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Abstract

Agents in dynamic multi-agent environments must monitor their peers and the
environment to execute individual and group plans, to ascertain their progress, and
to detect failures. In practice, however, agents cannot continuously monitor all
surroundings and their peers. This leads to uncertainty about monitored agents’
states, and aggravates computational requirements. A key open question is thus how
to limit monitoring activities while providing effective monitoring: The Monitoring
Selectivity Problem. We investigate this question in the context of monitoring in
teams of cooperating agents, in three complex, dynamic multi-agent domains, and
in service of different monitoring tasks: Monitoring for coordination and teamwork
failures, and monitoring distributed teams via their communications.

We provide empirical and analytical answers to the monitoring selectivity prob-
lem, via Socially-Attentive Monitoring, which focuses on using knowledge about the
relationships between monitored agents and the procedures used to maintain these
relationships. We explore a family of socially-attentive teamwork failure-detection
algorithms under varying conditions of task distribution and uncertainty. We show
that a centralized scheme using a complex algorithm trades correctness for com-
pleteness and requires monitoring all teammates. In contrast, a simple distributed
teamwork monitoring algorithm exploits agents’ local state and results in correct and
complete detection of teamwork failures, despite relying on limited, uncertain knowl-
edge, and monitoring only key agents in a team. In monitoring a distributed team,
we present heuristics for tackling monitoring uncertainty (which results from the lim-
ited overheard communications), and provide empirical results demonstrating that
socially-attentive techniques can significantly reduce the uncertainty in such mon-
itoring. Furthermore, we explore monitoring algorithms which trade-off efficiency
for expressivity, resulting in a limited-expressivity algorithm that can detect failures
and provide high-accuracy monitoring of a team and its members, using a single,
constant-space, structure. In addition, we report on the design of a socially-attentive
monitoring system and demonstrate its generality in monitoring several coordina-
tion relationships, in providing quantitative teamwork evaluation, and in diagnosing
detected failures.

xiii



Chapter 1

Introduction

Agents in complex, dynamic, environments face uncertainty in the execution of their
tasks. Their sensors and actuators may fail unexpectedly, or their plans may fail due
to the dynamic nature of the environment. For instance, a fog may hide normally-
visible objects, mechanical failures may render a robot’s cameras useless, a grip may
be too slippery, etc. Interactions between agents in multi-agent environments add
to the difficulty of execution, e.g., communication messages may get lost or garbled,
and adversaries may intentionally interfere with plans. It is often expected that the
agent’s designer (or an automated planner) would provide the agent with sufficient
knowledge on how to deal with this uncertainty in a preventative manner (for in-
stance, reduce speed while driving in fog, use error correcting, secure communication
protocols, etc.). This design methodology focuses on pre-failure robustness (Toyama
& Hager, 1997): The agent’s plans are made robust in face of uncertainty in the
environment.

Pre-failure robustness, however, is inadequate by itself in many real-world envi-
ronments. As application environments increase in complexity and unpredictability,
the combinatorially explosive number of possible states makes it practically impos-
sible for the agents’ designer to predict at design-time all possible states the agents
may find themselves in. Examples of such environments include (but are not limited
to):

e Virtual environments for training and research (Rickel & Johnson, 1999a,
1999b; Kitano, Tambe, Stone, Veloso, Coradeschi, Osawa, Matsubara, Noda,
& Asada, 1997).



e High-fidelity distributed simulations (Calder, Smith, Courtemanche, Mar,
& Ceranowicz, 1993; Tambe, Johnson, Jones, Koss, Laird, Rosenbloom, &
Schwamb, 1995).

e Intelligent homes (Horling, Lesser, Vincent, Bazzan, & Xuan, 1999).

e Multi-agent robotics (Parker, 1993; Balch, 1998).

e Application integration architectures and distributed applications (Pynadath,

Tambe, Chauvat, & Cavedon, 1999; Pechoucek, Marik, & Stepankova, 2000).

In such environments the designer will therefore be unable to supply the agents
with complete a-priori knowledge about the correct response in all states (Ambros-
Ingerson & Steel, 1988). This difficulty is further exacerbated in environments in
which multiple agents interact, since the designer is required to also predict all pos-
sible interactions and failures of interactions between the agents. For instance, a
designer would need to predict when communications will fail between two cooper-
ating agents, what an opponent’s behavior will be, when sensors will fail, etc.

Agents in complex, dynamic, multi-agent environments must therefore be able
to monitor their environment at execution-time, to detect any failures (leading to
diagnosis and recovery (Toyama & Hager, 1997; Ambros-Ingerson & Steel, 1988;
Wilkins, 1988)), to ascertain progress, and to track their own (and others’) state
(e.g., for visualization and debugging (Ndumu, Nwana, Lee, & Collis, 1999)). This
process is called execution monitoring (Doyle, Atkinson, & Doshi, 1986; Ambros-
Ingerson & Steel, 1988; Cohen, Amant, & Hart, 1992; Reece & Tate, 1994; Atkins,
Durfee, & Shin, 1997; Veloso, Pollack, & Cox, 1998).

Execution monitoring in multi-agent settings requires an agent to monitor its
peers, since its own correct execution depends also on the state of its peers (Co-
hen & Levesque, 1991; Jennings, 1993; Parker, 1993; Jennings, 1995; Durfee, 1995;
Grosz & Kraus, 1996; Tambe, 1997; Pechoucek et al., 2000). Monitoring peers is of
particular importance in teams, since team-members rely on each other and work

closely together on related tasks:

e Monitoring allows team-members to coordinate their actions and plans with
teammates, to help teammates and cooperate without interference. For exam-

ple, drivers of cars in a convoy cannot drive without monitoring other cars in
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the convoy, so as to not disband the convoy, and to help other drivers if cars

break down.

e Monitoring allows team-members to use peers as dynamic information sources,
for learning new information. For instance, if a driver in a convoy sees that the
other cars in front of it suddenly turn to the left, she can infer the existence

of an obstacle or milestone despite not directly seeing it herself.

Previous work in multi-agent monitoring has investigated different ways of monitor-
ing in the context of teams of cooperating agents. For example, theoretical work on
SharedPlans (Grosz & Kraus, 1999) has distinguished between passive monitoring,
in which an agent is notified when a proposition changes (e.g., via communications),
and active monitoring, in which an agent actively seeks to find out when a proposition
changes (e.g., via observations and inference of unobservable attributes). Practical
implementations have investigated the use of passive monitoring via communications
(e.g., (Jennings, 1995), (Tambe, 1997)), active monitoring via plan recognition (e.g.,
(Huber & Durfee, 1995), (Intille & Bobick, 1999)), active implicit monitoring via
the environment (Fenster, Kraus, & Rosenschein, 1995), and different combinations
of these methods (Parker, 1993; Jennings, 1993; Tambe, 1997; Lesh, Rich, & Sidner,
1999). No approach has been shown to be clearly superior to another.

Regardless of the monitoring method, a key problem emerges when monitoring
multiple agents: A monitoring agent must be selective in its monitoring activities
(both raw observations and processing), since bandwidth and computational limi-
tations prohibit the agent from monitoring all other agents to full extent, all the
time (Jennings, 1995; Durfee, 1995; Grosz & Kraus, 1996). However, selectivity
in monitoring activities leads to uncertainty about monitored agents’ states, which
can lead to degraded monitoring performance. We call this challenging problem the
Monitoring Selectivity Problem: Monitoring multiple agents involves overhead that
hurts performance; but at the same time, minimization of the monitoring overhead
can lead to monitoring uncertainty that also hurts performance.

Although the monitoring selectivity problem has been raised in the past (see
Chapter 11 for detailed treatment of related work), only solution frameworks and
minimal constraints were provided (Jennings, 1993; Durfee, 1995; Grosz & Kraus,

1996). Key questions remains open:



e What are the bounds of selectivity that still facilitate effective monitoring?

e How can monitoring accuracy be maintained in face of limited knowledge of

other agents’ states?
e How can monitoring be carried out efficiently for on-line deployment?

For instance, the theory of SharedPlans requires agents to verify that their intentions
do not conflict with those of teammates in order to guarantee the quality of teamwork
(Grosz & Kraus, 1996). However, the practical methods by which such verification
can take place are left for further investigation (Grosz & Kraus, 1996, p. 308). The
designer is left with no concrete answer as to how to satisfy this constraint given the
monitoring selectivity problem.

This dissertation begins to address the monitoring selectivity problem in teams by
investigating requirements for effective monitoring in two monitoring tasks: Detect-
ing failures in maintaining relationships, and determining the state of a distributed
team (for both failure detection and visualization). Our focus in these explorations
is on practical algorithms that have requirement and performance guarantees in real-
world applications. The algorithms we present are active (per the definition above),
in that they seek to identify the state of monitored agents via unintrusive key-hole
plan recognition (i.e., without the active participation of the monitored agent in the
monitoring process), as an alternative to passive monitoring (which may often be
unreliable, as it intrusively requires the monitored agents to actively cooperate with
the monitoring agent). However, we do not rule out the use of communications—we
simply seek to provide techniques that can work even when communications-based
monitoring fail.

We show how the monitoring selectivity problem emerges in the above two mon-
itoring tasks, and we explore in-depth answers to it. We show that using knowl-
edge about the ideal relationships maintained by the agents in a system, and the
procedures by which the relationships are maintained, we can allow for significant
selectivity in monitoring, while providing effective monitoring capabilities. We call
such monitoring using knowledge of social relationships socially-attentive monitor-
ing, to differentiate it from other types of monitoring which rely on other types of
knowledge, such as knowledge of the goals of the agents’ tasks, or knowledge of the

duration of steps that they have to take. Here, the term social relationship is used to
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denote a relation on attributes of multiple agents’ states. Socially-attentive monitor-
ing in the convoy example involves verifying that agents have common destination
and heading, that their beliefs in driving as a convoy are mutual, etc. For instance,
if the agents are observed to head in different directions, they clearly do not have a
common heading. This is different than monitoring whether their chosen (common)
heading leads towards their (agreed upon) destination.

We make three key assumptions in the techniques we present. First, in defining a
relationship failure, we make the assumption that the team does not allow an agent
to temporarily violate the team relationships in service of other commitments which
are not shared by the team. For instance, we assume an agent should not (under
non-failure conditions) temporarily suspend execution of a task it is carrying out for
one team, in service of carrying out a task for a different team.

We make a second key assumption in utilizing plan-recognition for monitoring.
We assume that the plan-library used for recognizing the other agents in complete
and correct. This is a common assumption in plan-recognition literature (e.g., Kautz
& Allen, 1986), and is often true in collaborative settings. It does not imply that the
agents are homogeneous, but that the range of plans agents utilize is recognizable
to the monitoring agent.

Finally, a related assumption that we make is that the observations of the mon-
itoring agent are correct, involving no failures in monitored actions and in our ob-
servation. In other words, we assume that if an agent is observed to have taken an
action, than this action was intended and executed by the monitored agent. For
example, if a helicopter is observed as landing, we have assumed that indeed the
landing action was intended and carried out, and that our sensing of the action was

correct.

1.1 Monitoring Selectivity in Relationship Failure

Detection

In Part I of this dissertation, we focus our investigation on the task of detecting fail-
ures in the social relationships that ideally hold between agents in a monitored team.

Such monitoring is a critical task, as failures to maintain the team’s relationships



can often lead to catastrophic failures on the part of the team, lack of cooperative
behavior and lack of coordination. Such failures are often the result of individual
agent failures, such as failures in an agent’s sensors and actuators. Thus relationship
failures cover a large class of failures, and their detection promotes robust individual
operation.

We explore socially-attentive algorithms for detecting teamwork failures under
various conditions of uncertainty, resulting from the necessity of selectivity. We an-
alytically show that despite the presence of uncertainty about the actual state of
monitored agents, a centralized active monitoring scheme can guarantee failure de-
tection that is either sound and incomplete, or complete and unsound. However, this
requires monitoring all agents in a team, and reasoning about multiple hypotheses
as to their actual state. We then show that active distributed teamwork monitoring
results in sound and complete detection capabilities, despite using a much simpler
algorithm. By exploiting the agents’ local states, which are not available to the
centralized algorithm, the distributed algorithm: (a) uses only a single, possibly
incorrect hypothesis of the actual state of monitored agents, and (b) involves mon-
itoring only key agents in a team, not necessarily all team-members (thus allowing
even greater selectivity). Using a transformation on the analytical constructs, we
show analogous results for centralized failure-detection in mutual-exclusion coordi-
nation relationships.

We also conduct an empirical investigation of socially-attentive monitoring in
teams. We present an implemented general socially-attentive monitoring framework
in which the expected ideal social relationships that are to be maintained by the
agents are compared to the actual social relationships. Discrepancies are detected
as possible failures and diagnosed. We apply this framework in two different complex,
dynamic, multi-agent domains, in service of monitoring various social relationships,
both on-line and off-line. Both of these domains involve multiple interacting agents
in collaborative and adversarial settings, with uncertainties in both perception and
action. The empirical results for active monitoring support our analytical results.

In investigating off-line teamwork failure monitoring, we demonstrate a re-use of
the failure-detection techniques, in service of a quantitative measure which measures
some aspects of teamwork quality. This measure fairs better than the general task-

performance measures in measuring teamwork-related questions. It is significantly



more sensitive, requiring much less data to be useful, and providing more fine-grained

information.

1.2 Monitoring Selectivity in Monitoring
Distributed Teams

In Part 11, we investigate the monitoring selectivity problem in a second monitoring
task, which involves identifying the state of a distributed team. Recent years are see-
ing tremendous growth of applications involving complex, distributed, multi-agent
organizations (systems), which involve many heterogeneous software agents, built
by different designers with different goals and capabilities in mind (Huhns & Singh,
1998).

The monitoring selectivity problem here is more difficult than in the failure-
detection task. First, the distribution of the team leads to limited observability
of agents’ actions, and thus significant selectivity in monitoring is imposed on the
monitoring agent a-priori, leading to an explosion of uncertainty about the state of
monitored agents. For instance, information agents may display information to a
human user on its workstation screen, but such action is difficult to observe from
a monitoring system hundreds of miles away, and must be hypothesized by the
monitoring agent. A second factor in the difficulty of the monitoring selectivity
problem in this task is that the monitoring system is required to accurately identify
the state of the monitored team in spite of the significant uncertainty, i.e., to prove
effective, the monitoring system cannot resort to identifying just enough of the state
to detect a failure.

We apply socially-attentive monitoring techniques to provide answers to the mon-
itoring selectivity problem, tackling the significant uncertainty that results from
the selectivity imposed by the problem constraints. First, we present a number of
socially-attentive monitoring techniques which overcome much of the uncertainty in
distributed team monitoring by utilizing explicit knowledge of the relationships in
the monitored team, and the procedures employed by the team to maintain those

relationships. Then, we explore a number of algorithms for limited-observations



monitoring which provide a trade-off between computational requirements and ex-
pressivity. We show that a fully expressive algorithm that can reason explicitly
about failure hypotheses has space requirements linear in the number of agents, and
maintains a possibly exponential (in the number of monitored agents) hypotheses.
In contrast, a reduced-expressivity algorithm can only detect some failures (but not
reason explicitly about them), but has space requirements that are constant in the
number of monitored agents, and maintains only a constant (with respect to the

number of agents) number of hypotheses.

1.3 Organization of This Thesis

This dissertation’s organization is presented in Figure 1.1. It is organized in two
parts. Part I discusses answers to the monitoring selectivity problem in failure-
detection and diagnosis: Chapter 2 presents motivating examples and background.
Chapter 3 presents the socially-attentive failure-detection framework; Chapter 4
explores monitoring selectivity in centralized teamwork monitoring; and Chapter
5 explores monitoring selectivity in distributed teamwork monitoring. Chapter 6
demonstrates the generality of our failure-detection framework (presented in Chap-
ter 3) by re-using it in an off-line quantitative teamwork analysis implementation.
Chapter 7 discusses monitoring selectivity in additional relationship failure-detection
(in centralized configuration).

Part II investigates monitoring of distributed teams, based on their communi-
cations. Chapter 8 presents background and motivating examples. Chapter 9 dis-
cusses socially-attentive monitoring techniques for accurate monitoring. Chapter 10
discusses methods for scaling up monitoring and improving efficiency, at the cost of
expressivity.

Finally, Chapter 11 presents related work, and Chapter 12 concludes. The ap-
pendices provide additional information. Appendix A lists relevant publications.
Appendix B fleshes out the proofs for theorems presented. Appendix C describes
the probabilistic plan recognition representation and algorithms (co-developed with
David V. Pynadath) used as the basis for our investigation in Part II. Appendix D

contains pseudo-code for the socially-attentive failure-detection algorithms.
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Monitoring for Relationship Failure Detection
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Chapter 2

Motivation and Background: Failure Detection

The motivation for our focus on monitoring in service of relationship failure detec-
tion stems from our growing frustration with the significant software maintenance
efforts in two of our application domains. In the ModSAF domain, a high-fidelity
battlefield virtual environment (Calder et al., 1993), we have been involved in the
development of synthetic helicopter pilots (Tambe et al., 1995). In the RoboCup
soccer simulation domain (Kitano et al., 1997) we have been involved in developing
synthetic soccer players (Marsella, Adibi, Al-Onaizan, Kaminka, Muslea, Tallis, &
Tambe, 1999). The environments in both domains are dynamic and complex, and
have many uncertainties: the behavior of other agents (some adversarial, some coop-
erative), unreliable communications and sensors, actions which may not execute as
intended, etc. Agents in these environments are therefore presented with countless
opportunities for failure despite the designers’ best efforts.

Some examples may serve to illustrate. The following two examples are actual
failures that occurred in the ModSAF domain. We will use these two to illustrate

and explore socially-attentive monitoring throughout this part:

Example 1. Here, a team of three helicopter pilot agents were to fly to a specified
way-point (a given position), where one of the team-members, the scout, was to fly
forward towards the enemy, while its teammates (attackers) land and wait for its
signal. All of the agents monitored for the way-point. However, due to an unexpected
sensor failure, one of the attackers failed to sense the way-point. So while the other
attacker correctly landed, the failing attacker continued to fly forward with the scout

(see Figure 2.1 for a screen shot illustrating this failure).
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Enemy Scout (ahead) and failing attacker (trailing)  Landing attacker

Figure 2.1: A plan-view display (the ModSAF domain) illustrating the failure in
Examplel. The thick wavy lines are contour lines.

Example 2. In a different run, after all three agents reached the way-point and
detected it, the scout has gone forward and identified the enemy. It then sent
a message to the waiting attackers to join it and attack the enemy. One of the
attackers did not receive the message, and so it remained behind indefinitely while

the scout and the other attacker continued the mission alone.

We have collected dozens of similar reports in both the ModSAF and RoboCup
domain. In general, such failures are difficult to anticipate in design time, due to
the huge number of possible states. The agents therefore easily find themselves in
novel states which have not been foreseen by the developer, and the monitoring con-
ditions and communications in place proved insufficient: In none of the failure cases
reported did the agents involved detect, let alone correct, their erroneous behavior.
Each agent believed the other agents to be acting in coordination with it, since no
communication was received from the other agents to indicate otherwise. However,
the agents were violating the collaboration relationships between them, as the agents
came to disagree on what plan is being executed—a collaboration relationship failure
had occurred. Preliminary empirical results show that upwards of 40% of failures

reported involved relationship violations (relationship failures).

12



Human observers, however, were typically quick to notice these failures, because
of the clear social misbehavior of the agents in these cases. They were able to
infer that a failure has occurred despite not knowing what exactly happened. For
instance, seeing an attacker continuing to fly ahead despite its teammates’ switching
to a different plan (which the human observers inferred from the fact that one of
the teammates, the other attacker, has landed) is sufficient for an observer to detect
that something has gone amiss—without knowing what the different plan was.

The monitoring selectivity problem emerges in these examples. On one hand,
our analysis showed that the agents were not monitoring each other sufficiently.
However, a naive solution of continuous communications between the agents was
clearly impractical since: (i) the agents are operating in a hostile environment; (ii)
the communications overheads would have been prohibitive; and (iii) in fact, it was
the communications equipment itself that broke down in some cases. We therefore
sought practical ways to achieve quick detection of failure, based on the limited

ambiguous knowledge that was available to a monitoring agent.
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Chapter 3

Socially-Attentive Monitoring for Failure Detection

We present an overview of the general structure of a socially-attentive monitoring
system, shown in Figure 3.1. It consists of the following components: (1) a social
relationship knowledge-base containing models of the relationships that should hold
among the monitored agents, enabling generation of expected ideal behavior in terms
of relationships (Section 3.1); (2) an agent and team modeling component, respon-
sible for collecting and representing knowledge about the monitored agents’ actual
behavior (Section 3.2); (3) a relationship failure-detection component that monitors
for violations of relationships among monitored agents by contrasting the expected
and actual behavior (Section 3.3); and (4) a relationship diagnosis component that
verifies the failures, and provides an explanation for them (Section 3.4). The result-
ing explanation (diagnosis) is then used for recovery, e.g., by a negotiations system
(Kraus, Sycara, & Evenchik, 1998), or a general (re)planner (Ambros-Ingerson &
Steel, 1988).

3.1 A Knowledge-Base of Relationship Models

We take a relationship among agents to be a relation on their state attributes. A
relationship model thus specifies how different attributes of an agent’s state are re-
lated to those of other agents in a multi-agent system. These attributes can include
the beliefs held by the agents, their goals, plans, actions, etc. For example, many
teamwork relationship models require that team-members have mutual belief in a
joint goal (Cohen & Levesque, 1991; Jennings, 1995). A spatial formation relation-
ship (Parker, 1993; Balch, 1998) specifies relative distances, and velocities that are
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Figure 3.1: The general structure of a socially-attentive monitoring system.

to be maintained by a group of agents (in our domain, helicopter pilots). Coordi-
nation relationships may specify temporal relationships that are to hold among the
actions of two agents, e.g., business contractors (Malone & Crowston, 1991). All
such relationships are social—they explicitly specify how multiple agents are to act
and what they are to believe if they are to maintain the relationships between them.

The relationship knowledge-base contains models of the relationships that are
supposed to hold in the system, and specifies the agents that are participating in
the relationships. The knowledge-base guides the agent-modeling component in se-
lecting agents to be monitored, and what attributes of their state need be represented
(for detection and diagnosis). It is used by the failure detection component to gen-
erate expectations which are contrasted with actual relationships maintained by the
agents. And it provides the diagnosis component with detailed information about
how agents’ states’ attributes are related, to drive the diagnosis process. Our imple-
mentation of socially-attentive monitoring in teams uses four types of relationships:
formations, role-similarity, mutual exclusion, and teamwork.

For teamwork monitoring we use the STEAM (Tambe, 1997) general domain-
independent model of teamwork, which is based on Cohen and Levesque’s Joint
Intentions Framework (Levesque, Cohen, & Nunes, 1990; Cohen & Levesque, 1991)
and Grosz, Sidner, and Kraus’s SharedPlans (Grosz & Sidner, 1990; Grosz & Kraus,
1996, 1999). However, other teamwork models (e.g., Jennings, 1995; Rich & Sidner,
1997) may be used instead of STEAM. Although STEAM is used by our pilot and

soccer agents to generate collaborative behavior, it is reused here independently
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in service of monitoring, i.e., monitored agents are assumed to be a team, and
STEAM is used in monitoring their teamwork. STEAM require mutual belief by
team-members in certain beliefs that the agents may hold, and agreement on a joint
goals and plans. These requirements are monitored in our system for violations
which indicate failure (see Section 3.3 and Section 3.4 for details of how STEAM is
used). The other relationship models are used only in a secondary monitoring role.

They will be discussed in greater length in Chapter 7.

3.2 Knowledge of Monitored Agents and Team

The agent modeling component is responsible for acquiring and maintaining knowl-
edge about monitored agents. This knowledge is used to construct the actual rela-
tions that exist between agents’ states’ attributes, which are compared to the ideal
expected relations. In this section, we describe the plan recognition capabilities of
the agent-modeling component in our implementation and experiments, i.e., the ex-
tent of the knowledge that could be maintained about monitored agents’ plans if
necessary. Later sections show that in fact limited, possibly inaccurate, knowledge
is sufficient for effective failure detection. Thus implementations may use optimized
agent-modeling algorithms rather than these full capabilities. Section 3.4 will discuss

additional agent-modeling capabilities, necessary for diagnosis.

3.2.1 Representation

For monitoring teamwork relationships, we have found that representing agents in
terms of their selected hierarchical reactive plans enables quick monitoring of their
state, and also facilitates further inference of the monitored agents’ beliefs, goals,
and unobservable actions, since they capture the agents’ decision processes.

In this representation, reactive plans (Firby, 1987; Newell, 1990) form a single
decomposition hierarchy (a tree) that represents the alternative controlling processes
of each agent. The root of the hierarchy represents the overall high-level process that
the agent executes. Each node in the hierarchy is a reactive plan (hereafter referred
to simply as a plan), which may require sub-plans to be executed as steps to achieve

the plan’s goals.
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Each plan has selection conditions (also referred to as preconditions) for when
it is applicable. Such conditions can refer to sensor readings or the internal state
of the agent. When these conditions are fulfilled, the plan is selected for execution.
When more then one plan is applicable, search-control rules are used to decide on a
single plan that will be executed. Sub-plans can test (as part of their preconditions)
for the selection of a parent plan in service of which they are executing. Thus at
each given moment, the agent is executing a single path (root to a leaf) through the
hierarchy. This path is composed of plans at different levels, one selected plan per
level. Each plan also has termination conditions, which can be used to terminate
the execution of plan, and de-select it. When a plan is terminated, its current sub-
plans (if any) are terminated as well. Achievement of the termination conditions
of the root, therefore, signify completion of the agent’s task (either successfully, or
unsuccessfully).

Figure 3.2 presents a small portion of such a hierarchy, created for the Mod-
SAF domain. In the case of Example 1, prior to the way-point, each of the agents
was executing the path beginning with execute-mission as highest-level plan,
through fly-flight-plan, fly-route, traveling and low-level (see also left hi-
erarchy in Figure 3.4). Upon reaching the way-point, sensor readings were supposed
to cause a termination condition of fly-flight-plan to become true, thus termi-
nating fly-flight-plan for each helicopter. Then, the same sensor reading would
be used as a precondition for the wait-at-point plan, causing it to be selected.
Thus all helicopters were supposed to switch from fly-flight-plan and its descen-
dents to wait-at-point. The attackers would then select just-wait as a child of
wait-at-point, while the scout would select scout-forward and its descendents.
Of course, the failing attacker did not detect the way-point and so the termination
conditions for fly-flight-plan and the selection conditions for wait-at-point
were not satisfied and the failing attacker continued to execute fly-flight-plan

and its descendents.

3.2.2 Acquisition

From a practical perspective, while the agents may cooperatively report to the mon-

itoring agent on their own state using communications, it requires communication
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Figure 3.2: Portion of Hierarchical Reactive Plan Library for ModSAF Domain
(Team plans are boxed. These are explained in Section 3.3).

channels to be sufficiently fast, reliable and secure. This is unfortunately not possible
in many realistic domains, as our examples demonstrate (Chapter 2).

Alternatively, a monitor may use plan recognition to infer the agents’ unobserv-
able state from their observable behavior. This approach is unintrusive and robust
in face of communication failures. Of course, the monitor may still benefit from fo-
cused communications with the other agents, but would not be critically dependent
on them.

To enable plan recognition using reactive plans (our chosen representation), we
have employed a reactive plan recognition algorithm called RESL (REal-time Sit-
uated Least-commitments). The key capability required is to allow explicit main-
tenance of hierarchical plan hypotheses matching each agent’s observed behavior,
while pruning of hypotheses which are deemed incorrect or useless for monitoring
purposes. RESL works by expanding the entire plan-library hierarchy for each mod-
eled agent, and tagging all paths matching the observed behavior of the agent being
modeled (see Appendix D for pseudo-code for the algorithm). Heuristics and ex-
ternal knowledge may be used to eliminate paths (hypotheses) which are deemed
inappropriate—indeed such heuristics will be explored shortly. RESL’s basic ap-
proach is very similar to previous work in reactive plan recognition (Rao, 1994) and
team-tracking (Tambe, 1996), which have been used successfully in the ModSAF do-
main, and share many of RESL’s properties. However, RESL adds belief-inference

capabilities which are used in the diagnosis process, discussed below (Section 3.4).
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Figure 3.3: Scout (a) and Attackers’ (b, ¢) actual and recognized abbreviated reactive
plan hierarchies.

Figure 3.3 gives a simplified presentation of the plan hierarchies for a variation
of Examplel, in which all the agents correctly detected the way-point, i.e., no failure
has occurred (note that some plans at intermediate levels have been abstracted out
in the figure). The scout (Figure 3.3a) and the two attackers (Figures 3.3b, 3.3c)
switched from the fly-flight-plan plan (denoted by F) to the wait-at-point
plan (denoted by W). An outside observer using RESL infers explanations for each
agent’s behavior by observing the agents. The scout continues to fly ahead, its
speed and altitude matching low-level, one of the possible flight-methods under
both the fly-flight-plan (F) and wait-at-point (W) plans. Thus they are both
tagged as possible hypotheses for the scout’s executing plan hierarchy. Similarly, as
the attackers land, RESL recognizes that they are executing the just-wait plan.
However, this plan can be used in service of either the W or the ordered-halt (H)
plan—a plan in which the helicopters are ordered by their headquarters to land im-
mediately. Thus both H and W are tagged as explanations for each of the attackers’
states (at the second level of the hierarchies). For all agents, RESL identifies the
plan execute-mission as the top-level plan. In this illustration, the actual execut-
ing paths of the agents are marked with filled arrows. Other individual modeling
hypotheses that match the observed behavior are marked using dashed arrows. An
outside observer, of course, has no way of knowing which of the possible hypotheses
is correct.

Once individual modeling hypotheses are acquired for each individual agent (us-
ing plan recognition in our implementation, but potentially also by communications),

the monitoring agent must combine them to create team-modeling hypotheses as to
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the state of the team as a whole. The monitoring agent selects a single individ-
ual modeling hypothesis for each individual agent and combines them into a sin-
gle team-modeling hypothesis. Several such team-modeling hypotheses are possible
given multiple hypotheses for individual agents. For instance, in Figure 3.3, while all
team-hypotheses will have execution-mission as the top-level plan, there are eight
different team-hypotheses which can be differentiated by their second-level plan:
(WW.W), (WWH), (WHW), (WHH), (FWW), (F,WH), (FHW), (F,HH). If the observer is
a member of the team, it knows what it is executing itself, but would still have
multiple hypotheses about its teammates’ states. For instance, if the attacker in
Figure 3.3b is monitoring its teammates, its hypotheses at the second level would
be (W,w,W), (W,W.H), (F,W,W), (F,W.H).

To avoid explicitly representing a combinatorial number of hypotheses, RESL
explicitly maintains all candidate hypotheses for each agent individually, but not all
combinations of individual models as team hypotheses. Instead, these combinations
are implicitly represented. Thus the number of hypotheses explicitly maintained

grows linearly in the number of agents.

3.3 Relationship Violation Detection

The failure-detection component detects violations of the social relationships that
should hold among agents. This is done by comparing the ideal expected rela-
tionships to their actual maintenance by the agents. In our teamwork monitoring
implementation, which uses STEAM (Tambe, 1997), the relationship model requires
team-members to always agree on which team-plan is jointly executed by the team,
similarly to Joint Responsibility (Jennings, 1995), and SharedPlans (Grosz & Kraus,
1996). If this requirement fails in actuality (i.e., the agents are executing different
team plans) then a teamwork failure has occurred. In its current form, STEAM does
not allow (under non-failure conditions) an individual agent to temporarily suspend
execution of team plans in service of other commitments which are not shared by
the team. For instance, we assume an agent should not temporarily suspend execu-
tion of one team plan so that it can execute a different team plan, as member of a
different team. However, the agent may choose to do so responsibly, for instance by

informing its teammates of its decision.
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Figure 3.4: Comparing two hierarchical plans. The top-most difference is at level 2.

The basic teamwork failure detection algorithm is as follows. The monitored
agents’ plan hierarchies are processed in a top-down manner. The detection compo-
nent uses the teamwork model to tag designer-specified plans as team plans, explic-
itly representing joint activity by the team (these plans are boxed in Figures 3.2,
3.4 and 3.3). The team-plans in equal depths of the hierarchies are used to create
team-modeling hypotheses. For each hypothesis, the plans of different agents are
compared to detect disagreements. Any difference found is an indication of failure.
If no differences are found, or if the comparison reaches individual plans (non-team,
therefore non-boxed in the figures) no failure is detected. Individual plans, which
may be chosen by an agent individually in service of team plans are not boxed in
these figures, and are handled using other relationships as discussed in Chapter 7.

For instance, suppose the failing attacker from Examplel is monitoring the other
attacker. Figure 3.4 shows its view of its own hierarchical plan on the left. The
path on the right represents the state of the other attacker (who has landed). This
state has been inferred in this example from observations made by the monitoring
attacker (here, we are assuming that the plan recognition process has resulted in one
correct hypothesis for each agent. We will discuss more realistic settings below). In
Figure 3.4, the difference that would be detected is marked by the arrow between the
two plans at the second level from the top. While the failing attacker is executing
the fly-flight-plan team-plan (on the left), the other attacker is executing the
wait-at-point team-plan (on the right). The disagreement on which team-plan is

to be executed is a failure of teamwork.
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Thus the monitoring selectivity problem is raised. The lack of perfect knowledge
of team-members’ state (only some actions are observed) leads to uncertainty about
the team’s state, expressed by multiple team-modeling hypotheses (Section 3.2).
However, detecting disagreements is difficult with multiple team-modeling hypothe-
ses, since they may imply contradictory results with respect to failure detection:
Some hypotheses may imply that a failure had occurred in the team, while others
may not. Unfortunately, this is to be expected in realistic applications. For in-
stance, Figure 3.3 (Section 3.2) shows several hypotheses that are possible based on
the same observations. However, one of the hypotheses, (W,W,W), implies no failure has
occurred—all the agents are in agreement on which team-plan is executing—while
another hypothesis, (F,W,H), implies failures have occurred.

To limit reasoning to only a small number of team hypotheses, while not re-
stricting failure-detection capabilities, we use a disambiguation heuristic that ranks
team-modeling hypotheses by the level of coherence they represent. This heuristic

is provided as an initial solution. Later sections will examine additional heuristics.

Definition 1. The coherence level of a multi-agent modeling hypothesis is defined as
the ratio of the number of agents modeled to the number of different plans contained

in the hypothesis:
#of Agents

#of Dif ferent Plans

This definition results in a partial ordering of the hypotheses set, from the least
coherent hypothesis (one that assigns each agent a different plan than its team-
mates), to the most coherent hypothesis (that assigns the same plan to all team-
members). For instance, the hypothesis (F,W,H) would have the lowest level of coher-
ence, 1, since it implies complete breakdown of teamwork—every agent is executing
a different plan. The hypothesis (W,W,W) would have a coherence level of 3, the high-
est level of coherence for the group of three agents, since they are all assigned the
same plan. Ranked between them would be the hypothesis (W,W,H), with a single
teamwork failure (disagreement on W and H) and a coherence level of 3/2.

The detection component selects a single maximally-coherent team-modeling hy-
pothesis (ties broken randomly). The intuition for using coherence is that fail-

ures to agree occur despite the agents’ attempts at teamwork. Thus we expect
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more agreements than disagreements in the team. The coherence level of a team-
hypothesis is inversely related to the number of teamwork failures implied by the
hypothesis. Selecting a maximally-coherent hypothesis therefore corresponds to the
minimum-number-of-failures heuristic commonly used in diagnosis (Hamscher, Con-
sole, & de Kleer, 1992).

For the case depicted in Figure 3.3, the complete detection process may be con-
ceptualized as follows'. Suppose that one of the attackers, whose hierarchy is de-
scribed in Figure 3.3b, is monitoring the team. First, it collects the plan hypotheses
at the top of the hierarchy for each agent (including itself). In this case, they are
{execute-mission}, {execute-mission}, {execute-mission}. Only one team-
modeling hypothesis can be built from these: (execute-mission, execute-mission,
execute-mission). Since this hypothesis shows no disagreement occurs at this level,
the process continues to the second level. Here, the hypotheses for the first agent
on the left are {F W}, for the monitoring second agent (since it knows its own state)
there is only one possibility {W}, and for the third agent {WH}. As we saw above,
the maximally team-coherent hypothesis is (W,W,W) which is selected. Since it does
not indicate failure, the process continues to the third level. Here the agents are
executing individual plans, and so the comparison process stops. Algorithm D.2 in
Appendix D provides greater details about this process.

When sub-teams are introduced, a difference between team-plans may be ex-
plained by the agents in question being a part of different sub-teams. Sub-team-
members still have to agree between themselves on the joint sub-team plans, but
these may differ from one sub-team to the next. For now, let us assume that the
teams under consideration are simple teams, as defined in Definition 2. We make this
definition in service of later analytical results in which it will appear as a condition.

We return to the issue of sub-teams in Section 7.1.

Definition 2. We say that a team T is simple if its plan hierarchy involves no

different team plans which are to be executed by different sub-teams.

Intuitively, the idea is that in a simple team, all members of the team jointly

execute each of the team plans in the hierarchy. This definition is somewhat similar

1Other implementations may use optimized algorithms in which the heuristics are integrated
into the agent-modeling algorithm. See Chapter 10 for one such algorithm.
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to the definition of a ground team in (Kinny, Ljungberg, Rao, Sonenberg, Tidhar,
& Werner, 1992), but it does not allow sub-team-members of a team to have a joint

plan which is different than that of other members.

3.4 Relationship Diagnosis

The diagnosis component constructs an explanation for the detected failure, identi-
fying the failure state and facilitating recovery. The diagnosis is given in terms of a
set of agent belief differences (inconsistencies) that explains the failure to maintain
the relationship. The starting point for this process is the detected failure (e.g., the
difference in team-plans). The diagnosis process then compares the beliefs of the
agents involved to produce a set of inconsistent beliefs that explain the failure.

Two problems exist in practical applications of this procedure. First, the moni-
toring agent is not likely to have access to all of the beliefs held by the monitored
agents, since it is not feasible in practice to communicate all the agents’ beliefs to
each other. Second, each agent in a real-world domain may have many beliefs, and
many of them will vary among the agents, though most of them will be irrelevant
to the diagnosis. Thus relevant knowledge may simply not be accessible, or may be
hidden in mountains of irrelevant facts.

To gain knowledge of the beliefs of monitored agents without relying on communi-
cations, the diagnosis process uses a process of belief ascription. The agent-modeling
component (using RESL in our implementation) maintains knowledge about the
selection and termination conditions of recognized plans (hypotheses). For each
recognized plan hypothesis, the modeling component infers that any termination
conditions for the plan are believed to be false by the monitored agent (since it has
not terminated the plan). We have also found it useful to use an additional heuristic,
and infer that the selection conditions (preconditions) for any plan which has just
begun execution are true. The idea is that when a plan is selected for execution, its
preconditions are likely to hold, at least for a short period of time. This heuristic
involves an explicit assumption on the part of our system that the new plan is recog-
nized as soon as it begins execution. Designers in other domains will need to verify

that this assumption holds.
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For each agent 7, the inferred termination and selection conditions make up a set
of beliefs B; for the agent. For instance, suppose an agent is hypothesized to have
just switched from executing fly-flight-plan to wait-at-point. RESL infers
that the agent believes that the way-point was just detected (a selection condition
for wait-at-point). In addition, RESL infers that the agent believes that an enemy
was not seen, and that no order was received from base to halt the mission (negated
termination conditions of wait-at-point).

To determine the facts that are relevant to the failure, the diagnosis component
uses the teamwork model (in our implementation, STEAM (Tambe, 1997)). The
teamwork model dictates which beliefs the agents hold must be mutually believed
by all the agents in the team. Any difference that is detected in those beliefs is a
certain failure, as the team-members do not agree on issues on which agreement is
mandatory to participation in the team. The teamwork model thus specifies that the

beliefs contained in the B; sets should be mutual, and should therefore be consistent:

UBit#L

If an inconsistency is detected, the diagnosis procedure looks for contradictions (dis-
agreements) that would cause the difference in team-plan selection. A difference in
beliefs serves as the diagnosis, allowing the monitoring agent to initiate a process of
recovery (e.g., by negotiating about the conflicting beliefs (Kraus et al., 1998)).
For example, as shown in Section 3.3, the two attackers in Example 1 (Chapter
2) differ in their choice of a team-plan: One attacker is continuing execution of
the fly-flight-plan plan, in which the helicopters fly in formation. The other
attacker has detected the way-point, terminated f1y-flight-plan and has switched
to wait-at-point, landing immediately (Figure 3.4). When the failing attacker
monitors its teammate, it detects a difference in the team-plans (Section 3.3), and the
detected difference is passed to diagnosis. The failing attacker makes the following

inferences:

1. Fly-flight-plan has three termination conditions: (a) detecting the way-

point, (b) seeing the enemy, or (c) receiving an order to halt. The failing
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attacker (left hierarchy in Figure 3.4) knows its own belief that none of these

conditions hold, and thus

B, = {=WayPoint,~Enemy, ~HaltOrder}

2. Wait-at-point has one selection condition: the way-point has been detected.
Its termination condition is that the scout has sent a message to join it, having
identified the enemy’s position. The diagnosis component in this case therefore

infers that for the other attacker (right hierarchy in Figure 3.4)

B, = {WayPoint, ~Scout Message Received}

Combining By and Bs,, we get

By UBy; = {=WayPoint, WayPoint,~Enemy,
~ScoutMessageReceived, ~HaltOrder}

which is inconsistent. The inconsistency (disagreement between the attackers) is
{=WayPoint, WayPoint}, i.e., contradictory beliefs about Waypoint. Thus now
the failing attacker knows that its team-mate has seen the way-point. It can choose to
quietly adapt this belief, thereby terminating its own f1y-flight-plan and selecting
wait-at-point, or it may choose other recovery actions, such as negotiating with
the other attacker on whether the way-point has been reached.

We have found these diagnosis procedures to be useful in many of the failures
detected by socially-attentive monitoring (see Chapter 4 for evaluation and discus-
sion). However, since this dissertation focuses on the monitoring selectivity problem
in detection, we leave further investigation of the diagnosis procedures to future

work.
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Chapter 4

Monitoring Selectivity in Centralized Teamwork

Monitoring

Using the socially-attentive framework of Chapter 3 we systematically examine all
failure permutations of Examples 1 and 2 (Chapter 2) under a centralized teamwork
monitoring configuration, where a single team-member is monitoring the team. We
vary the agents failing (attacker, attacker and scout, etc.) and the role of the moni-
toring agent (attacker or scout). We report on the empirical results of detecting and
diagnosing failures in all cases. Using these empirical results as a guide, we explore
centralized teamwork monitoring analytically. We show that even under monitoring
uncertainty, centralized teamwork monitoring can provide either sound or complete
detection results (but not both).

As a starting point for our exploration, the monitoring agent uses a single
maximally-coherent team-modeling hypothesis as discussed in Section 3.3. We begin
with Example 2. The normal order of execution is wait-at-point (W), followed by
join-scout (J). During the execution of W, the two attackers land and wait for the
scout to visually identify the enemy’s position. Upon identification, the scout sends
them a message to join it, which triggers the selection of the J plan, and the termi-
nation of the W plan. When executing J, the scout hovers at low altitude, waiting
for the attackers to join it. Any failures here are on the part of the attackers (they
cannot receive the message) or on the part of the scout (it cannot send it). These
failures arise, for instance, if the radio is broken or team-members are out of range.

When an agent fails, it continues to execute W instead of switching to J.
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CAsE ActuaL ExEcuTtiNg PLANS RELATIONSHIP FAILURE PHYSICAL
# ATTACKER Al ATTACKER A2 ScouT A3 OCCURRED? FAILURE
1 J J J
2 W J J + A1l fails to receive
3 J W J + A2 fails to receive
4 W W J + A3’s message lost
5 w w w - Enemy not identified

Table 4.1: All possible failure permutations of the broken radio-link scenario (Ex-
ample 2).

Table 4.1 summarizes the permutations of Example 2. The permutation number
appears in the first column. The next three columns show the actual plans selected
by the three agents A1, A2 and A3 in each permutation. The second-to-last col-
umn shows whether a relationship failure has occurred in each case, i.e., whether
disagreement exists between the agents. Finally, the last column details the physical
conditions in each case. There are five possible failure permutations: In case 1, none
of the agents failed. In cases 2 and 3 one attacker failed. In case 4 the scout failed
to send a message or both attackers failed to receive it. In case 5 the scout does not
identify the enemy’s position (so no message is sent, and all three agents continue
to execute the W plan). Other permutations are not possible, since no attacker can
switch to the J plan without the scout.

For instance, case 2 in Table 4.1 corresponds to Example 2. The scout (A3)
has detected the enemy, switched to plan J, and sent a message to the attackers
to join it. One attacker (A2) received the message, switched to plan J, and began
flying towards the scout. However, the remaining attacker (A1) failed to receive
the message, and so it maintains its position, continuing to execute W and failing to
switch to J. Since the agents are no longer in agreement on which team plan should
be jointly executed, a teamwork failure has occurred. Condition monitors were used
in the original failure case to monitor for the scout’s message. However failures in
communications resulted in these monitoring conditions to be rendered useless.

One key issue is raised by case 5 in Table 4.1. Here, due to the scout’s inability

to identify the enemy’s position (perhaps due to failure on the scout’s part, perhaps
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CAsE A3’s HyrPoTHESIZED EXEcuTING PLANS RELATIONSHIP FAILURE DiacgNosIs DETECTION
# ATTACKER Al ATTACKER A2 ScouT A3 DETECTED? SuccEss? CLAss
1 J J J - n/a True Negative
2 w J J + + True Positive
3 J W J + + True Positive
4 H H J + - True Positive
5 w w w - n/a True Negative

Table 4.2: Scout’s (A3) monitoring results in all permutations of Example 2.

because the enemy is simply not there), the three helicopter pilots remain in agree-
ment that the enemy has not been identified. Here, even though clearly the pilots
are failing to make progress towards the task goals (the scout continues to search for
the enemy indefinitely), no relationship failure is taking place, since the agents are
maintaining the teamwork relationship while failing to make progress. This clearly
demonstrates that not all failures are necessarily relationship failures.

Table 4.2 presents the results of the scout monitoring its teammates in Example
2, using a maximally team-coherent hypothesis as the basis for detection. The first
column again shows the case number, for reference into Table 4.1. The next three
columns show the scout’s (A3’s) hypothesis about what plan each agent is executing
according to the maximal coherence heuristic. The next two columns show whether
a failure was detected, and whether it was diagnosed correctly. The last column
shows the detection class (discussed below).

For example, case 2 in Table 4.2 shows the results of the scout monitoring in the
original failure in Example 2 (Chapter 2). Using RESL, and selecting a maximally-
coherent hypothesis, the scout hypothesizes that the non-moving attacker is execut-
ing W (case 2, column 2), while the moving attacker is executing J (case 2, column
3). The scout of course knows that its own selected plan J (case 2, column 4). A
violation of the teamwork relationship is thus detected (case 2, column 5), since
Al’s W is not in agreement with the rest of the team’s J. Furthermore, the diagnosis
was successful in identifying the cause for the failure, i.e., the fact that the enemy’s
position has been identified by the scout, but no knowledge of this was passed on to
the failing attacker (case 2, column 6).

The last column of Table 4.2 shows the detection class of each failure. The

detection class of a case can be one of: true positive, true negative, false positive,
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and false negative. These correspond to the following possible monitoring outcomes:
A true positive is an outcome where a relationship failure has actually occurred, and
has been detected. A true negative is where no failure has occurred, and the system
correctly reports none is being detected. A false positive is where no failure has
occurred, but the system nevertheless incorrectly detects one, and a false negative
is where a failure has occurred, but the system fails to detect it. Table 4.2 shows
that in all permutations of Example 2 the teamwork monitoring techniques did not
encounter the problematic false positive or false negative cases.

A closer look at these results hints at a key contribution of this dissertation in
addressing the monitoring selectivity problem: Effective failure detection can take
place despite the use of uncertain, limited, knowledge about monitored agents. In
case 4 of Table 4.2, the monitoring agent was able to detect the failure despite being
wrong about the state of the agents involved. The scout believes that the two attackers
are executing the H (ordered-halt) plan, but they are actually executing W. H is
selected when a command is received from headquarters to halt execution and hover
in place. From the scout’s perspective, a hovering attacker can therefore be inferred
to be executing H or W. Thus two equally-ranked maximally-coherent hypotheses
exist: the two attackers are either both executing W or both executing H. A random
selection was made, and in this case resulted in the wrong hypothesis being selected.
Nevertheless, a violation of the teamwork relationships was detected, as neither H or
W agrees with the scout’s J.

However, as the last column of case 4 shows (in Table 4.2), the diagnosis proce-
dures are sensitive to the selection of the team-modeling hypothesis. The hypothesis
used in this case does not correctly reflect the true state of the agents, and so de-
spite the scout’s success to detect a failure in this case, the diagnosis procedures fail
to provide correct diagnosis (the diagnosis was successful in the two other failure
cases). This phenomenon repeats in other empirical results we provide below: diag-
nosis failed whenever the hypothesis chosen was incorrect, although it was sufficient
for detection. Ways to improve the accuracy of the hypotheses (for instance, for
diagnosis) are discussed in Part II, and will not be addressed here further. The
failure detection capabilities are a significant improvement in themselves, since the
agents know with certainty that a failure has occurred, even if their diagnosis of it

is incorrect.
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CAsE ActuaL ExEcuTING PLANS RELATIONSHIP FAILURE PHYSICAL
# ATTACKER Al ATTACKER A2 Scout A3 OCCURRED? FAILURE
1 w w w
2 F W A% + A1l vision fails
3 A% F A% + A2 vision fails
4 F F w + Al, A2 vision fails
5 w W F + A3 vision fails
6 F w F + Al, A3 vision fails
7 w F F + A2, A3 vision fails
8 F F F - A1,2,3 vision fails

Table 4.3: All failure permutations of the undetected way-point scenario (Example

1).

Many social and physical failures are successfully captured using the team-
coherence heuristic for monitoring selectivity. In fact, in our permutations of Exam-
ple 2, no matter which one of the agents was the monitor, all failures to maintain
relationship (i.e., all physical failures except for one in which the team remains in
agreement) were detected reliably, although sometimes diagnosis failed. This result
is especially surprising considering that only a single agent did the monitoring.

Tables 4.3 and 4.4 present further empirical results, on the basis of Example 1.
Table 4.3 presents all failure permutations of Example 1 in the same format as Table
4.1. The normal order of execution of these plans is as follows: All agents jointly
execute the fly-flight-plan (F) plan until they detect the way-point. They then
switch to the wait-at-point (W) plan, in which the two attackers land while the
scout continues to fly ahead to identify the enemy. The failures here are all on the
part of the agents to detect the way-point, and thus to switch to the W plan.

Table 4.4 present the monitoring results for all permutations of Example 1. Here
the attacker Al is monitoring the team using again a maximally team-coherent
hypothesis in detecting failures. The results show that Al is successful in detecting
all teamwork failures but two (cases 4-5, highlighted in bold face).

These two false outcomes are both false negatives. In both these cases, the
monitoring attacker A1l picked an incorrect hypothesis for the scout, since the scout’s
actions lead to ambiguous interpretations. The scout is to fly forward (to scout the

enemy) if it detected the way-point (plan W), but also if it did not (then it would
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CAsE A1l’s HyrpoTHESIZED ExEcuTING PLANS RELATIONSHIP FAILURE DETECTION
# ATTACKER Al ATTACKER A2 ScouT A3 DETECTED? CLAss
1 w w w - True Negative
2 F w F + True Positive
3 W F W + True Positive
4 F F F - False Negative
5 w W W - False Negative
6 F W F + True Positive
7 w F F -+ True Positive
8 F F F - True Negative

Table 4.4: Attacker’s (A1) monitoring results in all permutations of Example 1.

be flying “in formation”-plan F). The use of the maximal team-coherence heuristic
causes A1 to prefer a hypothesis in which the scout is in agreement with the attackers
when in fact it is not. For example, in case 4, the two attackers have failed to detect
the way-point and are executing F. Observing the scout, the monitoring attacker
A1 is not sure whether the scout is executing F or W. However, believing that the
scout is executing F results in a maximally-coherent team-modeling hypothesis (all
the agents are in agreement), while believing that the scout is executing W results in
a less coherent hypothesis. Thus A1 selects a wrong hypothesis, which in this case
fails to detect the teamwork failure.

The maximal team-coherence heuristic can detect failures despite using incorrect
hypotheses. Unfortunately, such hypotheses can also lead to false-negatives as we
have seen in Table 4.4. However, none of our experiments resulted in a false-positive
result, i.e., a result in which the system detected a failure but in reality none had
occurred. Thus the heuristic provided sound results in these cases. We are able
to formally prove this property holds in general when the maximal team-coherence
heuristic is used.

First, we address a matter of notation. Let an agent A monitor an agent B,
which is executing some plan P. We denote by M (A, B/P) the set of agent-modeling
hypotheses that A’s agent-modeling component constructs based on B’s observable
behavior during the execution of P. In other words, M(A, B/P) is A’s set of all
plans that match B’s observable behavior. Note that when A monitors itself, it
has direct access to its own state and so M (A, A/P) ={P}. Using the modeling
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notation, we make the following definitions which ground our assumptions about

the underlying knowledge used in monitoring:

Definition 3. Given a monitoring agent A, and a monitored agent B, we say that
A’s agent-modeling of agent B is complete if for any plan P that may be executed
by B, P € M(A, B/P).

The set M (A, B/P) will typically include other matching hypotheses besides
the correct hypothesis P, but is guaranteed to include P. This definition abstracts
several subtle issues. Complete modeling means we have a complete and correct
plan-library, that our observations are correct, and that the observed actions have
been executed intentionally by the monitored agent.

Following this definition of individual agent-modeling completeness, we can define

group-wide team-modeling completeness:

Definition 4. Let A be an agent monitoring a team 7" of agents By,---, B,. We
say that A’s team-modeling of the team T is complete if A’s agent-modeling of each

of By,---,B, is complete.

Definition 4 is critical to guarantee the capabilities we will explore analytically
in this section and the next. It generally holds in our use of RESL in the ModSAF
and RoboCup domains, and we make it explicit here in service of applications of the
techniques in other domains.

Armed with these definitions, we now formalize the failure detection capabilities

suggested by the empirical evidence in Theorem 1.

Theorem 1. Let a monitoring agent A monitor a simple team T. If A’s team-
modeling of T is complete, and A uses a maximally team-coherent hypothesis for

detection, then the teamwork failure detection results are sound.

Proof. We will show that if no failure has occurred, none will be detected, and
thus that any failure that is detected is in fact a failure. Let ai,...,a, be the
agent members of 7. Each agent a; is executing some plan P; (1 < ¢ < n). Thus
collectively, the group is executing (P, ..., P,). If no failure has occurred, then all
the agents are executing the same plan Py, i.e., Vi, P, = Fy. Since A’s team-modeling
is complete, the correct hypothesis (Fy,..., Pp) is going to be in the set of team-

modeling hypotheses H. Since it is a maximally team-coherent hypothesis, either it
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CAsE A1l’s HyrPoTHESIZED EXEcuTING PLANS RELATIONSHIP FAILURE DETECTION
# ATTACKER Al ATTACKER A2 ScouT A3 DETECTED? CLAss
1 W H F + False Positive
2 F H w + True Positive
3 W F F + True Positive
4 F F W + True Positive
5 w H F + True Positive
6 F H w + True Positive
7 w F F -+ True Positive
8 F F w + False Positive

Table 4.5: Attacker’s (A1) monitoring results in all permutations of Example 1,
using team-incoherence.

will be selected, or that a different hypothesis of the same coherence level will be
selected. Any hypothesis with the same coherence level as the correct one implies

no failure is detected. Thus the detection procedure is sound. O

Despite uncertainty in the knowledge used, sound failure-detection can be guar-
anteed using the maximal team-coherence heuristic. This is one answer to the moni-
toring selectivity problem. However, as we have seen in Table 4.4, some failures may
pass undetected using this heuristic (i.e., it may result in false-negatives). Detection
using maximal team-coherence may therefore unfortunately be incomplete. We may
prefer our monitoring system to be complete—guaranteed to detect all teamwork
failures.

We therefore experimented with the maximal team-incoherence heuristic, the
inverse of the maximal team-coherence heuristic. This heuristic prefers hypotheses
that suggest more failures, rather than less. Table 4.5 gives the monitoring attacker
Al’s view of the team, similar to Table 4.4, but using a maximally team-incoherent
hypothesis. It shows that indeed using a maximally team-incoherent hypothesis will
not lead to the false-negative detections in cases 4 and 5 (in contrast to these cases
in Table 4.4).

Guided by these results, we formally show that the team-incoherence heuristic

leads to a detection procedure that is complete.
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Theorem 2. Let a monitoring agent A monitor a simple team T. If the A’s team-
modeling of T is complete, and A uses a mazimally team-incoherent hypothesis for

detection, then the teamwork failure detection results are complete.
Proof. Analogous to that of Theorem 1, the proof is provided in appendix A. O

However, these successes are offset by false positive outcomes in cases 1 and 8
of Table 4.5. In these cases, no failures have occurred, but the monitoring system
falsely reported detected failures. In practice, this may lead to costly processing of
many false alarms.

Ideally, the detection capabilities should be sound and complete. Unfortunately,
we can show that no coherence-based disambiguation scheme exists that results in
both sound and complete detection. We show in Theorem 3 that to provide sound
and complete detection, a disambiguation method will have to be inconsistent: Given
the same set of possible matching hypotheses, it will have to sometimes rank one

hypothesis on top, and sometimes another.

Theorem 3. Let H be a complete team-modeling hypotheses set, modeling a simple
team. There does not exists a disambiguation scheme S that (1) uses coherence alone
as the basis for disambiguation of H, and (2) is deterministic in its selection, and

(8) results in sound and complete failure detection.

Proof. Let S be a disambiguation scheme that leads to complete and sound de-
tection and uses only knowledge of the coherence of the hypotheses in selecting a
disambiguated hypothesis. Suppose for contradiction that it is deterministic, and
thus consistent, in its selection of an hypothesis out of H, i.e., given H, a set of
candidate hypotheses, it applies some deterministic procedure to choose one hy-
pothesis based on its coherence. Since it does not use any other knowledge outside
of the coherence of the candidate hypotheses, given the same set of candidates,
it will always choose the same hypothesis. Let A,, be the monitoring agent us-
ing S. Let B be a monitored agent, whose actions are identical when executing
team plans P;, P,. Thus, A,, cannot determine whether B is executing P; or P,
M(A,,,B/P)) = M(A,,, B/P,) = {P,,P,}. If A, and B are both executing P,
A,.’s hypotheses set is
H ={(P, ), (P, )}
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Since S leads to complete and sound detection, it will choose (P, P;). Now, when
A,, and B are executing P; and P;, respectively, the matching hypothesis set is again
H as defined above. But now S must select (P;, P,). Since the same set of candidate
hypothesis H was used in each case, and no other information was supplied, S must
be non-deterministic in its selection of a disambiguated hypothesis, contradicting

the assumption. 0

The empirical and analytical results show that our use of a single disambiguated
hypothesis leads to improved, but imperfect, failure-detection results, compared to
the monitoring conditions and communications previously used. The empirical re-
sults in Tables 4.2, 4.4, and 4.5 establish the benefits of the teamwork monitoring
technique: Most physical failures were detected. However, the analytical results
(Theorems 1, 2, 3) show that the results are less than perfect. The algorithms are
either sound or complete, but not both. For complete monitoring, we would require
additional procedures that can differentiate the true positives from the false ones,
e.g., by focused communication. These procedures are often very expensive.

We can reduce the need for costly verification by letting go of our insistence on
a single hypothesis, focusing instead on maintaining two hypotheses: a maximally-
coherent hypothesis and a maximally-incoherent hypothesis. Table 4.6 shows a por-
tion of the full set of team-hypotheses available when the attacker Al is monitoring
the team. The total number of hypotheses presented in the table is 24, with as
many as 4 co-existing in a single case, and thus maintaining a full set of hypothe-
ses would be expensive. However, the two inverse heuristics—team-coherence and
incoherence—represent two extremes of the space of these hypotheses. If they agree
that a failure exists, then a failure actually occurred, since the team-coherent hy-
pothesis guarantees soundness (Theorem 1). If they agree that no failure exists, then
no failure took place, since the team-incoherent hypothesis guarantees completeness
(Theorem 2). If they disagree (i.e., the team-coherent hypothesis does not imply a
failure, but the team-incoherent hypothesis does), the monitoring system cannot be
sure either way, and must revert back to verification.

This revised detection algorithm offers significant computational savings com-
pared to the single team-incoherent hypothesis approach. It is complete and un-
sound, but significantly reduces the need for verification, since at least when the

team-coherent hypothesis implies failures, verification is not necessary. It requires
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CAse A1’s HypoTHESIZED ExEcuTING PLANS RELATIONSHIP FAILURE DETECTION
# ATTACKER Al ATTACKER A2 ScouT A3 DETECTED? CLass
1 A% H F + False Positive
A% H %% + False Positive
w W F + False Positive
w w w - True Negative
2 F H F -+ True Positive
F H w + True Positive
F W F + True Positive
F W W + True Positive
3 W F F + True Positive
w F w + True Positive
4 F F w + True Positive
F F F - False Negative
5 w H F True Positive
w H w True Positive
w w F True Positive
w w w - False Negative
6 F H %% + True Positive
F H F + True Positive
F w W + True Positive
F %% F + True Positive
7 w F F + True Positive
w F W + True Positive
8 F F %% + False Positive
F F F - True Negative

Table 4.6: A portion of the attacker’s (A1) monitoring hypotheses and
results when no ranking is used to select a single hypothesis for each case.

implied
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representing only two hypotheses, and is thus still computationally cheaper than
maintaining an exponential number of hypotheses.

For example, using a maximally team-incoherent hypothesis on permutations of
Example 1 results in a need to verify in all eight cases as we have seen (4.5). However,
when we combine such an hypothesis with a maximally team-coherent hypothesis
(e.g., as in Table 4.4), we only need to verify four (50% ) of the cases. In cases 2, 3,
6, 7 there is agreement between the two hypotheses that a failure has occurred, and
thus no verification is required.

A monitoring agent can therefore address the monitoring selectivity problem by
balancing its resource usage against the guaranteed performance of the monitoring
algorithm used. Either of the simpler single-hypothesis algorithms would utilize only
one hypothesis in each case, with detection capabilities that are guaranteed to be
sound or complete, but not both. In the more complex algorithm, two hypothe-
ses would be reasoned about in each case, and the algorithm would be complete
and require verification in fewer cases compared to the simple-hypothesis complete

algorithm.
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Chapter 5

Monitoring Selectivity in Distributed Teamwork

Monitoring

This chapter focuses on monitoring selectivity when exploiting a key opportunity
for execution monitoring in multi-agent environments—it is not only the monitored
agents that are distributed, but the monitoring agents can be distributed as well.
We begin with the simple scheme of selecting a single maximally team-coherent
hypothesis. Since centralized teamwork monitoring was successful in addressing all
permutations of Example 2, we focus here on the permutations of Example 1 (Table
4.3), in which centralized teamwork monitoring by the attacker resulted in false-
negative detections (cases 4-5 in Table 4.4).

In a distributed teamwork monitoring scheme, not only will a single attacker
monitor its teammates, but the scout (and the other attacker) will also engage in
monitoring. Table 5.1 presents the monitoring results of the same failure permuta-
tions, with the scout as the monitoring agent. We find that the scout successfully
detects the two failure cases that the attacker failed to detect, compensating for the
attackers’ monitoring mistakes. Furthermore, since the scout used the the maximal-
coherence heuristic, detection is sound and no verification is required. The reason
for the scout’s success is that the attackers’ actions in this case, although ambiguous,
do not support any hypothesis that can be matched to the scout’s plan. In other
words, regardless of what plan the attackers are executing in these two cases, it is
different than the plan executed by the scout.

Thus if all agents engaged in monitoring in permutations of Example 1, detection

would be sound and complete. In all actual failure cases (and only in those) there
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CAsE A3’s HypoTHEsSIZED EXEcuTING PLANS RELATIONSHIP FAILURE DETECTION
# ATTACKER Al ATTACKER A2 ScouT A3 DETECTED? CLAss
1 w w w - True Negative
2 F w F + True Positive
3 %% F A% + True Positive
4 F F w + True Positive
5 H H F -+ True Positive
6 F H F + True Positive
7 H F F + True Positive
8 F F F - True Negative

Table 5.1: Scout’s (A3) monitoring results in all permutations of Example 1, using
team-coherence.

would at least one team-member who detects the failure. We attempt to formally

define the general conditions under which this phenomenon holds.

Definition 5. We say that two team-plans Py, P,, have observably-different roles
R, R, if given an agent B who fulfills the roles R, Ry in the two plans, respectively.,
any monitoring agent A (different than B) will have M (A, B/P,)NM (A, B/P,) = 0.
We then say that B has observably-different roles in P, and P, and call B a key

agent.

Intuitively, B is a key agent that has observably different roles in the two plans
if a monitoring agent can differentiate between B’s behavior in executing P; and in
executing P,. For instance, both attackers have observably different roles in F (in
which they fly) and W (in which they land). However, they do not have observably
different roles in W and H, both of which require them to land. The scout has
observably different roles in W (flying) and H (landing).

The key agent is the basis for the conditions under which a self-monitoring team
will detect a failure with each agent using only team-coherence. We first prove a
lemma on the conditions in which a single given agent will detect a failure. We then
use this lemma to prove the conditions under which at least one agent in a given

team will detect a failure.

Lemma 1. Suppose a simple team T is self-monitoring (all members of the team
monitor each other) using the mazimally team-coherent heuristic (and under the as-

sumption that for each agent, team-modeling is complete). Let Ay, Ay be monitoring
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agents who are members of T' and are executing Py, P,, respectively. A, would detect
a failure in maintaining teamwork relationships with an agent A, if Ay is a key agent
mn Pl, P2.

Proof. See appendix A. O

A; knows that it is executing P;. If A, is executing P, and is a key agent in P;
and P,, then A; is guaranteed to notice that a difference exists between itself and
Ay, since Ay is acting observably different than it would if it had been executing
P,. Note, however, that As may or may not detect this difference, since from Aj’s
perspective, A;’s behavior may or may not be explained by P,. Ay will detect
a difference only if A;’s roles in P; and P, are also observably-different. However,
since A; has detected the failure, it can now alert its teammates, diagnose the failure,
or choose corrective action.

If we want to guarantee that a teamwork failure will always be detected by at
least one agent, we must make sure that in each possible combination of plans, there
has to be at least one key agent whose roles are observably different. The lemma
shows that other agents monitoring this agent will notice a failure if one occurs. To

this aim, we define an observably-partitioned set of plans employed by a team.

Definition 6. A set P of team-plans is said to be observably-partitioned if for any
two plans P;, P; € P there exists a key agent A;;. The set of these A;; agents is
called the key agents set of P.

For instance, the set of team-plans our helicopter pilots team has been using in
the examples (Fly-Flight-Plan (F), Wait-at-Point (W), Ordered-Halt (H), and
Join-Scout (J)) is observably-partitioned. The attackers land in W and H, but fly
in F and J. The scout lands in J and H, but flies in W and F. Table 5.2 shows which
agents have observably different roles in any two plans in the set. For instance,
by finding the cell at the intersection of the H row and the W column, we find that
the scout has observably different roles in these two plans. Indeed, the scout lands
when a command is received to halt execution (H), but flies out to scout the enemy’s
position when executing W. Here, since all agents have observably-different roles in
at least two plans, the key agents set of { W, F, H, J } includes all members of the

team—attackers and scout.
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| | Fly-Flight-Plan (F) | Wait-at-Point (W) | Ordered-Halt (H)

Join-Scout (J)

F - Attackers Attackers Scout

W Attackers - Scout Scout and Attackers
H Attackers Scout - Attackers

J Scout Scout and Attackers Attackers -

Table 5.2: Observable partitioning of the helicopter pilot team in ModSAF.

Theorem 4. If a simple team (1) employs an observably-partitioned set of team-
plans O, and (2) all team-members monitor members of the key agents set of O, (3)
using complete team-modeling and (4) mazimally team-coherent hypotheses, then the

teamwork failure detection results are sound and complete.

Proof. From theorem 1 we know that detection would be sound. To show that it is
complete, we will prove at least one agent will detect a difference between itself and
others whenever team-members are not all executing the same plan (i.e., a failure
is occurring). Suppose the team is currently divided on the team-plans that must
be executed, i.e., there are agents a;, a; in the team that are executing team plans
P;, P;, respectively, such that P; # P;. Thus a failure has occurred. Let K be the
key agents set of 0. Since the team is observably-partitioned, for P;, P; there exists
at least one key agent a; € K. There are three cases:

case (i). a; is executing P;. In this case any agent executing P; would detect a
difference with a; and would therefore detect the failure (lemma 1).

case (ii). a; is executing P;. In this case any agent executing P; would detect a
difference with a; and would therefore detect the failure (lemma 1).

case (iii). a; is executing some other plan ). Its roles must be observably different
in @ and P;, or in @ and P; (or in both), and thus any agent executing P; and/or
P; would detect the failure. The case that a{’s roles are not observably different in

(@ and P; and in () and P; is impossible, since then for a monitoring agent A,
M(Am,a1/P) VW M(Am, a1/Pj) 2 {Q} #0

Contradicting a;, being a key agent for F;, P;.
Since in all three cases, at least one agent would detect a failure where one occurred.
Therefore, failure detection is complete. Since it is also sound as we have seen,

detection is sound and complete. O
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The theorem shows that distributed teamwork monitoring can result in sound
and complete failure-detection, while using a simple algorithm. Each team-member
monitors only the key agents', using a maximally team-coherent hypothesis. If it
detects a failure, then certainly one has occurred. If no agent detects a failure, then
indeed no failure has occurred.

This simple distributed algorithm, with its attention-focusing features and guar-
anteed soundness and completeness contrasts with the more complex centralized
algorithm which we discussed in the previous section (Chapter 4). The algorithm’s
effectiveness relies on the condition of an observably-partitioned set of plans, and
the distribution of the monitoring. This distribution allows agents to exploit their
local state here, which is not available to the centralized algorithm. Indeed, even
when key agents are available, centralized teamwork monitoring is still not complete
and sound. A corollary of Theorems 3 and 4 is that if key agents are not available
in the distributed case, failure detection is either sound or complete, but not both.

Fortunately, observable-partitioning is not a difficult property to design: Teams
are very often composed such that not all agents have the same role in the same plan,
and in general, roles do have observable differences between them. For instance, our
helicopter pilot team in the ModSAF domain typically executes a set of plans with
this property, as Table 5.2 demonstrates.

If the team, however, is not observably-partitioned, there may be a case where
two agents are each executing a different plan, but no agent will be able to detect
it using the team-coherence heuristic. The minimal case where this occurs is when
two agents, A; and A, are executing plans P; and P;, respectively, and P; and P,

are not observably different, such that
M(AQ,Al/Pl) N M(Al,AQ/PQ) == {Pl,PQ}

This will result in A; and Ay each believing that the other is in agreement with them.
A check for such a situation can be made a part of the plan design process, marking

risky points in the execution in which detection is either sound or complete (Theorem

'If the monitoring team-member does not know who the key agents are, but knows they exist,
it can monitor all other team-members. This increases monitoring, but sound and complete failure
detection is still guaranteed.
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3), and verification (e.g., by communications) can be prescribed pro-actively. Or,
the check could be inserted into the protocol for run-time analysis—the agent would
simulate the other’s hypotheses matching their own actions, and detect risky points

dynamically.
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Chapter 6

Using Socially-Attentive Monitoring in an Off-Line

Configuration

To further demonstrate the generality of our socially-attentive monitoring framework
(Chapter 3), this chapter examines re-use of teamwork monitoring in domains in
which diagnosis and recovery from every failure are infeasible during execution. Ex-
amples of such domains include team sports, military human team training (Volpe,
Cannon-Bowers, & Salas, 1996), and other multi-agent domains. The dynamic na-
ture of the domain, hard real-time deadlines, and complexity of the agents involved
(e.g., human team-members) make diagnosis and recovery difficult. Even if a failure
can be diagnosed, it is often too late for effective recovery. In such environments, the
monitoring agent is often concerned with trends of performance. This information is
important for long-term design evaluation and analysis, and need not necessarily be
calculated on-line. The results of the analysis are meant as feedback to the agents’
designer (coach or supervisor, for humans).

To this end, we developed an off-line socially-attentive monitoring system called
TEAMORE (TEAmwork MOnitoring REview). TEAMORE currently uses execu-
tion traces of the monitored agents to perform the monitoring, rather than using plan
recognition. Thus it does not need to worry about the uncertainty in plan recogni-
tion, nor about real-time performance. Instead, it knows with certainty each agent’s
plans during execution. TEAMORE accumulates several quantitative measures re-
lated to teamwork, including the Average-Time-to-Agreement measure (ATA, for

short), and a measure of the level of agreement in a team. These build on the failure
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Figure 6.1: An illustration of a switch. The three agents switch from plan 1 to plan
2.

detection algorithm, but aggregate failures in quantitatively. We focus here on the
ATA measure.

TEAMORE defines a switch as the time interval beginning at the point where
any team-member (at least one) selects a new team plan for execution by the team,
and ending at the point where the team is again in agreement on the team-plan being
executed. In perfect teamwork, all team-members select a new team-plan jointly,
and so always remain in agreement. In a more realistic scenario, some agents will
take longer to switch, and so initially a teamwork failure will occur. The first team-
member to select a new plan will be in disagreement with some of its teammates,
until either it rejoins them in executing the original plan, or they join it in selecting
the new plan. Such a switch begins with a detected failure and ends when no more
failures are detected.

Figure 6.1 shows an illustration of a switch. The three agents begin in an initial
state of agreement on joint execution of Plan 1 (filled line). Agent 1 is the first agent
to switch to Plan 2 (dotted line), and is followed by Agent 3, and finally Agent 2.
The switch is the interval which begins at the instance Agents 1 selected Plan 2, to
the time all three agents regained their agreement (but this time on Plan 2).

TEAMORE keeps track of the lengths of time in which failures are detected until
they are resolved. The ATA measure is the average switch length (in time “ticks”)
per a complete team run (e.g., a mission in ModSAF, a game in RoboCup). A
perfect team would have all switches of length zero, and therefore an ATA of 0. The
worst team would be one that from the very beginning of their task execution to the

very end of it, would not agree on the team plan being executed. For instance, each
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ISIS Mean ATA | Mean ATA ATA t-test prob.
sub-team No comm. Comm. Reduction || null-hypothesis
'97 Goalies 32.80 5.79 27.01 7.13e-13
'97 Defenders 57.5 6.81 50.69 .45e-10

'98 Goalies 13.28 3.65 9.63 9.26e-16
'98 Defenders 12.99 3.98 9.01 7.13e-5

Table 6.1: Average-Time-to-Agreement (ATA) for games against Andhill’97.

RoboCup game lasts for 6000 “ticks”. The worst possible team would have only one
switch during the game, of length 6000. Thus the ATA scale in RoboCup goes from
0 (perfect) to 6000 (worst).

We used the ATA measure to analyze a series of games of our two RoboCup
simulation-league teams, ISIS’97 and ISIS’98 (Marsella et al., 1999) against a fixed
opponent, Andhill’97 (Ando, 1998). In these games, we varied the use of commu-
nications by our teams to evaluate design decisions on the use of communications.
In approximately half of the games, players were allowed to use communications in
service of teamwork. In the other half, all communications between agents were dis-
abled. ISIS’97 played approximately 15 games in each settings, and ISIS’98 played
30 games in each communication settings.

Table 6.1 shows the mean ATA values over these games, for two sub-teams (each
having three members) of ISIS’97 and ISIS’98 (ATA values are calculated separately
for each sub-team). The first column shows which sub-team the results refer to in
each row. The second columns shows the mean ATA for each sub-team, when no
communications were used. The third column shows the mean ATA when communi-
cations were used. The next column shows the size of the ATA reduction—the drop
in the mean ATA values when communications are introduced. The last column
shows the probability of the null hypothesis in a two-tailed t-test of the difference
in the ATA means. This is the probability that the difference is due to chance, thus
smaller numbers indicate greater significance.

Clearly, a very significant difference emerges between the communicating and
non-communicating versions of each sub-team. The ATA values indicate that sharing
information by way of communications significantly decreases the time it takes team-
members to come to agreement on a selected plan. This result agrees with our

intuitions about the role of communications, and in that sense, may not be surprising.
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| | ISIS’97 | ISIS’98 |

Communication Used -3.38 -1.53
Communication Not Used -4.36 -2.13

| t-test p/null hypothesis | p=0.032 | p=0.13 |

Table 6.2: ISIS’97 and ISIS’98 mean score difference against Andhill’97, with chang-
ing communications settings

However, the ATA reduction magnitudes indicate that ISIS’98 may be much less
sensitive to loss of communications than ISIS’97. The differences in ATA values for
ISIS’97 are approximately triple, nearly four times, as great as for ISIS’98. Our ex-
planation for this phenomenon is that ISIS’98 is composed of players with improved
capabilities for monitoring the environment (such that they have better knowledge
of the environment). ISIS’98 is therefore not as dependent on communications as
are teams, such as ISIS’97, composed of players with lesser environment monitoring
capabilities. ISIS’98 players are better able to select the correct plan without relying
on their teammates. Thus, they would be able to maintain the same level of per-
formance when communications are not used. In contrast, ISIS’97 players rely on
passing information to and from each other (monitoring each other) through com-
munications, and so took much longer to establish agreement when communications
were not available.

We can validate the hypothesis suggested by ATA measurements by looking at
the overall team-performance in the games, measured by the score difference at the
end of the game. Table 6.2 shows the mean score difference from the same series
of games against Andhill’97. The first column lists the communications settings
(with or without). The second and third columns show the mean score-difference
in the games for ISIS’97 and ISIS’98. The bottom row summarizes the results of
t-tests run on each set of games, to determine the significance level of the difference
between the mean score-differences. The score-difference results corroborate the
ATA results. While the difference in mean score-difference is indeed statistically
significant in ISIS’97 games, it is not significant in ISIS’98 games. This supports
our explanation that the more situationally aware ISIS’98 is indeed better able to
handle loss of communications than ISIS’97.

The general lesson emerging from these experiments is that a trade-off exists in

addressing the monitoring selectivity problem. The knowledge that is maintained

48



90

80 1

70 - .

50 B

40

30

00 B0 CoO0m T

Average Time to Agreement (ATA)

20 | .

. K
0 Il Il Il Il
1S1S98/Comm. ISIS97/Comm.  ISIS98/No-Comm. ISIS97/No-Comm.

Goalies Sub-Team

(a) ATA Values for Goalies subteam
Figure 6.2: ATA values for the Goalies sub-teams in games against Andhill’97.

about teammates (here, via communications) can be traded, to an extent, with
knowledge maintained about the environment. A designer therefore has a range
of alternative capabilities that it can choose for its agents. Different domains may
better facilitate implicit coordination by monitoring the environment, while others
require agents to rely on communications or explicit knowledge of team-members to
handle the coordination.

The ATA results support additional conclusions, especially when combined with
a general performance measure such as the score-difference. To illustrate, consider
the plots of the actual data from these games. Figure 6.2 plots all the ATA values
for all four variants, for the Goalies sub-team. The graph plots approximately 60
data-points. We see in Figure 6.2 that when communications are used, ISIS’97’s
ATA values are still generally better than ISIS’98’s ATA without communications.
Thus, despite its importance, individual situational awareness is not able to fully
compensate for lack of communications.

TEAMORE demonstrates the reuse of the teamwork monitoring techniques de-
veloped in earlier sections in an off-line configuration. The designer of ISIS’97 should

set its agents to use communications, since those will have significant improvement
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on the score-difference. In contrast, with or without communications, ISIS’98 play-
ers are able to maintain their collaboration. Thus if communications takes precious
resources, it can be relatively safely eliminated from the ISIS’98 agents’ design, and

the development efforts can be directed at some other components of the agents.
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Chapter 7

Beyond Teamwork Failures

We have presented a general socially-attentive monitoring framework to detect fail-
ures in maintaining agreement on joint team plans. However, effective operation
in teams often relies on additional relationships, which we briefly address in this

chapter.

7.1 A Richer Agreement Model: Agreeing to
Disagree

The teamwork model requires joint execution of team plans. In service of such
agreed-upon joint plans, agents may sometimes agree to execute different sub-plans
individually, or split into sub-teams to execute different sub-team plans. Two exam-

ples may serve to illustrate.

Example 3. In the ModSAF domain, helicopters engage the enemy by repeatedly
performing the following three steps: hiding behind a hill or trees (masking), then
popping up (unmasking), then shooting missiles at the enemy, and back to hiding.
In some variations of this plan, they are required to make sure that no two heli-
copters are shooting at the same time. Of course, due to limits of communications,

helicopters do fail and unmask at the same time.

Example 4. In the RoboCup domain, our 11 players in both ISIS’97 and ISIS’98
(Marsella et al., 1999) are divided into four sub-teams: mid-fielders, attackers, de-
fenders, and goalies (the goalie and two close defenders). This division into sub-

teams is modeled by the agents selecting one of four team plans in service of the
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Figure 7.1: A Portion of the plan hierarchy used by ISIS RoboCup agents.

play team plan (see Figure 7.1). Mid-fielders must select the midfield plan, goalies
must select the defend-goal plan, etc. Again, ideally an attacker would never select
any other plan but attack, a defender would select no other plan but defend, etc.
However, due to communication failures, players may sometimes accidently abandon

their intended sub-team, and execute a team-plan of another sub-team.

In both of these examples, certain differences between agents are agreed upon
and are a sign of correct execution, not of failure. Indeed, it is the lack of difference
in selected plans that would indicate failure in these cases. We use the term mutual-
exclusion coordination to refer to these relationships. In Example 3, ideally no two
pilots are executing the shooting plan at the same time. In Example 4, no two
members of different sub-teams (e.g., an attacker and a defender) are executing the
same plan in service of play (e.g., defend). As the examples demonstrate, there is
a clear need for monitoring mutual-exclusion coordination.

Our results of previous sections are re-used in service of socially-attentive mon-
itoring of mutual-exclusion relationships. They require a transformation both in
implementation and theory. The hierarchies are compared in the usual manner, ex-
cept that failures are signified by equalities, rather than differences. For instance, if
an attacker is staying in the team’s own half of the field, its teammates may come
to suspect that it mistakenly “defected” the attackers’ sub-team and believes itself
to be a defender.

The analytical results are inverted as well. The maximal team-coherence heuristic
will now lead to completeness, since it prefers hypotheses that contain equalities
among agents, which are failures in mutual-exclusion coordination. The maximal
team-incoherence heuristic will now lead to sound detection, as it prefers hypotheses

that imply no equalities have occurred. These properties can be proven formally.
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Theorem 5. Let a monitoring agent A monitor mutual-exclusion relationships in a
group of agents G.. If A’s modeling of G is complete, and A uses a mazximally team-

incoherent hypothesis for detection, then the failure detection results are sound.
Proof. Provided in appendix A. O

Theorem 6. Let a monitoring agent A monitor mutual-exclusion relationships in a
group of agents G. If A’s modeling of G is complete, and A uses a mazximally team-

coherent hypothesis for detection, then the failure detection results are complete.
Proof. Provided in appendix A. O

Thus in mutual-exclusion relationships, as in teamwork relationships, guaran-
teed failure-detection results may still be provided despite the use of limited, un-
certain knowledge about monitored agents. The centralized teamwork monitoring
algorithms can now be easily transformed for monitoring mutual-exclusion relation-
ships. Unfortunately, the results in the distributed case (Theorem 4) cannot be so
easily transformed, since they rely on the property of observable-partitioning, which
is associated with differences, not with equalities. We leave this issue for future

work.

7.2 Monitoring Using Role-Similarity Relationships

This section applies socially-attentive monitoring to role-similarity relationships, for
monitoring individual performance within teams. In particular, in service of team-
plans agents may select individual sub-plans, which do not necessitate agreement
by team-members, but are constrained by the agents’ roles. For instance, in service
of executing the team-plan fly-flight-plan (Figure 3.2) pilots individually select
their own individual plans which set the velocity and heading within the constraints
of the formation and flight method specified in the mission.

Role similarity relationships specify the ways in which given individual plans are
similar, and to what extent. Two agents of the same role who are executing dissimilar
plans can be considered to be in violation of the role-similarity relationships. This
enables a socially-attentive monitoring system to detect failure in role-execution. To

monitor individual plans the agent is executing, it compares its selection with that
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of other agents of the same role, similarly to the method we used for teamwork. If
the plans are considered similar by the role-similarity relationship model, no failure
is detected. Otherwise, a failure may have occurred, and the diagnosis component
is called to verify it and provide an explanation.

Let us illustrate with a failure from the ModSAF domain which our system was
able to detect using the role-similarity relationship:

A team of three helicopters was to take off from the base and head out on a
mission. However, one of the pilot agents failed to correctly process the mission
statement. It therefore kept its helicopter hovering above the base, while its team-
mates left to execute the mission by themselves.

This failure was detected using role-similarity relationship monitoring. The
agreed-upon team-plan was selected by all the agents, and so no problem with team-
work relationship was detected. This team-plan involved each agent then selecting
individual methods of flight, which determine altitude and velocity. Here the agents
differed. The failing helicopter remained hovering, while its teammates moved for-
ward. Using a role similarity relationship, the failing helicopter compared its own
selected plan to that of its teammate (who shared its role of a subordinate in the for-
mation), and realized that their plans were dissimilar enough to announce a possible
failure.

Unfortunately, the actual similarity metrics seem to be domain- and task-specific,
and thus are not as easy to re-use across domains. Furthermore, detected failures
are not necessarily real failures, nor do all detected failures have the same weight.

We are currently investigating ways to address these challenging issues.
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Part 11

Monitoring Distributed Teams
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Chapter 8

Motivation and Background: Monitoring

Distributed Teams

In this part we examine a different monitoring task, that of on-line identification
of the state of a distributed team. The monitoring selectivity problem is more
pronounced in this task, as the distribution of the team may make most (local)
actions of an agent unobservable to the monitoring system, leading to much greater
uncertainty about monitored agents’ state. Furthermore, the goal of the task is
accurate state identification (to the degree possible), rather than failure/no-failure
decision.

One key approach to tackling this challenge is to use inter-agent communications
as the basis for the monitoring; i.e., by eavesdropping on the organization’s internal
communication (Ndumu et al., 1999), since communications are easier to eavesdrop
on from a single location (when broadcast communications are used), or from a
handful of places (when point-to-point messages are routed through the network).
Communication-based monitoring is also important because: (a) it can be completely
non-intrusive, not requiring agents to modify their existing behaviors; and (b) the
growth of agent development and integration architectures (Ndumu et al., 1999;
Pynadath et al., 1999) leads to increased standardization of agent communications,
providing opportunities for such monitoring.

Unfortunately, eavesdropping on communications does not eliminate the uncer-
tainty in monitoring. team-members cannot and do not in practice continuously
communicate about all their on-going plans and actions (Jennings, 1995; Pechoucek

et al., 2000). Furthermore, communications sometimes occur in small sub-teams,
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and yet the monitoring system must infer the state of the entire team and other
sub-teams. The limited communications serving as the basis for monitoring result
in significant uncertainty in inferring the teams’ on-going plans. This uncertainty
is further exacerbated when we consider that agents may unexpectedly fail, as the
monitoring system must then predict how other agents will respond to the failures.

Concretely, the motivation for our exploration of communications-based moni-
toring comes from our work in building a system for rehearsing the evacuation of
civilians from a threatened location. The integrated system must enable a human
commander to interactively provide locations of the stranded civilians, safe areas for
evacuation and other key points. Simulated helicopters fly a coordinated mission to
evacuate the civilians. The system must itself plan routes to avoid known obsta-
cles, dynamically obtain information about enemy threats, and change routes when
needed.

The application integrates a set of diverse agents (typically 11): Quickset (Multi-
modal command input agents, OGI), Route planner (Path planner for aircraft,
CMU), Ariadne (Database engine for dynamic threats, USC/ISI), and Helicopter
pilots (Pilot agents for simulated helicopters , USC/ISI). Generally, the actions of
agents are not observable to each other. For instance, the dialog management actions
of the Quickset agents are only observable by the user who inputs the commands;
the route-planning actions are only reported on the screen of the computer running
the route-planner, etc.

The application was built using the TEAMCORE multi-agent integration archi-
tecture (Pynadath et al., 1999). Each single domain agent is assigned a TEAM-
CORE proxy. The proxies jointly execute a team-oriented program, consisting of a
set, of hierarchical team plans, with assigned roles for teams and sub-teams (approx-
imately 60 team plans are used in this domain). As an example, Figure 8.1-a shows
a part of the team/sub-team hierarchy used in the evacuation-domain (described
below). Here, for instance, TRANSPORT is a sub-team of Task-Force. Figure 8.1-b
shows an abbreviated team-oriented plan hierarchy for the same domain. High-level
team plans, such as Evacuate, typically decompose into other team plans, such
as Process-0rders, and, ultimately, into leaf-level plans that are executed by indi-
viduals. There are teams assigned to execute the plans, e.g., Task Force team jointly

executes Evacuate. To execute the team-oriented program, each proxy works with
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Figure 8.1: Portions of the team-hierarchy (a) and plan hierarchy (b) used in our
domain. Dotted line show temporal transitions.

an in-built domain-independent teamwork model, called STEAM (Tambe, 1997).
STEAM allows the agents to automatically coordinate using selective communica-
tions, asking each other to jointly terminate or initiate team-plans.

Humans and agents must monitor the resulting team based on these communi-
cations, answering queries about the present and future likely states of the entire
team, its sub-teams and individuals—to monitor progress, compute likelihoods of
failure, etc. For instance, a query may check what plan(s) the high-level team is
currently executing, to check if it is making adequate progress. Another query may
check the future likelihood that a sub-team will fail in fulfilling their role — to take
remedial actions if this likelihood is high.

This is a challenging task because: (i) only some agents communicate, and only
about some plans; and (ii) agents may occasionally fail, but these failures cannot
in general be observed. Simple visualization tools were available to provide some
clues—such as the last message received from an agent, or the physical location of
the helicopter agents—but these prove insufficient in being able to accurately answer
the queries.

As a basis for monitoring, we built on an efficient single-agent probabilistic plan

recognition representation and algorithm!. The key idea in this representation is that

I This algorithm was co-developed with David V. Pynadath, and is described fully in Appendix
C.
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Figure 8.2: Array of single-agent recognizers—one for each agent.

the team-oriented plan is represented as a directed graph, whose vertices are plans,
and whose edges signify temporal and hierarchical decomposition transitions between
plans. The algorithm uses temporal knowledge about the average duration of plans,
to attempt to predict an agent’s current selected plan based on the last plan(s) it has
been known to execute (i.e., the plan(s) implied by the last communication message
received from the agent), and the time that has passed since that last plan was
observed. For instance, given that the message “Process-0Orders was initiated” was
received 5 seconds ago, and that on average it takes only 3 seconds to execute, the
algorithm will return the probability that the agent has terminated Process-0rders
and initiated the next plan in line (as well as returning the probability that it had
stayed).

The initial multi-agent monitoring solution uses an array of such single-agent
recognizers, one for each agent (illustrated in Figure 8.2). Messages are overheard in
parallel (when agents communicate simultaneously). The idea is that each message
is used as evidence for the agent that sent it. The state of agents for which no
message is received is updated solely based on the temporal model. Queries about
the state of a team are then answered by looking at the state of the members which
make up the team.

This approach proved insufficient. First, the cost of maintaining a plan hier-
archy for each agent is prohibitive as the number of agents in the team increases.
The array of recognizers includes 726 plans to reason about the 11 agents in the
evacuation rehearsal scenario, with the number of plans increasing by 66 plans with
each additional agent. Second, the accuracy in identifying the correct state of the

team as the most likely hypothesis was under 4% in all experiments.
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These poor accuracy results are mostly due to the high uncertainty caused by the
limited observations (intercepted communications) and uncertainty in the temporal
model used as the basis for inference. The limited observations result in multiple
hypotheses as to the state of each agent. As these individual-state hypotheses are
combined, they lead to a potentially exponential number of team-state hypotheses
(as previously discussed in Section 3.2). Indeed, with 11 agents, each with just two
possible individual hypotheses, there are more than 2000 possible hypotheses as to
the state of the team. The temporal model used for selecting the most likely one
based on average plan durations cannot be made accurate enough to correctly choose
the correct hypothesis in all cases.

The monitoring selectivity problem is thus raised here again. Here, the limited
observations impose a-priori high selectivity in observations, resulting in much uncer-
tainty about team-members’ states. Given this uncertainty, it is difficult to correctly
identify the correct team-state. Furthermore, reasoning about an exponentially-
increasing number of hypotheses makes the task computationally expensive, requir-
ing further selectivity in inference to make monitoring practical.

The monitoring task here is different than the failure-detection monitoring task
discussed in Part I: (a) Unlike monitoring for failure-detection, we are interested in
the full correct state of the team; and (b) the levels of uncertainty are much higher,
since most agents’ actions are unobservable.

The questions we address in this part stem from this difference in the monitoring
task. The first part of this dissertation has focused on showing that certain monitor-
ing goals, such as relationship failure detection, can be guaranteed despite selectivity
(and has shown that in the distributed case higher levels of selectivity—not moni-
toring all agents—can be tolerated). This part presents socially-attentive methods
to mitigate the uncertainty resulting from selectivity (Chapter 9), and the compu-
tational complexity involved in reasoning about this uncertainty (Chapter 10). The
methods were implemented in a system called Eavesdropper, and evaluated in the
evacuation rehearsal domain.

Previous work on monitoring multi-agent (e.g., Intille & Bobick, 1999; De-
vaney & Ram, 1998) have focused largely on mechanisms utilizing the known multi-
agent plan-libraries, without utilizing deeper knowledge about the social relation-

ships which the agents maintained. For instance, such techniques do not exploit
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knowledge about future steps that the agents may take in service of maintaining

their relationships. Chapter 11 provides detailed treatment of related work.
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Chapter 9

Exploiting Teamwork Knowledge for Accurate

Monitoring

This chapter examines closely the uncertainty issue in the monitoring selectivity
problem. We identify three areas of uncertainty in this monitoring task, all resulting
from the limited observations available to the monitoring agent (here, the observa-
tions are of communicated messages): First, there is uncertainty about the time that
plans take to execute, which leads to uncertainty about which plans have already
been executed (or have begun execution) by the time of the query. Second, after
each plan, the agent may be free to choose its next plan step from a number of
alternatives, which leads to uncertainty about the agent’s chosen path of execution
among alternative paths (each of them possibly involving uncertainty of the first
type). Third, there is uncertainty about the relative states of execution of different
agents, which may or may not have failed to maintain their ideal states relationships.

We report on two socially-attentive monitoring techniques for tackling the mon-
itoring selectivity problem, by directly attacking these areas of uncertainty. The
first technique revisits the minimal-number-of-failures heuristic used in Part I, using
knowledge of the relationships in the monitored distributed team to prefer hypothe-
ses in which the relationships in the organization are not violated. The heuristic
is useful in alleviating uncertainty in all three areas of uncertainty. The second
technique uses knowledge of the inter-agent procedures used by the monitored or-
ganization to maintain the relationships among its members, and to recover in case

of failures. This knowledge is used to predict decisions made by agents about their
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chosen execution paths, and to predict that certain stages in execution have not

been reached (since observations associated with them have not been made).

9.1 Three areas of uncertainty in monitoring teams

To examine the uncertainty and the factors leading to it formally, let us define the
notion of plan-horizon, which will be useful in grounding the analysis of the areas of

uncertainty.

Definition 7. The single-root plan-horizon SH (A, P,T) of an agent A, plan P, and
a given elapsed time interval 7', is a directed graph in which the vertices are all plans
that the agent A may have begun executing during the interval 7', if it began with
the execution of P.

This includes P, any plan reachable from P by following temporal and hierar-
chical decomposition transitions, and any plan reachable from any ancestor of P by
following first a temporal transition, and then any number of temporal or hierar-
chical decomposition transitions. The edges in the plan-horizon correspond to the

transitions taken. P is called the root of the plan-horizon.

Intuitively, the single-root plan-horizon contains the part of the team-
oriented program that corresponds to the hierarchical plan which contains
P, and all the hierarchical plans that could temporally follow this hierarchi-
cal plan within the time interval 7. For instance, given the team-oriented
program in Figure 8.1-b, suppose the root of a plan-horizon is the plan
Fly-Flight-Plan. Then the plan horizon will include Fly-Flight-Plan,
Fly-Control-Route, Execute-Mission, Evacuate, Landing-Zone-Maneuvers,
etc.—everything but Process-Orders and its children, or other plans that
temporally precede Execute-Mission or Fly-Flight-Plan.

Of course, our observations of A do not necessarily allow us to determine with
certainty what was its last known state. For instance, if the last observed message
indicated that an agent A has terminated some plan ), which may be followed by

any one of three different plans P;, P, and P3, then a correct description of the
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set of hypotheses about the state of the agent should include three single-root plan-
horizons: SH(A, P,.T), SH(A, P,,T), and SH(A, P3,T), where T is the duration of
time from the time this message was received.

We thus define the complete plan-horizon of an agent as follows:

Definition 8. The complete plan-horizon H (A, {Py, Ps,---, Py}, T) (horizon for

short) is the graph union of the single-root plan-horizons

k
USH(A,P,T)
i=1

where A is a monitored agent, 7" an elapsed time interval, and P;,. .., Py the possible

states of A when the last observation was made. The set P = Py, P, ..., Py is called
the set of roots of H.

The number of hypotheses contained in a plan-horizon grows along two dimen-
sions. First, along the temporal dimension, uncertainty about how much time each
plan takes to execute results in uncertainty about how many plans have possibly
been executed in the time interval defining the horizon. We call this temporal un-
certainty. The earlier M construct (used in Part I) did not allow for projections
involving time, since it was assumed that hypotheses as to the current state can
always be generated based on up-to-date observations. Thus in Part I, there was no
need to consider temporal uncertainty.

Another factor is the number of alternative plans that an agent may choose from
when terminating a given plan in the sequence, or when decomposing a currently-
executing plan into child plans (plan-step uncertainty). The more uncertain we are
about the decisions made by the agent, the more plans we have to include in the
plan-horizon, to account for the possible choices made by the agent!.

The techniques we will explore below alleviate uncertainty in both of these areas.
If the monitoring system is able to reduce the temporal and /or plan-step uncertainty
of an agent’s plan-horizon, then the number of hypotheses considered (whether prob-
abilistically or not) will be reduced. Such reduction is done by using knowledge

about what plans are reachable from the roots of the horizon. Transitions that can

1The height (depth) of the hierarchies also affects the number of hypotheses. This is independent
of the temporal and plan-step uncertainty sources, and we ignore it here for simplicity.
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be marked as illegal for a monitored agent to take will reduce these factors and
therefore reduce the uncertainty stemming from these two sources.

A third area of uncertainty is fueled by the combinations of the plan-horizons
of the team-members, just as in Part I uncertainty in team-modeling hypotheses
was fueled by uncertainty in individual-modeling hypotheses (as captured by the
M notation). As described in Section 3.2, there is a multiplicative effect when
combining individual-modeling hypotheses into team-modeling hypotheses, resulting
in an exponential (in the number of agents) number of team-modeling hypotheses.

Overall, the number of hypotheses is unfortunately very prohibitive of practical
applications, since the number of hypotheses grows very quickly with the number
of agents, the temporal uncertainty of the agents’ horizons, and their plan-step
uncertainty. The next sections will describe methods of attacking these areas of
difficulty by socially-attentive means—disambiguation methods based on knowledge
of the relationships that are maintained in the monitored team, and the procedures

that maintain them.

9.2 Using knowledge of relationships

Under the assumption that violations of relationships in a team are relatively rare
occurrences, one may use the minimal-number-of-failures heuristics to prefer team-
state hypotheses that indicate less or no violations of maintained relationships, over
those that indicate that no violations have occurred (see Part I of this disserta-
tion). Specifically, we can use minimal-number-of-failures heuristics for the the
role-coordination relationships (i.e., assume that an agent will follow its role) and
collaboration relationships (i.e., coherence, introduced in Section 3.3).

These heuristics rely on the monitoring system’s knowledge of the relation-
ships that are maintained by the team being monitored (Section 3.1). The role-
coordination relationships rely on knowledge of the team-hierarchy (who are the
members of different sub-teams, what sub-teams are part of what super-teams, what
are the different individual roles), and on knowledge of what plans should be exe-
cuted by what sub-teams/roles. Similarly, the coherence heuristic, introduced in
Section 3.3, prefers hypotheses that indicate a minimal number of teamwork fail-

ures, and can be used to prefer hypotheses in which members and sub-teams of
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the organization are collaborating correctly. To apply the coherence heuristic, we
must have a model of the team’s execution of the task—allowing us to differentiate
the planned team-plans (which require coordination and joint execution) from those
plans which the agents are free to execute independently from others, and in which
coherence does not apply. Models are readily available in many cases (for instance,
in monitoring a team for visualization by its designers and operators). In addition,

such models can often be learned in sufficient detail to be useful.

9.2.1 Using Teamwork: Revisiting Coherence

Coherence holds at multiple levels in a team—agents in a simple sub-team work
together on the plans selected for the sub-team, sub-teams work together with sib-
ling sub-teams on goals joint to the encompassing team, etc. For example, when a
terminate-plan message is overheard, the recognition system could prefer (because
of assumed coherence in the sub-team) the hypothesis that the team-members have
received the message, and terminated the plan jointly with the sender. Incoherent
hypotheses based on the same overheard message may assume that communication
failures have occurred and therefore that some of the other agents have not termi-
nated the plan.

Similarly, but at another level of the team-hierarchy, suppose that the entire
flight team (FLIGHT-TEAM) is known to be executing Fly-Flight-Plan. Now,
a message exchange is observed among the members of the TRANSPORT team,
indicating that it has begun execution of Transport-0Ops. One hypothesis is that
the ESCORT team remained coordinated with the TRANSPORT team, jointly (but
quietly) selecting Landing-Zone-Maneuvers, and in service of it, Escort-Ops. An-
other hypothesis is that the ESCORT team is still executing Fly-Flight-Plan. Yet
another is that all but one member of the ESCORT team have selected Escort-0ps,
etc. The most coherent hypothesis is the one in which the ESCORT team remained
coordinated.

Coherence is a very strong constraint, since there is in general only a linear
number (in the size of the plan-horizon) of perfectly-coherent hypotheses (compare
to the exponential number of incoherent hypotheses). In each sub-team, and at

each sub-team level (i.e., sub-team of a sub-team, etc.) the plans that are joint to
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the sub-team are shared among all the sub-team-members. Reasoning only about
coherent hypotheses (with an assumption of non-failure circumstances) eliminates,
for these members, the multiplicative effect discussed in Section 9.1).

The coherence heuristic can also reduce the temporal and plan-step uncertainties.
Coherence implies that when considering the reachable team-plans for an agent’s
plan-horizon, the monitoring system can ignore any transitions which are not pos-
sible for all the team-members of the sub-team whose plans are being considered.
For instance, suppose a transition from a team plan is to be taken only by the
TRANSPORT team. Under non-failure circumstances, there are only two coherent
hypotheses considering this transition: Either all members of TRANSPORT took
the transition, or that none did. If evidence for one member exists supports one of
these hypotheses, that evidence can be used to infer the state of the other members.

Formally, this allows us to bound (from above) the number of team-state hy-
potheses to the minimum of the sizes of the individual agent plan-horizons. This is

established in the following theorem:

Theorem 7. Suppose we have k agents, each with its associated plan-horizon H;,
where 1 <1 < k. The number of coherent team-state hypotheses when combining H;
is no greater than min{size(H;)}, where size(H;) is the number of hypotheses in the

1’th agent plan-horizon H;.
Proof. Provided in Appendix B. O

The significance of this property of coherence is that if the monitoring system can
reduce the number of individual-state hypotheses for even one agent (by reducing
the temporal or plan-step uncertainty of its plan-horizon—see next section), then
this reduction will be amplified through the use of the coherence heuristic to apply
to the other agents as well.

The use of the coherence heuristic can thus lead to a significant boost in monitor-
ing accuracy, since the number of hypotheses underlying any further (probabilistic)
disambiguation is cut down dramatically. Section 9.4 provides an in-depth evaluation

of the use of coherence in ranking plan recognition hypotheses in Eavesdropper.
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9.2.2 Using the team-hierarchy and knowledge of roles

Another useful heuristic relies on knowledge of the team-hierarchy and roles of the
agents involved. This includes knowledge of the agents that are members of a sub-
team, the team-hierarchy tree (Figure I-b), and the individual roles of agents within
their sub-teams. This knowledge is often readily available in large organizations,
such as business enterprises, factories, etc. In our own system it is part of the
Team-Oriented Program.

The heuristic assumes a minimal number of failures has occurred with respect to
the team-hierarchy relationships, i.e., that agents are not violating their roles within
the sub-teams, are not defecting from one sub-team to the other, etc. This can lead
to a reduction in the plan-step uncertainty of the agent’s plan-horizon, since some
alternatives are ruled out (or ranked probabilistically lower) by the monitoring sys-
tem. For instance, in the evacuation rehearsal domain only one agent (the Quickset
agent) is responsible for obtaining the mission orders, while the other agents go into
a Wait plan. When Eavesdropper considers the possible plans taken by the agents,
it rules out the Wait plan for the Quickset agent, but considers it alone for the other

agents in the team.

9.3 Predicting Team Responses

Section 9.1 discussed three sources of uncertainty in identifying the state of a given
individual agent. A reduction of uncertainty in two of these, the temporal and plan-
step uncertainty sources, will lead to a reduction in the number of individual-state
hypotheses associated with the agent, which in turn will lead to a reduction in the
number of team-state hypotheses.

The temporal and plan-step uncertainties are both a product of the plans which
are reachable from the roots of the plan-horizon, as previously described. By elim-
inating transitions (or ranking them probabilistically lower), we decrease the set of
plans that are reachable from the roots, and so reduce the temporal and plan-step
uncertainties. Of course, this is what the temporal model we have experimented
with (Chapter 8) attempted to do: By using a model of average plan durations, it

determines the likelihood that a transition was taken, and was thus able to reduce

68



the temporal uncertainty of the plan-horizon in some cases. However, we quickly
discovered that it was insufficient by itself since the variance in execution time of

certain plans is very large, for several reasons:

e Plan execution times vary depending on the task execution context. For in-
stance, the traveling plans takes anywhere from 15 seconds to almost two

minutes to execute, depending on the particular route being followed.

e Plan execution times vary depending on the execution environment. For in-
stance, when all the agents in the team are running on a local network, their
response times to queries may be shorter than when communicating across

continents.

e Plan execution times vary depending on the outcome. For instance, when
the route-planner is functioning correctly, it responds within a few seconds.
However, when it crashes it does not return an answer at all, and the other
agents wait for a relatively long time before relying on a time-out to decide
that it had failed.

A temporal model based on average plan duration is unfit to handle such variance.
Moreover, constructing a sufficient temporal model (i.e., a model that can take
into account the context the task, the operating environment, the possible outcome
probabilities, etc.) is difficult. Not only would such a model be much more complex,
but some its predictions are inherently difficult to calculate. For instance, latency
times in the Internet vary greatly, and are difficult to predict.

Fortunately, knowledge of the procedures which the monitored team employs
in maintaining its relationships can be used to complement any temporal models,
to significantly boost monitoring accuracy. Such knowledge allows the monitoring
system to more accurately predict the success/failure outcome of plans, and to pre-
dict the timing of future communications, significantly reducing the plan-step and

temporal uncertainties, respectively, of the agent’s plan-horizon.

9.3.1 Using predicted communications

A team’s communication procedures determine at what points during the execution

of the task the team will communicate. For instance, the team’s communication
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procedure may require its members to explicitly communicate when initiating a par-
ticular team-plan whose coordinated execution is critical. The procedures may be
simple, per-case rules, or may be complex algorithms that take coordination and
communication costs into account when arriving at a decision of whether to com-
municate. For instance, the STEAM teamwork engine (Tambe, 1997) uses decision
theoretic procedures to decide on communications based on the cost of the commu-
nication versus the projected cost of loss of coordination.

Regardless of the complexity of the procedures, a monitoring system that can
gain knowledge of their decision outcomes (the points at which the team will com-
municate) can significantly boost its monitoring accuracy. The key idea is that given
predictions of the communication decisions, the monitoring system can rule out cer-
tain hypotheses—hypotheses which involve states that mandated observed messages
which were not yet observed by the monitoring system.

Predictions of the communication decisions of the monitored team effectively
reduce the temporal uncertainty of the plan-horizons for communicating agents. For
instance, consider the TEAMCORE proxies, which communicate to either establish
or terminate a plan, i.e., communicate when transitioning from one plan into the
next. A correct prediction that a transition will not be taken without a message
being intercepted can be used to rule out all hypotheses involving plans beyond the
transition in question.

For example, suppose Eavesdropper overhears a message indicating that the
flight team has initiated joint execution of Fly-Flight-Plan (Figure 8.1). After
some time has passed, it is now possible that the team is either still executing
Fly-Flight-Plan, or it has terminated it already and begun joint execution of
Landing-Zone-Maneuvers; After some more time has passed, it is possible now
that execution has moved on to plans beyond Landing-Zone-Maneuvers. However,
if the monitoring system knows that the team will explicitly communicate about
initiating Landing-Zone-Maneuvers, it can eliminate (or rank much lower) the pos-
sibility that the team is executing the latter, eliminating any temporal uncertainty
of the plan-horizon in this case (only Fly-Flight-Plan is possible).

The knowledge required for such team responses predictions can be acquired by
learning, and /or by projecting the state of the team into the future, using a teamwork

model to determine how the team will respond given its (future) state. The key idea
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in the latter approach is to dynamically generate predictions of the responses based
on the known state of the team and a teamwork model which is used to simulate the
responses of the team given likely future states. We focus on the learning approach
first.

A monitoring system may use learning to build a model of the communications
that are generated by a team when it works on a particular task. Indeed, we have
found that simple rote-learning proved effective in generating a useful communica-
tions model that significantly reduced the temporal uncertainty of the plan-horizon
in question. This simple mechanism simply records during execution which plans
are explicitly communicated about, and whether they were initiated or terminated.
The learned rules are effective immediately, and may be stored for future monitoring
of the same task.

Figure 9.1 presents the results of learning to predict the communication decisions
taken by the team, without the use of any temporal model. The X-axis denotes
observed communication message-exchanges as the mission progresses. Overall, some
45 exchanges take place, each one including between one and a dozen broadcast
messages in which agents announce termination or initiation of a plan. The Y-Axis
shows the number of hypotheses in the corresponding plan-horizon, whose root set
is based on each message. Greater temporal uncertainty leads to higher values here.

We see in Figure 9.1 that without learning (the line marked No Learning), a rel-
atively high level of ambiguity exists, since the system cannot make any predictions
about future states of the agents, other than that they are possible: the plan-horizon
thus includes all future states from the current set of roots. However, the size of the
plan-horizon is reduced as more observations are made, and past states are ruled
out. When the learning technique is applied on-line, some learned experience is
immediately useful, and ambiguity is reduced somewhat (the line marked On-Line
Learning). However, some exchanges are encountered late during task execution, and
cannot be effectively used to reduce the ambiguity while learning. The third line
(After Learning) corresponds to the results when the model has been fully learned.
As can be seen, it shows a significantly reduction in the size of the plan-horizon.
Further evaluation of the use of communication decisions prediction is presented
in Section 9.4. Although this simple learning proved very effective in our experi-

ments, we caution against using it blindly in other tasks and domains, in which the
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Figure 9.1: Learning of Communication Decisions

communication decisions taken by the team can be more complex. We leave future

investigation of more generally applicable learning methods to future work.

9.3.2 Predicting team-responses to failure

Although quite effective at learning the communication responses of the team in the
evacuation rehearsal task, the learning approach is problematic for use in predicting
other types of responses generated by the team, specifically, responses to failures
of agents. Such failures are relatively rare occurrences, and so team responses are
potentially difficult to learn due to lack of available data.

Fortunately, the knowledge required for such team responses predictions may be
acquired by projecting the state of the team into the future, as previously mentioned.
The key idea here is to dynamically generate predictions of the responses based on
the known state of the team, and the coordination models used by the team. Future
states and transitions are fed in as if they are the current state, and the teamwork

model’s decisions are used to predict the responses taken by the monitored team.
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This approach is dynamic and allows us to incorporate the state of team-members
at run time.

These predictions can be useful in several ways. First, they can be used to provide
estimates of the likelihoods of failure. For instance, if it is known that in order for
the team to successfully terminate the LANDING-ZONE-MANEUVERS plan, at least
one member of the Fly-Out team must survive, then the probability of the team
failing can be calculated based on how many helicopters are known to be crashed,
and the probability of a single helicopter crashing. Such a calculation involves an
assumption of independence on helicopter crashes (the probability of a helicopter
crashing is independent of other helicopters having crashed), but is preferable to the
uncertainty resulting from relative lack of data on such complete failures on the part
of the team.

A second way in which the predictions can be useful is in predicting what the
team will attempt to do when a failure exists. For instance, if the coordination
relationship among the helicopters is such that a successful termination depends on
the leader of the helicopter team, then if the lead helicopter crashes, we can expect
the team to attempt to compensate by selecting a new lead helicopter. Knowledge of
the team’s responses to failures—the procedures which the team employs to maintain
its coordination—can be be captured in team fault-models (Horling et al., 1999).

Using such fault-models, Eavesdropper predicts the procedures that a team will
execute to handle recovery. For instance, Eavesdropper will predict an exchange of
messages that selects the new lead helicopter, and may be able to predict which
agent will become the new lead. These predictions allow Eavesdropper to eliminate
the “normal course-of-action” transitions from consideration while the the team is

recovering.

9.4 Accuracy Evaluation

The emerging solution is thus to construct an array of single-agent recognizers,
and use the knowledge of the team’s relationships and responses to alleviate the
uncertainty. This approach has been implemented in Eavesdropper, which we have

been using in actual runs of the system over the Internet. This section evaluates the
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contribution of the different techniques in Eavesdropper to recognizing the correct
state of the agents and teams.

Figure 9.2 compares the average accuracy for a sample of our actual system
deployment runs. The ten runs are marked A’ through 'J’ (X-axis). In each such
run, the team executed a complete evacuation simulation mission. At different points
during the 10-20 minute execution, the actual system state was compared to the
state predicted by the monitoring system, where that prediction was taken to be
the current most likely hypothesis. Each run had 22-45 such comparisons (data-
points). The average accuracy for each run across those comparisons is given in the
0-1 (0-100%) range (Y-axis).

The average accuracy when using the individual models with no coherence (Sec-
tion C) is presented in the leftmost bar (marked Temporal) in each group (Figure
9.2). The temporal model used was generated by looking at the average duration
of plans in run C. The next bar presents the average recognition accuracy if only
coherence is used to rule out hypotheses (Section 9.2), and then an arbitrary selec-
tion is made among the remaining hypotheses. The next bar to the right (Coherent,
Temporal) presents the results of combining both coherence and the probabilistic
temporal-reasoning capabilities. First, non-coherent hypotheses are thrown away.
Then, the temporal model is used to select among the coherent hypotheses.

The next bar to the right (Coherent, Comm) presents the results of combining
coherence with the team communication responses predictions described in Section
9.3. In this combined technique, coherence is used in combining the individual plan-
horizons. Then the communication predictions are used to decrease the temporal
uncertainty of the coherent plan-horizon. Finally, an arbitrary selection is made
among the remaining coherent hypotheses. The communications responses predic-
tions were learned based on run C, then modified slightly manually to accommodate
different runs, i.e., to prevent the communication model from blocking a transition
from being taken. Such modifications relax the effects of the communication models,
and in some cases hurt the accuracy of the technique.

The remaining bar (Coherent, Temporal, Comm) presents the average accuracy
in each run using the full combination of disambiguation capabilities: Coherence,
the duration probabilities, as well as the team communication model, which predicts

when communications will occur.
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Figure 9.2: Average accuracy in sample runs.

The results presented in Figure 9.2 demonstrate the effectiveness of the socially-
attentive monitoring techniques presented. First, the result demonstrate that the
coherence heuristic is clearly effective, as it brings the accuracy up by 15-30% with-
out using any probabilistic reasoning. When combined with a temporal model of
plan-duration, the average accuracy is significantly increased further, demonstrating
that the two techniques are complementary. Indeed, this point is further demon-
strated by noting that the right-most bar, showing the average accuracy in each run
when combining all techniques is significantly higher than with either technique or
simpler combination alone.

A key issue is raised by a careful look at the comparison between the (Coherent,
Temporal) and (Coherent, Comm) bars. These two bars allow us to compare the ef-
fectiveness of the temporal model with that of the communication predictions, which
we have presented as a solution to the weaknesses of the temporal model. In almost
all runs the average accuracy when using coherence and communications predictions
is significantly higher than when using coherence and the temporal model. This
is despite the fact that the more effective coherence technique uses arbitrary (ran-
dom) selection among the available hypotheses: The reason for this is that in many
cases the communication predictions are powerful enough to rule out all hypothe-
ses but one or two, significantly decreasing the temporal uncertainty of the agents’
plan-horizons. Thus even a random selection stands a better chance than a more

informed (by a temporal model) selection among many more (10-20) hypotheses.
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However, runs D and I show a reversal of this trend. These runs involved rela-
tively more failures on the part of team-members, including agents crashing or not
responding at all. The communication predictions, however, were learned based
on successful runs—and thus did not correctly predict the communication messages
that would result as the team detected and recovered from the failures. Thus the
temporal uncertainty of the plan-horizons was not shortened, and the arbitrary se-
lection was made among relatively many hypotheses. This explains the relatively
lower accuracy of the (Coherent, Comm) technique in run D and I. However, there
are other factors that influence the accuracy of the communication models, since
this lower accuracy did not occur in other runs where failures have occurred.

The results of the Coherent, Temporal technique vary as well. We have been able
to determine that failures cause a relative increase in the relative accuracy of the
Coherent, Temporal technique. However, variance in the results is due to additional
factors. In run E, for instance, this technique results in relatively higher accuracy,
but no failure has occurred. Certainly, the mission specifications themselves differ
between runs, machine loads cause the mission execution to run slower or faster, etc.
The great variance in the temporal behavior of the system was the principle reason
for our using the communication prediction. This variance is obvious in the graphs.

Figures 9.3a-b provide further evidence for this phenomena. The figure shows
the accumulative number of errors as task execution progresses during run A (Figure
9.3a) and during run D (Figure 9.3b). An error is defined as a failure to choose the
correct hypothesis is the most likely one (i.e., the most likely hypothesis does not
reflect the true state of the agent/team). Each message exchange corresponds to one
to a dozen messages communicated by the agents, establishing or terminating a plan.
In the two figures, a lower slope means better performance (less errors). The line
marked Coherent shows the accumulative number of errors if only coherence is used
to select the correct hypothesis—most such choices turn out to be erroneous since a
random choice is made among the competing hypotheses. The line marked Coherent,
Temporal shows the results using both coherence and the temporal model to choose
the most likely hypothesis. Similarly, the line marked Coherent, Comm shows the
results using both coherence and the team communication responses predictions.
Finally, the remaining line displays the results of using coherence, the temporal

model, and the model of team communications-responses predictions.
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Figure 9.3: Accumulative number of errors in runs A’ and 'D’.

In Figure 9.3a, we see that the two techniques ( Coherent, Temporal and Coherent,
Comm) have almost equal slopes and result in almost equal number of errors at the
end of run A, though from Figure 9.2 we know that due to the much shorter plan-
horizon temporal uncertainty, the use of communication predictions leads to overall
higher probability of success (i.e., the Coherent, Comm technique results in fewer
alternative hypotheses, and thus has a better chance of being correct). However,
in Figure 9.3b we see that in run D the situation has changed dramatically. First,
we see that the two lines are no longer similar. The line marked Coherent, Comm
has greater slope than in run A, indicating that the communication predictions are
not able to reduce the temporal uncertainty of the plan horizon, resulting in lower
average accuracy. Second, we see that the temporal model results in many less
errors, as evidenced by the much slower-rising slope of the line marked Coherent,
Temporal. Thus in this case, the actual duration of plans matched the temporal
model more accurately than in other runs.

In summary, despite the variance in the results of the Coherent, Temporal tech-
nique (due to variance in the temporal behavior of the system), and the possible
sensitivity of the Coherent, Comm technique to learned predictions, it is clear that
the two techniques work well in combination, building on the coherence heuristic,
and compensating for each other’s weaknesses. Together, the coherence heuristic,
the communication predictions, and the available temporal knowledge result in very

significant increases in accuracy compared to the initial solution with which we began
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our investigation (72-97% versus less than 4%). In all runs, the combined technique
Coherent, Temporal, Comm was superior to either technique alone. The communi-
cation predictions need to not be perfect, and the temporal knowledge need not be

precise, in order to be useful.
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Chapter 10

Scaling-Up Monitoring Efficiency

The previous chapter has demonstrated that the uncertainty issue in the monitoring
selectivity problem can be successfully tackled by socially-attentive means. However
the issue of computational complexity of the monitoring process is also of great
concern. The space and time complexities in the initial monitoring solution presented
in chapter 8 grew linearly with the number of agents, and thus do not scale well to
large-scale teams.

This chapter presents a monitoring approach that trades monitoring expressivity
for efficiency— monitoring algorithms that can only represent hypotheses in which
the agents are not violating their relationships, but achieve significantly better com-
putational efficiency. Taken to extreme, the solution we provide is able to monitor
all agents in a team, regardless of their number and their parallel activities, using
a single plan hierarchy. However, it can only reason about coherent hypotheses in
which agents do not violate their roles (it may still detect incoherences and role

violations). It thus offers a particularly scalable monitoring solution.

10.1 Optimizing using the team-hierarchy

The first step towards this goal begins with the array of single-agent recognizers. In
Section 9.2 we have seen that eliminating (or ranking lower) hypotheses in which
agents violated their role relationships can reduce the breadth of their respective
plan-horizons. We can carry this further to completely eliminate from consideration
any such hypotheses—by removing plans and transitions from the plan hierarchy

that is used to monitor an agent. In other words, the array-of-recognizers can be
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optimized such that the recognizer for each agent uses only the portion of the plan
hierarchy that the agent is actually allowed to execute according to the sub-teams
of which it is a member, and its roles in those sub-teams.

For example, Figure 10.1 illustrates such an optimized array of single-agent rec-
ognizers for the evacuation rehearsal domain. The figure illustrates how the actual
plan hierarchy used by each single-agent recognizer changes from agent to agent. The
left-most hierarchy, for instance, is unique to the Quickset agent, which is respon-
sible for obtaining the orders for the Task-Force team. the right-most hierarchies
shows a portion of the hierarchy used by members of the escort sub-team.

The computational savings in space and time are traded here for expressivity.
This optimization physically restricts the system to reason only about hypotheses in
which agents do not violate their roles. Hypotheses in which agents fail (by executing
incorrect roles, or accidently “defecting” to another sub-team) cannot be explicitly
represented. This may prevent the monitoring system from hypothesizing failures
without direct evidence.

Role/Sub-team violations can still be detected, if communications are observed
that unambiguously indicate that an agent is executing plans that it is not supposed
to (based on its role or sub-team). The optimization precludes some plans from ap-
pearing in the plan hierarchy of a given agent, i.e., its plan-horizon will be restricted
to those plans that it may actually execute. If a message is received indicating that
the agent has begun executing a plan that is not in the plan-horizon, then this is
a clear indication that the agent is violating the known role/sub-team relationships
(or that our model of the team-hierarchy is incorrect). Although the monitoring
system will be able to detect this failure, it will not be able hypothesize the erro-
neous state of the agent, i.e., the monitoring system will know that the agent has
violated the team-hierarchy, but not how. Section 10.3 presents an evaluation of this

expressivity-efficiency trade-off.
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10.2 YOYO*: Efficiently reasoning about coherent
hypotheses

It is clear (Section 9.4) that coherence is an extremely important heuristic to in-
creased monitoring accuracy. However, the monitoring algorithm that uses an array
of single-agent recognizer is not optimized for representing coherent hypotheses.
Each agent’s state is represented separately, and coherence is enforced as a post-
processing constraint rather than a-priori. A more extreme step towards improved
efficiency (by sacrificing expressivity) can be taken by restricting the reasoning to
a-priori rule-out incoherent hypotheses.

We present here the YOYO* family of algorithms, which optimize monitoring by
restricting reasoning to coherent hypotheses only. At the expense of this decreased
expressivity, YOYO* algorithms use only a single plan hierarchy to represent any
number of agents in a team. This provides a particularly scalable solution for large
teams, as any reasoning (such as propagating probabilities) can take place once for
the entire team.

The key idea is to keep the plan-horizons of all agents coherent, such that the
plan-horizons of different agents do not imply any incoherences. YOYO* maintains
a team-hierarchy (such as the one presented in Figure 8.1), such that each agent and
each sub-team (i.e., every node in the team-hierarchy tree) has associated with it a
set of pointers to the roots of their current hypothesized plan-horizons in a shared
plan hierarchy.

These pointers are maintained coherent with each other at all times. When an
observation is made about an agent (called the focus), we not only update the pointer
for this agent, but also re-align the pointers of its parent and child teams, such that
their own pointers point at a set of roots that is coherent with the new roots of the
focus. We then go up and down the team-hierarchy to re-align the pointers of the
other agents which are either part of the focus’ sub-team or its siblings!. This re-
alignment is done by moving the roots of the non-focus agents (and the sub-teams of

which they are members) forward (in their horizons) until they point at a root that

1This up and down traversal of the plan- and team-hierarchies is the root of the name for this
family of algorithms.
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is coherent with the plan-horizon of the focus. If the initial set of roots is already
coherent with the focus’ new root, no re-alignment is necessary.

To illustrate, let us re-examine the following example. In our application, the
entire team (Task-Force) jointly executes the Execute-Mission plan (Figure 8.1).
In service of this plan, Task-Force may either execute the F1y-Flight-Plan plan or
the Landing-Zone-Maneuvers plan. In service of the latter plan, the TRANSPORT
team must execute the Transport-0Ops plan, while the ESCORT team executes the
Escort-0Ops plan.

Suppose that the entire team, based on previous messages, is known to be ex-
ecuting the Fly-Flight-Plan plan (i.e., the roots for Task-Force, ESCORT and
TRANSPORT—and their members—are all Fly-Flight-Plan). Then a message is
received that indicates that the transports are now executing the Transport-0Ops
plan. YOYO* then updates the root of the TRANSPORT to be the Transport-0ps.
Under the assumption that the team is coherent, it then infers (climbing up the team-
hierarchy) that the TRANSPORT team has terminated Fly-Flight-Plan jointly
with the other sub-teams, i.e. that the parent team Task-Force has terminated
Fly-Flight-Plan and has begun executing Landing-Zone-Maneuvers. It therefore
updates the root of Task-Force to be Landing-Zone-Maneuvers. Furthermore, it
now infers (climbing back down the team-hierarchy) that the escorts team is execut-
ing Escort-0ps in service of Landing-Zone-Maneuvers, and so it updates the root
for the ESCORT team to be Escort-0ps.

A symbolic version of YOYO* (which does not propagate probabilities) is pre-
sented in Algorithm 10.1 (a probabilistic version is presented in Appendix D). It
uses a single fully-expanded plan hierarchy M, which is the graph-union of all the
agents’ plan hierarchies, i.e., all possible plans and transitions for all roles. It is
assumed that M is annotated such that YOYO* can tell what transitions and plans
are allowed to be executed by which teams. YOYO* also relies on an extended
model of the team hierarchy H, which contains a pointer for every team into M.
These pointers point at the roots of the teams’ current plan-horizon.

When a monitoring query as to the state of a particular agent or sub-team is
made, the monitoring system simply looks up the agent or sub-team in the team-
hierarchy. It then uses the pointers to find out the roots for the agent or sub-team,

and computes the plan-horizon dynamically (using the time of the query) to answer
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the query. The dynamic computation of the plan-horizon uses the sub-team and role
tags in M to make sure only transitions and plans executable by the query sub-team

are considered.

Algorithm 10.1 YOYO*(plan hierarchy M, team-hierarchy H)

1: Loop forever:
2: if messages received-new plan S team 7", then
3: locate T in the team-hierarchy tree H
. set the roots of the plan-horizon of 7' to all S plans in 7”s current plan-horizon

4
5:  set the roots of the plan-horizon of any child sub-team of 7" to S

6: tmp<+<T

7:  while tmp is not the root team in H do

8 find lowest common ancestor N of S shared by tmp and its sibling teams
9 if N different than previous plan shared with the siblings then

10: set the roots of parent and siblings of tmp (and their children) to N
11: tmp <parent_ of (tmp)

To illustrate the operation of YOYO*, consider how it may handle the ex-
ample of the transports and escorts as described above. Suppose that the entire
team is known to be executing Fly-Flight-Plan: For any sub-team in H, the
current state can be found by using the plan-horizon rooted by the pointer to
Fly-Flight-Plan in M. Now, a message exchange is observed among the mem-
bers of the TRANSPORT team, indicating that they have initiated execution of
Transport-Ops (Line 2 in Algorithm 10.1). First, the TRANSPORT team is lo-
cated in H (Line 3), and its new plan-horizon root Transport-0Ops is found in M
(Line 4). For each sub-team of the transports, we update the pointers it contains
in H to now point to this root (Line 5). We now enter the loop (Lines 6-7). The
first parent plan of that is shared to the transports and its sibling sub-team, the
escorts (Line 8), is Landing-Zone-Maneuvers, which is found by climbing from
Transport-0Ops. This shared parent is new-it is different than the previous shared
parent Fly-Flight-Plan. Therefore, Landing-Zone-Maneuvers is now pointed to
by the ESCORT team, and the common parent team FLIGHT-TEAM (Line 10).
Now we look at the FLIGHT-TEAM (Line 11, returning to Line 7). Its new root is
now Landing-Zone-Maneuvers. Its new shared parent (with its sibling sub-teams)

is Landing-Zone-Maneuvers. This is different than the previous parent, and so
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we change the sibling and parent teams’ roots to Landing-Zone-Maneuvers. We

continue to the parent team Task-Force, and then the while loop terminates.

10.3 Efficiency Evaluation

We examine here a key trade-off between the expressivity and efficiency involved
in the monitoring techniques we have presented in this chapter. From the accuracy
discussion above, it is clear that coherence is a useful heuristic. YOYO* takes an ex-
treme approach to using it, strictly ruling out reasoning about incoherences. It is im-
possible for YOYO*, for instance, to represent an incoherence in which the TRANS-
PORT team is executing Transport-0ps in service of Landing-Zone-Maneuvers,
while the ESCORT team is executing Process-0rders. It is thus often impossible
to explicitly represent hypotheses associated with communication losses and delays,
which cause such incoherences.

However, YOYO* is still able to detect many (even if not all) such incoherences.
The incoherences would be detected when a new set of roots (based on new evidence)
cannot be found in the plan-horizon for the agent. This happens when the roots for
the agent have been previously aligned based on its team-mates or other sub-teams.
For instance, the incoherence described above could be detected as follows. Suppose
that a message is overhead indicating that one TRANSPORT member has initiated
execution of Landing-Zone-Maneuvers. As previously discussed, YOYO* would
re-align the roots of the TRANSPORT team to Landing-Zone-Maneuvers, then
re-align the roots of the ESCORT team to the same plan, to maintain coherence.
Suppose that another message is overheard now in which a member of the ESCORT
team indicates initiation of Process-0Orders. This plan is not in the plan-horizon
for the ESCORT team-members, since the plan does not allow for this new plan to
be executed after Landing-Zone-Maneuvers. Thus, there is no way to identify the
new roots for the ESCORT members (and the rest of the team), and the incoherence
would be detected. However, without further auxiliary information, YOYO* cannot
identify the hypotheses involved in the failure: it cannot identify the plan-horizon
rooted at Process-Orders. In contrast, the approach employing an array of single-
agent recognizers, in which each individual is represented separately, allows for such

representation, and in this respect is more expressive.
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On the other hand, YOYO* offers great computational advantages when com-
pared to the individual representation approach. YOYO* requires a single, fully-
expanded, plan hierarchy M to represent the entire team. This model is a union of
all the individual agent task-models, and therefore its space complexity is bounded
from above by the combined size of the individual models. In the worst case, in
which each agent has its own set of plans and no two agents jointly execute a plan,
the size of M will be the same as the combined size of the role-optimized array of
single-agent recognizers as in Section 10.1. However, in the best case all the plans
will be team-plans which are to be jointly executed. Then, the size of M will be the
same as the size of a single-agent plan hierarchy. Table 10.1 below provides empirical
results in our domain.

The reduction in the space requirements leads to appropriate reduction in com-
putation time as well. Probabilities are propagated once for the entire team, and
do not need to be propagated repeatedly for each individual. Furthermore, YOYO*
represents only a linear number of hypotheses (in the size of the plan hierarchy),
because it rules out most incoherent hypotheses. The individual-models approach,
however, represents (implicitly) an exponential number of hypotheses. Therefore,
tasks that require enumeration of hypotheses will have exponential running times
when using individual models.

Table 10.1 contrasts the different approaches, highlighting expressivity versus ef-
ficiency. The first column notes the monitoring approach discussed, and the section
in which it is discussed. The second column provides the space complexity of the
approach. Here, N, is the number of agents, and R is the number of different roles
in the team (1 < R < N4). m is the constant size of a fully-expanded plan hier-
archy (i.e., a plan hierarchy that contains information for all roles and sub-teams).
The next column provides the actual number of plans (not including transitions)
used when implementing the approach in our domain. The last column provides a
summary of the expressivity of the approach in terms of hypotheses that it can and
cannot represent.

We see that the full array approach has both a worst- and best- case space
complexity of O(N4 * m). This is because we use a full plan hierarchy to represent
each of the agents. It is expensive (726 plans are maintained, with additional 66 for

each additional agent), but allows for full representation of all types of hypotheses,
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‘ Monitoring Algorithm ‘ Space Complexity ‘ Empirical ‘ Expressivity

Array N AxXmMm 726 Teamwork Failures: Sound or Complete
(Chapter 8) Role Failures: Full expressivity
Optimized Array N A X % 496 Teamwork Failures: Sound or Complete
(Section 10.1) Role Failures: Detection only
YOYO* m 66 | Teamwork Failures: Sound (detection only)
(Section 10.2) Role Failures: Detection only

Table 10.1: Trade-offs in monitoring efficiency versus expressivity

including hypotheses in which agents have defected from the roles, or incoherences
exist within sub-teams. In terms of teamwork failure detection, then, it is able to
provide either sound or complete detection (Theorems 1-3).

The optimized array approach cuts down the space requirements significantly,
by maintaining for each agent only the portion of the plan hierarchy that is actually
allowed for the agent based on its role and sub-team. Its space complexity is O (N4 *
%). In the worst case, all agents have the same role (R = 1), and thus no space
savings are actualized with this approach compared to the non-optimized array, since
the same exact plan-library (of size m) would be used in monitoring each individual
agent. In the best case, however, each agent has its own role which does not share
any plans with any other agent (R = Nj4). Then the total size of the array is
just m, since the plan-library for each individual agent is only of size O(;). Our
implementation used 496 plans (savings of 32%), with up to 40 additional plans with
each additional agent. The approach thus promises better space requirements, but
sacrifices the ability to reason about role failure hypotheses?. It is still able to reason
about incoherences, and is thus able to provide either sound or complete detection
as the non-optimized version.

Finally, the YOYO* approach provides the best guarantees on space
complexity—QO(m)—using only 66 plans in the implementation, with no additional
plans when adding agents. The savings are of 91% compared to the full array ap-
proach, 87% compared to the optimized array approach. However, it sacrifices the
capacity for reasoning about incoherent hypotheses, offering only sound detection

capabilities in such cases.

2However, role-failures may still be detectable.

87



Chapter 11

Related Work

Our investigation of the monitoring selectivity problem, and the socially-attentive
monitoring methods for addressing it, builds on research in different fields: Team-
work and coordination, execution monitoring, diagnosis, plan recognition, human
team training, team behavior analysis, and more. We address these fields in this

section, and explain how our investigation is related to existing literature.

11.1 Teamwork

Previous work in teamwork has recognized that monitoring other agents is critical
to teams. Past investigations have raised the monitoring selectivity problem, but
have not addressed it in depth. Building upon these investigations, this dissertation
begins to provide some in-depth answers to this problem.

The theory of SharedPlans (Grosz & Kraus, 1996, 1999) touches on the team-
work monitoring selectivity problem in several ways, but provides only some initial
answers. First, the theory requires agents to know that their teammates are ca-
pable of carrying out their tasks in the team. The authors note that agents must
communicate enough about their plans to convince their teammates of their ability
to carry out actions (Grosz & Kraus, 1996, p. 314). Second, the theory requires
agents to have mutual-belief in the shared recipe, a state that requires agents to
reason to infinite recursion about other agent’s beliefs. Unfortunately, attainment of
mutual belief is undecidable in theory (Halpern & Moses, 1990) and hence must be
approximated in practice (Jennings, 1995; Rich & Sidner, 1997). Such approxima-

tions may still impose strong monitoring requirements. Third, the theory introduces
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the intention-that construct in service of coordination and helpful behavior, imply-
ing monitoring of others’ progress to assess the the need for such behavior (Grosz
& Kraus, 1996, Axiom A5-AT). Fourth, SharedPlans requires that intentions of an
agent must not conflict (Grosz & Kraus, 1996, Axiom A1), and since some of these
intentions (in particular, intentions-that) may involve the attitudes of other agents,
some monitoring of others to detect and avoid conflicts is implied. The authors point
out that while theoretically all such conflicts can be detected, this is infeasible in
practice (Grosz & Kraus, 1996, p. 307). They suggest that conflict detection and
prevention be investigated in a problem-specific manner within the minimal con-
straints (i.e., monitoring for capabilities, mutual-belief, progress, lack of conflicts)
provided by the SharedPlans framework (p. 308 and 314).

Joint-Intentions (Levesque et al., 1990; Cohen & Levesque, 1991) requires an
agent who privately comes to believe that a joint-goal is either achieved, unachiev-
able, or irrelevant, must commit to having the entire team mutually believe it to
be the case. As in the theory of SharedPlans, Joint-Intentions’ use of mutual belief
can only be approximated in practice, and imposes strong monitoring requirements.
Thus, the monitoring selectivity problem is raised for practical implementations of
Joint-Intentions.

Jennings has hypothesized that two central constructs in cooperative multi-agent
coordination are commitments made by the agents, and conventions, rules used to
monitor these commitments (Jennings, 1993). Such conventions are used to decide
what information needs to be monitored about agents, and how it is to be moni-
tored. For instance, a convention may require an agent to report to its teammates
any changes it privately detects with respect to the attain-ability of the team goal.
Jennings raises the monitoring selectivity problem and provides an example of spe-
cific conventions for high- and low-bandwidth situations in which some knowledge
is not communicated to all agents if the bandwidth is not available. However, Jen-
nings does not explore in-depth the question of how such conventions are selected,
and what are the trade-offs and guarantees associated with the selection of partic-
ular conventions. For instance, there are no guarantees on the effects of using the
low-bandwidth convention in the example. In contrast, our work provides analytical
guarantees on the monitoring goals which may be achieved using the monitoring

techniques we introduced for failure detection.
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The theoretical investigations described above all raise the monitoring selectiv-
ity problem (implicitly or explicitly). Our work builds upon these to address this
problem in depth, in the context of socially-attentive monitoring in teams. This
dissertation reports on soundness and/or completeness properties of teamwork re-
lationship failure-detection that can be analytically guaranteed, despite uncertainty
in knowledge acquired about monitored agents. The analytical guarantees are ap-
plicable to plan recognition and communications, and are corroborated by empirical
results.

Building on theoretical work, practical teamwork systems include GRATE* (Jen-
nings, 1995), COLLAGEN (Rich & Sidner, 1997), and STEAM (Tambe, 1997). Jen-
nings’ investigation of the Joint-Responsibility teamwork model in GRATE* (Jen-
nings, 1995) builds on Joint-Intentions, and similarly to our own implementation,
requires agents to agree on the team-plans which are to execute. However, GRATE*
is used in industrial settings in which foolproof communications can be assumed
(Jennings, 1995, p. 211), and thus only passive monitoring (via communications)
is used. Although Jennings provides an evaluation of GRATE*’s performance with
respect to communication delays, no guarantees are provided with respect to failure
detection. GRATE* maintains knowledge about other agents through acquaintances
models, which are used to keep track of what team-members’ capabilities are (in ser-
vice of forming teams). However, the question of how much knowledge should be
used in these models is left unaddressed.

Rich and Sidner investigate COLLAGEN in a collaborative user-interface sys-
tem, in which communications are reliable (Rich & Sidner, 1997). However, from a
human-usability perspective, limiting the amount of communications is still desir-
able. To address this issue, recent empirical work by Lesh, Sidner and Rich (1999)
utilizes plan recognition in COLLAGEN; the focus of that work is on using the
collaborative settings to make the plan recognition tractable. For instance, ambigu-
ities in plan recognition may be resolved by asking the user for clarification. Work
on COLLAGEN does not investigate how much knowledge is to be maintained for
effective collaborative dialogue with the user. In contrast, we are able to provide
guarantees on the failure-detection results of our algorithms. Also, analyzing the

dialogue plans for risky points may allow systems such as COLLAGEN to decide
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whether to use communications for clarification even when plan recognition is not
ambiguous.

STEAM (Tambe, 1997) maintains limited information about the ability of team-
members to carry out their roles. STEAM also allows team-members to reason
explicitly about the cost of communication in deciding whether to communicate or
not. Our work significantly extends these capabilities via plan recognition, and pro-
vides analytically-guaranteed fault-detection results. Furthermore, our teamwork
failure-detection capabilities can be useful to trigger STEAM’s re-planning capabil-

ities.

11.2 Multi-Agent plan recognition

Eavesdropper and RESL both employ multi-agent plan recognition to monitor
agents. While previous work in multi-agent plan recognition has either focused on
exploiting explicit teamwork reasoning (e.g., (Tambe, 1996)) or explicitly reasoning
about uncertainty when recognizing multi-agent plans (e.g., (Intille & Bobick, 1999;
Devaney & Ram, 1998)), a key novelty in Eavesdropper is that it effectively blends
these two threads together.

RESCleqm (Tambe, 1996) focuses on explicitly using team intentions for infer-
ring team plans from observations, similarly to Eavesdropper’s use of the coherence
heuristic, and used coherence to restrict the space requirements of the plan-library
used, similarly to YOYO*. When used to model adversaries, RESC}.q,, employs a
worst-cost heuristic which reasons only about the hypotheses which imply the most
cost to the monitoring agent. RESL’s representation is similar to that of RESCieqm,
but RESL allows for explicitly representing multiple hypotheses, instead of one,
and for a variety of disambiguation heuristics to be used, instead of coherence alone.
Eavesdropper uses a much more advanced team model than RESCieap, (e.g., it can
predict failures based on coordination constraints), uses knowledge about the proce-
dures used to maintain the relationships (i.e., when communications will take place),
and also explicitly reasons about uncertainty and time, allowing it to answer queries
related to the likelihood of team plans and failures, given a future target time.

van Beek and Cohen (1991) have looked at plan recognition ambiguity in the

context of generating cooperative responses. They identified a set of conditions
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under which an automated help system used by students actually needs to disam-
biguate between recognized alternatives of students intentions by communications,
and provided inspiration to some of the work reported on here. However, their
system represents the ambiguity explicitly in any case, by critiquing and reasoning
about the alternatives. In contrast, we have empirically and analytically identified
a set of conditions under which the representation itself is not necessary for moni-
toring purposes. We were able to address the need for monitoring disambiguation
in a principled way, based on knowledge of the relationships that hold among mon-
itored agents. In Part I, we provide analytical guarantees on the requirements and
results for such selective disambiguation, in service of failure-detection. In Part II,
we have addressed situations in which accurate monitoring is required, and shown
that socially-attentive monitoring can reduce uncertainty even in these cases.

Washington (1998) presents an approach to plan recognition via a Partially-
Observable Markov Decision Process (POMDP). Washington shows that when
POMDPs are used to represent a monitored agent’s state, reasoning is possible
in real-time scales, as long as the monitoring agent does not influence in any way
the behavior of the monitored agent. This is an answer to the monitoring selectivity
problem when POMDPs are used for representation. Our work differs from Wash-
ington’s in several ways: First, we do not restrict the monitoring agent from acting
in any way; second, the plan recognition representations we present do not share the
computational requirements of POMDPs; and third, we provide a set of conditions
under which no representation of uncertainty in the plan-hypotheses is necessary for
failure detection.

Intille and Bobick (1999) rely entirely on coordination constraints among agents
to recognize team-tactics in football, and in this sense use one of our socially-
attentive techniques, which prefers hypotheses in which agents are maintaining their
roles. Similarly, Devaney and Ram (1998) use pattern matching to recognize team-
tactics in military operations. Their approach relies on task- specific pre-defined
team-plan libraries, which are verified by domain experts. Both investigations use
position trace data of the monitored human teams. Our work differs from these
investigations in several ways. First, we take the position that teamwork is more
than just simultaneous coordinated activity. Thus, a purely coordination-based ap-

proach is likely to face difficulties in general, as acknowledged in (Intille & Bobick,
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1999). For instance, in a case where a team member were to suddenly fail, and its
teammates will change their behavior to render assistance or otherwise compensate
for its failure. In contrast, Eavesdropper can predict role replacement and con-
tinue with its monitoring. Furthermore, in its most general form, Eavesdropper can
reason explicitly about teamwork and role failures, which would confuse the previ-
ous approaches. Second, these previous investigations have been applied in settings
where observations are continuously available about each monitored agent. In con-
trast, Eavesdropper is targeted towards applications where limited observations are
available. It introduces a number of novel techniques (such as the communication
predictions) which are significantly useful in such domains.

Huber (1995) investigated the use of probabilistic plan recognition in service
of active teamwork monitoring, motivated by the unreliability and costs of passive
communications-based monitoring in military applications. In (Huber & Hadley,
1997), Huber reports on the use of probabilistic plan recognition in service of
observation-based coordination in the Net-trek domain, and shows that agents us-
ing plan recognition for coordination outperform agents using communications for
coordination. Huber takes coordination to be cooperative actions on the part of the
self- interested agents—for instance, joining an agent in attacking a common enemy.
Huber’s work does not exploit any knowledge of relationships between the agents to
limit the computation or increase the accuracy, and does not address the monitoring
selectivity problem, in contrast to our work.

The general probabilistic plan recognition approach of Charniak and Goldman
(1993) could explicitly reason about uncertainty in multi-agent systems. The co-
herence and communication predictions technique we utilize could, in principle, be
applied to the general representation they propose. However, the potentially un-
bounded number of observed communication in the target domains would render
the approach impractical for online recognition. In contrast, our work is specifi-
cally targeted towards on-line recognition. In particular, our YOYO* algorithm and

representation is specifically geared towards efficient recognition.
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11.3 Multi-Agent Monitoring Selectivity

Durfee (1995) discusses various methods of reducing the amount of knowledge that
agents need to consider in coordinating with others. The methods discussed involve
pruning parts of the nested models, using communications to alleviate uncertainty,
using hierarchies and abstractions, etc. Our work differs from Durfee’s in several
important ways: First, Durfee’s work focuses on methods by which modeling can
be limited. We focus on socially-attentive monitoring methods, and empirically and
analytically explore their effectiveness with respect to the monitoring task, providing
answers to the monitoring selectivity problem. For instance, we provide analytical
guarantees on trade-offs involved in using limited knowledge of agents for failure-
detection purposes. Second, we address the monitoring selectivity problems in the
context of agent teams, rather than self-interested agents as in Durfee’s work, which
emphasizes decision-theoretic representation and reasoning. Our focus on teams
allows us to bring to bear knowledge of teamwork in service of socially-attentive
monitoring methods.

Sugawara and Lesser (1998) report on the use of comparative reasoning/analysis
techniques in service of learning and specializing coordination rules for a system
in which distributed agents coordinate in diagnosing a faulty network. The inves-
tigation is focused on optimizing coordination rules to minimize inefficiency and
redundancy in the agent’s coordinating messages. Upon detecting sub-optimal coor-
dination (via a fault model), the agents exchange information on their local views of
the system and the problem solving activity, and construct a global view. They then
compare the local view to the global view to find critical values/attributes which were
missing from the local view and therefore gave rise to the sub-optimal performance
problem. These values and attributes are used in constructing situation-specific rules
that optimize coordination in particular situations. For example, network diagno-
sis agents may learn a rule that guides them to choose a coordination strategy in
which only one agent performs the diagnosis and shares its result with the rest of
the diagnosis agents. Our work on socially-attentive monitoring similarly uses com-
parison between agents views to drive the monitoring process. However, our use of

comparison is a product of the relationship we are monitoring. While Sugawara and
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Lesser’s work can be viewed as letting the agents incrementally optimize their moni-
toring requirements, our results analytically explore the level of monitoring required
for effective failure-detection, in different configurations. Our teamwork monitoring
technique addresses uncertainty in the acquired information, and does not construct
a global view of all attributes the system—as that would be extremely expensive.
Instead, our technique focuses on triggering failure detection via contrasting of plans,
then incrementally expanding the search for differences in the diagnosis process.

Klein and Dellarocas (1999) recognize the importance of monitoring relationships
in a multi-agent system in service of failure detection and diagnosis. Their work
focuses on off-line analysis of various types of coordination relationships resulting
in failure models of these relationships. These failure models are then used by
centralized monitoring conditions during execution to detect failures. Our technique
predates theirs and differs from it in critical ways: (i) In contrast to their work,
we provide guarantees on the effectiveness of the techniques, as well as empirical
validation; (ii) our technique uses general consistency-based diagnosis which is able
to detect failures that have not been anticipated by the designer, while their approach
inherently relies on the designer to predict what failures will occur; (iii) we have
shown that centralized teamwork monitoring systems are inherently limited, while
their work relies heavily on the centralized monitoring (though not necessarily in the
context of teamwork); (iv) our investigation explicitly treated issues of uncertainty
and the cost of communications and observations, while their technique does not
take these issues into account.

Robotics literature has also raised the monitoring selectivity problem. Parker
(1993) empirically investigated the monitoring selectivity problem from a different
perspective, for a formation-maintenance task. She empirically examined the ef-
fects of combining socially-attentive information (which she referred to as local) and
knowledge of the team’s goals, and concludes that the most fault-tolerant strategy
is one where the agents monitor each other as well as progress towards the goals.
In contrast, we have explored explicit teamwork and coordination relationships, not
formations, and provide analytical guarantees as well as empirical investigation.

ALLIANCE (Parker, 1998) is an architecture specifically built to provide fault-
tolerance in cooperative tasks by having the each robot monitor its task’s execu-

tion, and communicate its monitoring result to the other robots. A mechanism of
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acquiescence and impatience allows robots to dynamically give up and take over
tasks to compensate for any failure. Kuniyoshi et al. (Kuniyoshi, Rougeaux, Ishii,
Kita, Sakane, & Kakikura, 1994) present a framework for cooperation by observa-
tions, in which robots visually attend to others as a prerequisite to coordination.
The framework presents several standard attentional templates, i.e., who monitors
whom. They define a team attentional structure as one in which all agents monitor
each other. In contrast to these investigations, our work focuses on the monitoring
selectivity problem within socially-attentive monitoring of teamwork relationships,
and provides analytical as well as empirical results. We treat the attentional tem-
plates as a product of the relationships that hold in the system. In particular, our
results show that monitoring in teams may not necessarily require monitoring all

team-members.

11.4 Monitoring in Single-Agent Settings

The monitoring selectivity problem has been addressed in the context of single-agent
monitoring for discovering opportunities, detecting failures, and visualization. As a
result of the single-agent focus, the techniques addressed the monitoring selectivity
problem in monitoring the environment, not other agents. In contrast, socially-
attentive monitoring focuses on the monitoring selectivity problem in monitoring
other agents, complementing the single-agent techniques in multi-agent applications.
These socially-attentive monitoring techniques are able to detect previously unde-
tectable failures and opportunities. Additional differences with systems are noted
below.

Doyle et al. (1986) describe a method for generating perceptual expectations for
verification of plan execution. Their system analyzes a given plan, and inserts appro-
priate perception requests to verify that the intent of plan steps has been achieved,
and that preconditions of next steps hold. Reece and Tate (1994) take a more ac-
tive approach to monitoring. They present a technique for generating protection
monitors, conditions that verify that the world state is as expected in-between plan
steps. Recently, Veloso et al. (Veloso et al., 1998) further extended this type of
automated monitoring system by introducing Rationale-Based Monitoring, a moni-

toring technique in which new monitors are inserted to keep track of environmental
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features that are associated with planning decisions, not simply precondition values.
This allows the planner not only to detect failures in the plan, but also to discover
opportunities for optimizing the plan due to changes in the world. In contrast to all
three systems, the creation of social monitoring conditions is done dynamically by
our system at execution time by using a model of the relationship. Compiling those
conditions at design time, for increased efficiency at run-time is left for future work.

Cohen et al. (1992) explored performance envelopes, which measure progress in
an action of long duration. Envelopes allow the monitoring agent to find out the
degree to which the failure is occurring, how much time the agent has in order to
recover from the failure, and whether a failure state is likely in the future. Atkins
et al. (1997) focus on the requirement to handle novel, possibly failure, states under
hard real-time constraints. They describe a set of techniques based on learning and
planning-time characterizations of possible failure states (states for which no plan
is available), so that these can be recognized quickly during execution by CIRCA,
their plan execution system. In contrast to both investigations, our work in Part
I focuses on post-failure detection and recovery. However, with recent work on
extending STEAM to handling persistent teams (Tambe & Zhang, 1998), in which
STEAM attempts to search for future failure states, we think it is likely that this
capability will be easy to integrate in the future. Our work on Eavesdropper (Part
IT) integrates organizational fault-models into the monitoring system, which are used
to predict failure probabilities based on the current state of the agents. While not as
systematic an approach as Hart et al., these fault-models do offer some early-warning
capabilities.

SELMON (SELective MONitoring) (Doyle, Chien, Fayyad, & Wyatt, 1993;
Doyle, 1995) is a real-time monitoring system designed to use multiple failure de-
tection techniques. Besides the condition monitors and model-based diagnosis tech-
niques, SELMON allows detection based on deviation from the known historical
performance of a system. In contrast to these features, our work on on-line failure
detection relies on known relationships between the state of components’ (agents)
in the system to identify failures. We are able to provide analytical guarantees on
the failure-detection capabilities of our techniques. SELMON additionally uses a
model of the historically known causal relationships between sensor readings to fo-

cus the human operator’s attention on the areas of the system that at the root of
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the malfunction, rather than symptomatic. This is somewhat akin to Eavesdropper
use of the communication and failure responses predictions to increase monitoring
uncertainty. However, while SELMON only attempts to direct the attention to
the operator towards relevant sensor readings, Eavesdropper’s task is to completely

identify the system state.

11.5 Diagnosis

Horling et al. (1999) present an integrated diagnosis system for a multi-agent sys-
tem in the context of an intelligent home environment. The system uses the TAEMS
domain-independent multi-agent task-decomposition and modeling language to de-
scribe the ideal behavior of each agent. The agents are also supplied with additional
information about the expected behavior of the environment they inhabit under dif-
ferent conditions, and their role within the multi-agent organization. A distributed
diagnosis system, made of diagnosis agents that use fault-models, is used to identify
failures in components (such as erroneous repeated requests for resources) and ineffi-
ciencies (such as over- or under-coordination). The fault-models are used in planning
monitoring actions, in identifying failures responsible for multiple symptoms, and
in guiding recovery actions. Multiple diagnosis agents may use communications to
inform each other of their actions and diagnoses.

Our proposed diagnosis method (Section 3.4) is model-based, and does not use
fault-models (also referred to as fault dictionaries (Hamscher et al., 1992)). In
other words, we use a model of ideal behavior (in terms of the relationships), not a
model of how failure symptoms relate to possible failure diagnoses. The model-based
approach has the advantages of generality and model re-use (Hamscher et al., 1992).
In particular, fault models, as used by Horling et al., are anticipatory—they are only
able to capture failures which the designer has been able to anticipate in advance.
Our approach to diagnosing failures is not limited in this respect. Our work on
Eavesdropper does integrate fault-models into the monitoring framework, but these
are different than the models used in Horling et al’s work in two ways: First, our
fault-models are used in service of recognizing failure and recovery actions by the

monitored team, not in service of actual recovery of the failures by the monitoring
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system. In addition, the fault models we use are social in nature—they do not model
reasons for failures, but how failures affect the team.

Hudlicka and Lesser (1987) report on a centralized system, DM, which uses prob-
lem solving execution traces to diagnose failures. DM uses knowledge of the internal
problem-solving system structure as a causal model, and traces of execution to get
at intermediate problem- solving states. Once failure is detected, the system uses
the causal model and known states to attempt to diagnose the failure. Of most rel-
evance here is the fact the often, there is no clear knowledge that allows the system
to decide why a failure had occurred, since there could be many reasons. DM then
uses comparative reasoning, to compare the problem solving trace that resulted in
a failure with a similar problem-solving trace that resulted in success. Differences
between the two traces are used to focus the diagnosis on relevant parts. It is thus
the similarity of the causal structure between the traces that is used to drive the
diagnosis, since the actual ideal behavior is unknown. Socially-attentive monitor-
ing also attempts to use relationships in service of monitoring and diagnosis, but
allows for different types of relationships used, and of course has the advantage of
working with standard social relationships that exist among multiple agents, instead
of the similarity in causal structure that is used by DM. Although in TEAMORE,
socially-attentive monitoring is using execution-traces for monitoring and diagnosis,
our focus has been on-line, multi-agent observation-based monitoring system. In
particular, we discuss benefits of distributing the monitoring task unlike DM which
is centralized.

Dressler (1994) distinguishes between inter-state and intra-state diagnosis com-
putation, suggesting that in diagnosing dynamic system (in which traditional
dependency- based diagnosis techniques such as GDE (de Kleer & Williams, 1987)
have computational problems), it may be sufficient to diagnose the system based
on a snapshot of its current state (as observed), without attempting to track the
dependencies in state changes with time. This makes the computation much more
efficient, without sacrificing the quality of the diagnosis in many cases. We can view
our use of the teamwork model, as using such a set of intra- state constraints which
can be verified based on current observations to detect failure (though the diagnosis
may require us to keep track of the last state in which the agents were in agreement).

However, our work on Eavesdropper goes a step further by using these intra-state
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constraints to focus the hypotheses being maintained about the system over time
(i.e., over inter-state constraints).

Schroeder and Wagner (1997) have proposed a technique for distributed diag-
nosis by cooperating agents who receive requests for tests and diagnoses, and send
responses to other agents. They each construct a global diagnosis based on the local
ones they produce and receive—with the assumption that no conflicts will occur.
Frohlich and Nejdl (1996) investigates a related scheme in which multiple diagno-
sis agents cooperate via a blackboard architecture in diagnosing a physical system.
The agents may use different diagnosis models or systems, but a centralized conflict-
resolution agent is employed to handle any conflicts in diagnoses found. Both these
approaches do not consider communication costs, uncertainties in the construction
of the global view, or communication failures. In contrast, our work uses plan recog-
nition and minimizes the use communications. In addition, while our work does not
address conflicts in diagnosis per-se, we have presented a set of conditions which
make conflicts irrelevant for detection. For instance, under the conditions specified
in Theorem 4, distributed monitoring is guaranteed to provide complete and sound
detection, regardless of whether the correct hypotheses were selected by the agents

in question.

11.6 Other Related Work

There are a few social measures related to the ATA. Goldberg and Mataric (1997)
investigate a multi-robot foraging task and measure interference—the amount of
time robots spend avoiding each other during task execution. Balch (1998) uses
social entropy (Bailey, 1990) to measure behavioral diversity in multi-agent tasks
of soccer, foraging, and formation-maintenance. Both investigations focus on char-
acterizing the relationships between homogeneity and performance in multi-agent
systems within the contexts of specific tasks. In contrast, the ATA value measures
teamwork, regardless of heterogeneity of the agents. However, unlike investigations
of interference and social entropy, correlation between our proposed ATA measure

and task performance remains to be investigated.
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Matsubara et al. (Matsubara, Frank, Tanaka-Ishii, Noda, Nakashima, & Hasida,
1998) discuss a RoboCup soccer commentator system which uses a mixture of sta-
tistical and graphics-based methods to analyze games in real-time and make natural
language comments in a manner similar to human commentators. Their focus is
on real-time natural- language generation, not on monitoring, but they make use of
soccer-specific measures such as statistics of which player passed to which players
and average positions of players on the field, etc. Tanaka et al. (Tanaka, Frank,
Noda, & Matsubara, 1999) extend the statistical analysis methods further, by intro-
ducing and statistically analyzing 32 different features related to soccer performance.
Both of these efforts thus focus on soccer-specific measures of performance, while
our work focuses on social measures which are task- and domain-independent.

The idea of using relations between processes to drive diagnosis has been intro-
duced independently in the area of software engineering and debugging. Abramson
et al. (Abramson, Foster, Michalakes, & Sosic, 1996) describe the use of Guard, a
relative debugger used to help in debugging large scientific applications. The idea
underlying Guard is similar to socially-attentive monitoring, in that Guard allows
the designer to specify a set of relative assertions-basically certain features or values
that should be the same between any two versions of a program and the times at
which they should be identical. Guard than runs the two versions and compares
their state using the assertions. If any differences are found, the debugger helps
the user isolate the problem. Unlike relative debugging though, socially-attentive
monitoring has the advantage of having many theories that have been explored in
the literature that can provide the relationship data a-priori, without knowing about
the actual task of the agents. Socially-attentive monitoring is also not limited to
simple comparisons, and allows for more expressive and sophisticated relationship
checks to be used. Our investigation of socially-attentive methods have addressed
uncertainty in monitoring, leading to the monitoring selectivity problem, which is
not raised in the relative debugging tasks. We provide analytical guarantees on the
effectiveness of our methods, which are not available for the relative debugging task.

O’Leary (1994) provides a survey and exploration of the relation between
decision-making correctness and the consensus (majority) decision-making scheme

in a group of agents. Given the distribution across the agents of probability of being
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competent, and the probability of being correct, O’Leary shows a set of implica-
tions and conditions for the applicability of the consensus decision making scheme
in a group of agents. The agents are assumed to be completely independent of each
other, and the decision is made in a single round of voting. It would therefore seem
like no relationship is used by the agents, however this is not the case. A socially-
attentive monitoring approach could be used to verify that the decision arrived at
by the group (regardless of what it is and whether it is correct) is arrived at by
consensus, and not by some other means.

Work on human teamwork assessment and evaluation (e.g., Burns, Salas, &
Cannon-Bowers, 1993; Volpe et al., 1996; Zalesny, Salas, & Prince, 1995) lends
credibility to an underlying hypothesis of socially-attentive monitoring, that rela-
tionship models can be independent of the task. In particular, this trend of research
has differentiated between task-work and teamwork in attempting to assess human
teams’ performance and characteristics, and investigated of training human-teams
in multiple tasks to improve teamwork.

The teamwork and role-similarity comparison test was somewhat inspired by
Social Comparison Theory (Festinger, 1954) whose first three axioms are as follows
(quoted in (Newell, 1990, p. 497)):

1. Every agent has a drive to evaluate its opinions and abilities.

2. If the agent can’t evaluate its opinions and abilities objectively, then it com-

pares them against the opinions and abilities of others.

3. Comparing against others decreases as the difference with others increases.

The numerous failure reports we have collected empirically demonstrate the very
real need of agents in dynamic, unpredictable domains to evaluate themselves by
monitoring their execution (first axiom). Current approaches emphasizing the de-
signer as a source of information against which to compare the agent’s performance
fit naturally under the title of objective sources for the agent’s self-evaluation. Our
teamwork and role-similarity relationship test is inspired by the remaining parts of
the axioms—allowing the agent to compare its own abilities and opinions (i.e., behav-
ior, beliefs, and goals) to those of others, and considering the weight put on these

comparisons (third axiom).
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Work on Social Comparison Theory has continued since the original work by
Festinger (1954), and can be used to explain many issues in human group behavior.
For example, groups tend to adopt the majority views when a clear solution is not
available, but adopt such a solution despite a majority if at least a minority of agents
knows of it (Baron & Byrne, 1997, p. 456). In socially-attentive monitoring terms,
it would seem that the importance and use of socially-attentive monitoring rises as

other measures become unavailable. This agrees with Festinger’s second axiom.

11.7 Summary

Due to the centrality of the monitoring selectivity problem in multi-agent monitoring,
and due to the broad range of capabilities required by the systems carrying out multi-
agent monitoring tasks, it is difficult to account for all literature reporting on related
investigations. Nevertheless, the previous sections demonstrate that the algorithms
and analytical proofs we provide in earlier chapters build effectively on existing
work, complementing it and adding to it. In particular, our exploration of teamwork
failure-detection algorithms, multi-agent monitoring based on plan recognition, and

diagnosis all differ significantly from existing investigations.
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Chapter 12

Conclusions and Future Work

The work presented in this dissertation is motivated by practical concerns. The mon-
itoring selectivity problem is a key problem in practical deployment of multi-agent
monitoring systems: The practical infeasibility of continuous, complete monitoring of
multiple agents, leads to uncertainty in monitoring; This uncertainty, in turn, leads
to degraded monitoring performance, both in efficiency and in accuracy. While the
need to monitor one’s teammates has been recognized repeatedly in the past (Jen-
nings, 1993; Grosz & Kraus, 1996; Tambe, 1997), the monitoring selectivity problem
remained largely unaddressed (Jennings, 1993; Grosz & Kraus, 1996).

We have begun our investigation of the monitoring selectivity problem in the first
task, relationship failure detection, as a result of our observation that failures con-
tinue to occur despite our agents’ use of monitoring conditions and communications.
Analysis of the failures revealed that agents were not sufficiently informed about
each other’s state, and yet, practical concerns prevented continuous communications-
based monitoring as a solution to this problem. In the second monitoring task, the
distribution of the monitored team a-priori limits the observations available to the
monitor, making the monitoring selectivity problem even more challenging, espe-
cially given the higher accuracy requirements. Moreover, an increasing number of
agents being monitored poses challenges to the computational requirements of the
monitoring algorithms.

We provide key answers to the monitoring selectivity problem, relying on socially-
attentive monitoring methods that exploit knowledge of the relationships that hold
between agents, and the procedures that maintain them. Within the context of mon-

itoring in teams, we demonstrate that teamwork failures can be detected effectively
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even with uncertain, limited, knowledge of team-members’ states. In exploring off-
line monitoring in TEAMORE, we have shown that monitoring other agents can
be traded for monitoring the environment. We furthermore demonstrate that effec-
tive general monitoring (state identification and tracking) can be achieved despite
reliance on limited observations of monitored agents and limited computational re-
sources.

Our focus on monitoring agreements on joint plans stems from the centrality
of similar notions of agreement in agent and human teamwork literature (Jennings,
1995; Grosz & Kraus, 1996; Volpe et al., 1996; Tambe, 1997). We attempted to
demonstrate how the results and techniques can be applied in other domains, and
explicitly pointed out necessary conditions and assumptions which underly theo-
rems and algorithms. This allows an agent designer to verify the suitability of the

techniques to specific target application domains.

12.1 Contributions

In Part I, we explore a family of teamwork failure-detection algorithms, providing
analytical soundness and completeness guarantees, which were verified empirically
in the ModSAF and RoboCup simulation domain. Both ModSAF and RoboCup are
dynamic, complex, multi-agent domains that involve many uncertainties in percep-

tion and action:

e We show analytically that centralized active teamwork monitoring provides
failure-detection that is either complete and unsound, or sound and incomplete.
However, centralized teamwork monitoring requires multiple hypotheses and

monitoring of all team-members.

e We show that in contrast, distributed teamwork monitoring can exploit the
local state of agents, which is not available to the centralized algorithm, to
provide complete and sound failure-detection, despite using a simpler algorithm

and monitoring only key agents in a team.

e We provide initial diagnosis procedures, and initial results in monitoring

mutual-exclusion and role-similarity relationships.
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e We present a general framework for socially-attentive monitoring, and imple-
ment it to empirically validate the analytical results in the ModSAF domain.
We further demonstrate the generality of the framework by applying it in the

RoboCup domain, in service of off-line quantitative analysis.

In Part II, we empirically explored a number of monitoring methods which pro-
vide increased accuracy in monitoring a distributed team, while using constrained
resources. The evacuation rehearsal domain, used in this exploration, integrates het-
erogeneous agents from different groups, and offers very limited observations which

can be utilized for monitoring:

e We empirically demonstrate that knowledge of the relationships that hold in
a monitored team can lead to significant boost in monitoring accuracy via the

minimum-number-of-failure heuristic (e.g., coherence).

e We demonstrate that knowledge of the procedures used by the team to main-
tain the relationships can be used to significantly boost accuracy further. Over-
all, the techniques we present increased monitoring accuracy from less than 4%
to 72-97%.

e We explore a number of monitoring algorithms which present a trade-off be-
tween expressivity (in being able to explicitly model failure hypotheses) and
efficiency. In particular, we present the YOYO* algorithm which sacrifices
some expressivity to monitor the parallel activities on an entire team in a
structure which remains constant in size despite any increase in the number of

agents monitored.

12.2 Future Work

We made several references to additional areas in which we would like to conduct fur-
ther investigations. These include further investigation and formalization of socially-
attentive diagnosis procedures, the use of learning to automatically acquire the rela-
tionship knowledge used in the techniques described, and relaxing the assumptions

underlying the techniques. We discuss those areas in more detail below.
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We have shown in Chapter 4 that the diagnosis procedure presented in Section
3.4 is sensitive to the accuracy of the monitoring results. Unfortunately, such sensi-
tivity discourages practical applications of the algorithm as it currently stands. One
way to tackle this problem is to improve the accuracy of the monitoring. In par-
ticular, if we assume a distributed monitoring configuration, then the distribution
and knowledge about what agents detected a failure can be used to constrain the
possible hypotheses and improve accuracy. The techniques discussed in Part II may
be useful as well. Another approach would be to tackle the diagnosis procedures
themselves. It may be that certain failures can be identified and diagnosed despite
uncertainty in monitoring.

To this aim, we are currently pursuing an attempt to formalize the diagnosis
problem in multi-agent settings. We hope that formalization of the diagnosis problem
will lead towards better understanding of the unique solutions that may be possible
in multi-agent settings, as well as allow us to bring to bear familiar techniques from
the diagnosis field.

A topic which we plan to investigate in depth is the strong requirements of the
distributed teamwork monitoring algorithm in terms of observability. In order to
provide its soundness and completeness guarantees, the distributed algorithm relies
on the ability of all team-members to monitor the key agents. We are investigating
ways to relax this requirement while still providing guaranteed results. Certainly,
the results we provide in Part II alleviate this constraint somewhat, in that they
allow some temporal uncertainty to exist, such that the requirements can be relaxed
to allow for some gaps in the observability of key agents. However, a more principled
approach is needed to relax this requirement further.

We hope to address this problem by looking at two possible techniques: (a) moni-
toring chains, in which one agent is monitoring another, which in turn is monitoring a
key agent. Such chains may be useful in detecting failures despite non-observability
of some agents; and (b) monitoring timing, in which the agents are not observed
continuously, but only at certain points in time. Monitoring timing techniques have
been explored in the past in monitoring a single agent (Hansen & Zilberstein, 1996),
and in monitoring the environment (Cohen, Atkin, & Hansen, 1994; Atkin & Cohen,

1996). We intend to investigate their use in multi-agent settings.
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We have demonstrated the usefulness of using learning to automatically acquire
the knowledge required for socially attentive monitoring methods. In particular, we
have shown that the communication responses made by the team can be learned.
We intend to continue our investigation of this approach, to improve the learned
predictions, and to attempt learning of other knowledge. Early experiments show
that it may be possible to learn the team-hierarchy, and parts of the plan hierarchy
as well.

Two key assumptions which we have made in this work are high on our list
of investigation. The first assumption involved assuming no failures in monitored
actions and in our observation, i.e., that if an agent is observed to have taken an
action, than this action was intended and executed by the monitored agent. For
example, if a helicopter is observed as landing, we have assumed that indeed the
landing action was intended and carried out, and that our sensing of the action
was correct. Relaxing this assumption is important to further demonstrate the
practicality of our approach.

A second assumption that we have made is that the plan-library used for plan
recognition is complete and correct, i.e., that any plan executed by the monitored
agents is in the library use for recognition. Although this is a common assumption
in plan recognition literature (e.g., Kautz & Allen, 1986), we feel that it is inher-
ently limiting for multi-agent monitoring purposes. In general, one cannot expect to
have a complete and correct plan-library of monitored agents. For instance, when
monitoring a RoboCup soccer game, one cannot expect to know the plan-library
of opponent teams. We are considering several ways to approach this problem in
the context of specific monitoring tasks. The idea would be to guarantee certain

monitoring performance despite the use of less-than-perfect plan-libraries.
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Appendix B

Proofs

(# 2, page 34). Let a monitoring agent A monitor a simple team 7. If A’s team-
modeling of 7" is complete, and A uses a maximally team-coherent hypothesis for
detection, then the teamwork failure detection results are sound.

Proof. We will show that any failure that occurs is detected, and thus that all
failures will be detected. Let aq,...,a, be the agent members of T". Each agent a;
is executing some plan P; (1 < i < n). Thus collectively, the group is executing
(P, ..., P,). If a failure has occurred, then there are two agents a,a;,1 < j, k <n
such that a; is executing plan P; and ay, is executing plan P, and P; # P;. Since A’s
team-modeling is complete, the correct hypothesis (Pi,...,Pj,..., P, ... P,) will
in the set of team-modeling hypotheses. Since A will choose a maximally team-
incoherent hypothesis, either it will choose the correct hypothesis, which is more
incoherent than a hypothesis implying no failure has occurred, or that it will select
a hypothesis with greater incoherence hypothesis (or equivalent level). In any case,
a failure would be detected, and the detection procedure is complete. O

(# 1, page 40). Suppose a simple team 7T is self-monitoring (all members of the
team monitor each other) using the maximally team-coherent heuristic (and under
the assumption that for each agent, team-modeling is complete). A monitoring agent
Ay who is a member of T" and is executing P; would detect a failure in maintaining
teamwork relationships with an agent A, (also a member of T') executing a different
plan P, if Ay has an observably different role in P; and Ps.

Proof. A, knows that it is executing P;. Since all members of 7" monitor each
other and themselves, A; is monitoring A,, who has an observably different role in
P, and P,. Since A, is executing P, and following the observably different role,
P, ¢ M(Ay, Ay/P,). Therefore from the perspective of Ay, it cannot be the case
that it assigns P; in any agent-modeling hypothesis, and therefore any team-modeling
hypothesis that A; has will have A; executing P;, and A, executing some plan other
than P;. In other words, from A;’s perspective there is no team-coherent hypothesis,
and so a difference would be detected between A; and A,. O
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(# b5, page 53). Let a monitoring agent A monitor mutual-exclusion relation-
ships in a group of agents G. If A’s modeling of G is complete, and A uses a max-
imally team-incoherent hypothesis for detection, then the failure detection results
are sound.

Proof. We will show that if no failure has occurred, none will be detected, and
thus that any failure that is detected is in fact a failure. Let ai,...,a, be the
agent members of G. Each agent a; is executing some plan P; (1 < i < n). Thus
collectively, the group is executing (Py,...,P,). If no failure has occurred, then
each agent is executing a different plan (i # j = P, # P;). Since A’s group-
modeling is complete, the correct hypothesis is going to be in the set of group-
modeling hypotheses H. Since it is a maximally incoherent hypothesis, either it
will be selected, or that a different hypothesis of the same coherence level will be
selected. Any hypothesis with the same coherence level as the correct one implies
no failure is detected. Thus the detection procedure is sound. O

(# 6, page 53). Let a monitoring agent A monitor mutual-exclusion relationships
in a group of agents G. If A’s modeling of GG is complete, and A uses a maximally
team-coherent hypothesis for detection, then the failure detection results are com-
plete.

Proof. We will show that any failure that occurs is detected, and thus that the
procedure is complete. Let aq,...,a, be the agent members of G. Each agent a;
is executing some plan P; (1 < i < n). Thus collectively, the group is executing
(P, ..., P,). If a failure has occurred, then there are two agents ay, a;,1 < j, k <n
such that a; is executing plan P; and a; is executing plan P, and P; = P;. Since
A’s group-modeling is complete, the correct hypothesis (Py,...,Pj, ..., Py,... P,)
will in the set of group-modeling hypotheses. Since A will choose a maximally
team-coherent hypothesis, either it will choose the correct hypothesis, which is more
coherent than a hypothesis implying no failure has occurred, or that it will select
a hypothesis with greater coherence hypothesis (or equivalent level). In any case, a
failure would be detected. Therefore, the detection procedure is complete. O

(# 7, page 67). Suppose we have k agents, each with its associated plan-horizon
H;, where 1 < i < k. The number of coherent team-state hypotheses when combin-
ing H; is no greater than min{size(H;)}, where size(H;) is the number of hypotheses
in the ¢’th agent plan-horizon H;.

Proof. Let Hy,, be a plan-horizon with size(H,n;,) = min{size(H;)}. Let P be a
team-plan that is in some H; but not in H,, (i.e., H; # Hpin). There are two
cases:

case (i): If no such plan P exists, then all plan-horizons H; are equal, and the
number of coherent hypotheses cannot be more than the size of H,,;,.

case (ii): If such a plan P exists, then it cannot be a coherent hypothesis, since it
is not shared by H,,;, and H;.
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Therefore any hypothesized plan not in H,,;, is necessarily not coherent, and there-
fore that the number of coherent hypotheses cannot be greater than the number of
hypotheses in H,,;,,, which is size(Hpn)- O
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Appendix C

Efficient Single-Agent Probabilistic plan recognition

This appendix presents a mechanism, co-developed with David V. Pynadath, that
uses only the messages sent by a single team member for recognizing its plans,
based on predictions of the duration plan-execution. For instance, if we observe
a message about the initiation of Fly-Flight-Plan, then we know from Fig-
ure 8.1b that Process-0rders cannot be a possible future state of the agent. Both
Fly-Flight-Plan and Landing-Zone-Maneuvers are possible future states, but the
recognition system has no basis for differentiating between the two.

We address this ambiguity through a probabilistic model that supports quanti-
tative evaluation of the hypotheses. We use a time series of state variables, where,
at each point of time, the agent’s state is the set of plans it is currently executing.
We represent these plans by a set of boolean random variables, {X;}, where each
variable X; is true if and only if plan X is active at time ¢.

We can represent our beliefs about the agent’s actual state at time ¢ as a probabil-
ity distribution over all variables {X;}. We begin with a certain belief that the agent
is executing its top-level plan at time 0. We can propagate this belief throughout the
hierarchy using the method described in Section C.1 to simulate plan execution with
the passage of time. When we observe messages, we can incorporate the evidence
into our beliefs according to the method described in Section C.2.

C.1 Belief Update When No Message Is Observed

If we do not observe communication, then we roll the model forward to the next time
slice. For each plan that the agent could be executing, we must compute how likely
it is that the agent will complete execution and go on to its next plan. For simplicity,
we treat the duration of a leaf plan, X, as an exponential random variable, where
the probability of the plan lasting more than 7 time units decays exponentially as
e~*x7. The parameter Ay then corresponds to 1/(average duration of X). Given
this model of plan duration, the probability of the plan’s completion between times
t and ¢ + 1 is simply Pr(done(X,t)|X;) =1 — e *x.
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Once we use the exponential model to compute the probability of plan termi-
nation, we then need to determine which plan the agent will execute next. We
examine all of the possible successors and compute the probability of taking the
corresponding transition, conditioned on the fact that no message was sent. For
each plan, X, we record the probability of entering each successor, Y, given that X
has just completed: 7, = Pr(Yy1|Xt, done(X,t)). We also record the probability
of seeing a message given the transition, p,, = Pr(msg,|X;, Y;11). In both cases, we
make a Markovian assumption that the plan history before time ¢ does not affect
the probabilities. We can potentially obtain the three sets of parameters, A, u, and
7, from domain experts or from frequency counts over previous executions. We can
now combine these values to get the desired conditional probability:

(1 = Hay)Ta (1 — Hay) s
Pr(Y;H-l |Xt7 done(X, t)7 _'msgt) = Pr(ﬂmsgt\Xt ydOTLZ(X t)) = 7’]Xy Y

The normalizing denominator, 7x, is simply the sum of the numerator over all
possible successors, Y. We can pre-compute these sums off-line. If all possible
transitions require a message, then nx will be zero. In this case, the agent cannot
have begun execution of any successor, even though it has completed execution of
X. We use a blocked state associated with each plan to indicate this contingency.

If a particular transition indicates the termination of the entire execution path,
then the probability of the transition corresponds to the probability that the parent
plan has completed. We compute the probability of transitions out of the parent plan
as of the child, except with this new completion probability replacing the exponential
distribution.

If the plan has children, then we must also distribute the incoming probability
among them. Since we assume that all plans take at least a single time step to
complete, we consider only the first child. In Figure 8.1, upon first entering the
top-level plan Evacuate, the only possible child plan that can be active at time 0 is
Process-0Orders. If there are multiple first children (i.e., multiple sub-plans that are
to be executed by different sub-teams in parallel), we compute the probability over
the multiple first children by dividing the probability incoming to the parent among
them. If any of these children have child plans of their own, this new incoming
probability is distributed in turn, using the same method. Algorithm C.1 presents
the pseudo-code for the overall propagation computations, calling the PROPAGATE-
DowN function for this downward update.

C.2 Belief Update with Observed Message

While observing team communication, we can expect to see messages sent by an
individual member that identify either plan initiation or termination. Suppose
we have observed a message, msg, that corresponds to initiation. Then, if only
one plan, X, is consistent with msg, then we know, with certainty, that the agent
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Algorithm C.1 PROPAGATE-FORWARD(beliefs b, plans M)

1: for all plans X € M do
b1 (X, —block)+ = by(X, —block)e **
if nx = 0 then {Message required}
bi1(X, block) < by(X, —block)(1 — e=*) + by(X, block)
else {Message not required}
for all plans Y that succeed X do
p = by(X, =block) (1 — e =) (1 = pizy) Tay /1)
if Y = done then
biy1(parent(X), block)+ = p
else {Y is a sibling plan}
bi1(Y, —block)+ = p
PROPAGATE-DOWN(Y, pb, M)

— = =
N = O

is executing X, regardless of whatever evidence we have previously observed, i.e.,
Pr(X;|msgy, evid, 1) = 1. If multiple plans are consistent with msg, we distribute
the unit probability over each plan, weighted by any prior belief in seeing the given
message.

If we observe a message indicating the termination of X, then we know that the
agent was executing X in the previous time step but that it has moved on to some
successor. Thus, for each state, Y, that can follow X, we set our belief of Y to
be proportional to a transition probability, similar to those in Section C.1, except
that we are now conditioning on observing a message. Algorithm C.2 presents the
pseudo-code for the complete procedure for incorporating observational evidence.

Algorithm C.2 INCORPORATE-EVIDENCE(msg m, beliefs b, plans M)

1: for all plans X € M consistent with m do
if m is an initiation message then
b' (X, —block) <+ by(X, —block)
else {m is a termination message}
for all plans Y € M that succeed X do
V' (Y, =block) < by(X, block) pugyTay /(1 — 1)
normalize distribution &’
: for all plans X € M with ¥ > 0 do
byy1 (X, —block) « b' (X, —block)
biv1(parent(X), —block)+ = b' (X, —block)
PROPAGATE-DOWN(X, b'(X, —block), b, M)

10:

—_
= O
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C.3 Individual Agent Recognition Complexity

The pseudo-code of Algorithms C.2-C.2 demonstrates that both types of belief up-
dates have a time and space complexity linear in the number of plans and transitions
in M. We gain this efficiency from two sources. First, the assumption of a memory-
less exponential distribution over plan duration allows our propagation algorithm to
reason forward to time ¢ 4+ 1 based on only our beliefs at time ¢, without regard for
previous history. Second, we make another Markovian assumption that the prob-
ability of observing a message depends only on a relevant plan being active and is
independent of the past history. With that assumption, we can incorporate evidence,
again, based on only our beliefs at time ¢.
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Appendix D

Socially-Attentive Monitoring Algorithms

We bring here the algorithms (in pseudo-code) for the RESL plan recognition al-
gorithm, the comparison test supporting detection in both simple and non-simple
teams, and the monitoring algorithms for the centralized and distributed cases.

D.1 RESL

RESL works by first expanding the complete operator hierarchy for the agents being
modeled, tagging all plans as non-matching. All plans’ preconditions and termina-
tion conditions are flagged as non-matching as well. All plans’ actions are set to be
used as expectations on behavior. After initializing the plan-recognition hierarchy
for each monitored agent, observations of an agent are continuously matched against
the actions expected by the plans. Plans whose expectations match observations are
tagged as matching, and these flags are propagated along the hierarchy, up and
down, so that complete paths through the hierarchy are flagged as matching or not.
These paths specify the possible matching interpretations of the observations. In ad-
dition, precondition and termination conditions are flagged as true or not, signifying
the inferred appropriate belief by the modeled agents. This process is described in
Algorithm D.1.

D.2 Detection of Failure, Centralized and
Distributed Teamwork Monitoring

Algorithm D.2 shows how comparison of hierarchical plans is carried out. We limit
ourselves here to simple-teams. The algorithm accepts as input two sets of hierar-
chical plan hypotheses, hierarchies,, hierarchiess, corresponding to two monitored
agents (for clarity, the algorithms assume only two agents. The generalization to n
agents is straightforward). The algorithm also accepts a policy flag, Policy. An
OPTIMISTIC policy causes the algorithm to use maximal team-coherence to provide
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Algorithm D.1 REcoGNIzE(agent A)

1: let O be the current observations of A

2: for each plan P with expected observations £ do
if O matches E then

4 flag P as matching

5: else

6 flag P as failing to match

7: for each plan that is flagged as matching do

8

9

@

flag its parent plans as matching {propagate matches}
: for each plan P do
10:  if all children plans of P are flagged as failing to match then
11: flag P as failing to match {propagate non-matches}
12: return all matching plans

sound, but incomplete detection. A PESSIMISTIC policy causes the algorithm to use
maximal team-incoherence to provide complete, but unsound detection.

Algorithm D.2 DETECT(hierarchiess, hierarchiess, policy)

1: depth < 0 {look for top-most failure}
2: while plans at depth depth of hierarchies, hierarchiess are team plans do
3:  if policy =0PTIMISTIC then

4: let plany,plans be two maximally coherent plans at level depth of
hierarchiesy, hierarchiess

5: else

6: let plani,plany, be two maximally incoherent plans at level depth of

hierarchiesy, hierarchies,
7. if plan, # plany then

8: return FAILURE

9: else

10: if if bottom of hierarchies, hierarchies, reached then
11: return NO_FAILURE

12: else

13: depth < depth + 1

With the aid of Algorithm D.2, we can now define the centralized and dis-
tributed failure detection algorithms. The centralized teamwork monitoring algo-
rithm (Algorithm D.3) utilizes Algorithm D.2 twice, checking for failures with both
PESSIMISTIC and OPTIMISTIC policies. If the results of both policies agree, they
are certain. If the results do not agree, (i.e., the PESSIMISTIC policy causes a
failure to be detected, while the OPTIMISTIC policy causes no failure to be de-
tected), then the monitoring agent cannot be certain that a failure has taken
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place, and therefore needs to verify the failure. Algorithm D.3 therefore returns
FATLURE, NO_FAILURE, POSSIBLE_FAILURE.

Algorithm D.3 CENTRALIZED-MONITORING

1: for every two monitored agents A;, A; do

2:  H; +RECOGNIZE(A;)

3:  Hy; < RECOGNIZE(A,)

4:  OptimisticResult < DETECT(H;, Hy, OPTIMISTIC)

5. PessimisticResult < DETECT(H,, Hy, PESSIMISTIC)

6: if OptimisicResult = PessimisticResult =FAILURE then
7 return FATLURE

8 else

9 if OptimisticResult # PessimisticResult then

10: return POSSIBLE_FAILURE

The distributed monitoring algorithm makes is not given is pseudo-code form,
because it is nothing more than a call to Algorithm D.2 with an OPTIMISTIC policy
parameter. Its power is derived from the fact that all members of the team are using
it to monitor the key agents of the team.

D.3 Probabilistic version of YOYO%*

A probabilistic version of the YOYO* algorithm is presented below (Algorithm D.4).
The key idea in YOYO* is that once a step up is taken in the team- and plan-
hierarchies, it is followed by a traversal of the subtrees below the new root node
such that all the evidence below the node is made coherent. This is done by the
SCALE procedure, which re-distributes the new state probability of a parent among
its children, such that each child gets scaled based on its relative weight in the
parent. The end result is that the state probabilities of the children are made to
sum up to the state probability of the parent. The process is recursive, but never
re-visits a subtree.

YOYO* also requires minor modifications to PROPAGATE-FORWARD (Algorithm
C.1) and INCORPORATE-EVIDENCE (Algorithm C.2). Incorporate must now take
a team T into account when incorporating evidence: Only transitions that T is al-
lowed to take may be followed. Propagate must address teams as well: Given some
total outgoing probability (either to a sibling or child transition), if the outgoing
transitions are to be taken by different teams (such as the TRANSPORT and ES-
CORT teams), the same total probability would be used for each transition, instead
of splitting the outgoing probability between the transitions.

For example, suppose that the entire team is known to be executing
Fly-Flight-Plan. Now, a message exchange is observed among the members of
the TRANSPORT team, indicating that it has begun execution of Transport-0Ops.
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Algorithm D.4 YOYO*(plan hierarchy M, team-hierarchy H)

1: Loop forever:
2: if message m received-—new plan S team 7', then
3:  INCORPORATE-EVIDENCE(m, current beliefs, M, T)

4: tmp<+<T

5:  while tmp is not the root team in H do

6: find in M lowest common ancestor A of S joint to tmp and its sibling teams

7 for each child transition of A who is not to be taken by T do

8: SCALE(the subtree roots at the child), so its state probabilities sum up
to the new probability of A

9: tmp < parent, f (tmp)

10: else

11: PROPAGATE-FORWARD in M

First, the new evidence is incorporated for the transport team. Among other
changes, the probability of the plan Landing-Zone-Maneuvers goes up significantly.
Then, YOYO* begins climbing up and down the team- and plan-hierarchies: It first
finds the lowest common ancestor of Transport-0ps that is shared by the TRANS-
PORT team and its sibling. This is the Landing-Zone-Maneuvers plan. It has one
child that is to be taken by the ESCORT team (different than TRANSPORT), and
so the subtree pointed to by this child transition is scaled up—which means that
the probabilities indicating that the ESCORT team is executing Escort-0ps go up,
based on evidence from the TRANSPORT team. The process then continues to
Execute-Mission, etc.
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