginal

performance properties in robotic groups. In Proceedings of the

AAMAS 2004 Workshop on Coalitions and Teams, New York,

2004.

• A. Rosenfeld, G. Kaminka, and S. Kraus. Adaptive robot coordi-

nation using interference metrics. In Proceedings of the AAMAS

2004 Workshop on Learning and Evolution, New York, 2004.

• A. Rosenfeld, G. A. Kaminka, S. Kraus. A study of marginal per-

formance properties in robotic teams. In Proceedings of AAMAS-

04 (Poster), pages 1534–1535, July 2004. Short version of Coali-

tion and Teams Workshop Paper.

• A. Rosenfeld, G. A. Kaminka, S. Kraus. Measuring the cost of

robotic communication. In Proceedings of IJCAI-05 (Poster),

pages 1734–1735, August 2005. Short version of DARS Paper.

• A. Rosenfeld, G. Kaminka, and S. Kraus. Adaptive robotic com-

munication using coordination costs for improved trajectory plan-

ning. In AAAI Spring Symposium on Distributed Plan and Sched-

ule Management, Stanford, 2006.

14

Chapter 2

A Study of Mechanisms for

Improving Robotic Group

Performance

2.1 Introduction

Groups of robots are used to enhance performance in many tasks

[14, 20, 29, 65]. However, the physical environment where such groups

operate often pose a challenge for the robots to properly coordinate

their activities. Domains such as robotic search and rescue, vacu-

uming, and waste cleanup are all characterized by limited operating

spaces where the robots are likely to collide [6, 20, 29, 65]. Thus while

adding robots can potentially improve group performance, collisions

are likely to become more frequent. To address this issues, a variety

of collision avoidance and resolution techniques have been previously

presented [6, 18, 20, 56, 66, 71]. However, no one method is best in

all domain and group size settings.

Matching the best coordination method for a given robotic team

and its operating domain is a formidable task. To date, several coordi-

nation frameworks have been suggested for reasoning about teamwork

15

and coordination [25, 39, 69]. One possible approach is to use deci-

sion theoretic models such as Markov Decision Processes (MDP) [60]

within any of these formalized frameworks. This could potentially

allow robots to choose the optimal coordination method as needed

during task completion.

However, while each of these approaches has been shown to be

effective under certain conditions, in many real-world applications

the problem of making the optimal coordination decision is compu-

tationally intractable [60]. The inherent complexity in using these

approaches demonstrates the necessity of creating novel approaches to

effectively deal with real-world issues in a tractable fashion.

Our approach is to investigate a combined coordination cost mea-

sure, CCC, that quantifies the production resources spent due to co-

ordination conflicts. We present this multi-attribute cost measure to

quantify resources such as time and fuel each group member spends

in coordination behaviors during task execution. The combined coor-

dination cost measure facilitates comparison between different group

methods. We found a high negative correlation between this measure

and group productivity, allowing us to understand why certain groups

were more effective than others.

This negative correlation between performance and CCC facilitates

development of adaptive coordination methods. The key idea is that if

robots dynamically reduce their CCC, group productivity will be im-

proved. To demonstrate this, we create robotic groups which dynam-

ically adapt their coordination techniques based on each robot’s CCC

estimate. Robotic agents calculate CCC estimates autonomously, by

noting the frequency of events in which collisions are possible (and

may or may not take place). This is done in a distributed fashion,

and without any feedback from group members—no communication

16

is necessary.

We present two adaptive coordination methods suitable for homo-

geneous robots based on the CCC estimates. The first method of

adaptation works by tweaking the parameters of a given coordination

method to adapt it to the frequency of possible collisions. The second

approach proceeds to dynamically self-select between a range of mu-

tually exclusive coordination methods. In order to quickly adapt to a

changing environment, we use weight-based heuristics by which every

robot in the group is capable of quickly modifying its coordination

method to match its estimated CCC.

We used a well-tested multi-robot simulator, Teambots [4, 5] to

simulate groups of up to 30 robots engaged in both search and foraging

tasks. We performed thousands of experiment trials, to demonstrate

the efficacy of this approach, with various team sizes and compositions.

We found that these adaptive coordination approaches resulted in a

statistically significant increase in group productivity in the domains

we studied, even when faced with dynamically changing conditions.

During task execution, different robots in the group were engaged in

different coordination resolution behaviors. In fact, we found that the

best form of coordination changes over the course of time, or as the

task is being completed. Thus, various forms of coordination are likely

to be needed at different times during task execution.

While we cannot guarantee the optimality of these heuristic ap-

proaches, the experiments demonstrate that this approach is effective

in achieving a statistically significant improvement in productivity

without a prolonged training period. We believe that this is likely

to be needed in many robotic domains as environment dynamics and

noise make traditional learning approaches difficult to implement.

17

2.2 Productivity Increases in Robotic Groups

This paper focuses on understanding the interplay between group co-

ordination and productivity in robot groups. A closely related topic, of

the scalability of labor, has been extensively studied within economics.

According to the Law of Marginal—or Diminishing— Returns, as ad-

ditional production resources are added, the additional productivity

yielded as a result decreases [8]. The highest returns on production re-

sources are from the first beginning of the production cycle. They then

diminish with additional production expenditure, until at some point,

it typically becomes economically impractical to add more production

resources; the cost of additional production resources outweighs the

productivity they add.

To date, there have been limited—and often conflicting—studies

into how robotic team productivity scales with the addition of robots.

Rybski et al. [65] demonstrated that groups of identical robots can

exhibit marginal returns, with productivity curves resembling loga-

rithmic functions. The first several robots in the groups they studied

added the most productivity per robot, and each robot added suc-

cessively less. However, they did not study group sizes larger than

five robots. In contrast, work by Fontan and Matarić [66] found ro-

botic groups operating within a robotic foraging domain contained a

certain group size, a point they call “critical mass”, after which the

net productivity of the group dropped. Similarly, Vaughan et al. [71]

also reported that adding robots decreases performance after a cer-

tain group size. The motivation for this work lies in understanding

when coordination methods would be successful in consistently realiz-

ing marginal gains, and when one could expect to encounter a “critical

mass” in their group size.

18

2.2.1 Group Differences in Performance

Our study begins with a simulated foraging domain, in which we inves-

tigate how robot productivity is affected as group size is scaled up. For-

aging is formally defined as locating target items from a search region

S, and delivering them to a goal region G [21]. The foraging domain

is characterized by a limited area of operation where spatial conflicts

between group members are likely to arise [18, 20, 21, 56, 65, 66, 71].

Many robotic tasks such as waste cleanup, search and rescue, plane-

tary exploration, and area coverage share this trait.

We used a well tested robotic simulator, Teambots [4, 5], to collect

data. We preferred using a simulator over performing experiments

with real robots as it allowed us the ability to perform thousands

of trials of various team sizes and compositions. The sheer volume of

this data allowed us to make statistical conclusions that would be hard

to duplicate with manually setup trials of physical robots. However,

code created in the Teambots simulator has been shown to directly

port to Nomad N150 robots; all behaviors and features found within

the simulator can be equally applicable to these physical robots [4].

Using Teambots [5], we simulated a foraging environment measur-

ing approximately 10 by 10 meters. There were a total of 40 target

pucks within the field, 20 of which where stationary within the search

area, and 20 moved randomly. Each trial measured how many pucks

were delivered by groups of 1–30 robots from each of the coordination

methods we studied within 9 simulated minutes of activity. To over-

come any dependencies on initial positions, we averaged the results of

100 trials with the robots being placed at random initial positions for

each run. Thus, this experiment simulated a total of 21,000 trials (7

groups × 30 group sizes × 100 trials per size) of 9 minute intervals.

19

The simulated robots we studied were identical but for their imple-

mentation of their teamwork coordination behaviors. Each robot had

three common behaviors: wander, acquire, and deliver. In the wander

phase, the robots originated from a random initial position, and pro-

ceeded in a random walk until they detected a resource targeted for

collection. This triggered the acquire behavior. While performing this

second behavior, the robots prepared to collect the puck by slowing

down, and opening up their grippers to take the item. Assuming they

successfully took hold of the object, the deliver behavior was triggered.

At times the puck moved, or was moved by another robot, before the

robot was able to take it. Once this target resource moved out of sen-

sor range, the robot reverted once again to the wander behavior. The

deliver behavior consisted of taking the target resource to the goal

location which was in the center of the field.

We implemented a total of 7 coordination methods based on pre-

viously developed collision resolution and avoidance algorithms, and

variations thereof. All algorithms operate without prior knowledge of

the domain, nor communication. We chose to contrast coordination

methods from this category to focus exclusively on issues relating to

coordination resolution behaviors.

The implementation of the Noise method was included in the Team-

bots [5] package. Balch and Arkin [6] describe this method as a system

of using repulsion schema any time a robot projects it is in danger of

colliding. Robots then also add a noise element into its direction vector

to prevent becoming stuck at a local minima.

Vaughan et al. [71] describe an algorithm that uses Aggression to

resolve possible collisions by pushing its teammate(s) out of the way.

They posit that possible collisions can best be resolved by having the

robots compete and having only one robot gain access to the resource

20

in question. In our implementation of this method, for every cycle

a robot found themselves within 2 radii of a teammate, it selected

either an aggressive or timid behavior, with probability of 0.5. If the

robot selected to become timid, it backed away for 100 cycles (10

simulated seconds). Otherwise it proceeded forward, executing the

aggressive behavior. As robots choose to continue being “aggressive”

or to become “meek” every cycle, the probability that two robots will

collide in this implementation is near zero.

Similar to the Aggression group, the Repel group backtracked for

500 cycles (50 seconds) but mutually repelled using a direction of 180

degrees away from the closest robot. The TimeRand group contained

no repulsion vector to prevent collisions. However, when robots sensed

they did not significantly move for 100 cycles (10 seconds), they pro-

ceeded to move with a random walk for 150 cycles (15 seconds) once

these robots. The TimeRepel also only reacted after the fact to col-

lisions. Once these robots did not move for 150 cycles (15 seconds),

they then moved backwards for 50 cycles (5 seconds).

Finally, we created two groups that lack any coordination mecha-

nism. The Gothru group was allowed to ignore all obstacles, and as

such spent no time engaged in coordination behaviors. This “robot”

could only exist in simulation as it simply passes through obstacles and

other robots. This group represents a theoretical group performance

without any productivity lost to collisions. At the other extreme, the

Stuck group also contained no coordination behaviors but simulated

a real robot. As such, this group was likely to become stuck and lose

all productivity when another robot blocked its path.

Figure 2.1 graphically represents the foraging results from these

coordination methods. The X-axis depicts the various group sizes

ranging from 1 to 30 robots. The Y-axis depicts the corresponding

21

average number of pucks the group collected averaged over 100 trials.

Figure 2.1: Motivating results comparing seven foraging groups. Each data-point

represents the average pucks returned to the domain’s home-base using that coordi-

nation method (Y-Axis) given that group size (X-axis).

According to economic theory, diminishing marginal returns are

achieved when one or more production resources are held in fixed sup-

ply, while the quantity of homogeneous labor increases. In the foraging

domain, the fixed number of pucks and limiting domain area acted as

limiting factors of production. Consequently, one would expect to find

production graphs consistent with economic marginal returns. How-

ever, only the theoretical Gothru group consistently demonstrated this

quality over the full range of group sizes. All other groups contained

a critical point where maximal productivity was reached. After the

group size exceeded this point, productivity often dropped precipi-

tously. For example, the Aggression group reached a maximum of

30.84 pucks collected in groups of 13 robots. Additionally, the coor-

dination behaviors had a profound impact on each productivity level.

22

For example, when examining foraging groups of 10 robots, the Ag-

gression method averaged over 30 pucks collected, the Noise group

averaged approximately 20 pucks, and the Stuck group on average

collected fewer than 8 pucks.

This research was motivated by these results. Based on this ex-

ample, we focused on two open questions presented by Fontan and

Matarić [18] and Arkin and Balch [3]:

• How one can determine when their coordination method has lost

effectiveness? This may be useful for having robots shut down

and save fuel, or to help maximize their productivity [18].

• What lessons can be learned about creating coordination meth-

ods to be resilient to dynamics in their environment. How can

coordination methods be created that can quickly adapt to its

domain conditions without a lengthy learning process [3]?

2.2.2 The Impact of Coordination on Robot Density

We propose that differences between coordination methods in spatially

constrained domains can be explained based on robot density. As one

adds robots into a domain, the density of robots, on average, should

rise. Within spatially constrained domains, this can lead to certain

area(s) having a bottleneck condition where robots cannot effectively

complete their task, resulting in loss of productivity. However, having

too low a density results in agents not reaching goal areas within the

domain and thus not properly completing their task. As different

coordination methods impact the group’s density, it is critical that we

properly match the coordination method to the domain conditions to

achieve the best productivity for the group.

23

We can model robot density as follows: Let us pick a point p within

a spatially constrained domain where a group of N robots must pass to

complete their task. Given a radius r around this point, we focus on an

area A(r) surrounding p. During task completion, robots constantly

move in and out of A(r) with a certain heading α. At any given

time t, there are k robots within any given area A(r), where k ≤

N . We denote the density, φ(r) as the total area of these k robots

divided by the total area A(r). The value of φ(r) will impact the

group’s performance. For example, φ(r) = 1 indicates A(r) contains

no free space, and all robots mutually block. In these instances all

productivity of the group will be lost until the area is cleared, and the

density lowered. Conversely, assuming φ(r) = 0, no robots are within

the area. Assuming this value remains zero, no robots will complete

their task, and the group’s productivity will be zero until robots are

allowed into the constrained area and φ(r) rises.

Figure 2.2 illustrates an example taken from the Teambots simula-

tor with k = 3 robots within a radius r = 1.5 (meters). Note that we

studied groups of homogeneous robots where each robot has a radius

of approximately 0.25 meters. We denote the area of each robot as

A′, where A′ = 0.252π or 0.20. Thus, the density φ(1.5) as illustrated

here would be (kA′)/A(r) or (3 × 0.20)/7.1 or 0.08.

Every coordination method impacts the way in which robots pre-

vent and resolve collisions, thus impacting φ(r). In general, coor-

dination mechanisms that involve collision prevention behaviors well

before robots collide will result in lower densities than methods that

only trigger these behaviors once robots are closer. Similarly, methods

that more aggressively space robots after collisions will result in lower

densities than less aggressive methods. For example, a group whose

coordination method requires robots to move away for a distance of 5

24

Figure 2.2: Three robots within A(r) where r = 1.5. Picture is taken from the

Teambots simulator and is drawn to scale.

meters after a collision will have a lower density than a method that

only requires robots to move away 1 meter.

We claim that as robots are added or taken away from a domain,

the best coordination method will change. When the group size (N)

is small, the number of robots (k) coming within the constrained area

is also likely to be small. In these cases, coordination methods should

allow robots to complete their task uninhibited, and not further reduce

φ(r). As N grows, k will naturally grow as well, and naive methods

will result in too high values for φ(r). In these cases, methods that

more robustly disperse the robots will be needed.

Determining the exact optimal value for φ(r) for a given domain

and set of robots is an complex challenge, as many factors must be

accounted for. First, we must model the speed of robots with regard

to various domain conditions and behaviors. For example, the robots

we studied slowed down to pick up objects, deviating from their max-

imal speed. Such phenomena must be exactly accounted for. Second,

we must model the robots’ exact positions and headings throughout

task completion. In general, every robot heading towards p will have

a velocity vector Vi based on its heading α from its initial position Pi

25

towards its final destination point p. For an exact model, every coordi-

nation method’s response to different positions and headings must be

precisely calculated. Finally, a simplified model assumes robots mu-

tually block only in head on collisions. In fact, even indirect collisions

also block robots, and thus the “collision area” of a robot needs to be

modeled as Pix+ǫ
and Piy+ǫ

instead of the location Pi the robot is cur-

rently situated in. Given the complexity of modeling these different

factors, we leave calculation of an optimal φ(r) for future work.

Nevertheless, we can generally demonstrate two important charac-

teristics based on our model: (i) Differences in density exist between

coordination methods; (ii) Given a certain radius r, some density value

φ(r) results in the best group performance, regardless of the group size

(N) operating within the domain, or the specifics of the coordination

method used. The latter is a very important observation, as it may

provide guidelines for matching coordination methods to specific do-

mains based on their derived density. To demonstrate these claims,

we logged the value of φ as a function of various distances r from the

home-base (point p) within the foraging domain, and various group

sizes. Specifically, we studied how values of φ corresponded between

coordination methods taken at distances of r = 0.5, 1.0, 1.5, 2.0, 2.5,

3.0, 3.5, 4.0, 4.5, and 5.0. As was the case in Figure 1, we averaged

every value from 100 simulated runs.

First, we compared the Aggression, Noise, Repel and Stuck coor-

dination methods defined in the previous section. Recall from Figure

2.1 that the Aggression method performed best in groups of 10 robots,

and Repel performed best in groups of 30. In Figure 2.3 we plot the

density functions for N = 10 (the graph on the left) and 30 robots (the

graph on the right). Note, that differences in coordination methods’

densities were most pronounced when studying smaller distances for

26

r around point p. As one would expect, as A(r) encompasses progres-

sively larger portions of the entire domain area, the number of robots

within this area (k) eventually equals N and no differences should

be expected between coordination methods. Consequently, we only

focus on density differences within small values for r. The Aggres-

sion method, which performed well in medium sized groups, did not

successfully resolve conflicts in larger groups. This is reflected by an

increase in density when moving from 10 robots to 30 robots. Con-

versely, Repel, which was effective in larger groups, exhibits a (too)

low density in small and medium sized groups, reflecting a relatively

lower productivity.

Second, when carefully inspecting the density levels for which the

coordination methods have arrived at maximal productivity, it ap-

pears that some optimal density level exists. Specifically, one can

observe that the density graphs for Aggression in groups of 10 and for

Repel in groups of 30, are nearly identical (recall that these graphs

correspond to methods performing optimally for a given group size).

Inspecting the density values arrived at by these methods shows they

are almost identical φ(0.5) = 0.18, φ(1.0) = 0.15, etc., from which

we can conclude that optimal performance corresponds to a common

density pattern. As we show below, other observations support this

conclusion.

Similarly, one may question if the parameters within the coordina-

tion methods provide optimal densities. The Repel method we defined

in the previous section backtracks for 50 seconds after a detected col-

lision. We posit that different backtracking amounts would create

different densities, each most appropriate for different domain con-

ditions. To support this claim, we created variations of the Repel

behavior where repel values of 5, 10, 20, and 50 seconds (Repel50,

27

Figure 2.3: Robotic density for four coordination methods for groups of 10 robots

(on left) and 30 robots (on right)

Repel10, Repel20, and Repel50 respectively) were used. Figure 2.4

displays these density functions for group sizes N =10, 20 and 30.

Note that the density graphs of Repel50 in groups of 10, Repel200 in

groups of 20, and Repel500 in groups of 30 are quite similar, and again

reflect values similar to those seen in Figure 2.3. In fact, as we will see

within the experiments sections (see Figure 2.10) these Repel values

yielded the highest productivity in these group sizes.

We believe that the model could theoretically be used to calculate

an optimal density for a given domain. A group designer could then

compare the coordination methods at her disposal, and select the one

closest to this optimal density. Furthermore, this model may also give

us insight into predicting when the productivity of a group will be,

and the amount a specific coordination mechanism deviates from the

theoretical optimal performance level. For example, if one would know

the density needed to achieve optimal performance, one could adjust

the repel values within this coordination method to ensure that this

condition is met.

However, this paper’s assumption is that the number of variables

involved with creating this precise model, and their associated states,

makes determination of the optimal density impractical, for this and

most real-world settings. Instead, we focus on developing a CCC mea-

28

Figure 2.4: Comparing robotic density for coordination methods Repel50, Repel100,

Repel200, and Repel500 in groups of 10 (top), 20 (middle) and 30 (bottom)

sure that is significantly easier to calculate and can be autonomously

measured by each robot. This measure requires no prior knowledge

29

of the specifics of the coordination methods being used, or a-priori

knowledge of domain parameters. Nonetheless, as the next section

demonstrates, this measure is still effective in modeling differences in

resources spent on resolving coordination conflicts. Furthermore, as

sections 2.4 and 2.5 demonstrate, this measure can also be used to

create adaptive methods that quickly and effectively adapt the coor-

dination of the team to the task.

2.3 Quantifying the Cost of Coordination: the

CCC Measure

A mechanism is needed to measure why certain coordination mecha-

nisms are more effective than others. In this section we present such

a measure of coordination, the Combined Coordination Cost measure

(CCC). We find that this measure and productivity are strongly cor-

related, and use this measure to explain differences in productivity

between all teams. As one might expect, the more efforts the group

spends in coordination behaviors, its ability to complete the task at

hand is diminished. We posit that in the absence of coordination

conflicts such as those caused by spatial conflicts, all teams should

consistently demonstrate marginal gains during scale up. We confirm

this idea by easing the spatial conflicts inherent in the domains and

note that all groups consistently demonstrate increasing marginal pro-

ductivity returns.

2.3.1 Measuring Combined Coordination Costs

The CCC is defined as the sum of resources a group member expends

because of its interactions with other members, in particular resolving

conflicts between agents (preventing conflicts and managing their con-

30

sequences). Examples of these resources may include the time, fuel,

and money spent in coordination activities or in any combination of

factors. Each agent expends a coordination cost Ci, that impacts the

entire group’s productivity. This cost can consist of multiple factors,

Cj
i , with each one containing a relative weight of Pj. We create a

multi-attribute cost function based on the Simple Additive Weighting

(SAW) method [77] often used for multi-attribute utility functions.

We describe the combined coordination cost of a specific agent as

follows. Let G = {a1, . . . , aN} be a group of N agents engaged in

some cooperative behavior. Let Ci = {Cj
i }, 1 ≤ j ≤ t be the set of t

coordination costs in the system derived from the actions of agent ai.

Let Pj be the ratio of each factor of Ci in the total cost calculation,

i.e.,
∑t

j=1 Pj = 1. As the total coordination cost of each agent is the

simple weighed sum [77] of all of these costs, the final cost equation

is:

Ci =
t∑

j=1

Cj
i · Pj (2.1)

In contrast to Goldberg and Matarić interference measure, [20] we

model resources spent in coordination even before a specific conflict,

such as robotic collisions, occurs. For example, the Aggression group’s

timid and aggressive behaviors to avoid collisions all constitute coordi-

nation costs by our definition. The TimeRand and TimeRepel groups

have costs only after a collision is detected. The Gothru group’s CCC

measure was always zero because it never engages in any collision

avoidance resolution behaviors and thus represents idealized group

performance.

According to the hypothesis, we expected to see a negative correla-

tion between CCC measures and productivity, in two major respects.

31

First, the degree to which a group deviates from idealized marginal

gains is proportional to the average CCC level within the group. This

in turn impacts the group size where the group reaches its maximal

performance. Second, even before groups hit their maximum produc-

tivity point, we hypothesized that the more productive groups have

lower CCC levels than their peers. This accounts for the varying pro-

ductivity levels in equally sized groups.

2.3.2 Measuring CCC from Various Resources

In order to confirm this hypothesis, we reran the seven foraging groups

and logged their average CCC levels. Note that in the first study, as

is the case in the work of Goldberg and Matarić [20], we only consider

the Ci for time spent on coordination. With the exception of the

Gothru which never registered any costs, we used the simulator to

measure the time associated with the robots’ collision avoidance and

resolution coordination behaviors. For all groups other than the Stuck

and Gothru groups, we additionally measured the time the robots used

collision resolution behaviors when they were not colliding. In the

Noise and Repel groups, this represented the time spent in repelling

activities. In the Aggression group, it was the time spent in timid

and aggressive behaviors. In the Timeout groups, this was the time

spent trying to resolve a collision once the robot timed out. Figure 2.5

represents the result from this trial. The X-axis once again represents

the group size over the 1–30 robot range, and the Y-axis represents the

average time that each robot within the group spent in coordination

behaviors (out of 540 seconds) over the 100 trials.

Overall, we found a strong negative correlation (average -0.94) be-

tween groups’ performance and their CCC levels, in all groups sized

32

Figure 2.5: Comparing foraging groups’ coordination costs

1 to 30 robots. The lower the average robots’ coordination cost, the

higher that groups’ average productivity. The intuitive explanation is

that since the task was bounded only by time, the more time spent on

coordination behaviors, the less time was available for properly com-

pleting the task. Thus, groups that minimized this cost were more

effective.

However, the CCC measure is also capable of taking other costs into

consideration. We also implemented these same coordination methods,

but used fuel instead of time as the one limiting production resource,

i.e. P1 = 1 again. In this experiment we allocated each robot 300 units

of fuel. We assumed the fuel used was proportional to the distance

traveled, with a much lower amount of fuel (1 unit per 100 seconds)

consumed for basic robot sensing and computation. Fuel was not

transferable. Once a robot ran out of fuel, it stopped functioning and

became an obstacle. Once again, we reasoned that certain methods

would be more successful than others in minimizing this measurement

under varying domain conditions.

Figure 2.6 graphically presents the foraging productivity results

over the group range of 1–30 robots when only accounting for coor-

dination cost based on fuel. We again found a strong negative cor-

33

Figure 2.6: Comparing group productivity and coordination fuel cost measures in

foraging groups

relation (average -0.95) between the coordination cost at the agent

level, and the group’s productivity. Notice that the cost functions of

these method are effected by the new domain requirements (produc-

tivity bounded by fuel instead of time) and the ordering of the best

coordination methods changes as a result. In these trials the Timeout

based groups (TimeRand and TimeRepel) fared best in medium sized

groups, while these groups never had the highest productivity in the

first set of experiments.

Figure 2.7: Comparing group productivity and multi-attribute coordination cost

measures

Realistically, some combination of production resources are likely

to bound an agent’s productivity. As a result, we also studied cases

of multi-attribute cost functions, and present the results for PT ime

34

= 0.7 and PFuel = 0.3. While time and fuel are different resources,

we created a combined cost function by viewing the cost CT ime
i as a

constant amount of fuel that was detracted every second of the robot’s

operation, independent of its movement. This allowed us to normalize

the time cost to approximately 70 percent of the total cost function

and create a cost function composed of these two factors. Figure 2.7

presents the results for this multi-cost attribute function, with the

lower Y-axis here measuring the combined cost of both factors, out of

300 total units. The multi-attribute measurement was still strongly

negatively correlated (-0.94 on average) to each group size and its

corresponding average productivity level.

The CCC measure is equally applicable to other domains as well. To

demonstrate this claim, we studied a spatially limited search domain

constructed as follows. Using the Teambots [5] simulator, we created a

room of approximately 3 by 3 meters with one exit 0.6 meters wide and

placed groups of robots inside (for comparison purposes each robot is

approximately 0.5 meters wide). We measured the time until the first

robot found a target item outside the room. We ran trials of groups

of six out of seven coordination methods (the Gothru method is not

applicable to search tasks) in sizes from 1–23 robots (the room holds

a maximum of 23 robots) and averaged the results from 50 trials. We

measured the coordination cost in terms of the time and/or fuel used

per robot in coordination behaviors while accomplishing this task.

We again found a high correlation between the cost measurement

based on the robot’s time spent in resolving conflicts, and the total

time it took for the group to complete its task. We first considered the

case of only the time cost being important (PT ime = 1 and PFuel = 0).

We capped each experiment at 15 minutes of activity, after which we

assumed the task could not be completed by that group. The results

35

from this experiments are presented in Figure 2.8. In the left portion

of the graph, we display the time length (in seconds) until the task was

completed as the Y-axis with the X-axis showing the different group

sizes. We found that most groups were able to complete their task

more quickly with small groups of robots. After some group size, we

again found that adding additional robots detracted from the group’s

overall productivity. The right graph displays the average CCC mea-

surement based on time alone. The Y-axis depicts the number of

seconds (out of 900 seconds) the robots were engaged with, on av-

erage, dealing with spatial conflicts. As the robots spent more time

resolving group conflicts, more time was needed to complete the task.

Figure 2.8: Comparing group productivity and coordination time cost measures in

search groups

We found a very high correlation (average 0.97) between the average

measurement of each robot’s time cost measurement, and the time

to complete the task. Note that in this domain, lower search times

are better, thus higher productivity is represented by lower values.

Therefore, the high correlation in the search domain is positive, while

it was strongly negative in the foraging domain. Still, in both cases,

as the CCC measure increased, the group’s productivity decreased.

The relationship between coordination costs in energy based cost

measures and multi-attribute costs also applied to this new domain.

36

In the experiments where PT ime = 0 and PFuel = 1 we allotted each

search robot with 300 units of fuel. As was the case in the foraging

domain, the robots used this fuel to move, but also used a smaller

amount to maintain basic sensors and processing capabilities. We also

created experiments for PT ime = 0.7, and PFuel = 0.3 with the same

standardization between time and fuel as found in the foraging domain.

The fuel-only experiments had a correlation of 0.99 between the fuel

used in resolving conflicts, and the average fuel used until the first

robot completed the task, while the equivalent weighted experiments

had a correlation of 0.98. As opposed to the foraging domain, the

ordering of the most effective coordination methods was not effected

by the cost functions of PT ime = 1 and PFuel = 0, or PT ime = 0 and

PFuel = 1, or PT ime = 0.7, and PFuel = 0.3. In all cases, the Noise

group had the best time to task completion and the lowest fuel usage

to task completion in small groups. The TimeRand group had the best

time to complete the task and the lowest fuel usage in larger groups.

This result is intuitive, as many domains exist when fuel usage and

time to task completion are correlated.

Thus, in both domains the CCC measure was successful in predict-

ing the relative effectiveness of coordination methods. In the foraging

domain the correlation between the group productivity and this mea-

sure ranged from -0.94 to -0.96. In the search domain it was even

slightly higher, and ranged between 0.97 and 0.99.

2.3.3 Coordination Conflicts: The Trigger for Large CCC

Values

According to the density model, different coordination methods affect

robots’ interactions within spatially constrained domains and the goal

37

must be to properly match the best coordination method to the needs

of the domain. Care must be taken not to spend too much on coordi-

nation, and thus unnecessarily lower the group’s density, or too little,

and thus have too high a density. Robots with too low a density have

spent too much preventing collisions. If robots have too high a den-

sity, they have not spent enough on coordination and will constantly

retrigger collision resolution behaviors too quickly.

The CCC measures this expenditure of the resources spent before

and after coordination conflicts. It is for this reason that the CCC can

effectively measure (after the fact) which method in total spent the

least on coordination, and thus achieved the best density and highest

productivity.

However, the goal is also to develop mechanisms to improve group

performance. In order to do so, the robots must be aware of the

conflicts that trigger coordination resolution behaviors. In this section

we demonstrate that the spatial conflicts inherent in the domains we

studied triggered the CCC costs. Once we removed the reason for

conflicts, groups consistently achieved marginal gains, and differences

between coordination methods became less pronounced.

Within the foraging domain, spatial conflicts revolved around the

one home-base within the operating area. We modified the foraging

group requirement of returning the pucks to one centralized home

base location. Instead, robots were allowed to deposit their pucks

as soon as they picked them up, without returning them to any one

location. We left all other environmental factors such as the number

of trials, the size and shape of the field and the targets to be delivered

identical. Teambots [5] was again used tot simulate 21,000 trials (7

groups × 30 group sizes × 100 trials per size) of 9 minute intervals in

this experiment.

38

Figure 2.9: Modified foraging and search domains

As the left side of Figure 2.9 shows, all groups did indeed always

achieve marginal returns in the modified foraging domain. While

Gothru still performed the best, the differences between it and other

groups’ coordination methods were not as pronounced. Most groups

had very similar coordination costs, and also productivity levels. The

exception was the RepelRand group which had relatively high costs in

small groups, and also lower performance. However, even this group

consistently demonstrated marginal gains in productivity as the group

size grew.

Within the search domain, we hypothesized that limitations in the

room size and width of the exits created coordination costs during scale

up. In order to ease this restriction, we doubled the size of the room

to become approximately 3 by 3 meters, and widened the exit to allow

free passage out of the room by more than one robot. Once again,

we measured the time elapsed (in seconds) until the first robot left

the room and averaged 100 trials for each point. This experiment also

constituted nearly 14,000 trials (6 groups× 23 group sizes × 100 trials)

of varying lengths. The right side of Figure 2.9 graphically shows that

the modified domain consistently realized marginal increases in faster

search times with respect to group size. Once again, cost levels were

also negligible in the new domain. Thus, we concluded that achieving

39

marginal productivity gains was always possible once competition over

spatial resources was removed.

2.4 Improving Productivity through Coordination

Metrics

In this section, we demonstrate how the CCC measure is useful for

helping robots self-evaluate the effectiveness of their coordination meth-

ods in an online fashion. By monitoring the triggers of coordination

conflicts, robots are able to adapt their coordination methods to the

needs of their environment. Robots that use such an approach demon-

strate a statistically significant improvement in productivity over non-

adaptive methods.

The dynamic nature of robotic environments makes the challenge

of creating adaptive coordination formidable. While traditional rein-

forcement learning methods have been used within some robotic en-

vironments [45, 50], the number of iterations such algorithms require

makes them unproductive without a significant training period. Even

after robots could learn the theoretically optimal coordination method

for their specific environment, events such as changes in the environ-

ment or hardware failures would likely render these policies obsolete.

Furthermore, finding the optimal coordination method for a group

is even a harder problem, with typically intractable complexity [60].

This is because the state-space of all possible possible actions, taken

together with all possible interactions, is of exponential size. As such,

even without any dynamics within the system, finding the optimal

coordination is not always feasible.

We therefore focus on using CCC heuristically, to allow robots to

dynamically select coordination algorithms during task execution. The

40

approach requires no prior knowledge of the domain’s physical dimen-

sions, boundaries, number of obstacles, or number of other teammates.

The possible state-space is limited to mapping values of CCC to the

coordination methods at the group designer’s disposal—a tractable

problem that can be quickly addressed.

We present two adaptive coordination methods and their advan-

tages above static methods. In the first technique we have the robots

self adjust parameters within one coordination method to match the

perceived environmental conditions. The second technique involves

adaptation between a number of distinct and mutually exclusive, co-

ordination methods. We found that both approaches did indeed signif-

icantly outperform the static methods we studied in both the foraging

and search domains.

2.4.1 Adaptive Coordination Algorithms

The adaptive approaches we present are based on having each robot

maintain an estimate of local coordination conflicts. This estimate is

adjusted as collisions occur and / or are resolved and is thus sensitive

to the triggers of the CCC costs. Specifically, the algorithm works

as follows: Every robot autonomously measures its own estimate, V

to represent the likelihood coordination conflicts are about to be en-

countered. We first initialize V to a base value, Vinit. For each cycle

that passes where that robot detects no impending collisions, it de-

creases its value of V by a certain amount, Wdown. For each cycle

where a robots sense a collision is likely, it increases its value V by

a certain amount, Wup. This process continues autonomously for all

robots within a group. Furthermore, this process does not require any

communication between group members. Thus, it conceivable, and

41

even likely, that robots will have different values for V based on the

localized conditions it is currently encountering.

The value V is pivotal for determining the coordination method

to be used. When V is low, the robot has resolved all coordination

conflicts and should use methods with low coordination overhead that

do not further lower the group’s CCC. This allows the robot to finish

its task as quickly as possible. When conflicts are more common and V

is high, more costly methods are needed to reduce the group’s density.

This removes a potential bottleneck condition, allowing some of the

robots to complete their task within the spatially constrained area.

In the first group of adaptation methods, we translate values for

V directly as a parameter of the coordination method. For example,

we use this value to determine the number of cycles the Repel method

uses to repel once it detects a collision is imminent or the time period

chosen by the TimeRand method before engaging in collision resolu-

tion behaviors. This way, each robot can autonomously control the

strength of their Repel resolution behaviors.

In the second adaptation method the values for V are used to switch

between a set of coordination techniques that have been pre-ordered

based on their coordination overheads as ranging from simple to com-

plex ones. Ranges of values for V are then mapped to these mutually

exclusive methods. Vinit corresponds to the starting point represented

by the coordination method with the lowest overhead, and the values

of Vup and Vdown are then used to change the robot’s fundamental co-

ordination mechanism. Once the value V rises or falls below a certain

threshold, that robot will change its fundamental coordination method

as needed.

42

2.4.2 Quickly Setting the Weight Values

We now discuss how the weights, Vinit, Wup, and Wdown can be quickly

set. It is important to stress that these weights form an approach to

resolving coordination conflicts online. Our goal is not to find any one

optimal coordination method as we found that dynamics within the

domain require different coordination methods throughout the task

completion. For example, assume one robot ceases functioning in the

middle of the task, it may be required to switch coordination methods

because of this event. Thus, the goal is to find a theoretical policy,

π, based on the robot’s estimate V that can be used to change the

coordination method each agent uses in an optimal fashion.

While traditional learning methods, such as Q-learning [72] and

other methods [73, 68] guarantee the ability to find an optimal policy,

there are several major challenges in implementing this approach here.

The first is procedural. Q-learning is based on a Markov based deci-

sion process that requires a concept of “state” that is difficult to define

during task execution. As opposed to clearly defined discrete domains,

there is no reward for any given cycle of activity in the robotic domains

we studied. Thus, the ability to evaluate the effectiveness of any given

action can only be done after a relatively long trial. This in turn leads

to a second problem—namely the amount of exploration data typi-

cally needed in Q-learning and other traditional learning methods to

converge on an optimal solution. The thousands or hundreds of thou-

sands of trials that might be needed are impractical for physical robot

trials [37]. For example, in the foraging domain previously mentioned,

we studied 7 groups of coordination methods over group sizes of 1–30

robots. Each productivity data point was averaged from 100 trials

for statistical significance, or a total of 21,000 trials. Third, even if

43

a theoretical optimal policy might be found dynamics within robotic

domains may render these policies obsolete very quickly and a new

learned policy π would need to be created. Finally, even if some form

of learning could produce optimal weights for Vinit, Wup, and Wdown,

there is no guarantee that these weights form the optimal coordination

policy for the group. This is because the robots’ sensors yield only a

partial observable picture of their environment, and make no use of

communication to attempt to complete that picture. Work by Pyna-

dath and Tambe [60] demonstrated that finding an optimal policy in

such cases is NEXP-complete.

As a result, the goal is improved productivity through a adaptive

policy over the static methods upon which it is based, which may or

may not form the actual optimal policy. Our approach is to facilitate

autonomous adaptation based on the CCC measure. This measure

can be locally estimated without communication, and can be used for

quickly achieving significant productivity gains without a prolonged

learning period.

Previous work by Kohl and Stone [37] contrasted Hill Climbing,

Amoeba, Genetic Algorithms, and Gradient Learning algorithms to

learn improved walking speeds in quadruped Sony Aibo robots. Their

problem has certain similarities to the weight assignment problem.

On one hand their challenge involved attempting to converge upon

an optimal weight values for 12 parameters in the robots’ gait—as

opposed to only 3 weights in our problem. However, their evaluation

problem was considerably more simple–evaluating the average speed

of one robot. In contrast, we search for an optimal weight policy that

can react to dynamics such as changing group sizes. Thus, we need to

evaluate the policy over a range of different group sizes, significantly

complicating the process.

44

Similar to work by Kohl and Stone [37], we used two different learn-

ing approaches for setting the weights: Hill Climbing and Gradient

Learning. For each learning method, we used two different types of

evaluation functions. In one possibility, the average productivity from

the entire range of robot group sizes was considered. As the coordi-

nation adaptation methods are intended to work for any group size,

when evaluating the effectiveness of π, the average productivity from

the entire group range should be calculated. The downside of this

approach is the number of trials required for policy evaluation. As-

suming 5 or more trials are needed for each data point, due to the

noise common within robotic productivity in any one given trial, even

evaluating a range of 30 robots requires 150 trials–a number of trials

that would be difficult to perform once, let alone multiple times to

converge on an optimal value. As a result, we also used an evalua-

tion function that analyzed a selective group sampling of each policy.

According to this approach representative group sizes are used to eval-

uate the new policy. In the experiments, we analyzed representative

groups of small, medium and large group sizes. We selected the end

point (group sizes of 2 and 30) as well as the middle group size (15

robots). We believed this would provide a reasonable estimate over

the entire range with much fewer trials needed to evaluate any given

policy. Various variations of this idea are possible such as randomly

selecting the representative group size for evaluation from within set

group range, learning the best group sizes to evaluate, and various

heuristics. We leave the development of these ideas for future work.

In both of the algorithms, we set the initial π to approximate the

parameters of the static coordination that served as a basis for adap-

tation. Any static coordination method could be viewed as containing

a π with fixed values of Vinit, Wup and Wdown. One naive way of im-

45

proving on any static method is to choose random values for Wup and

Wdown which should improve performance beyond this point. For ex-

ample, assume one is trying to create an adaptive Repel method based

on a static method that repels for 200 cycles after a projected colli-

sion. Once one sets Vinit to 200, any naive values of Wup and Wdown

should represent an improvement from this point. In the second type

of adaptation, Vinit similarly could be set to represent the method with

the highest average productivity. Again, any changes resulting from

Wup and Wdown should only help after this point. Our Hill Climbing

and Gradient Learning algorithms were then used to refine the weight

values from this baseline.

Hill Climbing algorithms have the advantage that they are intuitive

for this and similar parameterization problems [37]. In this method,

random perturbations for the values of Vinit, Wup, and Wdown are eval-

uated. If these values represent an improvement in the group’s overall

productivity, judged through either of the two methods evaluation

functions previously described (either average sampling over the en-

tire range, or selective sampling), these new values are accepted for

π. Otherwise, the changes are discarded. The following pseudo-code

describes the approach:

Algorithm 1 Hill Climbing

1: π ⇐ Initial Policy (as described in paper)

2: while not done do

3: Create variation of π policy, πnew, with random perturbations in Vinit, Vup,

and Vdown

4: if Productivity(πnew) > Productivity (π) then

5: π ⇐ πnew

Our Gradient Learning implementation is built upon the Hill Climb-

ing approach. In both cases, perturbations in values for Vinit, Wup, and

46

Wdown are created and evaluated. However, in this approach, each

change is evaluated individually. Instead of simply accepting a change

as is, a function of the improvement caused by this factor is accepted.

In the experiments, we used a normalized value in the change times a

small constant, or

∆(|VNew−weight − VOld−weight|)/VOld−weight × Constant (2.2)

to create a normalized gradient direction. The following pseudo-code

describes this algorithm:

Algorithm 2 Gradient Learning

1: π ⇐ Initial Policy (same as in approach #1)

2: while not done do

3: generate small variations for each parameter in the value of +/- ε Specifically:

4: Generate an ǫ change (perturbation) in parameter Vinit

5: Evaluate new Vinit policy

6: Generate an ǫ change (perturbation) in parameter Vdown

7: Evaluate new Vdown policy

8: Generate an ǫ change (perturbation) in parameter Vup

9: Evaluate new Vup policy

10: Create a new π policy based on gradient learning based on the combined

evaluation of all three sub-policies. Specifically:

11: π ⇐ old π modified with normalized gradient changes in all three parameters

As the next section details, both learning approaches were effective

in significantly improving productivity over non-adaptive methods.

2.5 Adaptation Experimental Results

In this section we present the results in applying both adaptive ap-

proaches within the foraging and search domains we studied. The

first type of adaptation, parameter tweaking within one method, was

47

effective in raising productivity levels to the highest levels of the sta-

tic levels they were based on. Adaptation between methods was even

more successful and often significantly exceeded the productivity lev-

els of the static methods they were based on, especially in the foraging

domain.

Section 2.5.1 presents the results of both of these adaptive meth-

ods in the foraging domain, and Section 2.5.2 discusses the respective

results in the search domain. We also found that there was some flex-

ibility in setting the weights and near “out of the box” productivity

improvements were found. As we demonstrate in Section 2.5.3, even

suboptimal weight values were still successful in significantly improv-

ing a group’s performance. Finally, in Section 2.5.4, we present sup-

port for why the approach is so successful. We attribute the success

to the robots’ ability to quickly and effectively change coordination

approaches based on their localized conditions in the dynamic envi-

ronments they operate.

2.5.1 Adaptation in Multi-Robot Foraging

The first type of adaptation uses each robot’s estimate of its CCC to

adjust the strength within one given coordination method. In order to

demonstrate the efficacy of this approach, we began by analyzing the

strength of coordination behaviors within the Repel and TimeRand

coordination methods previously mentioned. In the previous exper-

iments we chose a length of 500 cycles (50 seconds) with the Repel

group to move away from a robot nearing a collision. Our TimeRand

group waited 10 seconds before considering itself stopped by another

robot. As we described in subsection 2.2.2, these parameter values

are likely to be optimal only for certain group sizes. Once again, the

48

optimal density, and thus the amount each robot spends in these be-

haviors, must be properly matched to the group size and needs of the

domain. For example, if a Repel robot repels for too long after a

potential collision, it will take longer to complete its task. However,

in situations where collisions are likely to occur, too short a repul-

sion period results in too high a density, and robots will become stuck

within the spatially constrained domain. A similar problem exists in

the TimeRand group. If the timeout threshold is set too low, the ro-

bots will consider themselves inactive even while performing necessary

tasks such as slowing down to attempt to take a target puck. Too long

a timeout threshold results in inappropriately high densities, and ro-

bots will become stuck for long periods before attempting to resolve

conflicts.

To demonstrate this phenomenon, we studied 5 variations of the

Repel groups, choosing values of 10, 50, 100, 200, and 500 cycles as

the length of time robots repelled after projected collisions. We found

that the best variation of the Repel coordination method depended on

the size of the group. As the group size grew, robots collided more fre-

quently, and increasingly more aggressive coordination methods were

needed to lower the group’s density. Among the Repel groups, Repel50

had the highest productivity in the groups up to 10 robots. Between 10

and 15 robots the Repel100 group did best. The Repel200 group fared

better over the next 5 robots, and the Repel500 group had the highest

productivity between 20–30 robots. Overall, the Repel200 fared the

best with an average productivity of 23 pucks. However, this group

only fared the best over a range of 5 robots. The left side of Figure

2.10 represents the productivity of these static methods.

We proceeded to create an adaptive Repel groups where each robot

used its CCC estimates to autonomously choose which repel value to

49

Figure 2.10: Productivity graphs in Repel (left) and CCC measure for all groups

(right). Each data-point represents average productivity levels taken from 50 trials.

use. The left side of Figure 2.10 also displays the productivity results

from the Hill Climbing Repel adaptive algorithm and coordination

costs PT ime = 1 and PFuel = 0. These results were taken after 5 learn-

ing iterations using the first evaluation function (taking the average

productivity from 5 trials over the entire possible robot population).

Similar results were obtained from learning trials of the other learning

variations. Notice that the adaptive method often matches the highest

productivity levels from the static groups. For statistical significance

we ran all Repel groups for 50 trials over a range of 1–30 robots.

In order to evaluate the significance of these results, we conducted

a two-tailed paired t-test on the data. We first compared the aver-

aged productivity values of the adaptive Repel group to all of the

non-adaptive methods over the range of 30 robots. All scores were

far below the 0.05 significance level with the highest p-value for the

Null hypothesis being only 0.00013 (between the adaptive group and

the Repel 100 group), strongly supporting the hypothesis that this

adaptive method statistically improved results over static methods.

The right side of Figure 2.10 demonstrates the success of this adap-

50

tive Repel group in minimizing coordination costs. The X-axis in this

graph represents the group size, and the Y-axis corresponds to the

robot’s average coordination cost as measured in seconds. The adap-

tive group consistently registered the lowest coordination costs. In

fact, the statistical correlation between the cost level of our adaptive

group and the lowest level between all studied static groups was a very

high 0.995. This result highlights the success of creating groups with

lowered coordination costs and higher productivity.

We also studied 5 variations of the TimeRand group, again choos-

ing values of 10, 50, 100, 200, and 500 cycles as the length of time

robots waited before engaging in resolution behaviors. The dynamic

TimeRand group also performed better than the static methods. Fig-

ure 2.11 displays the results from the adaptive Hill Climbing TimeRand

algorithm for PT ime = 1 and PFuel = 0. Again, this dynamic coor-

dination method was able to achieve the best performance, or nearly

the best, from among the various static amounts. On average, this

group collected 19.2 pucks, more than the 17.6 average pucks the best

static group (Timeout 50) we studied. For over half of the group sizes

(18 out of 30) the dynamic group even outperformed the best static

method. To confirm the statistical significance of these findings, we

again performed the two tailed t-test. When comparing the dynamic

timeout group to all static ones, we found p-scores of 0.0014 or less

(p=0.0014 was found between the adaptive group and the Time50

method which had performed the best of the static TimeRand meth-

ods). A very high statistical correlation coefficient of 0.98 also ex-

ists between the dynamic group and the maximum productivity value

taken from among all the static timeout methods over each of the 30

group sizes. Thus, we conclude that this form of adaptation is effective

in raising productivity in robotic groups.

51

Figure 2.11: Productivity in adaptive timeout group

The second adaptation method used the value of V to switch be-

tween 3 distinct coordination methods. In the case of PT ime = 1 and

PFuel = 0 this involved adaptation between the Noise, Aggression,

and Repel methods. The Noise group has the least costly coordina-

tion method, and was most effective in small groups up until 7 robots.

At the other extreme, the Repel method fared poorly in small groups

but had the best productivity in groups larger than 17 robots. For the

case PT ime = 0 and PFuel = 1 this type of adaptation would involve

switching between the Noise, TimeRepel, and Repel methods.

In the implementation for all adaptive methods of this type we set

the values of both Wdown and Wup to be one. Thus, we limited the

learning portion to determining which thresholds values of V should

be used to switch between methods. We again implemented versions of

gradient learning and hill climbing algorithms to converge on values for

these weights. Our learning algorithms converged on threshold values

of V for each of the three states at 100, 200 and 300 accordingly.

52

Thus, if V increased by a total of 100, the robot would assume a

more robust coordination method was required and would transition

to use the next most robust coordination method, say from Noise to

Aggression. If this method was still insufficient to resolve this instance

of a projected collision, Wup would increase the value of V until the

next threshold was reached and once again the robot would move to the

next coordination method. Conversely, if that method was sufficient

to resolve that incident of a projected collision, the value of Wdown

would begin to decrease the value of V and the robot could eventually

move down to the next lower method of coordination.

Figure 2.12: Adaptation between static groups for PT ime = 1 and PFuel = 0 (on left)

and adaptation between static groups for PT ime = 0.7 and PFuel = 0.3 (on right)

This second adaptive coordination heuristic was even more effective

than the first approach—adaptation only within one method. Figure

2.12 contains the results from cases where cases of case of PT ime = 1.0

and PFuel = 0.0 on the right side and PT ime = 0.7 and PFuel = 0.3

on the left. In both of these cases, we graphed the productivity levels

of the 3 static methods with the highest productivity as well as that

of the adaptive method (learned here through Gradient Learning).

The adaptive method here yielded strong productivity gains, often in

excess of more than 20 percent of the static methods it was based on.

53

We again performed the two-tailed paired t-test on the data and found

a p-value below 0.0001 between all groups and the adaptive methods,

demonstrating this strong improvement.

The basic assumption of the adaptive methods we present is that

all coordination acts can be done independently. Therefore, in the

domains we studied, robots are able to independently choose which

coordination method without impacting other team members. For

example, it is possible to have one robot use the “Noise” coordination

collision resolution mechanism while other robots use the “Aggression”

mechanism.

However, many communication protocols exist where standardized

coordination is required. To represent these situations, we also im-

plemented an adaptive group, Uniform Adapt (also found in Figure

2.12). In this method, once one robot deemed it needed to switch

methods, it broadcasted the method it was switching to all other ro-

bots (a global communication network was simulated) and all robots

switched in turn. In order to prevent robots from quickly switching

back, all robots also set their cost estimate V to the base value of

this method. Potentially, this method could force certain members to

use a coordination method not appropriate for its localized conditions.

We hypothesized that allowing robots to autonomously adapt to their

localized conditions facilitates even further productivity gains. We

further develop this idea in section 2.5.3).

2.5.2 Adaptation in Multi-Robot Search

We believe the approach can be generalized to domains other than for-

aging. To support this claim, we implemented both adaptive methods

within the search domain (previously studied in section 2.3.2.

54

Our first type of adaptation involves having agents adjust the strength

of their coordination methods based on the needs of the domain. Again

in the search domain, we demonstrate the shortcomings within sta-

tic methods, and implemented the same five TimeRand variations of

10, 50, 100, 200, and 500 cycles. We then implemented an adaptive

TimeRand search method using the same weight learning algorithms

to set values for Vinit, Wup and Wdown as described in the previous

sections. The result was a policy π which translated V to the number

of cycles used when resolving any given collision event. The results

of this trial for PT ime = 1 and PFuel = 0 are also found in Figure

2.13. On average, we found a statistical improvement in performance

in the adaptive group, with average search scores down nearly 10 per-

cent in the adaptive group over the best levels among the static ones

(TimeRand50).

Figure 2.13: Search adaptation within TimeRand method using multi-attribute co-

ordination costs

We were also successful in creating adaptive coordination meth-

ods that switched between the most effective coordination methods

in this domain. Note that in this domain the Noise and TimeRand

55

were always the best two methods, regardless if the cost comprised of

PT ime = 1 and PFuel = 0, PT ime = 0 and PFuel = 1, or PT ime = 0.7

and PFuel = 0.3. We used the same methodology to create an adap-

tive search method with each robot using the CCC cost estimate V to

effectively switch between these methods.

Figure 2.14 shows the Noise, TimeRand and Adaptive groups in

the instance of PT ime = 0.7 and PFuel = 0.3. On the left side, we

denote the productivity graphs with the X-axis represents the size of

the group, and the Y-axis displaying the search time, measured in

seconds, until that group completed its task. On the right side, we

display the CCC measures for these groups, with the Y-axis displaying

the normalized CCC measure weighted between time and fuel (normal-

ized out of 250 units). In order to establish the statistical significance

of the results we performed the two-tailed paired t-test between the

adaptive methods and the static ones they were based on. All results

were below the 0.05 confidence level (between 0.01 and 0.04 in all three

groups).

Figure 2.14: Search adaptation using multi-attribute coordination costs

2.5.3 Quickly and Significantly Improving Performance

We found that some flexibility exists in setting the weights: Vinit, Wup,

and Wdown. Our results demonstrate that even results that were far

56

from optimal were still a significantly improvement from the static

methods they were based on. This is because a value of Vinit being

initially set too high was soon corrected by the weights in Wdown.

Conversely an initial value set too low can be quickly rectified by the

weights in Wup. Figure 2.15 depicts the productivity of three adaptive

repel foraging groups with values for Vinit of 300, 450 and 600 and

identical values for Wup and Wdown. Note that while differences exist,

for most group sizes these differences were not statically significant.

Figure 2.15: Three adaptive repel groups with different values for Vinit

Figure 2.16 demonstrates the success of the weighted heuristic ap-

proach with only minimal learning. This graph represents three iter-

ations in the gradient learning implementation for the adaptive for-

aging repel method. Our initial policy was based on Repel200, which

on average had the highest average productivity over the 1–30 robot

interval. In the first adaptive iteration (Gradient1) we used a value

of 200 for Vinit and naive values of 10 for both Wup and Wdown. In

subsequent trials (Gradient2, Gradient3), gradient learning was used

to tweak these naive values. Two issues are noteworthy in this graph:

First, recall that in the first evaluation method, the policy π is eval-

57

Figure 2.16: Three iterations of the adaptive repelling groups using gradient learning

uated from averaging five trials over the entire group range. Notice

the large variance between trials. This illustrates the difficulty in

learning an optimal weight value without extensive trials. Second,

note that despite this difficulty, gradient learning quickly improved

the weights used in the algorithms. Even within the first iteration

(Gradient2) the adaptive group averaged approximately 5% improved

performance, while by only the third iteration a near local optimum

was achieved with an average performance increase of 10%.

2.5.4 Large Productivity Gains

Not only does coordination adaptation based on CCC estimates yield

productivity gains after short learning periods, but these productivity

gains are often quite large—beyond any of the static methods they are

based on. For example, we previously presented two types of foraging

adaptive groups, Adaptive and Uniform Adapt that often significantly

exceeded the productivity levels of the methods they were based on.

58

At first glance, this result is surprising. One would assume adapta-

tion is only capable of achieving results in line with the best levels of

productivity for the methods it was based on, not significantly higher.

We claim that the root of these productivity gains is the ability

of these methods to switch between coordination methods as dictated

by fluctuating domain conditions. Thus, during the course of one

trial, one robot may switch between its Noise, Aggression, and Repel

coordination methods many times. Our goal is not to converge on

any one coordination method, as that method can often change as the

possible of collisions grows or dissipates. To demonstrate this point,

we studied the average CCC estimate, V , each robot within the various

group sizes contained. Recall that this value ranged from 0–300 with

values of 0–100 mapped to the Noise method, values of between 100

and 200 mapped to the Aggression method, and larger values to the

Repel method. Assuming the goal was to converge on the one static

method with the highest productivity, one would assume these robots

would have average values of V of over 200 in groups larger than

17 (where the static Repel group fared best). However, as Figure

2.17 demonstrates, this was not the case, and average values for V

ranged between 0 and 200 regardless of the Adaptive group’s size.

This result implies that even in large groups, robots did not use the

most expensive method (Repel) for large portions of the trials. For

example, in one foraging trial of 25 robots using the Adaptive, method,

the entire team spent on average 56 percent of their time in the Noise

behavior, 11 percent in Aggression behavior, and 33 percent in the

Repel behavior. Thus, the average value of V never rose above 200

because the group never spent a majority of their time using the most

costly coordination methods.

Our working hypothesis is that fluctuations in the level of collisions

59

Figure 2.17: Average threshold values, V , between robots using adaptive coordina-

tion method when PT ime = 1.0 and PFuel = 0.0

even within one trial allow for this adaptive method to outperform

the static ones it is based on. The Adaptive method adapted to these

fluctuations, yielding the marked improvement in this group’s produc-

tivity over other groups. As empirical evidence of these fluctuation

within trials, Figure 2.18 represents the percentage of robots that are

colliding throughout the course of three trials (540000 cycles) in groups

of 25 robots. The X-axis in this graph represents the number of cycles

elapsed in the trial (measured in hundreds of cycles), while the Y-axis

measures the percentage of robots colliding at that time. We found

that these values do in fact fluctuate, at times sharply, throughout

almost all foraging trials. This further illustrates the danger in at-

tempting to converge on one ideal coordination method, even within

one trial.

We believe this is also the reason why the Adaptive method signif-

icantly outperformed the Uniform Adapt group in larger group sizes.

At times, the Uniform Adapt approach may be advantageous as some

robots could cue others as to the best coordination method to use.

60

Figure 2.18: Fluctuations in collisions over time

Notice how this group did have slightly higher productivity in small

to medium groups. However, we believe the Uniform Adapt method

has two major drawbacks. First, it requires communication between

robots, a factor that would likely add another coordination cost, Cj
i

to every agent in a group. However, even beyond this point, we be-

lieve the first approach is more effective in allowing robots to adapt to

their local domain conditions. In domains with dynamics, such as the

ones we studied, at least one robot is typically not colliding, and thus

would naturally choose the least costly Noise coordination method. In

the Uniform method, this one robot could force the entire group to

switch back to this method, accounting for the lower productivity in

this group when more costly methods were justified. In the future,

we hope to further study how adaptation can yield improvements in

productivity, even when standardized adaptation is required.

Finally, observe that the gains from the Adaptive approach in the

foraging domain that switched between coordination methods (see Fig-

ure 2.12) were much greater than the adaptive methods that tweaked

61

the parameter strength within one method (Figure 2.10). We believe

this difference is primarily due to the large differences in the density

distributions and cost functions (refer to Figures 2.3 and 2.5) created

by these methods in this domain. As a result, when the Adaptive ap-

proach switched between these sharply different coordination methods

it benefited from larger productivity gains.

In contrast, the first type of adaptation, i.e. adaptation within one

coordination method, did not have as large differences in the varia-

tions within one coordination method (see Figure 2.4). As a result,

adaptation did not facilitate radically different approaches to coordi-

nation, and productivity gains from this category of adaptation did

not significantly outperform the methods it was based on. Similarly,

the search domain only had two methods to switch between, with only

modest differences in their cost functions (see Figure 2.14). We be-

lieve that this prevented the adaptive methods in this domain from

realizing even larger productivity improvements.

2.6 Conclusion and Future Work

In this paper we argue that the coordination cost a single robot gen-

erates is a primary factor in determining the productivity of the en-

tire group. In theory, robots should consistently demonstrate increas-

ing marginal productivity increases. However, limiting production

resources, such as the spatial limitations inherent in many robotic

groups, prevent productivity gains by this theoretical amount. At

times, adding robots then hurts performance, as was previously noted

[66, 71]. We present a model for evaluating multi-attribute coordina-

tion cost functions that a single robot contains. Our CCC (combined

coordination cost) measure quantifies a weighted sum of all produc-

62

tion resource conflicts between members of a group. While other team

measurements are possible, we found that focusing on this cost alone

facilitates effective comparison between different coordination meth-

ods. Our approach requires no centralized mechanism, with accurate

coordination measures being taken autonomously by members of the

group. We present two adaptive coordination methods based on our

measurement which both improve the group’s performance and scal-

ability properties in a statistically significant fashion in the foraging

and search robotic domains we studied.

For future work, several directions are possible. We believe it may

be possible to use the coordination measurements to predict when

adding an agent to the group will be helpful. Team sizes could thus

be modified to maximize the use of production resources. We also

hope to study if similar measurements could model gains each robot

adds to its group. Such a measurement would be useful for purposes of

task allocation as it could identify which team member is best suited

to perform given tasks. We are hopeful that the use of the CCC mea-

sure will replace domain and task specific cost functions. We believe

this approach could facilitate additional advances in agent and robotic

team research.

63

Chapter 3

Adaptive Robotic Communication

Using Coordination Costs

3.1 Introduction

In the previous chapter, we assumed the robots could choose their

coordination methods independently of the other team members’ ac-

tions. This was because the robots coordination methods were in-

herently compatible and they did not need any feedback from other

team members. Therefore, all of the adaptive methods presented, with

the notable except of the Uniform Adapt method, allowed robots

to freely choose the best coordination method without concern of the

impact this choice. For example, it was possible to have one robot

use the Noise coordination collision resolution mechanism without

impacting other robots which used the Aggression mechanism. As a

result, adaptation was possible without any communication or stan-

dardization between mechanisms.

However, many coordination methods do require some type of co-

ordination synchronization between methods. Most notably, commu-

nication typically requires this type of standardization. Picture, for

example, one person attempting a conversation in Dutch with some-

64

one who only knows English. We found that adaptive approaches were

less effective when synchronization was required between methods, as

was the case in the Uniform Adapt method in the last chapter.

In theory, communication should not be a disadvantage–the more

information a robot has, the better. However, assuming communica-

tion has a cost, one must also consider the resources consumed in

communication, and whether the cost of communication appropri-

ately matches the needs of that. Furthermore, effective methods of

standardization must be addressed. Towards this goal, recent study

has addressed questions such as what to communicate and to whom

[30, 67, 70]. We believe that different communication schemes are best

suited for different environmental conditions. Because no one commu-

nication method is always most effective, one way to improve the use of

communications in coordination is to find a mechanism for switching

between different communication protocols so as to match the given

environment.

In this chapter we address the challenging question of how to cre-

ate effective adaptive communication frameworks, even when synchro-

nized coordination is required. Our solution uses a coordination cost

measure that quantifies all resources spent on coordination activities.

Our model explicitly includes resources such as the time and energy

spent communicating. In situations where conflicts between group

members are common, more robust means of communication, such as

centralized models, are most effective. When collisions are rare, coor-

dination methods that do not communicate and thus have the lowest

overhead, work best.

We present two novel domain-independent adaptive communication

methods that use communication cost estimates to alter their commu-

nication approach based on domain conditions. In our first approach,

65

robots uniformly switch their communication scheme between differ-

ing communication approaches. In this method, robots contain full

implementations of several communication methods, and switch be-

tween them as needed. In contrast, our second approach represents a

generalized communication scheme, that allows each robot to adapt

independently to its domain conditions. Each robot creates its own

communication range radius (which we refer to as its neighborhood of

communication), to create a sliding scale of communication between

localized to centralized methods. Each robot uses its coordination cost

estimate to determine how large its neighborhood should be.

To evaluate these adaptive methods, we performed thousands of

trials using an established robotic simulator in a multi-robot foraging

task. We tested groups of varying sizes and communication meth-

ods. We found that groups that used the adaptive methods often

significantly exceeded the best productivity levels of the non-adaptive

algorithms they were based on.

3.2 Existing Communication Schemes

A major challenge to designers of robotic groups exists in choosing

an optimal communication method. Many practical frameworks have

been presented for use within robotic teams [13, 16, 21, 27, 30, 34, 51,

70] and can generally be assigned to categories of no communication,

localized, and centralized approaches.

It is possible to create effective group behavior without any commu-

nication [6]. For example, the Stigmergy concept [27] involves group

members basing their actions by observing how other group members

previously modified their environment. This approach has been shown

to be effective in several animal and robotic domains [27] without us-

66

ing any explicit communication. Coordination without communication

can potentially facilitate better adaptability, robustness and scalabil-

ity qualities over methods using communication [67]. Additionally, the

lack of communication also allows such methods to be implemented on

simpler robots. However, such algorithms often require powerful and

accurate sensing capabilities [51]. Also, our results demonstrate that

groups implementing these methods did not always provide the high-

est levels of productivity, especially within dynamic domains where

frequent coordination conflicts exist.

A second set of approaches attempt to improve group performance

by having robots locally communicate information [30, 51]. For exam-

ple, work of Jäger and Nebel [30] present a method whereby robots

nearing a collision stopped to exchange trajectory information. They

then successfully detect and resolve deadlock conditions of two or more

robots mutually blocking. However, their trajectory planning method

was not able to perform well in groups of over five robots. In contrast,

Mataric [51] reported that a local communication scheme scaled well

with group size. One key difference seems to lie within the local com-

munication implementations. In Jäger’s algorithm, one or more robots

must stop moving during trajectory replanning. We believe this led

to a breakdown in the system once the group size grew. Mataric’s

locally communicating robots broadcast information while continuing

their foraging task. This allowed for better scalability qualities.

A third type of approach involves the use of some type of central

repository of information [70]. This centralized body, which could also

be implemented as one “expert” teammate, would then be able to eas-

ily share its store of pooled information with other teammates. While

this approach allows for free information sharing and can thus improve

performance, several drawbacks are evident. First, the centralized

67

mechanism creates a single point of failure. The cost of communica-

tion is also likely to be large, and requires hardware and bandwidth

suitable for simultaneous communication with the centralized body.

While these drawbacks are at times significant, they may be justified

given the needs of the domain.

In this chapter, we assume that representative communication meth-

ods from these categories are predefined, and have been implemented

with optimal values for their exact parameters given domain condi-

tions. Several approaches exist for finding these parameters within

a given coordination method. For example, work by Yoshida et al.

[16] presented a framework to derive an optimal localized communi-

cation area betweens within groups of robots to share information in

a minimum of time. This approach assumes domain conditions such

as spatial distributions and the probability of information transmis-

sion can be readily calculated. Previously, Goldberg and Mataric [21]

focused on interference (which they defined as the time robots spent

colliding) as a basis for measuring a coordination method’s effective-

ness. However, they did not address how to create adaptive methods

based on interference. Our last chapter describes work built upon this

interference definition to include all resources spent resolving coordina-

tion conflicts including the time spent before and after collisions. We

then demonstrated that parameter tweaking is possible through this

measure. The advantage to this approach over the work of Yoshida et

al. [16] is its ability to allow robots to autonomously adapt, even in

dynamic environments. However, in contrast to their work, our previ-

ous chapter did not address how to effectively address communication

adaptation.

In this chapter, we use coordination cost measures to compare a

given set of communication methods and to create adaptive methods

68

based on these existing methods. We explicitly model all resources

spent on coordination activities including the resources spent on com-

munication even if they do not detract from the time to complete the

task. Our goal was to properly match communication methods to do-

main conditions, while considering their relative costs. Furthermore,

adaptation between communication schemes presents new challenges,

since many protocols require standardized communication between all

team members. These challenges are addressed in this work.

3.3 Using Coordination Costs to Adapt Commu-

nications

In the last chapter, we presented a combined coordination cost mea-

sure, CCC, to quantify the effectiveness of a coordination method. We

modeled every robot’s coordination cost Ci, as a factor that impacts

the entire group’s productivity. In this chapter, we extend this mea-

sure to analyze two cost categories: (i) costs relating to communication

and (ii) proactive and/or reactive collision resolution behaviors. We

focus on the time and energy spent communicating and in the con-

sequent resolutions behaviors (see Implementation Section for full de-

tails). We then combine these factors to create a multi-attribute cost

function based on the Simple Additive Weighting (SAW) method [77]

often used for multi-attribute utility functions. While methods with

no communication have no Ci for communication, this method could

not always successfully resolve collisions and then spent more resources

on collision resolution behaviors, or another Ci. Conversely, central-

ized methods incurred a communication cost Ci that often eclipsed

the needs of the domain and weighed heavily on productivity. Other

communication issues, such as bandwidth limitations, can similarly

69

be categorized as additional cost factors as they impact any specific

robot. For example, if a robot needed to retransmit a message due to

limited shared bandwidth, costs in terms of additional time latency

and energy used in retransmission are likely to result.

We use this extended CCC measure for online adaptation between

communication schemes. We present two types of adaptive methods:

(i) uniform communication adaptation (ii) adaptive neighborhoods of

communication. Both methods led to significant increases in produc-

tivity over static approaches (see Experiments section).

3.3.1 Uniform Switching Between Methods

In our first method, all robots simultaneously switch between mutu-

ally exclusive communication methods as needed. In order to facilitate

this form of adaptation, each robot autonomously maintains a cost es-

timate, V used to decide which communication method to use. As

a robot detects no resource conflicts, it decreases an estimate of this

cost, V , by an amount Wdown. When a robot senses a conflict is occur-

ring, the value of V is increased by an amount Wup. The values for V

are then mapped to a set of communication schemes methods ranging

from those with little cost overhead such as those with no commu-

nication, to more robust methods with higher overheads such as the

localized and centralized methods. As the level of projected conflicts

rises (as becomes more likely in larger group sizes) the value of V

rises in turn, and the robots use progressively more aggressive com-

munication methods to more effectively resolve projected collisions.

While these activities themselves constitute a cost that detracts from

the group’s productivity, they are necessary as more simple behaviors

did not suffice. As different coordination methods often have different

70

costs, Ci for a given domain, we believed this approach could be used

to significantly improve the productivity of the group.

Several key issues needed to be addressed in implementing this

method with groups of robots. First, we assumed that all group mem-

bers are aware of the overheads associated with various coordination

methods, and can order them based on their relative complexities.

This ordering can be derived from theoretical analysis or through ob-

servation (as we do in later in this paper). Second, an approach to

quickly set the weights, Wup, and Wdown used within our algorithms

is needed. Robotic domains often contain dynamics that render a

learned policy obsolete very quickly. Thus, our approach is to sacri-

fice finding a globally optimal policy in exchange for finding a locally

optimal policy after a much shorter training period for our weights.

In this chapter, we used a gradient learning procedure to achieve this

result.

Next, it must be noted that uniform adaptation requires all robots

to change communication in sync because of the mutual exclusivity of

the methods used. For example, it is impossible for one robot to use

a centralized method, with others using one without communication,

as the centralized approach is based on information from all team

members. As a result, once any one robot in the group autonomously

decided it needed to switch communication schemes, a communication

change must also occur within all other team members. This could

force certain members to use a more expensive communication method

than it locally found necessary. We relaxed these requirements in the

second adaptive method, presented in the next section.

Finally, care must be taken to prevent the robots from quickly os-

cillating between methods based on their localized conditions. In our

implementation, communication adaptation was triggered once one ro-

71

bot’s value for V exceeded a certain threshold. After this point, that

robot broadcasted which method it was switching to and all group

members would change in kind and reinitialize their cost estimates V

to this new value. Furthermore, we also used domain specific infor-

mation, such as prioritizing collisions closer to the home base within

our foraging domain. In this fashion, we partially limited the types of

triggers to those of importance to the entire group. Once again, our

second type of communication adaptation relaxes this requirement and

is effective without any such heuristics.

3.3.2 Adaptive Neighborhoods of Communication

The advantage in our first adaptive approach lies in its simplicity.

Our uniform adaptive approach switches between existing coordina-

tion methods based on estimated coordination cost. Assuming one

analyzes a new domain with completely different communication meth-

ods, and can order the communication methods based on their com-

munication costs, this approach will be equally valid as it implements

existing methods and reaches the highest levels of productivity from

among those methods–whatever they may be.

In contrast, our second adaptation method is a parameterized gen-

eralization of the three specific categories of communication methods

(No-Communication, Localized, and Centralized). As many robotic

domains use elements of these same methods [13, 16, 27, 30, 34, 70],

we reason that a similar approach is likely to work in these and other

domains as well.

The basis of this approach is introducing a parameter to control how

large a radius of communication is used by each robot. This method

uses a distance d inside which robots exchange information, which

72

we term its communication neighborhood. Formally, this radius of

communication could be considered a neighborhood Γ of size d, created

from robot v and includes all teammates, u, inside this radius. As such,

we represent the neighborhood as Γd(v) = {u| u robot, dist(u, v) ≤

d}.

Adjusting the value of d in Γd can be used to approximate the

previously studied communication categories. Assuming d is set to

zero, no communication will ever be exchanged and this method is

trivially equivalent to the No-Communication method. Assuming d is

set to some small amount, ε, this method will become similar to the

Localized method and information will be exchanged only with the

robot it is about to collide with. If d is set to the radius of the domain,

the neighborhood of communication encompasses all teammates this

method becomes similar to the Centralized method. Thus, the degree

of centralization exclusively depends on the value of d.

3.4 Implementation Details

We again used the Teambots [5] simulator to implement communica-

tion schemes involving no communication, localized and centralized

approaches within groups of Nomad N150 foraging robots. In these

experiments, there were a total of 60 target pucks spread throughout

an operating area of approximately 10 by 10 meters. We measured

how many pucks were delivered to the goal region within 9 minutes

by groups of 2–30 robots using each communication type. We aver-

aged the results of 100 trials for each group size with the robots being

placed at random initial positions for each run.

We created experiment sets measuring the time and energy spent in

two coordination categories–communication and collision resolution.

73

The coordination costs in our first set of experiments involved the

time spent in communication and collision resolution behaviors out of

each trial’s total time of 9 minutes. In our second set of experiments,

we allocated each robot 500 units of fuel. We assumed most of the

fuel was used by the robots to move, with a smaller amount (1 unit

per 100 seconds) used to maintain basic sensors and processing. For

the time based experiments, we assumed robots pairs stopped for 1/5

of a second to communicate, representing some methods [30] where

robots stop to exchange information. In the energy based localized

experiments, we assumed robots did not stop to communicate, as is

the case with other methods [51], but each robot still spent 0.3 units

of fuel per communication exchange. Our coordination cost involved

the amount of fuel that was used in communication and repulsion

behaviors.

All three communication schemes were similar in that they resolved

collisions by mutually repelling once they sensed a teammate within

a certain safe distance ε, which we set to 1.5 robot radii. Once

within this distance, robots acted as they were in danger of collid-

ing and used repulsions schemes to resolve their collision(s). The No-

Communication method was unique in that robots never used time

or fuel to communicate, and thus only had costs relating to the re-

pulsion behaviors robots engaged in. However, this method assumed

domain specific information, namely it used the robot’s autonomously

computed scalar distance, S, from its location to the home base in

the domain. Robots used a function of this distance, which we imple-

mented to be 5 times S and rounded to the closest second, as the time

to repel from its teammate(s) after a projected collision.

The localized method used less domain specific information and is

similar to the localized methods previously proposed [30, 51]. Com-

74

munication between robots was initiated once it was in danger of

colliding–a teammate came within the ε distance. After this event,

these group members would exchange information above their tra-

jectories (here their relative distances from their typical target, their

home base). The closer robot then moved forward, while the other

robot repelled for a fixed period of 20 seconds.

The final method, Centralized, used a centralized server with a data-

base of the location of all the robots similar to other centralized meth-

ods [70]. Within this method, one of two events triggered communi-

cation. First, as with the localized method, robots dropping within

the ε distance initiated communication by reporting its position, done

here with the centralized server. The server then reported back a repel

value based on its relative position to all other teammates. However,

in order for the server to store a good estimate of the positions of all ro-

bots, a second, often more frequent type of communication was needed

where each robot reported its position to the server with frequency L.

If this communication occurred too frequently, this central database

would have the best estimate of positions, but the time or energy spent

on communication would spike, and productivity would plummet. If

communication was infrequent, the latency of the information stored

on the server would create outdated data. This in turn would reduce

the effectiveness of this method, and result in more collisions.

It is important to stress that the focus of this work is selecting the

best communication method from a known set of options, and not to

find optimal parameters within any one given communication method.

We refer the reader to previous work [16, 64] on how to theoretically

or empirically derive parameters within one communication method.

This work is based on the understanding that a high negative corre-

lation exists between each groups’ productivity and our coordination

75

cost, regardless of the exact implementation for the parameters used

in the No-Communication, Localized and Centralized methods.

While we consider the neighborhood communication approach to

be a parameterized generalization of the three previously described

categories, some implementation details differ in this method over the

static ones it emulates. Within this method, once any robot A, detects

another robot within the ε distance, it initiates communication with

all robots found within the Γd(A) area. All robots in Γd(A) must then

report back to Robot A with their projected trajectories. Robot A

then sorts all robots’ trajectories by their relative distances from the

home base in the domain. This robot then reports back to every robot

within Γd(A) a repel value based on that robot’s relative position in

the neighborhood. All robots, including the initiating robot (robot

A), then accept this value and immediately engage in repel behaviors

for the dictated length of time. It is possible that a robot may be a

member of more than one neighborhood. In such cases, robots accept

the larger repel value regardless of the sender.

While the repel amounts of the robot initiating communication (Ro-

bot A) are calculated in a similar fashion to the previously described

centralized method, here these values are calculated by members of the

team, instead of one centralized server. The radius of communication

in the centralized approach is the full width of the domain, while the

Γd radius is typically much smaller. However, the biggest difference in

implementing this approach is how repel values are obtained. Robots

in previous methods only repelled based on communication received

after dropping within the ε distance. In this method, robots may repel

if they enter the Γd radius even if they are not in immediate danger

of colliding. The reason for this is as follows. As robots within the

Γd radius are typically close to each other, we found that these ro-

76

bots often would soon initiate their own radii of communication. In

other methods this was not a concern, as other teammates were not

effected by this phenomenon. However, here this would create multi-

ple neighborhoods involving the same teammates. Thus, proactively

assigning repel values was crucial for containing communication costs

as Γd grew.

3.5 Experimental Results

The first set of experiments attempts to first lend support to the un-

derlying hypothesis, that the combined coordination cost measure is in

fact correlated to the productivity of the different groups. Our results

from experiments involving time and energy costs support the claim

that the best method of communication does change with domain con-

ditions. Figure 3.1 contains the results from the time based coordina-

tion cost trials. In the top portion of the graph, the X-axis represents

the group size, and the Y-axis the number of pucks successfully re-

trieved within each group. The No-Communication approach worked

best in small groups where collisions were less likely. In medium sized

groups, the localized approach worked better. As collisions became

frequent, the large amount of communication inherent in the central-

ized method became justified, and this group performed significantly

better. The total cost of coordination as a function of time are pre-

sented in the lower graph in Figure 3.1.

Notice that the No-Communication method was only effective in

minimizing this cost (presented as the Y-axis and measured in seconds)

for small groups (the X-axis). In larger groups, this method engaged

in more repulsion behaviors because it was not successful in collision

resolution without communication. The localized group maintained

77

Figure 3.1: Comparing levels of time spent on communication in different group

sizes. Results averaged from 100 trials per datapoint.

near linear levels of its coordination cost with respect to the group size

but the communication costs within this group made it less effective in

smaller groups. The centralized method had the largest cost overhead,

but these costs were not as effected by group size. As a result, this

group achieved the highest productivity in large groups.

We also found a very strong negative correlation between the co-

ordination cost based on energy, and the groups’ corresponding pro-

ductivity. In these trials, we measured the total energy used by our

groups in coordination behaviors, including communication. As was

78

the case in the time based experiments, we again found the best

method changed as the group size increased, and thus collisions be-

came more likely. The No-Communication method again fared best in

small groups, the localized one in medium groups with the centralized

method faring best in larger groups.

Both sets of experiments had similar results in that the team’s pro-

ductivity was strongly negatively correlated with coordination costs.

In the time experiments, we found an average correlation of -0.96 be-

tween the productivity found in groups of 2–30 robots and the group’s

corresponding cost. In the equivalent energy based experiments, we

found a value of -0.95.

It is important to stress that we implemented several variations

of the parameters used in the No-Communication, Localized and Cen-

tralized methods with all variations also demonstrating this same high

negative correlation as well. The parameters used within these meth-

ods affected the coordination cost, and thus the productivity outcome.

For example, we studied 7 latency variations within the Centralized

method in both experiment sets. These groups enforced maximal la-

tency periods of L set to 0.1, 0.3, 1, 5, 10, 30 and 60 seconds. In the

time based experiments we found that a latency of 1 seconds often

yielded average productivity level near 45 pucks. In the energy based

experiments, a latency of 1 or 5 seconds yielded similar results of an

average productivity of less than 35 pucks (see figure 3.2 below). This

difference occurred because the cost of communication (1/10 of a sec-

ond) in the first trials was different than this cost (0.3 units of fuel)

in the second. However, in both cases the productivity of these varia-

tions was highly negatively correlated with their relative coordination

costs. In the first case, we found a correlation of -0.95 between these

latency variations and the corresponding coordination cost based on

79

time. In the trials based on fuel, this value was -0.97.

Figure 3.2: Comparing latency differences and productivity levels for centralized

method in time (left) and energy (right) experiments. Results averaged from 100

trials per datapoint.

Within both experiments we found that latencies set too high typ-

ically converged with those groups where it was set too short. For

example, figure 3.2 displays our latency productivity variations in

the time (displayed on the left) and energy trial sets (on right). We

graphed the productivity levels (Y-axis) of the 7 latency variations as

a function of the group size (X-axis). Notice how methods that update

their information frequently often have the same productivity levels of

methods that infrequently communicate. For example, in the time ex-

periments, Latency0.1 (communication every 0.2 seconds) converged

with Latency60 (communication one a minute). While Latency0.1’s

frequent communication had its cost primarily due to communica-

tion, Latency60’s infrequent communication often made the database

of teammates’ positions inaccurate. An attempt to unwisely reduce

communication, and this type of cost, led to an increase of repulsion

behaviors, or a second type coordination cost.

Similarly, we found that no one neighborhood size always fared best.

We compared the productivity levels of foraging groups where d was

set to 1, 2, 3, 5 and 50 robot lengths. Recall that ε is approximately

80

1 robot length (1.5 radii). Thus Γ1 represents the nearly localized

variation with Γ50 corresponding to the nearly centralized version of

this method.

Figure 3.3 represents the relative productivity levels for these sta-

tic neighborhood groups relative to the energy costs levels measured

in these groups. Notice how in small groups, Γ1 yielded the highest

average productivity. As we have seen, when possible, resources spent

on coordination, here by creating large communication neighborhoods,

should be avoided. As small areas of communication sufficed in small

groups, this approach had the highest productivity. As the group size

grew, additional communication was necessary to maintain high pro-

ductivity levels. As a result, larger neighborhoods were necessary and

groups with Γ5 resulted in the highest productivity. However, forcing

too much communication when not necessary created communication

costs that reduced productivity to levels found in methods that spend

too few resources on communication. In this method, the productiv-

ity level of the Γ50 method, which created too large a neighborhood,

approached those of Γ1, which did not create a large enough one. We

again found a strong correlation between the various Γd variations and

the groups’ corresponding coordination costs and productivity with an

average negative correlation of −0.96.

Based on the confirmed hypothesis, that the cost measure is indeed

correlated (negatively) with performance, the next set of experiments

evaluated the performance of the two adaptive methods compared to

the static methods on which they were based. Figure 3.4 shows the

results from these experiments. Notice that both adaptive approaches

approximated or significantly exceeded the highest productivity levels

of the static methods (No Communication, Local, and Centralized

methods) they were based on, especially in medium to large groups.

81

Figure 3.3: The impact of varying neighborhood sizes (d) on productivity levels and

costs in energy experiments. Results averaged from 100 trials per datapoint.

We attribute the success of both methods to their ability to change

communication methods to the needs of the domain. We believe that

the neighborhood method outperformed the uniform one as it was

allowed to create locally different neighborhood sizes, something none

of the static neighborhood methods were capable of. This in turn

facilitated better adaptation and higher productivity.

Figure 3.4: Comparing adaptive communication methods based on time and energy

costs to static methods. Results averaged from 100 trials per datapoint.

To evaluate the statistical significance of these results, we conducted

the two tailed t-test and a 1-factor ANOVA test comparing our adap-

tive groups and the three static groups they were based on. In all

cases, in both time and energy categories, the null hypothesis p values

82

were below 0.001. This confirms the hypothesis that we can improve

productivity through creating adaptive methods based on communi-

cation costs.

3.6 Conclusion and Future Work

In this chapter we demonstrate how the CCC measure can account

for the relative effectiveness of robotic communication methods. We

extend the CCC measure to include factors such as the time and en-

ergy spent communicating in addition to the resources spent resolving

spatial conflicts. We demonstrate the effectiveness of our methods

in comparing between very different communication methods falling

within categories of no communication, localized and centralized com-

munication methods. By using this information we are able to match

the most effective communication scheme to a given robotic domain.

We present two general adaptive communication algorithms, uniform

and neighborhood methods. We show, in thousands of foraging ex-

periments, that coordination cost is indeed negatively correlated with

productivity, and that the use of our adaptive methods leads to signif-

icant performance boosts. While we find the neighborhood adaptive

method to be more effective in the robotic foraging domain we stud-

ied, both approaches are likely to be applicable to many other domains

[13, 30, 34, 70]. It is possible that the uniform method is easier to im-

plement or will yield better adaptive qualities in other domains.

For future work, we hope to develop additional applications for our

measure on groups of real robots. In the near future, we intend to im-

plement these ideas upon groups of vacuuming robots. In this paper,

we studied costs on the robot level. Certain extensions may be nec-

essary when viewing joint team resources, such as shared bandwidth.

83

Similarly, we are developing expansions to facilitate comparison and

adaptation even within heterogeneous groups of robots with diverse

qualities. We believe our measure holds promise for further improving

group productivity in a variety of domains and group compositions.

84

Chapter 4

Algorithm Selection for Constraint

Optimization Domains

4.1 Introduction

When multiple agents operate within a joint environment, inter-agent

constraints typically exist between group members. Assuming these

agents operate within a cooperative environment, the team must de-

cide how to coordinate satisfying as many of these constraints as pos-

sible [76]. Examples of instances of such problems include classic dis-

tributed planning and scheduling domains – problems that are known

to be NP-complete problems [47, 52].

Despite the computational complexity inherent in these problems,

a variety of algorithms have been suggested for solving these types of

problems [12, 47, 48, 52, 60, 76]. These algorithms differ in what and

how agents communicate to attempt to find an optimal assignment.

Each of these approaches have different resource cost requirements

(e.g., time, number of messages), and are often useful in different

problem classes. Thus an important task for designers of coordinated

multi-agent systems is to find the coordination algorithm that will

work best within the coordination problem instance.

85

In this chapter we claim that an algorithm selection approach is

helpful in dictating which type of approach to use. The key to our

approach is that differences between algorithms are typically quite

large, and can be locally measured. This allows agents to locally

control what information to transfer to group members.

To demonstrate the effectiveness of our approach we study two

complex coordination domains – a general graph coloring domain [47,

48, 76] and a TAEMS-based scheduling domain [39]. Within each

domain we performed thousands of trials involving a variety team

sizes and problem parameters. Our results show that our algorithm

selection approach was effective in both domains and problem types,

significantly outperforming existing methods.

4.2 Using Phase Transitions to aid Algorithm Se-

lection

We claim that algorithm selection within Distributed Constraint Opti-

mization Problems (DCOP) can be based on finding phase transitions

within scheduling and planning problem instances. Phase transitions

are a well known phenomenon across which problems display dramatic

changes in the computational difficulty and solution character [54].

Based on this knowledge, we expect to find attributes that separate

between fundamentally different types of problems. Assuming each al-

gorithm is best suited for different clusters of problems, a clear policy

will be evident as to which algorithm to select.

4.2.1 Modeling Constraint Satisfaction and Optimization

Following previous DCOP work we define a DCOP problem as a set of

variables with each variable being assigned to an agent who has control

86

of its value. Cooperative agents must then coordinate their choice of

values so that a global utility function is optimized. Formally, this

process has been described as [47, 53]:

• A set of N agents A = A1, A2 . . . , AN

• A set of n variables V = x1, x2 . . . , xn

• A set of domains D = D1, D2 . . . , Dn where the value of xi is

taken from Di. Each Di is assumed finite and discrete.

• A set of cost function f = f1, f2 . . . , fm where each fi is a function

fi: Di,1 × . . . × Di,j → N ∪ ∞. Cost functions are also called

constraints.

• A distribution mapping Q : V → A assigning each variable to an

agent. Q(xi) = Ai denotes that Ai is responsible for choosing a

value for xi. Ai is given knowledge of xi, Di and all fi involving

xi.

• An objective function F defined as an aggregation over the set of

cost functions. Summation is typically used.

According to this model, the cooperative goal is to minimize the

number of constraints in F which are broken. We assume that every

agent Ai is solely responsible for dictating the values for the constraints

it is responsible for. Thus Ai and xi are equivalent in this work and can

be used interchangeably. Note that the constraint satisfaction domain

is a connected problem, as it can be viewed as a special case where the

objective function is to find an assignment such that all constraints

are satisfied, in place of minimizing the value of F [48].

87

4.2.2 Phase Transitions within Constraint Satisfaction and

Optimization Problems

We claim that large differences between DCOP algorithms are typi-

cally apparent, even when agents are confined to using locally available

information. We believe that the reason for this lies in different prob-

lems belonging to fundamentally different levels of problem difficulty.

The basis of this claim is within previous studies who have claimed

that NP-complete problems are not all equally difficult to solve [11, 54].

Many instances of NP-complete problems can still be quickly solved,

while other similar instances of problems from the same domain can-

not.

The concept of phase transitions has been applied to differentiate

classes of these “easy” and “hard” NP-complete problem instances

[54]. Within distributed constraint satisfaction problems (DCSP),

these problems can typically be broken into an easy-hard-easy pat-

tern [54, 48]. The first set of easy problems represent a category of

under-constrained problems. All DCSP algorithms typically find an

optimal solution quickly for these instances. At the other extreme, the

second easy category of problems are those that are over-constrained.

Within these problems, the same algorithms can typically demonstrate

that no solution exist, and thus these algorithms end in failure. The

hardest DCSP problems to solve are those within the phase transition

going from under to over-constrained problems, a category of problems

also called “critically constrained”. These problems are the hardest to

solve, with no solution often being found [54].

One may view the DCOP problem as a generalization to the more

basic DCSP decision form of the problem. As a result, it would seem

that even over-constrained DCOP instances cannot be easily solved

88

and still comprise “hard” problems [78]. Consequently, DCOP prob-

lems should be divided only into Easy-Hard categorizes (instead of

Easy-Hard-Easy) or those easy problems to solve before the problem’s

phase transition, and “hard” problems after this point [59, 78]. How-

ever, it has been claimed [59] that certain optimization problems may

in fact follow an easy-hard-easy distribution. Even this opinion agrees

that problem clusters do exist, and the difference of opinion revolves

around the number of these clusters. If we follow the easy-hard model

we should expect to see two clusters of problems with a transitionary

phase between the two, but following the easy-hard-easy model should

yield three such clusters with two transitionary phases.

While DCOP problems are NP-hard for all but the most trivial

problems [46], a variety of algorithms can be used for attempting a so-

lution in this domain. These algorithms impact when constraints are

communicated between agents, thus impacting how the agents attempt

to minimize F. We can formally expand the classic DCOP model into

an algorithm selection based model by modeling the selection of algo-

rithms {CA1 . . . CAj} that each agent can choose in deciding what to

communicate while attempting a solution. The intrinsically different

approaches used by algorithms {CA1 . . . CAj} makes them best suited

for problems of differing levels of complexity.

This realization significantly simplifies the process of finding those

problems instances where a given DCOP algorithm, CAaj
, will be su-

perior to other algorithms within {CA1 . . . CAj}. Instead of viewing

all domain problems as an enormous state space where we must map

the relative effectiveness of algorithms {CA1 . . . CAj}, we instead focus

on finding the problem attributes that differentiate these algorithms.

After these attributes have been found, we expect to be able to clus-

ter problems as “easy” or “hard” types of interactions. One type of

89

algorithm will then be dominant within the easy problems, followed

by phase shift(s) where differences between algorithms are smaller and

less apparent, followed by another large problem cluster where a sec-

ond algorithm becomes dominant. As a result, our research focuses

on two important questions: 1. What are the attributes that differen-

tiate between algorithms {CA1 . . . CAj}? 2. At what attribute values

should one switch between algorithms?

In order to demonstrate the effectiveness of this approach, we stud-

ied two domains: a general graph coloring domain, and the TAEMS

scheduling domain. In both domains we found domain attributes that

differentiated the algorithms being studied. This allowed us to quickly

identify which algorithm could best solve large clusters of problems

with only a very short learning period.

4.3 Algorithm Selection in Graph Coloring

Graph coloring problems can be viewed as a generalization of coordi-

nation problems. In the 3-color MaxSAT domain, graph nodes (n) are

initially randomly assigned one of 3 colors. The goal of this domain

is that the nodes coordinate a solution whereby the number of neigh-

bors sharing the same color is minimized (F). Generally, these nodes

can be viewed as representing different people or agents, while their

various colors on the nodes’ edges represent the agent’s constraints or

preferences that must be coordinated within the group (m).

A range of algorithms exist for solving MaxSAT problems. Well-

know algorithms include distributed breakout (DBO) ([76], asynchro-

nous backtracking (ABT) [75], asynchronous weak-commitment (AWC)

[75] and the Optimal Asynchronous Partial Overlay (OptAPO) [47].

According to our thesis, we expected that these algorithms perform

90

Figure 4.1: Graph coloring performance with ABT, AWC, DBO, and OptAPO

algorithms with random graphs with 5-100 nodes (X-axis) and edges = 2.0n (left)

and 2.7n (right). Each datapoint represents averaged results from 30 runs with 100

cycles per run.

best in different problem attributes. Within this domain, these at-

tributes include domain parameters such as the number of nodes, edge,

time to solve the problem, number of messages and cost of communi-

cation.

As DCOP algorithms are inherently distributed, debate exists how

performance should be measured. The most common performance

measure, which we based our experiments on, is how many cycles were

need to solve a given problem instance [75]. Within this measure, one

unit of “time” is taken as the series of actions where agents process

all incoming messages, process those messages, and send a response.

In our experiments, we chose the more accepted cycles based measure

to evaluation performance1.

1Other measures besides cycles have been proposed to evaluate the DCOPs’ performance. Meisel

et al. [36] have argued that performance should be measured based in terms the number of

computations each distributed agent performs and proposed a concurrent constraint checks measure

(ccc) to quantify this amount. A hybrid measure, proposed by Davin and Modi [12], suggest using

a Cycle-Based Runtime (CBR) measure that is parameterized between latency between cycles

and computation speed as measured by the concurrent constraint checks measure. Interestingly,

the Adopt algorithm [53] outperforms all other algorithms once these measures are used. Note

that if one chooses the ccc or CBR measures, or if new DCOP algorithms are found with better

performance within the cycle based measure, they can be inserted in place of the algorithms we

91

We used the Farm simulation environment [28] to create random-

ized instances of MaxSAT problems. We first varied parameters such

as the number of nodes and edges within these problems. Specifi-

cally, we studied “sparse” coloring graph problems where the number

of edges, m = 2.0n, and “dense” graph problems with m = 2.7n. Tra-

ditionally, the sparse problems are thought to belong to the “easy”

problem set and the dense problems belonging to the ”hard” category

[47].

Figure 4.1 represents the performance results of the ABT, AWC,

DBO, and OptAPO within this 3-color MAXSat domain. Each al-

gorithm was given 100 time units (cycles) to run, and we measured

the number of constraints non-fulfilled after this time (F). We created

anytime versions of these algorithms [80] where each algorithm stored

the solution minimizing the value of F during task completion. Note

that the OptAPO algorithm on average outperformed all other algo-

rithms. This result is consistent with previous finding demonstrating

the effectiveness of the OptAPO algorithm regardless of the number

of edges or nodes within the problem [47].

However, we found that the best algorithm to use also differed

radically based other parameters such as the time allotted to solve a

problem instance. In Figure 4.2 we again ran the ABT, AWC, DBO,

and OptAPO algorithms but allotted only 10 cycles of runtime. Note

how the APO algorithm performs significantly worse than the other

algorithms (in problems with > 40 nodes) with the DBO algorithm

performing significantly better, especially in dense graphs with more

than 60 nodes.

Communication costs can also radically effect which algorithm we

should select. For example, OptAPO [47] is a complete algorithm that

studied.

92

Figure 4.2: Graph coloring performance with ABT, AWC, DBO, and OptAPO

algorithms with random graphs with 5-100 nodes (X-axis) and edges = 2.0n (left)

and 2.7n (right). Each datapoint represents averaged results from 30 runs with 10

cycles per run.

relays on having nodes communicate their constraints to a mediator

node responsible for creating a partially centralized solution. DBO is a

hill-climbing algorithm that may never find the global optimal solution

for a given graph. However, the localized characteristics of the DBO

algorithm allows it to resolve many coloring conflicts without high

communication overheads. In fact, the algorithm never communicates

beyond its immediate graph neighbors, something other algorithms

such as APO rely on. Assuming such communication is costly – say

because of security or cost concerns, the OptAPO algorithm should

also be avoided even if unlimited time exist to solve these problems.

Figure 4.3 demonstrates the impact of non-local communication

cost on algorithm selection. In this graph we compared the perfor-

mance of the OptAPO and DBO algorithms in dense MaxSAT prob-

lems with 100 cycles allotted. When communication was free the APO

algorithm (APO-100 Cost 0) did significantly outperform DBO. How-

ever, once non-local communication had a cost of 0.02 quality units per

communication link, the DBO algorithm outperform OptAPO (APO-

100 Cost 0.2)

93

Figure 4.3: The impact of cost on graph coloring algorithms

Because of the radically different performance of these algorithms

the selection choice is often quite clear. Let us assume that agents

are aware of performance limitations such the time to complete the

task, the cost of non-local links, etc. A clear policy typically becomes

immediately evident. For example, assume there is no communication

cost and agents need to find the best MaxSAT solution given unlimited

cycles. OptAPO is clearly the best choice. Conversely, assuming com-

munication is costly, or only a very short period of time is allocated,

DBO must be selected.

Figure 4.4 demonstrates the effectiveness of algorithm selection

when these problem attributes were known in advance. We gener-

ated 100 total MaxSAT problems with random problem attributes (ie.

time to solve the problem, number of nodes and edges, and non-local

communication costs). Approximately half of these problems could

be optimally solved with DBO and OptAPO respectively. When a

clear policy was evident, such as when non-local communication was

costly or the time to solve problems was very short or very large,

our approach definitively selected between DBO and OptAPO. When

94

Figure 4.4: Comparing the cost of communication on algorithm selection

no clear policy was defined (as is the case in borderline instances),

our approach randomly chose between these algorithms. In order to

strengthen the significance of this experiment, we ensured that at least

25 percent of the problem instances were taken from the category when

no clear policy existed. Notice that our selection approach closely ap-

proximated the optimal choice, and significantly outperformed stat-

ically choosing either DBO or OptAPO. We performed a two-tailed

t-test comparing our dynamic approach to the static DBO and Op-

tAPO methods. The resulting p-score was well below 0.05, supporting

the significance of the presented approach. Similarly, we compared the

dynamic approach with the optimal selection policy and found only an

insignificant difference (p-score greater than 0.8) between these values.

This supports our claim that randomly selecting between algorithms

in borderline cases does not significantly hurt performance.

95

4.4 Algorithm Selection in TAEMS Scheduling Prob-

lems

While general DCOP domains provide an excellent formalism and gen-

eral testbed for different algorithms, it is unclear how many real-world

problems can be mapped to these theoretical domains [46]. Even tech-

nically, the DCOP model strives to minimize the cost function F, while

distributed schedules involve maximizing a group’s combined utility.

Nonetheless, work by Maheswaran et al. [46] has demonstrated that

distributed scheduling problems can be directly mapped to the DCOP

framework. Thus, we reasoned that the algorithm selection approach

we present should be equally relevant here as well.

However, finding the phase shifts that separate between coordi-

nation algorithms within real-world domains is far from trivial [9].

MaxSAT problems have a relatively limited number of problem pa-

rameters such as the time to solve a problem, and if communication

had a cost. Moreover, constraints typically have equal weighting and

every agent has equal numbers of constraints (edges). In contrast, as

we now describe, the TAEMS scheduling domain is far more complex.

4.4.1 The TAEMS Scheduling Domain

TAEMS [39] is a framework for formalizing the interrelationships be-

tween agents engaged in a group task. This framework has been shown

to be effective in quantifying a variety of tasks. Briefly summarized,

the TAEMS language is composed of methods, tasks and subtasks

that define a coordination problem. Methods represent the most basic

action any agent can perform and should have associated with them

a list of one or more potential outcomes. This outcome list describes

what the quality (Q), duration (D) and cost (C) distributions will

96

be for each possible result the method might achieve when it is exe-

cuted. Tasks represent the higher level abstraction and describing the

interrelationship between possible actions. This is represented by a

quality accumulation function, or QAF, that defines how the quality

of the subtasks is used to compute the quality of the task. QAF’s are

of three forms: min, max or sum. In a min QAF, the total added

quality is taken from the minimum from all subtask possibilities – it

could be thought of as the logical AND command between tasks. In

a max relationship this quality is the maximum value (or the logical

OR), and sum is the sum of all subtasks. Finally, hard constraints can

be modeled as non-local effects (NLE’s) that enable or disable other

tasks. Soft constraints are modeled through facilitates or hinders rela-

tionships. For example, assuming one task must occur before another,

we could state that the task enables the other. Assuming both tasks

cannot be performed we could say one task disables the other.

Figure 4.5: A sample TAEMS scheduling problem. Note that the optimal solution

is not evident by greedy selection.

Figure 4.5 is an example of a scheduling problem instance, described

in TAEMS statements. In this example, three agents, A, B, and C

must coordinate their actions to find the optimal schedule for task

97

T. Task T has three subtasks (A, B, and C) and these tasks joined

by a sum relationship. There are enable relationships between these

tasks and thus they must be executed sequentially. In this example,

an optimal schedule would be for A to schedule method A1, B to

schedule B2, and C to schedule C1. There is insufficient time for B to

schedule method B1 and for A to schedule A1 so one of these agents

must sacrifice scheduling the method with the highest quality so the

group’s quality will be maximized. However, each agent only has a

local view as the methods and tasks with which it is directly involved,

and thus is unaware of the others’ constraints.

TAEMS scheduling problems can be generated with many more

constraint types. These include factors such as: the number of tasks

to be scheduled, the hierarchical structure of these tasks, the number of

agents able to perform each task, the number of NLE’s between tasks,

overlapping effects of task windows due to their duration, and redun-

dancy effects if tasks have multiple possible ways to be performed.

4.4.2 Algorithms for Coordinating TAEMS Decisions

Nonetheless, we claim the algorithm selection process can be addressed

through an algorithm selection process. As was the case in the DCOP

formalism, each agents with TAEMS only has a partial view of its con-

straints within the distributed system. Different algorithms {CA1 . . . CAj}

control how much information is sent, and thus if part(s) of the prob-

lem are solved centrally or locally. Thus, each agent can be thought of

as a value that controls how much information to send in solving the

problem. Assuming each node uses algorithms that locally attempt

a solution very little information will be send. Conversely if every

value indiscriminately sends all constraints a centralized solution will

98

be attempted.

The utility of each agent’s choice is evaluated as follows. First,

each agent chooses from algorithms {CA1 . . . CAj} to decide what

information to send. This information is then sent to a Constraint

Optimization Problem (COP) solver. We refer the reader to [22] for

implementation details of the constraint programming approach used

by the this COP solver. To calculate the group’s schedule, each agent

first sent its TAEMS statements to the COP solver. The COP solver

then processed the total constraint information sent by all agents and

returned the utility of the resulting schedule. As we assume commu-

nication has some cost, the group’s total utility is the gain from the

COP’s generated schedule minus the sum of all communication costs

of all agents.

We considered the following library of algorithms. CA1, or the

Exhaustive algorithm, requires an agent to communicate all of their

constraints. As this algorithm sends all information it is guaranteed to

send enough information to find an optimal coordination solution, and

thus can have the highest gain. However, this algorithm also has the

highest communication cost. Furthermore, this algorithm may not

yield any quality before finding an optimal solution. Assuming the

problem is over-constrained, even effective COP solvers cannot find

easily find any solution, and may yield zero quality at the end of the

search window.

At the other extreme, algorithm CA2 or the Approximation algo-

rithm, makes local decisions and informs the COP solver as to its

choice. This algorithm was inspired by Durfee’s [15] comment that

“ignorance is bliss”, i.e., having agents send all information at their

disposal may not be advantageous. Referring back to the example

in Figure 4.5, agents can greedily select the option with the highest

99

quality. In this example, agents would choose their first options, A1,

B1, and C1. The COP scheduler would then be forced to forgo the

last option C1, and return a quality of 40 (well below the optimal

solution of 60). This algorithm guarantees a relatively low cost as it

communicates only the minimum amount. Especially if the problem

is over-constrained, this approach may perform better than the Ex-

haustive approach as it can typically simplify the problem to the level

that the COP scheduler will return some quality, even if it may be

non-optimal.

Next, we also implemented an existing algorithm selection processes

based on the work of Allen and Minton [2] (CA3). Previously, they sug-

gested an approach where the best algorithm is selected through run-

ning all algorithms in the library for a short period of time, and then

selecting the best algorithm based on secondary performance charac-

teristics compiled from this preliminary trial. Following this approach,

this algorithm first runs algorithm CA1 for a short period of time. If

the CA1 does not return any quality within that test period, the prob-

lem is deemed over-constrained and CA2 is used in the remaining time.

Otherwise, CA1 is allowed to continue. Assuming communication is

not free, this approach may have the composite costs of both CA1

and CA2, and thus may not perform well. However, assuming com-

munication is free, it may produce the optimal selection by trying all

algorithms in the library.

4.5 Scheduling Tightness Model

In order to simplify finding phase shifts, we present a tightness mea-

sure to quantify the complexity of agent interactions in this scheduling

domain. We formalize an agent’s TAEMS scheduling problem as fol-

100

lows:

Similar to the DCOP formalization let G = {A1, A2 . . . , aN} be the

group of N agents trying to maximize their group’s collective schedul-

ing utility. Each agent has a set of m tasks, T = {T1, . . . , Tm} that

can be performed by that agent. Each Task, Ti, has a time Window

where the task needs to be performed, a Duration as the length of

time the task requires to be completed, and a Quality as the utility

that task will add to the group upon its successful completion. While

task window lengths are typically fixed within this domain, task dura-

tion and quality can be variable. Let us model Wi as the fixed Window

length for task i, {Ri1, Ri2, . . . , Rij} as the possible duration lengths

for a given task Ti and {Qi1, Qi2, . . . , Qij} as the corresponding quality

amounts for these options.

We denote a task’s tightness as:

Tightness(Ti) = Durationmax(Ti)
Window(Ti)

where Durationmax(Ti) returns the maximal duration from

{Ri1, Ri2, . . . , Rij}.

This tightness measure has two key qualities: First, it is locally

measurable. Any agent can measure its task tightness without any

additional input from other task agents. This allows agents to effec-

tively autonomously select the best coordination algorithm. Second, it

can effectively quantify the impact making a local decision will have.

By definition, a tightness of 1.0 or less means that the problem is

not constrained, as no task option exceeds the task window naturally

allotted for that task. As a result, that agent can safely make a lo-

cal decision (CA2) without fear that the optimal solutions will not

be found. However, once this measure exceeds 1.0, the risk exists

that tasks overlap, and the optimal solution involves one task being

sacrificed in favor of another.

101

4.6 Evaluating Algorithm Selection Scheduling Pol-

icy

The tightness measure presented in the previous section was crucial

in identifying when to select which scheduling algorithm. In this

section we describe how three classic problem clusters were quickly

found based on this measure: under-constrained, constrained, and

over-constrained. Each cluster corresponded to a clear coordination

algorithm choice – creating an effective algorithm selection policy.

We then evaluated the effectiveness of this policy in randomly gen-

erated scheduling problems with a variety of communication costs.

We found the trained approach significantly improved performance

in cases where communication had a cost, always coming within an

insignificant amount of the optimal selection.

4.6.1 Training the Scheduling Algorithm Selection Policy

In order to train the algorithm selection policy, we randomly gen-

erated 50 problems for training which algorithm should be selected.

We used a problem generator created by Global Infotech Inc. (GITI)

for the purpose of generating TAEMs problems within the framework

of the the COORDINATORS DARPA/IPTO program2. We created

problems where TAEMS parameters, such as the number of tasks to

be scheduled, the hierarchical structure of these tasks, the number

of agents able to perform each task, number of NLE relationships be-

tween tasks, overlapping effects of task windows due to their duration,

and redundancy effects as described above, were randomly selected.

Note that these 50 problems represent a small fraction of the total

number of the thousands of problem permutation the program’s sce-

2http://www.darpa.mil/ipto/programs/coordinators/

102

nario generator could create. After these problems were created, every

agent computed its average task tightness based on its local informa-

tion.

We then ran algorithms CA1 and CA2 on this training set. We

clustered problems by their relative tightness, ie. problems with tight-

ness 0.0 - 0.5, 0.5 - 1.0, 1.0 - 1.5, etc. Because the purpose of this

experiment was to attempt to learn when to select each of these al-

gorithms, we did not also run the algorithm selection process CA3 at

this stage. In this experiment, we also assumed that communication

had no cost and allowed the COP scheduler to run for 10 seconds after

each local agent decided what information to send. The results of this

experiment can be found in Figure 4.6.

Figure 4.6: Comparing scheduling utility yielded from algorithms that involve agents

forwarding all information (CA1) and local decisions (CA2) in problems of different

tightness complexity

As we see from Figure 4.6, three distinct problem types emerge,

under-constrained, constrained, and over-constrained problems. For

problems of tightness 1.0 or less, algorithms CA1 and CA2 perform

equally well. One could term these problems under-constrained, as we

found that sending no constraint information (CA2) is equally effective

103

to sending all information. Thus, assuming communication has some

cost, CA2 is clearly the better choice in these problems. In prob-

lems with a tightness between 1.0 and 1.5, the complete algorithm,

CA1, performed best. These problems were constrained, yet able to

be solved even if all constraints were sent to the COP solver. Thus

information was useful in finding a higher scheduling utility. After

this point (at approximately tightness = 1.75) problems become over-

constrained, and added information does not add value. Once again

algorithm CA2 should be selected. While the first phase shift (before

tightness 1.0 and after) is based on the definition of our tightness mea-

sure, we recognize that the second phase shift (around tightness 1.75)

is likely based on the specific COP solver being used. It would not be

surprising if other constraint-based solvers would be released in the

future that could effectively solve problems even when their average

tightness is significantly more than 1.75. However, as these problems

are NP-complete we believe some point will always exist separating

these types of problems.

Once we quickly identified the approximate tightness value to use

each algorithm, an algorithm selection policy could be formed. When

agents measured a tightness of 1.0 or less CA1 was used. CA2 was se-

lected when the tightness was less than 1.5, and CA1 was again used

when the tightness was greater than 2.0. In the transition between

CA1 and CA2 we evaluated two possibilities: random choice or mid-

point. Within the random choice option, CA1 or CA2 was randomly

chosen between 1.5 and 2.0. Within the midpoint choice the range

between tightness 1.5 and 2.0 was split with CA1 used until 1.75 and

CA2 after this point.

104

4.6.2 Evaluating Scheduling Policy with and without Cost

We then created 100 new TAEMS problems with randomly generated

parameters, and compared the quality obtained from using algorithms

({CA1 . . . CA3}) to the algorithm selection policy. We again allotted

the COP solver 10 seconds to run each algorithm. Algorithms CA1,

CA2 and the selection algorithms (midpoint and random) selected

what information to send immediately and let the COP solver run for

the full 10 seconds. Recall that CA3 is itself an algorithm selection

process where CA1 is first allowed to run for a short time before decid-

ing to continue with this algorithm or to switch to CA2. Thus, CA3

first attempted to find an optimal solution with CA1 within the first

2 seconds. If no solution was found within this time, it used CA2 with

the remaining time.

First, we consider the case where communication is free. The re-

sults of this experiment are in Figure 4.7. As expected, algorithm

CA3 did produce the highest quality, nearly making the optimal se-

lection in all cases (58.6 average quality for CA3 versus 58.76 in the

optimal choice). Both the random and midpoint algorithm selection

policies perform similarly (the p-score from within a two tailed t-test

comparing these two selection approaches was 0.65) and thus we print

the midpoint approach which performed slightly better. Additionally,

while CA3 did outperform our algorithm selection approach in this

case, the difference was not significant (p-scored within a two tailed

t-test comparing midpoint and CA3 being 0.67).

However, in many real-world cases, one can assume that commu-

nication will have some cost. In these cases, it is critical that agents

send as little information as possible, and approaches such as CA3 that

send multiple rounds of information are likely to perform worse than

105

Figure 4.7: Comparing average scheduling utility yielded from algorithms with no

communication cost

other approaches. However, the correct policy is likely to depend on

this cost. In an extreme example, assuming communication costs are

made sufficiently high CA2 will always dominate. Assuming commu-

nication has a more moderate cost, the question becomes what is the

crossover between between the coordination algorithms in our library.

Fortunately, the policy for cases with communication can be easily

adjusted in this domain. Due to the structure of the TAEMS problems

being studied, agents could assume their contribution to the group’s

utility was roughly inversely proportional to the number of task nodes

(1/total-nodes). This being the case, once any local agent knows how

many other nodes are within the problem, it could estimate the value

of communicating information. For example, say a local node knows

communication costs 0.05 per message, and there are 20 total nodes

in the problem. Let us assume that agent measures a local tightness

of 1.5. Using the cost-free policy, it can estimate that the difference

in utility gain of using CA1 versus CA2 is approximately 20 for this

point (see Figure 4.6). Thus, it estimates that the gain from its in-

formation is approximately 1 unit of gain (the difference of 20 units

106

split over all 20 nodes), while its cost of communication is only 0.05

per TAEMS constraint. Assuming it has under 20 constraints to send,

it will choose CA1. However, assuming the same cost of communi-

cation, but a local tightness of 1.75 is measured, the agent estimates

there will be no utility gain through using CA1, but it incur a higher

communication cost through using this algorithm. Thus, it will opt

for CA2. We concede that this simplified approach may not apply to

more heterogenous problems, and we hope to study such problems at

greater length in the future.

As expected, our algorithm selection approach was much more effec-

tive than all other approaches once these costs were considered. Figure

4.8 displays the result from the same 100 evaluation cases from the pre-

vious experiment, but assumes a cost of 0.05 must be deducted for each

TAEMS statement sent. Note how the algorithm selection process sig-

nificantly outperforms all other option (p-scores being 0.0001 or under)

and again comes within an insignificant amount of the optimal selec-

tion (p-score from a two tailed t-test again being 0.64). Thus, we found

this approach to be extremely effective in cases where communication

had a cost.

4.7 Conclusion and Future Work

In this work we present an algorithm selection approach for solving

DCOP problems. We focused on two factors: what attributes dif-

ferentiate between coordination algorithms, and how can we build a

selection policy based on those attributes. We present strong empir-

ical evidence of the success of this approach in scheduling and graph

coloring domains, suggesting the generality of this work.

For future work, a several directions are possible. In this work,

107

Figure 4.8: Comparing average scheduling utility yielded from algorithms with com-

munication cost of 0.05 units per TAEMS message

we manually found the attributes that differentiated the coordination

algorithms within the domains we studied. We hope to study how

algorithms can be created to automate this process so that other novel

interaction measures, such as the tightness measure we present, may

be learned for quantifying coordination interactions in other domains.

The success of our coordination selection approach was rooted in the

realization that different clusters of problems can be created based on

the hardness of different agent interactions. We drew upon the ”phase

transition” concept used to describe some constraint satisfaction prob-

lems [54]. However, following Brueckner and Parunak [9] we reserve

the term “phase transition” to refer to a term used by physicists for

mathematically describable behavior within the system, and instead

term the clusters of problems we empirically observed as phase shifts.

We hope to study in the future what formal models of coordination

are possible that can predict where and when these transitions should

occur. We believe this study could strengthen the theoretical basis of

the work we present.

108

Chapter 5

Adaptive Full-text Search in Peer

to Peer Networks

5.1 Introduction

Full-text searching, or the ability to locate documents based on terms

found within documents, is arguably one of the most essential tasks

in any distributed network [41]. Search engines such as Google [1]

have demonstrated the effectiveness of centralized search. However,

classic solutions also demonstrate the challenge of large-scale search.

For example, a search on Google for the word, “a”, currently returns

over 10 billion pages [1].

In this chapter, we address the challenge of implementing full-text

searches within peer-to-peer (P2P) networks. Our motivation is to

demonstrate the feasibility of implementing a P2P network comprised

of resource limited machines, such as handheld devices. Thus, any

solution must be keenly aware of the following constraints: Cost -

Many networks, such as cellular networks, have cost associated with

each message. One key goal of the system is to keep communication

costs low. Hardware limitations - we assume each device is limited

in the amount of storage it has. Any proposed solution must take this

109

limitation into consideration. Distributed - any proposed solution

must be distributed equitably. As we assume a network of agents with

similar hardware composition, no one agent can be required to have

storage or communication requirements grossly beyond that of other

machines. Resilient - our assumption is that peers are able to connect

and disconnect at will from the network. As a result, our system must

be able to deal with peer failures, a concept typically

To date, three basic approaches have been proposed for full-text

searches within P2P networks [74]. Structured approaches are based

on classic Information Retrieval theory [24], and use inverted lists to

quickly find query terms. However, they rely on expensive publishing

and query lookup stages. A second approach creates super-peers, or

nodes that are able to locally interact with a large subset of agents.

While this approach does significantly reduce publishing costs, it vio-

lates the distributed requirement in our system. Finally, unstructured

approaches involve no publishing, but are not successful in locating

hard to find items [74]

In this paper we present PHIRST, a system for Peer-to-Peer Hybrid

Restricted Search for Text. PHIRST is a hybrid approach that lever-

ages the advantages of structured and unstructured search algorithms.

Similar to structured approaches, agents publish terms within their

documents as they join or add documents to the P2P network. This

information is necessary to successfully locate hard-to-find items. Un-

structured search is used to effectively find common terms without

expensive lookups of inverted lists. Another key feature in PHIRST

is its ability to restrict the number of peer addresses stored within

inverted lists. Not only does this insure that the hardware limitations

of agent nodes are not exceeded, it also better distributes the system’s

storage. We also present a full-text query algorithm where nodes ex-

110

plicitly reason based on estimated search costs about which search

approach to use, reducing query costs as well. Finally, we present

how storing redundant copies of these entries can effectively deal with

temporary node failures without use of any centralized mechanism.

To validate the effectiveness of PHIRST, we used a real web corpus

[58]. We found that the hybrid approach we present used significantly

less storage to store all inverted lists than previous approaches where

all terms were published [41, 74]. Next, we used artificial and real

queries to evaluate the system. The artificial queries demonstrated the

strengths and limitations of our system. The unstructured component

of PHIRST was extremely successful in finding frequent terms, and

the structured component was equally successful in finding any term

pairs where at least one term was not frequent. In both of these cases,

the recall of our system was always 100%. The system’s performance

did have less than 100% recall when terms of 2 or more words of

medium frequency were constructed. We present several compensatory

strategies for addressing this limitation in the system. Finally, to

evaluate the practical impact of this potential drawback, we studied

real queries taken from IMDB’s movie database (www.imdb.com) and

found PHIRST was in fact effective in answering these queries.

5.2 Related Work

Classical Information Retrieval (IR) systems use a centralized server

to store inverted lists of every document within the system [24]. These

lists are “inverted” in that the server stores lists of the location for

each term, and not the term itself. Inverted lists can store other

information, such as the term’s location in the document, the number

of occurrences for that term, etc. Search results are then returned by

111

intersecting the inverted lists for all terms in the query. These results

are then typically ranked using heuristics such as TF/IDF [32]. For

example, if searching for the terms, “family movie”, one would first

lookup the inverted list of “family”, intersect that file with that of

“movie”, and then order the results before sending them back to the

user.

The goal of a P2P system is to provide results of equal quality with-

out needing a centralized server with the inverted lists. Potentially,

the distributed solution may have advantages such as no single point

of failure, lower maintenance costs, and more up-to-date data. Toward

this goal a variety of distributed mechanisms have been proposed.

Structures such as Distributed Hash Tables (DHTs) are one way to

distribute the process of storing inverted lists. Many DHT frameworks

have been presented, such as Bamboo [62], Chord [55], and Tapesty

[79]. A DHT could then be used for IR in two stages: publishing and

query lookups. As agents join the network, they need to update the

system’s inverted lists with their terms. This is done through every

agent sending a “publish” message to the DHT with the unique terms

it contains. In DHT systems, these messages are routed to the peer

with the inverted list in LogN hops, with N being the total number

of agents in the network [55, 62]. During query lookups, an agent

must first identify which peer(s) store the inverted lists for the desired

term(s). Again, this lookup can be done in LogN hops [55, 62]. Then,

the agent must retrieve these lists and intersect them to find which

peer(s) contain all of the terms.

Li et al. [41] present formidable challenges in implementing both

the publishing and lookup phases of this approach in large distrib-

uted networks. Assuming a word exists in all documents, its inverted

list will contain N entries. Thus, the storage requirements for these

112

inverted lists are likely to exceed the hardware abilities of agents in

these systems. Furthermore, sending large lists will incur a large com-

munication cost, even potentially exceeding the bandwidth limitation

of the network. Because of these difficulties, they concluded that naive

implementations of P2P full-text search are simply not feasible.

Several recent developments have been suggested to make a full text

distributed system viable. One suggestion is to process the structured

search starting with the node storing the term with the fewest peer

entries in its inverted list. That node then forwards its list to the node

with the next longest list, where the terms are locally intersected be-

fore being forwarded. This approach can offer significant cost savings

by insuring that no agent can send an inverted list longer than the one

stored by the least common term [74]. Reynolds and Vahdat also sug-

gest encoding inverted lists as Bloom filters to reduce their size [61].

These filters can also be cached to reduce the frequency these files

must be sent. Finally, they suggest using incremental results, where

only a partial set of results are returned allowing search operations

to halt after finding a fixed number of results, making search costs

proportional to the number of documents returned.

Unstructured search protocols provide an alternative that is used

within Gnutella and other P2P networks [10]. These protocols have

no publishing requirements. To find a document, the searching query

sends its query around the network, until a predefined number of re-

sults have been found, or a predefined TTL (Time To Live) has been

reached. Assuming the search terms are in fact popular, this approach

will be successful after searching a fraction of the network. Various

optimizations have again been suggested within this approach. It has

been found that random walks are more effective than simply flooding

the network with the query [44]. Furthermore, one can initiate mul-

113

tiple simultaneous “walks” to find items more quickly, or use state-

keeping to prevent “walkers” from revisiting the same nodes [44]. De-

spite these optimizations, unstructured searches have been found to

be unsuccessful in finding rare terms [10].

In super-peer networks, certain agents store an inverted list for

all peer documents for which it assumes responsibility. Instead of

publishing copies over a distributed DHT network, agents send copies

of their lists to their assigned super-peers. As agents are assumed

to have direct communication with its super-peers, only one hop is

needed to publish a message, instead of the LogN paths within DHT

systems. During query processing, an agent forwards its request to its

super-peer, who then takes the intersection between the inverted lists

of all super-peers. However, this approach requires that certain nodes

have higher bandwidth and storage capabilities [74] – something we

could not assume within our system.

Hybrid architectures involve using elements from multiple approaches.

Loo et al. [42, 43] propose a hybrid approach where a DHT is used

within super-peers to locate infrequent files, and unstructured query

flooding is used to find common files. This approach is most similar

to ours in that we also use a DHT to find infrequent terms and un-

structured search for frequent terms. However, several key differences

exist. First, their approach was a hybrid approach between Gnutella

ultrapeers (super-peers) and unstructured flooding. We present a hy-

brid approach that can generically use any form of structured or un-

structured approaches, such as random walks instead of unstructured

flooding or global DHT’s instead of a super-peer system. Second, in

determining if a file was common or not, they needed to rely on locally

available information from super-peers, and used a variety of heuristics

to attempt to extrapolate this information for the global network [42].

114

As we build PHIRST based on a global DHT, we are able to identify

rare-items based on complete information. Possibly most significantly,

Loo et al. [43] only published the files’ names, and not their content.

As they considered full text search to be infeasible for the reasons pre-

viously presented [41], their system was limited to performing searches

based on the data’s file name, and not the text within that data. As

our next section details, we present a publishing algorithm that ac-

tually becomes cheaper to use as subsequent nodes are added. Thus,

PHIRST is the first system to facilitate effective full-text search even

within large P2P networks.

5.3 PHIRST Overview

First, we present an overview of the PHIRST system and how its pub-

lishing and query algorithms interconnect. While this section describes

how information is published within the Chord DHT [55], PHIRST’s

publishing algorithm is generally presented in section 5.4 so it may

be used within other DHT’s as well. Similarly, section 5.5 presents a

query algorithm (algorithm 4) which generally selects the best search

algorithm based on the estimated cost of performing the search algo-

rithms at the user’s disposal. The selection algorithm is generically

written such that new search algorithms can be introduced without

affecting the algorithm’s structure. Only later, in algorithm 5 do we

present how these costs are calculated specific to the DHT and un-

structured search algorithms we used.

In order to facilitate structured full-text search for even infrequent

words, search keys must be stored within structured network overlays

such as Chord. Briefly, Chord uses consistent hash functions to create

an m-bit identifier. These identifiers form a circle modulo 2m. The

115

node responsible for storing any given key is found by using a prese-

lected hash function, such as SHA-1, to compute the hash value of that

key. Chord then routes the key to the agent whose Chord identifier is

equal to or is the successor (the next existent node) of that value [55].

For example, Figure 5.1 is a simple example with an identifier space

of 8, and 3 nodes. Assuming the key hashes to a value of 6, that key

needs to be stored on the next node within the circular space, or node

0. Assuming the key hashes to 1, it is stored on node 1.

Figure 5.1: An example of a Chord ring with m=3

The hashing quality within the Chord algorithm has several im-

portant qualities. First, it creates important performance guarantees,

such as LogN average search length. Furthermore, nodes can be easily

added (joins) or removed (disjoins) by inserting them into the circu-

lar space, and re-indexing only a fraction of the pointers within the

system. Finally, the persistent hashing function used by Chord has

the quality that no agent will get more than O(LogN) keys than the

average [55]. We refer the reader to the Chord paper for further details

[55].

However, the DHT’s performance guarantees only balancing the

116

Table 5.1: Example of several words (keys within the DHT), and their inverted lists.

Word (key) Address1 Address2 Address3 Address4 Address5 Address6 Address7

a 111-1111 111-1112 111-1113 111-1114 111-1115 111-1116 111-1117

aardvark 111-4323

the 111-1111 111-1112 111-1113 111-1114 111-1115 111-1116 111-1117

zoo 123-4214 123-9714 333-9714

zygote 548-4342

number of keys stored per node, but not the number of addresses

stored in the inverted lists for each key. For example, Table 5.1, gives

an example of the inverted lists for five words. Common words, such

as “a” and “the” within the table, will produce much long inverted

lists, than uncommon words such as “aardvark” and “zygote”. Due

to space restrictions we will only present up to the first 7 inverted

entries for each word, out of a potential length of N rows. Balancing

guarantees only apply to the number of words (out of N), but not

the size of each inverted list (the length of that row). Because word

distribution within documents typically follow Zipf’s law, some of the

words within documents occur very frequently while many others occur

rarely [33]. In an extreme example, one node may be responsible for

storing extremely common words such as “the” and “a”, while other

nodes are assigned only rare terms. Thus, one key contribution of this

paper is a publishing algorithm that can equitable distribute these

entries by allowing agents to cap the number of inverted list entries

they will store.

Once the publishing stage has been begun, a distributed database

exists to search the network for full-text queries. We define the search

task as finding a number of results, T, that match all query terms

within the documents’ text. Capping a query at T results is needed

within unstructured searches, as there is no global mechanism for

117

knowing the total number of matches [74]. Finding only a limited

number of results has also been previously suggested within struc-

tured searches to reduce communication costs [61]. The second key

contribution of this paper is a novel querying algorithm that lever-

ages between structured and unstructured searches to effectively find

matches despite the limit in the amount of data each peer stores.

5.4 The Publishing Algorithm

Every time an agent joins the network, or an existing agent wishes to

add a new document, it must publish the words in its document(s)

as described in Algorithm 5.4. First, the agent generates a set of

max terms it wishes to add (line 1). Similar to other studies [74] we

assume that the agent preprocesses its document to remove extrane-

ous information such as HTML tags and duplicate instances of terms.

Stemming, or reducing each word to its root form, is also done as it

has been observed to improve the accuracy of the search [74]. Further-

more, as we detail in the Experimental Results section (section 5.7),

stemming also further reduces the amount of information needed to

be published and stored. The publishing agent, IDSource, then sends

every unique term, Termi, to be stored in an inverted list on peer

IDDEST (lines 3-4). The keys being stored are these words that are

sent, with each word either creating a new inverted list, or being added

to an existing file. In addition to these terms, the agent also updates a

counter of the total number of documents contained between all agents

within the system (line 4). For simplicity, let us assume this global

counter is stored on the first agent, ID1. We will see that this value

is needed by the query algorithm described below.

PHIRST’s publishing algorithm enforces an equitable term distrib-

118

Algorithm 3 Publishing Algorithm(Document Doc)

1: Terms ⇐ Preprocessed words in Doc

2: for i = Term1 to Termmax do

3: PUBLISH(Termi, IDSource, IDDEST)

4: PUBLISH(DOC-COUNTER+1, ID1)

5: for i = Term1 to Termreceived do

6: if SIZE(IDDEST , Termi) < d then

7: ADD-Term(Termi, IDSource)

8: UPDATE-Counter(Termi, COUNTER)

ution by only storing inverted lists until a length of d. For every term

node, Termi out of a total of received terms, IDDEST is requested to

store it must decide if it should fulfill that request. As lines 6 and 7 of

the algorithm detail, assuming agent IDDEST currently has fewer than

d entries for Termi, it adds the value IDSource to its list (or creates an

inverted list if this is the first occurrence). Either way, nodes log that

a certain number of COUNTER instances of that term exist (lines

8). This information is used by the query algorithm to determine the

global frequency of this term. Because we limit each node to only

storing d out of a possible N terms, the storage requirements of the

system are reduced to d*N from N*N . As we set d << N, we found

this savings to be quite significant.

Theoretically, additional information about each term may be pub-

lished, such as the position that term occurred or how many instances

of that term existed within the document and aggregate this and sim-

ilar information into a rating for the term it is about to publish. This

information may be especially important when more than d instances

of that term exist. The receiving agent, IDDEST , could then decide

which d term instances to store by continuously sorting scores of the

terms it has, and maintaining only those with the top d highest rat-

ing. In a similar vein, if more than d instances of Termi exist, it may

119

be advantageous to store the d most recent documents, especially if

turnover exists within nodes.

The performance guarantees of DHT’s such as Chord insure the

publishing algorithm runs with fairly low cost. Because each node,

IDSource, needs LogN hops to find the agent, IDDEST , responsible for

storing that term’s inverted list, the total number of messages needed

to publish a document is of order O(max ∗ logN) where max is the

number of terms in that document. Note that the publishing algorithm

described here sends all terms, even those which in fact do not need

publishing because they already contained d terms.

5.5 The Search Algorithm

The search algorithm is called once any agent wishes to conduct a

distributed full-text search. As Algorithm 4 describes, this process

operates in two stages. First, we retrieve the global frequencies of all

search terms (line 1) and sort all terms from least to most frequent

(line 2). This value can be calculated through looking up the frequency

of that term (COUNTER), and dividing this number by the total

number of documents (DOC − COUNTER). Finding these values

requires one lookup of the value of DOC − COUNTER (assumed

to be stored on agent ID1 in the publishing algorithm), as well as a

lookup for the frequencies of each term from the agent storing term

Termi. Referring back to algorithm 5.4 note that the peer storing

Termi has a counter with this value even if more than d instances of

this term occurred.

Once the frequency of all terms are known, the algorithm then rea-

sons about which algorithm to select. This process iteratively calls

the tradeoff function which we define below (algorithm 5). If unstruc-

120

Algorithm 4 Hybrid Search Algorithm(String Query1 . . . Querymax)

1: space ⇐ ∞ {Used for initialization to all P2P nodes}

2: Retrieve Frequencies of Query1 . . . Querymax

3: Term ⇐ Sorted Query Terms Least to most Frequent {Term is an array}

4: for i = Term1 to Termmax do

5: Frequency ⇐ Product of Frequencies(Termi . . . T ermmax)

6: Tradeoff ⇐ Calculate-Tradeoff(space, Termi . . . T ermmax, Frequency)

7: if Tradeoff > 0 then

8: while Found < T AND NOT Exhausted(space) do

9: Search-Unstruct(space, Termi . . . T ermmax)

10: Break

11: else

12: space ⇐ List(Termi) ∩ space

13: if i=Termmax then

14: if space > T then

15: return first T list entries

16: else

17: return all list entries

tured search is deemed less costly, all terms are immediately searched

for simultaneously (lines 7–10). This type of search can either termi-

nate because T matches have been found or the search space has been

exhaustively searched. If structured search is deemed less costly, that

term’s inverted list is requested, and the search space is intersected

with that of the new term (line 12). Assuming we have reached the

last term (lines 12-17) we return the first T matches found after all

terms were successfully intersected. Once the structured search identi-

fies that fewer matches than T matches were found (line 15) it returns

all list entries (line 17).

This algorithm has several key features. First, the search process is

begun starting with the least frequent term. This is done following pre-

vious approaches [74] to save on communication costs. We denote the

inverted list length of the least common search term as length(Term1)

121

where length is a function that returns the size of an inverted list and

Term1 is the first term after the terms are sorted based on frequency.

Each successive peer receives the previously intersected list, and locally

intersects this information with that of its term (line 13). The result

of this process is that intersected lists become progressively smaller (or

at worse case stay the same size) with the maximum information any

peer can send being bounded by length(Term1). Second, one might

question why agents do not immediately return the entire inverted list

of the terms they store, instead of first returning the term’s frequency.

This is done because the information gained from this frequency infor-

mation, such as bounding search costs to the size of the least frequent

term, far outweighs the search costs involved with processing the query

in two stages. Finally, as the search goal is to return T results, the

last node within a structured search does not need to return its entire

inverted list. Instead, it only needs to send the first T results (or fail-

ure or NULL as in line 17 if under T results exist). Because of this,

the maximal search cost will be of order (max-1) * length(Term1) +

T where max is the number of terms in the search query.

Arguably the most important feature of this algorithm is its ability

to switch between using structured and unstructured searches midway

through processing the query terms. Even if structured search is used

for the first term(s), the algorithm iteratively calls the tradeoff algo-

rithm (algorithm 5) after each term. Once the algorithm notes that

unstructured search is cheaper, it immediately uses this approach to

find all remaining terms. For example, assume a multi-word query

contains several common and uncommon words. The algorithm may

first take the intersection of the inverted lists for all infrequent words

to create a list f . The algorithm may then switch to use unstructured

search within f to find the remaining common words.

122

Similarly, note that this approach lacks a TTL (Time To Live) for

its unstructured search. We assume unstructured searches are to be

used only when the expected cost of using an unstructured search is

low (see algorithm 5 below). We expect this to occur when the un-

structured search will terminate quickly, such as when: (i) the search

terms are very common from the onset or (ii) unstructured search

is used to find the remaining common terms after structured search

generated an inverted list of f terms.

We now turn to the search specific mechanism needed to identify

which search types will have the higher expected cost. This tradeoff

depends on T, or the number of search terms wanted, the costs specific

to using the different types of searches, and d or the maximal number

of inverted list entries published for each term. Algorithm 5 details

this process as follows:

Algorithm 5 Calculate-Tradeoff(Space, Termi . . . T ermnum, Frequency)

1: Expect-Visit ⇐ T / Frequency {Number of nodes Unstructured search will likely

visit}

2: COSTS ⇐ CU*(Expect-Visit) - CS *(Sending(query-terms))

3: if COSTS > 0 then

4: RETURN 1 {pure unstructured search}

5: else if COSTS < 0 AND Size(Termi) < d then

6: RETURN -1 {pure structured search for this term}

7: else

8: space ⇐ List(Termi) ∩ space

9: RETURN 1 {Use unstructured afterwards because of lack of more values}

First, the algorithm calculates the expected cost of conducting an

unstructured search. The expected number of documents that will

be visited in an unstructured search before finding T results is: T /

term-frequency (line 1). For example, if we wish to find 20 results, and

the frequency of the term(s) is 0.5, this search is expected to visit 40

123

documents before terminating. We can compare this value to that of

using a structured search, whose cost is also known, and is proportional

to the length of the inverted lists that need to be sent. We assume

there is some cost, CU associated with conducting an unstructured

search on one peer. We also assume that some cost CS is associated

with sending one entry from the inverted list (line 2). Because the

cost of unstructured search is CU * T / Frequency, and the cost of

structured search is bounded by CS * ((max-1) * length(Termi) +

T), the algorithm can compare the expected cost of both searches

before deciding how to proceed (lines 3-6).

For many cases, a clear choice exists for which search algorithm to

use. Let us assume that CU = CS = 1, and assume that all documents

have been indexed, or d=DOC − COUNTER. When searching for

common words, the cost of using the unstructured search is likely to

be approximately T. Processing the same query with structured search

will be approximately the number of documents (DOC−COUNTER)

or a number much larger than T. Conversely, for infrequent terms, say

with one term occurring only T times, the cost of an unstructured

search will be DOC − COUNTER or a number much larger than T,

while the structured search will only cost a maximum of T * max-

1 + T. Finally, structured search is also the clear choice for queries

involving one term. Note that in these cases, no inverted lists need to

be sent (max-1=0), and only the first T terms are returned. The cost

of using unstructured search will be greater than this amount (except

for the trivial case where the frequency of the term is 1.0).

There are two reasons why the most challenging cases involve queries

with terms of medium frequency. In these cases, the cost of using both

the structured and unstructured searches are likely to be similar. How-

ever, the expected frequency of terms is not necessarily equal to their

124

actual frequency. For example, while the words “new” and “york” may

be relatively rare, the frequency of “new york” is likely to be higher

than the product of both individual terms. As a result, the PHIRST

approach is most likely to deviate from the optimal choice in these

types of cases.

A second challenge results from the fact that we only published

up to d instances of a given term. In cases where inverted lists were

published without limitation, e.g. d equals N (DOC −COUNTER),

the second algorithm contains only two possible outcomes – either

the expected cost is larger for using structured search, or it is not.

However, our assumption is that hardware limitations prevent storing

this number of terms, and d must be set much lower than N. As a

result, situations will arise where we would like to use inverted lists,

but as these files have incomplete indices, this approach will fail in

finding results in position d+ǫ. While other options may be possible,

in these cases our algorithm (in lines 7-9) takes the d terms from the

inverted lists, and conducts an unstructured search for all remaining

terms. In general, we found this approach will be effective so long as

the T < d, or the relationship, T < d << N exists. We further explore

the impact of this limitation in the results section (5.7).

5.6 Dealing with Network Churn

The publishing and query algorithms address search issues related to

storage hardware limitations, methods for equitably distributing in-

verted lists, and minimizing search cost. As we study a network of

cellular phones, the system must additionally address temporary and

permanent peer failures. This section provides a solution to this issue,

known as churn, suitable for a distributed system.

125

5.6.1 The Churn Challenge

Churn can be defined as the turnover rate of nodes in the system over

a given time period [19]. Based on previous work [19] we define churn

(C) as follows: Given a sequence of changes in the set of N peer nodes,

let Ui be the set of in-use nodes after the ith change, with U0 the initial

set. Churn is the sum over each event of the fraction of the system

that has changed state in that event, normalized by run time t:

C =
1

t
·

∑

events i

|Ui−1 ⊖ Ui|

N
,

where ⊖ is the symmetric set difference.

Within cellular networks, most churn is likely to be caused by tem-

porary changes of status where phones are momentarily not in service,

but will eventually return into operation. For example a user might

turn off her phone while sleeping, attend meetings, or go on vacations.

We would expect real cellular networks to have a rather high churn

rate due to these types of events. A less frequent type of churn is

likely when a node decides to permanently change its status, say be-

cause a device breaks or when a user switches cellular carriers and

receives a new number. While these events do not occur frequently,

that nodes’ information will be permanently lost if that device’s data

is not replicated.

Unstructured networks are not impacted by churn as long as the

fluctuation of nodes’ states still leaves the entire network with full con-

nectivity [10]. As this method has no publishing or required routing

of lookup information, it is unaffected by even very high churn rates.

This has led some to claim that unstructured networks are most ap-

propriate in these types of environments [10].

A variety of strategies have been proposed for dealing with churn in

structured environments [19] to allow for continued connectivity once

126

a node fails. One classic approach is to reactively fix overlay network

once a failure is detected. A second approach is to periodically check

if nodes have failed. This can be done through constantly sampling

neighbor nodes, and then preemptively replacing failed nodes before

they cause a lookup failure. In environments with low churn levels the

reactive methods perform better as they have no inherent communi-

cation overhead. However, in environments with even moderate churn

levels, periodic methods perform significantly better [62].

It is important to differentiate between maintaining the connectiv-

ity of live nodes within the base DHT network, and the ability to find

application data once stored in that network. Periodic approaches are

better in handling churn, or finding nodes that are still participating

in the network. However, our system must additionally maintain lost

nodes’ published inverted list information, something DHT’s typically

cannot do (refer back to the end of section 5.4). We now address how

this challenge can be addressed.

5.6.2 Addressing Churn in a P2P Application

First, we present algorithm 6 to deal with planned types of disconnects.

While we recognize that planned disconnects will not represent all

churn events within a real system, this algorithm introduces the key

elements of PHIRST. We then generalize this approach for dealing

with unplanned churn events.

Note the strong similarity between this unpublishing algorithm,

and the previously described publishing algorithm (algorithm 5.4). In

both cases, we use a variable DOC-COUNTER of the global number

of documents. However, in the unpublishing algorithm this value must

be reduced. Similarly, the function Remove in line 8 and Update in

127

Algorithm 6 Unpublishing Algorithm(Document Doc)

1: Terms ⇐ Preprocessed words in Doc

2: for i = Terms1 to Termsmax do

3: UNPUBLISH(Termsi, IDSource, IDDEST)

4: for j = File1 to Filej do

5: COPY(Filej , successor)

6: PUBLISH(DOC-COUNTER-1, ID1)

7: if SIZE(IDDEST , Termsi) < d then

8: REMOVE(Termsi, IDSource)

9: else

10: UPDATE(Termsi, COUNTER-1)

line 10 of this algorithm closely parallel lines 5-8 of the publishing

algorithm. The purpose of the function Remove is to removes entry of

the disconnecting peer, IDSource, from the inverted list stored on peer

IDDEST . If the peer IDDEST did not store the address of this peer,

as it had already stored d entries of other peers, it simply reduces the

counter of this term by one. Finally, lines 4–5 copies the inverted lists

currently held by peer IDSource to its successor within the DHT. From

this point onward, this node will have the responsibility of responding

to queries for these terms.

However, our assumption is that most churn effects result from

temporary and unplanned failures where the failing node will not issue

this unpublish command. In order to address this point, we present a

solution where inverted list data are replicated to handle failures.

While the DHT’s pointers need to be immediately updated in case

of a node failure, however temporary, that node’s data does not need

to be copied if a set of backup copies exist. PHIRST relies on this set

of backups with the assumption that the node’s failure was temporary,

and it will soon return to the network. This saves communication costs

in copying inverted list data, assuming that node does soon rejoin the

128

network.

These data replicas can be easily created during the publishing

stage. We modify the publishing algorithm (algorithm 5.4) to send its

data to k peers instead of just one. We refer to a group of R redundant

nodes, R1, . . ., Rk, where all nodes receive the same publishing data.

Note that DHT’s such as Chord [55] can allow for this functionality

by sending a publishing message to the normal hashed peer IDDEST

within the Chord ring, and the next k − 1 peers as well or, IDDEST ,

IDDEST + 1, ... IDDEST + k - 1. For example, assume k=2, or two

copies of each inverted list are stored. Referring back to Figure 5.1, all

inverted lists that would normally be stored only on node 0, are now

stored on nodes 0 and 1, items for 1 are stored on 1,3, etc. A temporary

failure of node 1 will be handled by this node’s successor, node 3 which

also stored the same inverted list data. Join actions remain similar to

those previously presented for DHT’s with the exception that here a

joining node must also be updated with the data currently being stored

on the redundant nodes R1, . . ., Rk) that it is now joining. After this

data is stored, the last node of the redundant set (Rk) can erase this

data.

In a dynamic system, this approach will need to address two ad-

ditional issues. First, care must be taken to address churn changes

within the group of k redundant nodes after they are formed. For

example, assume a new document is published, but node R1 is tem-

porarily unavailable. The data should still be published on the re-

maining k-1 nodes which now have the most updated version of the

inverted lists. Once node R1 becomes available again, it must receive

the updated information. Second, we assume that most nodes become

only temporarily unavailable, and thus a failure of a node, D, should

not be a reason for immediately finding a new node to replicate the

129

data. However, after a certain time period, M, it must be assumed

that node D has in fact left the system, and a new node must be found

to store k nodes.

Algorithm 7 Replicating Data Under Churn(Node D)

1: Randomize start time

2: for Time = 1 to M step L do

3: if Up(D) then

4: Update(D)

5: Break

6: Replace(D)

7: PUBLISH(DOC-COUNTER-NumDocs, ID1)

Algorithm 7 outlines these two steps. The precondition for this

algorithm is that a group of k nodes has already published the appli-

cation data (inverted lists), and these nodes are aware of the others’

existence. Within Chord this can be done through predecessor and

successor pointers. Also, this algorithm is called once the redundant

node set notices that a member of the set is not working (node D). We

assume this is done through reactive sampling previously shown to be

effective [19]. Next, we assume the remaining nodes mark what data

has been published after node D failed, and can thus update node D

once it becomes available.

Based on these preconditions, the algorithm operates as follows.

Once a failure has been detected, the remaining nodes monitor the

down node for a total time length of M (line 2 of the algorithm). Each

node checks if the failed node resumes operation every L time units.

Assuming they find it resumed functioning, it updates node D with

the information it missed and the algorithm terminates (lines 3-6).

One way to prevent two nodes checking at the same time, and enter a

situation when both nodes attempt to update D simultaneously, is to

130

have each node start this algorithm only after a random start period

(line 1). Assuming no two nodes picked the same number (which could

be checked among the nodes calling this algorithm), this possibility can

be averted. Finally, if the algorithm reaches line 8, we assume node

D is permanently down. As Chord operates by searching successor

nodes for information, this replacement node must the next node not

currently in the set (R1, . . ., Rk), or node Rk+1. Additionally, we

must reduce the number of documents in the system by the number

of documents on node D. We represent this number as NumDocs in

line 9 of the algorithm.

However, comparing this approach to algorithm algorithm 6 reveals

several challenges. In algorithm 6 each node could orderly remove all

of its entries from the inverted lists. However, as the failures here are

unpredicted, there is not possible in algorithm 7. Second, in line 9

of algorithm 7 we still refer to ID1 as the node being responsible for

holding the variable DOC-COUNTER. In fact, we now must store k

copies of this variable (starting at node 1) to deal with churn. Finally,

knowing the number of documents within node D is not trivial. We

assume that nodes may contain different numbers of documents, and

thus we may only assume some unknown quantity of x documents

were on node D. In order to address this, we force every node within

the k redundancy group to publish its number of documents to other

members. However, we assume this approach it is infeasible for to

maintain a list of all terms every other node has (as was done in lines

2-3 of algorithm 6) as this list will be quite large.

The value for k is a tunable parameter that must be set with care.

As we deal with hardware with limited storage and assume commu-

nication is costly, care must be taken to not send data unnecessarily.

However, sufficient servers must be present to make the probability

131

that all k peers will fail simultaneously extremely small.

Figure 5.2: Calculating the probability all k nodes will fail.

Fortunately, the average system churn is typically a known or mea-

surable quantity, and can be used to set the value of k. Assuming an

average churn rate of p exists within the system, the probability the

search algorithm will not find an inverted list given k redundant copies

is pk. Figure 5.2 graphically depicts the churn rates of 0.9, 0.75, 0.5,

0.25, and 0.1 with k being 1 – 10. For example, assume an average

churn rate of 0.25, or 20% of the nodes will become unavailable in a

given time period. The probability that at least one of two nodes in

a redundant set will be available is 1-Probability(Failure), or 0.96. As

the next section details, these probabilities are an effective guideline

for setting k.

5.7 Experimental Results

In this section we present experimental results used to validate the

effectiveness of the algorithms in this chapter. As our research goal

132

was to check if PHIRST is appropriate for medium sized newsgroups,

we chose a corpus of 2000 real movie websites to conduct our ex-

periments [58]. The results from the publishing experiments demon-

strate that PHIRST actually becomes more feasible as more docu-

ments and agents are added to the network. We also created two

types of query experiments. In one group we created artificial queries

based on the frequency of words. This experiment demonstrated the

theoretical strengths and weaknesses of PHIRST. We also studied real

movie queries based on the Internet Movie Database (www.imdb.com).

These experiments demonstrated that any weakness in PHIRST is

likely to be insignificant in handling real queries.

5.7.1 Publishing Experiments

Recall that the publishing algorithm is based on storing a maximum of

d entries in a given term’s inverted list. We simulated the publishing

process to study how this parameter affected the average number of

stored inverted entries with and without term stemming. Figure 5.3

displays the average number of inverted terms (Y-axis) in groups of 50,

250, 500, 1000 and 2000 agents (X-axis). We assumed that every agent

published 1 document taken from the movie corpus [58]. In the left

graph, we used the Paice stemming algorithm [57] on each term before

storing it. The right graph published each term without stemming. In

both graphs we also ran the publishing algorithm with d=25 and 75.

Several interesting results can be seen from this graph. First, on av-

erage stemming saved approximately 50 words per document. This is

because stemming lumps similar words, reducing the number of unique

words occurring per document. Second, note the publishing algorithm

has progressively larger storage savings as the number of nodes grows.

133

Figure 5.3: Comparing publishing requirements of full publishing versus publishing

limited to d=75.

Assuming d=N, all terms will be stored, and no publishing gain will

be realized by using the PHIRST approach. However, assuming d

is kept fixed, the more documents that are added, the gap between d

and N grows. This results in progressively more words exceeding the d

threshold, and no longer needing to be stored. As a result, the publish-

ing algorithm becomes more scalable the more nodes that are added,

making full text search feasible even in very large P2P networks.

Finally, in this experiment we assumed each node had 1 document

134

Table 5.2: Average number of inverted entries if 1 document published for every 2

peers.

Number of Nodes 50 250 500 1000 2000

Fully Published 150.43 151.51 153.13 153.1265 157.8343

d=25 138.84 93.106 72.17 53.97 40.605

d=75 150.43 127.14 105.72 84.38 67.035

to publish. We also ran this approach with more dense (e.g. 2 doc-

uments per node) or more sparse (e.g. 1 document every 2 nodes)

network assumptions. As one would expect, the number of terms each

node stores is proportional to the total number of nodes. For example,

Table 5.2 shows the sparse assumption of 1 document published for

every two nodes. These values are identical to those in Figure 5.3 *

0.5.

We also found a Zipfian distribution of terms with a long tail of

infrequent terms (see Figure 5.4). Similar distributions have been

found in P2P systems for items such as file frequency [42, 43] and

term frequency [33]. The storage saving results we found were from

words with frequencies greater than d, or those terms towards the head

of this distribution.

5.7.2 Query Experiments

We first conducted query experiments based on artificial queries cho-

sen based on term frequency. Figure 5.4 displays the rank order of

all words within the 2000 word corpus. We considered words of high

frequency if they appeared in 30% or more of the documents. There

were 200 words in this category. Note that high frequency words are

not just “stop” words like “the”, “and”, or “a”, but can be specific to

the corpus. For example, these words included movie specific terms

such as “character”, “play”, and “plot”. At the other extreme, we

135

Figure 5.4: Distribution of words by rank order within a movie corpus.

define low frequency words as those appearing 50 times or less (fre-

quency 2.5% or less). The large majority of terms were within this

category due to the long tail of the term distribution. Finally, we

assume medium frequency words are those between these extremes.

We created paired terms (2 terms) of all permutations of these

categories. This involves words both with high frequency (HH), both

of low frequency (LL), both of medium frequency (MM), low high

combinations (LH), low medium combinations (LM), and medium high

combinations (MH). Note that the order of the words does not impact

the query algorithm as terms are first sorted by the query algorithm

based on their frequency. For example, the low medium category (LM)

is consequently equivalent to the medium low one (ML).

Next, we generated 1000 artificial queries from each category. We

studied how many results were returned from each of 4 search algo-

rithms. The Structured Search (SS) method published all terms and

sent these indices between agents as necessary during queries. The Un-

structured Search (US) used no publishing and used a random walk

136

Table 5.3: Comparing cost levels of SS, US, TTL, and PHIRST methods in LL, LM,

LH, MM, MH, and HH artificial queries.

SS US TTL=100 PHIRST

LL 1466 2000000 100000 1466

LM 2206 2000000 100000 2142

LH 3177 1987754 100000 2010

MM 20732 1865474 99953 13256

MH 60188 234211 95624 18075

HH 871986 19746 20077 19995

approach to find query results. The TTL=100 method used an un-

structured search, but terminated after visiting 100 agents. Finally,

the hybrid PHIRST approach implemented the publishing and query

algorithms described in this chapter. In these experiments we used a

value of d=75 in the PHIRST method.

Table 5.3 displays the average number of nodes visited (in the case

of unstructured search) and / or the inverted list entries sent (for

structured search) in finding 20 matches from each query (T=20).

For simplicity, we assume that the costs of visiting nodes through

unstructured search, and sending inverted list entries are equal, or

CU = CS. As expected, we find that Structured Search (SS) is most

expensive in finding common terms; where Unstructured Search (US)

is most effective. Conversely, SS is most effective in finding rare terms.

The hybrid PHIRST approach operates similarly to SS in finding rare

terms (LL) and US in finding common items (HH). Note that in middle

categories (for example MH) this approach sent the least amount of

information. PHIRST saves costs by only sending a maximum of d

entries even when structured search is deemed necessary. Furthermore,

this approach switches between the SS and US methods as needed,

saving additional costs.

137

We also studied the impact of the number of documents per node

(document density) on these costs. The unstructured search (US) is

most affected by the density of the documents. For example, assuming

each agent stores 2 documents, the cost of using this search algorithm

will be halved. Conversely, sparse networks make unstructured search

less appealing. This tradeoff does come to light within the unstruc-

tured element of the Hybrid algorithm 5 in lines 1 and 2. However,

unless extreme changes in the document density occur (e.g. every

node containing a large percentage of the documents), differences in

the search costs are so large that this parameter is unlikely to change

which algorithm should be used in categories such as LL, LM, and

LH. The structured approach is completely unaffected by document

density, and thus the Hybrid’s structured component is also unaffected

as well.

The results in Table 5.4 display the number of query results re-

turned from each search algorithm. This result underlies the poten-

tial strengths and weakness within the PHIRST method. Despite the

lower costs of PHIRST, this approach was overall equally effective in

returning the query results. When word combinations were frequent,

the unstructured search component of the PHIRST method still found

these results (thus MH was still successful). At the other extreme, as-

suming the word frequency of any term was less than d, at least one

term was fully indexed. In these cases, complete recall was also guar-

anteed if structured search is used on the indexed term(s) followed by

unstructured search to find all remaining terms. In these experiments,

all terms taken from the L category were in less than d documents (e.g.

L values had 50 or fewer instances while d=75), resulting in full recall

for all of these categories (LL, LM, and LH) as well. As predicted

in section 5.5, the query algorithm did have slight trouble in finding

138

Table 5.4: Comparing recall levels of SS, US, TTL, and PHIRST methods in LL,

LM, LH, MM, MH, and HH artificial queries.

SS US TTL=100 PHIRST

LL 3 3 0 3

LM 68 68 2 68

LH 1167 1167 47 1167

MM 874 874 93 870

MH 4626 4626 1180 4626

HH 5000 5000 4997 5000

series of terms of medium frequency. Note that the PHIRST method

did return slightly fewer results in the MM case (870 versus 874).

We found that this limitation was negligible in answering real world

queries once d was significantly higher than T. To verify this claim we

used the 1000 most popular real movie keywords taken from the In-

ternet Movie Database Internet Movie Database1 taken from October

25, 2006. These queries were typically between 1 and 4 words (mean

1.94).

Table 5.5 compares the number of results found from these queries

with SS, US, and TTL=100 methods, and the PHIRST method with

d=75 with variable values for T. Note that the PHIRST algorithm

found nearly all results (99.89%) when only 5 results were requested

(T=5). PHIRST held up fairly well even when 20 matches (T=20)

were required with 97.78% of all matches found. The recall of the

PHIRST approach dropped with T (92.77% at T=50, and only 33.23%

at T=N). This confirms the claim that in real queries the recall of the

PHIRST approach will be nearly 100% for T << d (e.g., T=5), but

performed poorly once T >> d (e.g., T=N).

Table 5.6 displays the search costs for finding these real queries

1(http://www.imdb.com/Search/keywords)

139

Table 5.5: Comparing recall levels of SS, US, TTL, and PHIRST methods with

regard to different numbers of results (T).

SS US TTL=100 PHIRST

T=5 4592 4592 2138 4587

T=20 15598 15598 3712 15252

T=50 30347 30347 4534 28154

T=2000 105649 105649 5254 35087

Table 5.6: Comparing cost levels of SS, US, TTL, and PHIRST methods with regard

to different numbers of results (T).

SS US TTL=100 PHIRST

T=5 57680 591841 86578 12006

T=20 68696 1181515 97735 24976

T=50 83435 1567039 99269 38744

T=2000 158737 2000000 100000 68610

for the 4 algorithms described in this chapter assuming CS = CU =

1, and each agent stored only one document. We again found the

PHIRST approach had significantly lower search costs that all three

of the other approaches. Again, observe that the advantage to the

PHIRST approach is most effective when d>>T. If T=5, the PHIRST

approach has nearly 1/5 the cost of the next best method (SS) (with

a high recall of 99.89%). If T=20, its cost is still nearly 1/3 that of

the next best method (SS) (recall still high at 97.78%). If T=N, the

cost advantage of the PHIRST approach is under 1/2 from the next

best method (TTL=100) (recall only 33.23%).

5.7.3 Churn Experiments

Recall that the PHIRST approach to handling churn requires that k

copies of each inverted list must be stored. We conducted experiments

studying the relationship between this value of k, the system’s pub-

140

Table 5.7: Comparing the impact of redundant nodes on publishing load, query

results, and search cost within the Hybrid method with d=75 and T=20 when node

failure results in search termination.
Replicated Nodes (k) Publishing Load Query Results Search Cost

1 134.07 6756 6015

5 670.35 14692 25308

15 2011.05 15252 24969

lishing requirements, and the probability inverted lists were available.

The goal was to achieve at least 95 percent of the query results when

confronted with churn compared to the results achieved when no churn

existed.

We simulated conditions with k being 1, 5, and 15 and studied

their impact on the publishing storage and query results within the

Hybrid algorithm. We revisited the real-world queries from the pre-

vious dataset, where the goal was to return 20 matches (T), and a

scenario with a very high churn rate of 0.5. To simulate churn, we cre-

ated random snapshots of the simulator where half of the nodes were

chosen at random to have failed with uniform distribution. In the first

set of experiments, we assumed that when the entire set of k nodes

were ”down” the query would fail. The results from this experiment

are found in Table 5.7.

As these results indicate, there is a clear tradeoff between having

additional nodes within k, their storage requirements, and the query

results. Setting k=1 has the lowest publishing cost, but also results

in losing many of the query results. Setting k=15 allows for finding

all possible results, but the highest cost. As predicted from Figure

5.2, setting k=5 will result in an effective tradeoff between achieving

over 95% recall from the inverted lists (0.96% of the results from k=15)

while still keeping publishing costs relatively low (1/3 of the publishing

141

Table 5.8: Comparing the impact of redundant nodes on publishing load, query

results, and search cost within the Hybrid method with d=75 and T=20 when node

failure results in using unstructured search.

Replicated Nodes (k) Publishing Load Query Results Search Cost

1 134.07 15428 566477

5 670.35 15259 59994

15 2011.05 15252 24969

costs of k=15).

In the above results, we assumed a query would fail if structured

search was desired, but the node with the inverted list(s) had failed.

Next, we repeated the above experiment, but assumed unstructured

search would instead be used if the node with the inverted list failed.

These results are found in Table 5.8. As one would expect, when k=15

the entire k set of nodes never failed, and thus random search was never

used. Thus, the results here mimicking those in Table 5.7. Conversely,

setting k=1 resulted in often using the random search. Note that

these results even outperform those of the base Hybrid approach, as

the Hybrid approach performs unstructured search for approximately

50% of queries. However, this came at a very high search cost. Finally,

k=5 again provides a good tradeoff between these factors.

Based on these results we concluded that the PHIRST approach

was successful in reducing publishing costs, even in systems with a

very high churn rate.

5.8 Conclusion and Future Work

In this work we present a hybrid P2P search approach that leverages

the strengths of structured and unstructured search. We present a

P2P publishing algorithm that insures that no peer can hold more

142

than d entries in its inverted file of a given term. This ensures that

no one peer is required to hold disproportional amounts of data. Our

approach is highly scalable in that every peer typically stores fewer

entries as the number of peers grows. This allows us to partially

index all words in the corpus while keeping storage costs low. We

also present a querying algorithm that select the best search approach

based on global frequencies of all words in the corpus. This allows us

to select the best method based on estimated cost. Our approach uses

unstructured search to compensate for the lack of published inverted

file locations of frequent terms and structured search to location rare

terms. Finally, we present a distributed approach for handling churn,

where k copies of each inverted index are stored. We found that the

value for k can be easily set to match the average churn rate within

the system.

In the future, we hope to deploy our system in a moderate sized

group of cellphones participating in a P2P network. We intend on

measuring the actual costs involved with deploying our approach in

DHT implementations such as Chord [55] and random walk approaches

[74] on live systems instead of using the simulated costs we used for

the experiments in this work.

143

Chapter 6

Final Remarks

In this thesis, we explored how an algorithm selection approach could

be used to create adaptive coordination methods in a several domains.

In the first chapter, we studying how to create adaptive methods for

homogeneous robots without communication. In the second chapter,

we present two types of adaptive communication methods, uniform

and neighborhood. In the third chapter, we studied how adaptive

methods could be applied to optimization domains, such as scheduling

and graph coloring problems. In the fourth chapter, we present an

method for switching between structured and unstructured full-text

search algorithms in Peer to Peer networks.

In all domains, the key to the success of the adaptive approaches we

present was identifying what attributes differentiate between coordi-

nation algorithms. In the robotic domains this was done through the

CCC measure we presented. In the schedule optimization domain, we

developed a tightness measure to quantify the expected impact of shar-

ing information. In the Peer to Peer search domain, a global measure of

term distribution allowed us to equate between search algorithms. In

all domains, once these attributed were found, we successfully created

adaptive methods that significantly outperformed the static methods

they were based on.

144

In addition to the domain specific future directions presented at the

end of each chapter, we hope to pursue several more general questions.

One key goal is to develop a formalized model that includes all of the

coordination measures we present. We hope to study if the phase

transition model that has often been applied to distributed constraint

optimization problems can be extended to coordination problems in

general or to the specific subset of domains we studied. If such a

model can be developed, it may be able to predict which coordination

method will perform best, or to predict a-prior what the productivity

level of a given method will be without running any trials.

Another key question focuses on the optimality of the adaptive

methods we created. As we described in the introduction, finding the

optimal coordination policy is an intractable problem for most real-

world domains. Thus, our approach focused on finding methods of

improving productivity beyond the highest levels static methods were

capable of. While the methods we created did achieve statistically

significant improvements, we hope to study if it is possible to quantify

how good an approximation of optimal behavior was achieved. Specif-

ically, we hope to study if upper and lower bounds can be computed

within the adaptive methods we present relative to the theoretical

optimal behavior.

Finally, the basic approach of this thesis was to select the best coor-

dination algorithm from a group of known algorithms. In the future,

we hope to apply the lessons from this thesis to create new coordi-

nation algorithms in related problems such task allocation, coalition

formation, and large scale teams. We are hopeful that this work will

lead to additional advances in multiagent systems.

145

Bibliography

[1] www.google.com.

[2] J. A. Allen and S. Minton. Selecting the right heuristic algorithm:

Runtime performance predictors. In Canadian Conference on AI,

pages 41–53, 1996.

[3] R. Arkin and T. Balch. Cooperative multiagent robotic sys-

tems. In David Kortenkamp, R.P. Bonasso, and R. Murphy, edi-

tors, Artificial Intelligence and Mobile Robots. MIT/AAAI Press,

Cambridge, MA., 1998.

[4] T. Balch. The impact of diversity on performance in multi-robot

foraging. In O. Etzioni, J. P. Müller, and J. M. Bradshaw, editors,

Proceedings of the Third International Conference on Autonomous

Agents (Agents’99), pages 92–99, Seattle, WA, USA, 1999. ACM

Press.

[5] T. Balch. www.teambots.org, 2000.

[6] T. Balch and R. Arkin. Behavior-based formation control for mul-

tirobot teams. IEEE Transactions on Robotics and Automation,

14(6):926–939, December 1998.

[7] T. R. Balch and R. C. Arkin. Behavioral diversity in learning

robot teams. PhD thesis, 1998.

146

[8] S. L. Brue. Retrospectives: The law of diminishing returns. The

Journal of Economic Perspectives, 7(3):185–192, 1993.

[9] S. Brueckner and H. V. D. Parunak. Information-driven phase

changes in multi-agent coordination. In Engineering Self-

Organising Systems, pages 104–119, 2005.

[10] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and

S. Shenker. Making gnutella-like p2p systems scalable. In SIG-

COMM ’03: Proceedings of the 2003 conference on Applications,

technologies, architectures, and protocols for computer communi-

cations, pages 407–418, New York, NY, USA, 2003. ACM Press.

[11] P. Cheeseman, B. Kanefsky, and W. M. Taylor. Where the Re-

ally Hard Problems Are. In Proceedings of the Twelfth Interna-

tional Joint Conference on Artificial Intelligence, IJCAI-91, Sid-

ney, Australia, pages 331–337, 1991.

[12] J. Davin and P. J. Modi. Impact of problem centralization in

distributed constraint optimization algorithms. In AAMAS ’05:

Proceedings of the fourth international joint conference on Au-

tonomous agents and multiagent systems, pages 1057–1063, New

York, NY, USA, 2005.

[13] G. Dudek, M. Jenkin, and E. Milios. A taxonomy for multi-agent

robotics. Robot Teams: From Diversity to Polymorphism, Balch,

T. and Parker, L.E., eds., Natick, MA: A K Peters, 3:3–22, 2002.

[14] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes. A taxonomy for

multi-agent robotics. Autonomous Robots, 3:375–397, 1996.

[15] E. H. Durfee. Practically coordinating. AI Magazine, 20(1):99–

116, 1999.

147

[16] M. Y. J. O. Eiichi Yoshida, Tamio Arai. Local communication

of multiple mobile robots: Design of optimal communication area

for cooperative tasks. Journal of Robotic Systems, 15(7):407–427,

1998.

[17] C. B. Excelente-Toledo and N. R. Jennings. The dynamic selec-

tion of coordination mechanisms. Autonomous Agents and Multi-

Agent Systems, 9:55–85, 2004.

[18] M. Fontan and M. Matarić. Territorial multi-robot task division.

IEEE Transactions of Robotics and Automation, 14(5), 1998.,

pages 815–822, 1998.

[19] P. B. Godfrey, S. Shenker, and I. Stoica. Minimizing churn in

distributed systems. In SIGCOMM ’06: Proceedings of the 2006

conference on Applications, technologies, architectures, and pro-

tocols for computer communications, pages 147–158, New York,

NY, USA, 2006. ACM Press.

[20] D. Goldberg and M. Matarić. Interference as a tool for design-

ing and evaluating multi-robot controllers. In AAAI/IAAI, pages

637–642, 1997.

[21] D. Goldberg and M. Matarić. Design and evaluation of robust

behavior-based controllers for distributed multi-robot collection

tasks. In Robot Teams: From Diversity to Polymorphism, pages

315–344, 2001.

[22] C. Gomes, W. van Hoeve, and B. Selman. Constraint Program-

ming for Distributed Planning and Scheduling. In AAAI Spring

Symposium on Distributed Plan and Schedule Management, 2006.

148

[23] C. P. Gomes and B. Selman. Algorithm portfolios. Artificial

Intelligence (AIJ), 126(1-2):43–62, 2001.

[24] L. Gravano, H. Garćıa-Molina, and A. Tomasic. Gloss: text-

source discovery over the internet. ACM Trans. Database Syst.,

24(2):229–264, 1999.

[25] B. J. Grosz and S. Kraus. Collaborative plans for complex group

action. Artificial Intelligence, 86(2):269–357, 1996.

[26] L. Hogg and N. Jennings. Socially intelligent reasoning for au-

tonomous agents. IEEE Transactions on Systems, Man and Cy-

bernetics - Part A, 31(5):381–399, 2001.

[27] O. Holland and C. Melhuish. Stigmergy, self-organization, and

sorting in collective robotics. Artif. Life, 5(2):173–202, 1999.

[28] B. Horling, R. Mailler, and V. Lesser. Farm: A Scalable Environ-

ment for Multi-Agent Development and Evaluation. In Advances

in Software Engineering for Multi-Agent Systems, pages 220–237.

Springer-Verlag, Berlin, February 2004.

[29] M. Jager and B. Nebel. Dynamic decentralized area partitioning

for cooperating cleaning robots. In ICRA 2002, pages 3577–3582.

[30] M. Jager and B. Nebel. Decentralized collision avoidance, dead-

lock detection, and deadlock resolution for multiple mobile robots.

In IROS, pages 1213–1219, 2001.

[31] N. R. Jennings. Controlling cooperative problem solving in in-

dustrial multi-agent systems using joint intentions. Artificial In-

telligence, 75(2):195–240, 1995.

149

[32] T. Joachims. A probabilistic analysis of the Rocchio algorithm

with TFIDF for text categorization. In D. H. Fisher, editor, Pro-

ceedings of ICML-97, 14th International Conference on Machine

Learning, pages 143–151, Nashville, US, 1997. Morgan Kaufmann

Publishers, San Francisco, US.

[33] Y.-J. Joung, C.-T. Fang, and L.-W. Yang. Keyword search in

dht-based peer-to-peer networks. In ICDCS ’05: Proceedings of

the 25th IEEE International Conference on Distributed Comput-

ing Systems (ICDCS’05), pages 339–348, Washington, DC, USA,

2005. IEEE Computer Society.

[34] G. A. Kaminka and R. Glick. Towards robust multi-robot forma-

tions. ICRA-06, 2006.

[35] G. A. Kaminka and M. Tambe. Robust multi-agent teams via

socially-attentive monitoring. Journal of Artificial Intelligence

Research, 12:105–147, 2000.

[36] A. M. I. R. E. Kaplansky and R. Zivan. Comparing performance of

distributed constraints processing algorithms. In Proc. AAMAS-

2002 Workshop on Distributed Constraint Reasoning DCR, pages

86–93, July 2002.

[37] N. Kohl and P. Stone. Machine learning for fast quadrupedal

locomotion. AAAI, pages 611–616, July 2004.

[38] M. G. Lagoudakis and M. L. Littman. Algorithm selection us-

ing reinforcement learning. In Proc. 17th International Conf. on

Machine Learning Morgan Kaufmann, San Francisco, CA, pages

511–518, 2000.

150

[39] V. Lesser, K. Decker, T. Wagner, N. Carver, A. Garvey,

B. Horling, D. Neiman, R. Podorozhny, M. NagendraPrasad,

A. Raja, R. Vincent, P. Xuan, and X. Zhang. Evolution of the

GPGP/TAEMS Domain-Independent Coordination Framework.

Autonomous Agents and Multi-Agent Systems, 9(1):87–143, July

2004.

[40] K. Leyton-Brown, E. Nudelman, G. Andrew, J. McFadden, and

Y. Shoham. Boosting as a metaphor for algorithm design. In

CP2003, pages 899–903, 2003.

[41] J. Li, B. Loo, J. Hellerstein, F. Kaashoek, D. Karger, and R. Mor-

ris. On the feasibility of peer-to-peer web indexing and search. In

2nd International Workshop on Peer-to-Peer Systems, 2003.

[42] B. T. Loo, J. M. Hellerstein, R. Huebsch, S. Shenker, and I. Stoica.

Enhancing p2p file-sharing with an internet-scale query processor,

2004.

[43] B. T. Loo, R. Huebsch, I. Stoica, and J. M. Hellerstein. The case

for a hybrid p2p search infrastructure, 2004.

[44] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and

replication in unstructured peer-to-peer networks. In ICS ’02:

Proceedings of the 16th international conference on Supercomput-

ing, pages 84–95, New York, NY, USA, 2002. ACM Press.

[45] S. Mahadevan and J. Connell. Automatic programming of

behavior-based robots using reinforcement learning. In National

Conference on Artificial Intelligence, pages 768–773, 1991.

[46] R. T. Maheswaran, M. Tambe, E. Bowring, J. P. Pearce, and

P. Varakantham. Taking dcop to the real world: Efficient complete

151

solutions for distributed multi-event scheduling. In AAMAS ’04:

Proceedings of the Third International Joint Conference on Au-

tonomous Agents and Multiagent Systems, pages 310–317, Wash-

ington, DC, USA, 2004. IEEE Computer Society.

[47] R. Mailler and V. Lesser. Solving distributed constraint opti-

mization problems using cooperative mediation. In AAMAS ’04:

Proceedings of the Third International Joint Conference on Au-

tonomous Agents and Multiagent Systems, pages 438–445, Wash-

ington, DC, USA, 2004. IEEE Computer Society.

[48] R. Mailler and V. Lesser. Using Cooperative Mediation to Solve

Distributed Constraint Satisfaction Problems. In AAMAS ’04,

pages 446–453, New York, 2004.

[49] T. W. Malone and K. Crowston. The interdisciplinary study of

coordination. ACM Comput. Surv., 26(1):87–119, 1994.

[50] M. Matarić. Reinforcement learning in the multi-robot domain.

In Autonomous Robots, pages 73–83, 1997.

[51] M. J. Matarić. Using communication to reduce locality in multi-

robot learning. In AAAI/IAAI, pages 643–648, 1997.

[52] S. Minton, M. D. Johnston, A. B. Philips, and P. Laird. Minimiz-

ing conflicts: A heuristic repair method for constraint satisfaction

and scheduling problems. Artificial Intelligence, 58(1-3):161–205,

1992.

[53] P. Modi, W. Shen, M. Tambe, and M. Yokoo. Adopt: Asynchro-

nous distributed constraint optimization with quality guarantees.

Artificial Intelligence (AIJ), 161:149–180, 2005.

152

[54] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and

L. Troyansky. Determining computational complexity from char-

acteristic “phase transitions”. Nature, 400(6740):133–137, 1999.

[55] R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord:

A Scalable Peer-to-Peer Lookup Service for Internet Applications.

In ACM SIGCOMM 2001, San Diego, CA, September 2001.

[56] E. Ostergaard, G. Sukhatme, and M. Matarić. Emergent bucket

brigading - a simple mechanism for improving performance in

multi-robot constrainedspace foraging tasks. In Proceedings of

the 5th International Conference on Autonomous Agents, pages

29–30, 2001.

[57] C. D. Paice. Another stemmer. SIGIR Forum, 24(3):56–61, 1990.

[58] B. Pang, L. Lee, and S. Vaithyanathan. Thumbs up?: sentiment

classification using machine learning techniques. In EMNLP ’02:

Proceedings of the ACL-02, pages 79–86, 2002.

[59] H. V. D. Parunak, S. Brueckner, J. Sauter, and R. Savit. Effort

profiles in multi-agent resource allocation. In AAMAS ’02: Pro-

ceedings of the first international joint conference on Autonomous

agents and multiagent systems, pages 248–255, New York, NY,

USA, 2002. ACM Press.

[60] D. V. Pynadath and M. Tambe. The communicative multiagent

team decision problem: Analyzing teamwork theories and models.

JAIR, 16:389–423, 2002.

[61] P. Reynolds and A. Vahdat. Efficient peer-to-peer keyword search-

ing. In Middleware, pages 21–40, 2003.

153

[62] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling churn

in a DHT. In Proceedings of the 2004 USENIX Annual Technical

Conference (USENIX ’04), Boston, Massachusetts, June 2004.

[63] J. R. Rice. The algorithm selection problem. In Advances in

Computers, volume 15, pages 118–165, 1976.

[64] A. Rosenfeld, G. Kaminka, and S. Kraus. Adaptive robot co-

ordination using interference metrics. In The Sixteenth European

Conference on Artificial Intelligence, pages 910–916, August 2004.

[65] P. Rybski, A. Larson, M. Lindahl, and M. Gini. Performance

evaluation of multiple robots in a search and retrieval task, In

Workshop on Artificial Intelligence and Manufacturing, 1998.

[66] M. Schneider-Fontan and M. Matarić. A study of territoriality:

The role of critical mass in adaptive task division. In Maes, P.,

Matarić, M., Meyer, J.-A., Pollack, J., and Wilson, S., editors,

From Animals to Animats IV, pages 553–561. MIT Press., 1996.

[67] S. Sen, M. Sekaran, and J. Hale. Learning to coordinate with-

out sharing information. In Proceedings of the Twelfth National

Conference on Artificial Intelligence, pages 426–431, Seattle, WA,

1994.

[68] R. S. Sutton. Reinforcement learning: Past, present and future.

In SEAL, pages 195–197, 1998.

[69] M. Tambe. Towards flexible teamwork. Journal of Artificial In-

telligence Research, 7:83–124, 1997.

[70] A. Tews. Adaptive multi-robot coordination for highly dynamic

environments. In CIMCA, 2001.

154

[71] R. Vaughan, K. Støy, G. Sukhatme, and M. Matarić. Go ahead,

make my day: robot conflict resolution by aggressive competition.

In Proceedings of the 6th int. conf. on the Simulation of Adaptive

Behavior, 2000.

[72] C. J. C. H. Watkins. Learning from delayed rewards. Ph.D.

Dissertation, Kings College, 1989.

[73] R. J. Williams. Simple statistical gradient-following algorithms for

connectionist reinforcement learning. Machine Learning, 8:229–

256, 1992.

[74] Y. Yang, R. Dunlap, M. Rexroad, and B. F. Cooper. Performance

of full text search in structured and unstructured peer-to-peer

systems. In IEEE INFOCOM, 2006.

[75] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. The dis-

tributed constraint satisfaction problem: Formalization and algo-

rithms. Knowledge and Data Engineering, 10(5):673–685, 1998.

[76] M. Yokoo and K. Hirayama. Distributed breakout algorithm for

solving distributed constraint satisfaction problems. In V. Lesser,

editor, ICMAS, pages 401–408. MIT Press, 1996.

[77] K. Yoon and C. Hwang. Multiple attribute decision making: an

introduction. Prentice Hall, Thousand Oaks: Sage, 1995.

[78] W. Zhang. Phase transitions and backbones of 3-SAT and max-

imum 3-SAT. In Principles and Practice of Constraint Program-

ming, pages 153–167, 2001.

[79] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph,

and J. D. Kubiatowicz. Tapestry: a resilient global-scale over-

155

lay for service deployment. IEEE Journal on Selected Areas in

Communications, 22(1):41–53, 2004.

[80] S. Zilberstein. Using anytime algorithms in intelligent systems.

AI Magazine, 17(3):73–83, 1996.

156

