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Abstract

Area coverage is an important task for mobile robots, with many real-world applications. Motivated

by potential efficiency and robustness improvements, there is growing interest in the use of multiple

robots in coverage. Previous investigations of multi-robot coverage algorithms focused on the improved

efficiency gained from the use of multiple robots, but did not formally addressed the potential for greater

robustness. We address robustness and efficiency in a family of multi-robot coverage algorithms, based

on spanning-tree coverage of approximate cell decomposition. We present off-line and on-line algo-

rithms and analytically show that the algorithms are complete and robust, in that as long as a single

robot is able to move, the coverage will be completed. We analyze the assumptions underlying the

algorithms requirements and present a number of techniques for executing it in real robots. We show

extensive empirical coverage-time results of running the algorithms in a number of different environ-

ments and several group sizes.
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Chapter 1

Introduction

Area coverage is an important task for mobile robots, with many real-world applications such as floor

cleaning [6], lawn mowing [15], de-mining [19], harvesting [20], painting, and hazardous waste cleaning

[13]. In these, a robot is given a bounded work-area, possibly containing obstacles. The robot is assumed

to have an associatedtool of a given shape [9]—often corresponding to the robot’s relevant sensors’

and/or actuator range—that must visit every point within the work-area. Since the tool size is typically

much smaller than the work-area, the robot’s task consists of finding and moving along a path that will

take the tool over the entire work-area. This is sometimes referred to as exhaustive geographical search

[24], or sweeping [10].

In recent years, there is growing interest in the use of multiple robots in coverage, motivated by

efficiency and robustness. First, multiple robots may complete the task more quickly than a single

robot, by dividing the work-area between them. Second, multi-robot algorithms may succeed in face

of failures, since even if a robot fails, its peers might still be able to cover its assigned area. Formally,

a coverage algorithm is said to becompleteif, for any work-area, it produces a path that completely

covers the work-area. We want multi-robot algorithms to be not only complete, but alsoefficient(in that

they minimize the time it takes to cover the area), androbust(in that they can handle catastrophic robot

failures). We may additionally want the algorithm to benon-redundant(non-backtracking), in that any

portion of the work area is covered only once.

Previous investigations that examine the use of multiple robots in coverage mostly focus on com-

pleteness and non-redundancy. However, much of previous work does not formally consider robustness.

Moreover, while completeness and non-backtracking properties are sufficient to show that a single-

robot coverage algorithm is also efficient (in coverage time), it turns out that this is not true in the

general case. Surprisingly, in multi-robot coverage, non-backtracking and efficiency are independent

optimization criteria: Non-redundancy algorithms may be inefficient, and efficient algorithms may use

backtracking. Finally, the initial position of robots in the work-area significantly affects the completion

time of the coverage, both in backtracking and non-backtracking algorithms. Yet no bounds are known

for the coverage completion time, as a function of the number of robots and their initial placement.

This thesis examines robustness and efficiency in multi-robot coverage. We first focus on coverage

4



using a map of the work-area, sometimes referred to asoff-line coverage[4]. We assume the tool

to be a square of size D. The work-area is then approximately decomposed into cells, where each

cell is a square of size4D, i.e., a square of four tool-size sub-cells. As with other approximate cell-

decomposition approaches ([4]), cells that are partially covered by obstacles, or the bounds of the work-

area, are discarded from consideration. We use an algorithm based on a spanning-tree to extract a path

that visits all sub-cells (i.e., it is complete). Previous work developed algorithms for generating used

such a path (calledSTC for Spanning-Tree Coverage) for single-robot coverage and showed it to be

complete and non-backtracking [9].

We present a family of novel algorithms, called MSTC (Multirobot Spanning-Tree Coverage) that

addresses these challenges. First, we construct a non-backtracking MSTC algorithm that is guaranteed

to berobust: It guarantees that the work-area will be completely covered in finite time, as long as at

least a single robot is functioning correctly. We analyze the best-case and worst-case completion times

for this algorithm, and find that in the worst-case, the coverage time fork robots is essentially equal to

that of a single robot. Unfortunately, this worst-case scenario is common in coverage applications: This

is where robots all start from approximately the same position (e.g., doorway to the work-area). We

further prove that this result holds for any non-backtracking algorithm that uses STC paths.

We then present a second robust MSTC algorithm, which allows for some simple backtracking: It

may have a robot visit a cell twice, but no more. We show that surprisingly, even though this algorithm

involves backtracking, its worst-case coverage time fork > 2 robots is half that of a single robot.

These results show that coverage algorithms must distinguish between non-backtracking and efficiency

properties. These two criteria converge only in the single-robot case, but are distinct (and may be

mutually exclusive) in the generalk-robot case.

The simple backtracking MSTC algorithm guarantees a better worst-case coverage time than the

non-backtracking algorithm, but it does not generate an optimal allocation of robots to assigned trajec-

tories and thus its average performance can be improved. We present the third robust MSTC algorithm,

optimal backtracking MSTC, which achieves the best time for a given initial configuration. This al-

gorithm has another useful advantage: it continues to provide an optimal solution even if it runs on

heterogenous robots with different speeds or different amounts of fuel.

We then focus on coverage without using a map of the work-area, sometimes referred to ason-

line coverage[4]. Some applications lend themselves easily tooff-line coverage, where the robots are

given a map of the work-area, and can therefore plan their paths ahead of deployment. For instance, in

many outdoor operations, aerial photos or maps might be available. However, many applications must

utilize on-linecoverage algorithms. Here, the robots cannot rely on apriori knowledge of the work-area,

and must construct their movement trajectories step-by-step, addressing discovered obstacles (and/or

collisions, in the case of multiple robots) as they move.

We present aguaranteed robustmulti-robot on-line coverage algorithm, called ORMSTC (On-line

Robust Multi-robot Spanning-Tree Coverage). The algorithm is based on the use of spanning tree cov-

erage paths [9]. It runs in a distributed fashion, using communications to alert robots to the positions
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of their peers. Each robot works within a dynamically-growing portion of the work-area, constructing a

local spanning-tree covering this portion, as it moves. It maintains knowledge of where this spanning-

tree can connect with those of others, and selects connections that will allow it to take over the local

spanning trees of others, should they fail.

We also address the challenge of using ORMSTC algorithm with physical vacuum cleaning ro-

bots. We present techniques useful in approximating the assumptions required by STC algorithms (e.g.,

known positions, within an agreed-upon coordinate system) to allow them to work in real world situ-

ations. We then show the effectiveness of our implemented ORMSTC algorithm in extensive experi-

ments.
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Chapter 2

Background and Related work

Choset [4] provides a recent survey of coverage algorithms, which, while mostly focused on single-robot

settings, distinguishes important classes of coverage algorithms. First, the survey distinguishes between

offline algorithms, in which a map of the work-area is given to the robots, andonline algorithms, in

which no map is given. Theonlinealgorithms are also divided to two sub-types: The regular approach,

which remembers the area that was covered thus requires a lot of memory, and an ant-like approach

which uses marks on the covered area to overcome this problem.

To achievecompletenessmany coverage algorithms use a cellular decomposition of the free space.

A cellular decomposition breaks down the target region into cells such that coverage in each cell is a

simple task. Provably complete coverage is attained by ensuring the robot visits each cell in the de-

composition. Choset [4] distinguishes between three types of work-area decompositions:Approximate,

semi-approximateandexact.

In the approximate cellular decomposition, first introduced by Moravac and Elfes [18], the work-area

is divided to cells which are all the same size and shape. Cells that are partially covered by obstacles,

or the bounds of the work-area, are discarded from consideration thus the union of the cells to cover

only approximate the target region. Typically the cell size is determined by the size of the robot’s tool

or sensor range. Zelinsky et al. [29] uses the regular wavefront algorithm to determine a coverage path

for a single-robot. Our algorithms are build on the single-robot STC (Spanning-Tree Coverage) family

of algorithms[9] which also uses the approximate cellular decomposition.

Hert et al. [14] introduced the semi-approximate cellular decomposition approach. In that the area

is decomposed to fixed width cells but with varying top and button.

In the exact cellular decomposition, which involves computational geometry methods, the area is

divided to a non-intersecting cells whose union fills the work-area. One popular approach is the trape-

zoidal decomposition [17], in which the space is divided to trapezoidal cells. A more suitable for robots

approach is the boustrophedon decomposition [5].

Another division should obviously be also between single-robot and multi-robot algorithms. recent

years are seeing much interest in multi-robot coverage algorithms, thanks to two key features made

possible by using multiple robots: (i) enhanced productivity, thanks to the parallelization of sub-tasks,
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and (ii) robustness in face of single-robot catastrophic failures. We want to note that robustness can

be also interpreted in a different manner. Acar and Choset [1] presented a robust on-line single robot

coverage algorithm while their robustness quality is the ability to filter bad sensors readings.

Our off-line algorithms build on the single-robot off-line STC algorithm [9] that is based on an

approximate cellular decomposition. A different approach to extending the STC algorithm to multiple

robots can be found in [7], but does not carry the robustness and performance guarantees we provide

below.

Most related to our off-line algorithms is the work by Spires and Goldsmith [24], that shows an

off-line multi-robots algorithm based on an approximate cellular decomposition. The algorithm uses a

Hilbert space-filling curve which guarantees a robust coverage path. Unfortunately, this works only in

obstacle-free work-areas. The algorithms we describe handle obstacles. Spires and Goldsmith argue that

the initial positions of the robots within the work-area significantly affect the coverage time, but do not

provide guarantees on the performance of their algorithm. In contrast, we provide the two backtracking

MSTC algorithms that are guaranteed to reduce the coverage time (compared to the single-robot case)

regardless of initial positions.

Another off-line multi-robot coverage algorithm was introduced by Kurbayashi et al. [16]. Their

off-line algorithm based on an exact cellular decomposition. However, no guarantees on robustness are

provided. Furthermore, the algorithm is centrally executed, and thus involves a single point of failure.

Our on-line algorithm is also based on the approximate cellular decomposition, like the single robot

on-line STC algorithm [9].

There have been additional investigations of on-line multi-robot coverage, but these do not guarantee

a complete coverage if one of the robots failed. Wagner et al. [26–28] proposes a series of multi-robots

ant-based algorithms which use approximate cellular decomposition. The algorithms involve little or

no direct communications, instead using simulated pheromones, or traces of robots. Some of these

algorithms solve only the discrete coverage problem and the others can not guarantee robustness due to

their heuristic nature.

Rekleitis et al. [21] uses two robots to cover an unknown environment, using a visibility graph-

like decomposition (sort of exact cellular decomposition). The algorithm use the robots as beacons to

eliminate odometry errors, but does not address catastrophic failures (i.e., when a robot dies). In a more

recent article, Rekleitis et al. [22] extends the Boustrophedon approach [4] to a multi-robot version.

Their algorithm also operates under the restriction that communication between two robots is available

only when they are within line of sight of each other, but has many points of failure, i.e., it could stop

functioning if one of the key robots fails.

Butler et al. [3] proposed an on-line multi-robot coverage, in a rectilinear environment, which based

on the exact cellular decomposition. They do not prove their robustness, and the robots could cover the

same area many times.
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Chapter 3

Off-line coverage algorithms

Building on definitions in previous single-robot investigations e.g. [4], [9], we focus in this chapter on

the off-line coverage case, where the robots have a-priori knowledge of the work-area, i.e. they have a

complete map of the work-area, its boundaries and all the obstacles (which are assumed to be static).

Each robot has an associated tool shaped as a square of sizeD. The objective is to cover the work-

area using this tool. In real-world applications, the tool may correspond to sensors that must be swept

through the work-area to detect a feature of interest, and the sizeD may be determined by the effective

range of the sensors. Or, in vacuum cleaning application, the tool may correspond to the opening of the

vacuum itself, typically underneath the robot. As with previous work [9], we assume robots can move

(with the tool) continuously in the four basic directions (up/down, left/right), and can locate themselves

within the work-area to within a sub-cell of sizeD.

We divide the area into square cells of size4D (each one consists of 4 sub-cells of sizeD), while

discarding cells which are partially covered by obstacles. We define a graph structure, G(V,E). V is the

nodes set, which are the center points of each cell, and E is the edges set, which are the line segments

connecting centers of adjacent cells. Then we build a spanning tree for G using any spanning-tree

construction algorithm. We can affect the shape of the covering path by adding weights to the edges and

building a minimum spanning tree [25]. This can be used, for instance, to reduce the number of turns,

by assigning horizontal edges greater weights than those of vertical edges [9].

We can now define the MSTC problem: We are given an STC path for a given work area, and a set of

k robots. We assume that the robots have initial positionsS0, . . . , Sk−1 within the cell decomposition of

the work-area. In this, we depart from previous work on multi-robot coverage which does not take into

account the initial positions of thek robots. The challenge is to assignk portions of the STC path to the

different robots, such that when all the robots complete their assigned sub-paths, the entire work-area is

covered.

In this chapter we examine an instance of this problem, where robots are assumed to be homoge-

neous in their same speed and tool sizeD. We useN to denote the number of cells in the grid, andn to

denote the number of sub-cells. We further assume that the work-area is contiguous, i.e., all cells of the

work-area are accessible from any starting position.
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Following the efficiency criteria in single-robot coverage algorithms which requires the least pos-

sible backtracking we begin with our multi-robot non-backtracking algorithm (Section 3.1). We then

introduce the backtracking algorithm and show that backtracking can lead to a lower worst-case cover-

age time (Section 3.2).

3.1 Non-backtracking MSTC

The coverage works in two phases. First, Algorithm 1 builds an STC path using the method in [9]

(briefly described above). Then, to carry out the coverage, each robot uses its copy of this STC path,

and its initial position on the path, to follow a sub-path that is assigned to it (Algorithm 2). This is done

while making sure that robots make up for catastrophic failures of their peers. Note that the execution

of Algorithm 2 is complete decentralized, as each robot executes its own independent copy.

Algorithm 1 MSTC Path Plan(work-areaW , robots’ initial positionsS0, . . . , Sk−1)
1: Arbitrarily pick the starting pointS0

2: Starting fromS0, constructP , an STC path ofW (as described above).
3: Order the positionsS0, . . . , Sk−1 along the STC, starting fromS0 and moving in a counter-clockwise

direction.
4: ReturnP , ordered list of positionsS0, . . . , Sk−1.

Starting fromS0, Algorithm 1 constructs a spanning tree for G. Moving along a path which cir-

cumnavigates the spanning tree along a counterclockwise direction orders the starting points as shown

in Fig. 3.1. The construction of the spanning-tree in this pre-process phase can be done by one robot

and broadcast to the others, or it can be done by every robot independently while they use the same

algorithm for the building of the tree.

Once the path has been constructed and divided into sections, Algorithm 2 is executed in a distributed

fashion by all robots. After the initialization phase (lines 1–2), each robot starts to cover its section

[Si, . . . , Sj), from its current locationSi to the initial positionSj of the next robot, along the STC in a

counterclockwise direction (lines 3–4, see Fig. 3.1). Lines 6–11 guarantee the robustness: If one robot

fails, the robot behind it takes the responsibility to cover its section (see below for formal proof). To

ease the notation, we denote(a + b) mod k asa ⊕ b, and(a − b) mod k asa ª b, wherek is the

number of robots.

Note that the algorithm addresses communication requirements in general form. In practice, com-

munications can be implemented in many different ways. For example, the status of liveness (lines 6,

8) can be determined by the robots’ sending of an "I am alive" message every period of time. When a

message is not received by a robot after a defined timeout period, it is considered dead. Alternatively,

liveness can be checked when reaching the initial position of another robot. Similarly, the announcement

of section completion (line 5) can be communicated in various ways.

We analyze these algorithms. First, to prove completeness and optimality we remind the reader that

circumnavigating the spanning tree produce a closed curve which visits all the sub-cells exactly one

10



 

 

 

 

Figure 3.1: The grid, the spanning tree and the paths for three robots.

Algorithm 2 non-backtracking MSTC(STC pathP , ordered positionsS0, . . . , Sk−1)
1: Let i ← my own id (in the range0 . . . k − 1)
2: Let t ← i⊕ 1 // next robot’s position, cyclically
3: while current position6= St − 1 do
4: Move towardSt along STC, in counter-clockwise direction // this changes current position
5: Announce completion of[Si, St)
6: while Rt is alive and[S0, . . . , Sk−1, S0] incompletedo
7: Wait
8: if Rt is not alive and[S0, . . . , Sk−1, S0] incompletethen
9: i ← t

10: t ← t⊕ 1
11: Goto 3 // Take over role of failing robot
12: Stop.
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time [9]. In Algorithm 1 the STC curve is partitioned intok sections whose union is the whole path.

That leads to the completeness theorem below.

Theorem 3.1.1(Completeness). Algorithm 1 generatesk paths that together cover every cell accessible

from the starting cellS0.

Proof. Previous work has shown that step 2 produces a path that covers all cells (Lemma 3.3 in [9]).

Step 3 partitions this path intok sections. Therefore, the union of thek sections covers every cell

accessible fromS0.

Given the set of paths produced, Algorithm 2 makes sure the robots visit all these cells only once (if no

failure has occurred). The following theorem applies.

Theorem 3.1.2(Non-Backtracking). If all robots use Algorithm 2, and no robot fails, no cell is visited

more than once.

Proof. If no robot fails, then each roboti only covers the section[Si, Si⊕1) of the STC path (where if

i = k, then cyclicallyi + 1 = 0). Thus every cell is covered only by a single robot. Since robots never

backtrack, every point is only covered once.

Robustness. As one key motivation for using multiple robots comes from robustness concerns, we

prove that Algorithm 2 above is robust to catastrophic failures, where robots fail and can no longer

move. This result relies on an assumption that robots which fail do not block live robots.

Theorem 3.1.3(Robustness). Algorithm 2 guarantees that the coverage will be completed in finite time

even with up tok − 1 robots failing.

Proof. The path is divided tok sections. We will prove that each section will be covered. Due to the

nature of the path generated, all the robots are topologically moving in a circle, so the robot that is

responsible to cover a section hask− 1 robots behind it. This is correct for any sectioni. We will prove

that this sectioni will be covered, by induction on the number of robotsk.

Induction Base (k = 3). If robot Ri that is responsible to cover this section is not dead before the

completion of the cover of this section, then this section is covered. Else,Riª1 or Riª2 is alive. If Riª1

is alive, according to line 6 in the algorithm it will return to step 3 and cover this section. If onlyRiª2 is

alive, according to line 6 in the algorithm it will return to step 3 and cover sectioni− 1 (becauseRiª1 is

not alive). Then the condition will be true again becauseRi is dead, andRiª2 will cover also sectioni.

Induction Step. Suppose it is known that if at least one ofk robots is alive sectioni will be covered.

We will prove it fork + 1 robots.

If robot Ri that is responsible to cover this section is not dead before the completion of the cover

of this section, then this section is covered. Otherwise, there is at least one ofk robots behind it that is

alive. According the induction step, every section withink sections behindRi will be covered, including

the section behind it. The robot that will cover this section will cover also sectioni (according to line 6

in the algorithm, becauseRi is not alive).
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Robustness is guaranteed with a simple mechanism. There is no need to reconfigure the group after a

robot failed. It also does not matter which robot fails or how many robots failed at the same time.

Robustness against collisions is an additional concern with multiple robots. Normally, as each robot

only covers its own section, theorem 3.1.2 also guarantees that no collisions take place, as the STC path

never crosses itself. In practice, localization and movement errors may cause the robot to move away

from its assigned path, and thus risk collision. Despite this, the separation between the paths of different

robots decreases the chance of collisions.

Efficiency. Additional important motivation for using multiple robots is the possibility of reducing

the coverage time by parallelizing portions of the coverage. In single-robot settings, guarantees of

completeness and non-backtracking are sufficient to show (in combination) optimality of coverage time,

since every cell is visited, but only once (the minimum). Thusn cells are covered inn steps.

To analyze the number of steps required to complete the coverage, we have to take into account the

initial configuration. We define therunning timeas the maximum over the steps that each robot has to

go,max i∈kstep(i), wherestep(i) is the total number of steps taken by roboti.

Using multiple robots, the hope is to reduce the coverage time to approximatelyn/k. Indeed, the

following theorem shows this to be a best-case scenario for Algorithm 2.

Theorem 3.1.4(MSTC Non-Backtracking Best Case). The best running time for Algorithm 2 isdn
k
−1e

Proof. The best-case scenario is when the starting positionsS0, . . . , Sk−1 place the robots at equal

distance from each other, thus partitioning the STC path intok sections, each of sizen/k.

Unfortunately, it turns out that the running time is critically dependent on the initial positions of the

robots. Indeed as the following theorem shows, the worst case scenario for Algorithm 2 has a running

time that is almost equivalent to that of a single robot.

Theorem 3.1.5(MSTC Non-Backtracking Worst Case). The worst running time for Algorithm 2 is

n− k − 1.

Proof. The worst-case scenario is where all the robots start next to each other, on adjacent cells. Since

all robots move in the same direction, all but one robot will only cover the cell they are on before

reaching the end of their assigned section. One robot will have a section assigned to that contains all

n− k remaining sub-cells (Fig. 3.2(a)).

The result demonstrates that the initial position of the robot within the work-area can adversely affect

the coverage time. Unfortunately, the worst-case scenario is common in real-world applications, e.g.,

vacuuming (all robots start from a single doorway), de-mining (all robots start from a single entry point

to the mine field), or lawn mowing (all robots start at the mower storage area).

This worst-case scenario may appear deceptively simple to address. One may reason that by allowing

another robot to head in the opposite direction, two robots may cover then− k section in parallel, thus

completing the coverage in approximatelyn/2 (Fig. 3.2(b)). However, it turns out that this is incorrect.
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Figure 3.2: Non-backtracking worst-cases

A more general result is proven below, and shows that the worst-case scenario is in fact much

more general than for Algorithm 2. Indeed, it is applicable to any STC-based algorithm that is non-

backtracking.

Theorem 3.1.6(General Non-Backtracking Worst Case). Any non-backtracking covering algorithm

based on partitioning the spanning tree path to sections, has a worst-case running time ofn−2(k−1)−1.

Proof. Consider the case where robots are positioned such that a single empty sub-cell separates each

pair (Fig. 3.2(c)). Because no backtracking is allowed, only one of the extreme robots can cover the big

part of the path. The others, including the extreme robot from the other side, can cover only the empty

sub-cell next to them, regardless the method that the algorithm chooses for deciding on a direction for

movement. So we getk − 1 robots that cover two squares (their square, and the square next to them),

and one robot that has to cover the rest of the pathn− 2(k − 1)− 1.

In other words, there is no non-backtracking algorithm for setting the coverage direction of the coverage

for different robots such that the worst case above is eliminated. We remind the reader that the require-

ment for non-backtracking movement is inherited from the single-robot STC algorithm [9], where it

also leads to optimality in coverage time. The next section examines what happens when we remove the

requirement of non-backtracking movement while preserving the STC movement rules.

3.2 Backtracking MSTC

Let us examine an instance of the worst-case scenario of a non-backtracking algorithm, with only two

robots that are positioned such that there is a single empty sub-cell between them. Without backtracking,

one of the robots would have to commit to covering the single sub-cell, while the other would then be

forced to cover the remainingn− 3 sub-cells. However, if we allow robots to backtrack, then the robot

that covers the single sub-cell would be able to cover it, then backtrack, and head in the other direction.
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The two robots would then meet approximately in the middle of then − 3 section, thus halving the

coverage time.

Naturally, a new worst-case scenario can be found for this back-tracking case. In this scenario, the

initial positions of the two robots separated by are a third of the STC path. One robot thus covers2/3 of

the path, while the other robot goes a1/3 of the path in one direction and then backtracks, but it can’t

help the first one in its section. The overall coverage time will be2n/3.

To define a general back-tracking algorithm, let us first define a few helpful notations.seci is the

section that robotRi is responsible to cover. Unlike in the non- backtracking algorithm sometimes

seci 6= [Si, Si⊕1) (The section which starts atSi and ends just beforeSi⊕1 when moving in a counter-

clockwise direction along the STC path, as defined before). We use|[Sl, Sj]| to denote the length of

the section[Sl, Sj], taken along the shortest path along the STC cycle. The pointSi + L is the point in

a distance ofL from Si when moving in a counterclockwise direction along the STC path.D1i is the

initial direction of movement for roboti, while D2i is the direction of movement for roboti if it has to

backtrack.

We now turn to describing the MSTC backtracking algorithm. The first phase of building the STC

and ordering the starting point is the same as in the non-backtracking case (Algorithm 1). We add an-

other initialization phase where the robots re-divide the sections if backtracking is needed. The case

where there are only two robots is somewhat different from the general case, so we present two initial-

izations algorithms: Algorithm 3 if there are only two robots and Algorithm 4 fork > 2 robots. After

this initialization phase the robots follow the backtracking algorithm (Algorithm 5).

The idea of the initialization phase is to allocate sections and directions of movement to the robots.

With two robots, if there is no part of the path that is longer than 2/3 of the entire STC path, all the

sections and directions of movement are the same as in the non-backtracking algorithm (Algorithm 3,

lines 1–4). Otherwise, the robots share the coverage of their sections. They first cover the shortest

section between them (thus one of them will have to go in a clockwise direction) and then backtrack to

cover together the other section.

Algorithm 3 2 robots initialization phase(STC pathP , ordered positionsS0, S1)
1: Let sec0 ← [S0, S1)
2: Let sec1 ← [S1, S0)
3: Let D10, D11 ← counterclockwise
4: Let D20, D21 ← null
5: if there ish such thatsech > 2

3
(|[S0, S1)|+ |[S1, S0)| then

6: i ← h⊕ 1
7: sech ← [Si + d |[Si,Sh)|

2
e, Sh + d |[Sh,Si)|

2
e)

8: seci ← [Sh + d |[Sh,Si)|
2

e, Si + d |[Si,Sh)|
2

e)
9: D1h ← clockwise

10: D2h ← counterclockwise
11: D1i ← counterclockwise
12: D2i ← clockwise
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Algorithm 4 general initialization phase(STC pathP , ordered positionsS0, . . . , Sk−1, k > 2)
1: for all i such that0 ≤ i ≤ k − 1 do
2: Let seci ← [Si, Si⊕1)
3: Let D1i ← counterclockwise
4: Let D2i ← null
5: if there ish such thatsech > 1

2
(
∑k

0 |[Si, Si⊕1)|) then
6: i ← h⊕ 1
7: j ← i⊕ 1
8: f ← j ⊕ 1
9: if |[Si, Sj)| < |[Sj, Sf )| then

10: sech ← [Sh, Sh + d |[Sh,Si)|+|[Si,Sj)|
2

e)
11: seci ← [Sh + d |[Sh,Si)|+|[Si,Sj)|

2
e, Si + d |[Si,Sj)|

2
e)

12: D1i ← counterclockwise
13: D2i ← clockwise
14: secj ← [Si + d |[Si,Sj)|

2
e, Sf )

15: D1j ← clockwise
16: D2j ← counterclockwise
17: else
18: D1j ← counterclockwise
19: D2j ← clockwise
20: if h = f then
21: sech ← [Sj + d |[Sj ,Sh)|

2
e, Sh + d |[Sh,Si)|+|[Sj ,Sh)|

2
e)

22: D1h ← clockwise
23: D2h ← counterclockwise
24: seci ← [Sh + d |[Sh,Si)|+|[Sj ,Sh)|

2
e, Si)

25: D1i ← clockwise
26: secj ← [Si, d |[Sj ,Sh)|

2
e)

27: else
28: sech ← [Sh, Sh + d |[Sh,Si)|

2
e)

29: seci ← [Sh + d |[Sh,Si)|
2

e, Si)
30: D1i ← clockwise
31: secj ← [Si, Sj + d |[Sj ,Sf )|

2
e)

32: secf ← [Sj + d |[Sj ,Sf )|
2

e, Sf⊕1)
33: D1f ← clockwise
34: D2f ← counterclockwise
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With more than two robots, only if there is no part of the path that is longer thanhalf of the entire

STC path, all the sections and directions of movement are the same as in the non-backtracking algorithm

(Algorithm 4, lines 1–4). Otherwise, the two robots that have this section between them share its

coverage. One of them will have to go in a clockwise direction, leaving to the robot next to it (from the

other side) to also cover the distance between them. To avoid the case that this robot will have to cover

more than half of the path because of the backtracking, this robot gets help from one of its neighbors—

the one closest to it. They both cover half of the distance between them and return to cover their original

part of the path. See Fig. 3.3 for example of this situation.

 

Ri 

Rh 

Rf 

Rj 

Figure 3.3: An execution example of Algorithm 5. The indexes used are the same as in the general
initialization phase.

The backtracking algorithm (Algorithm 5) follows the re-divided sections generated in the initializa-

tion phase, similarly to the way the non-backtracking algorithm does. Algorithm 5 also ensures that only

after a robot finishes to cover its section, even if it includes going in one direction and then backtrack, it

covers sections of dead robots. Thus this algorithm is also robust.

The algorithm’s completeness and robustness can be proven similarly to the completeness and ro-

bustness of the non-backtracking Algorithm 2. With respect to its backtracking, it can be easily shown

that any point that is covered more than once, is covered by the same robot, and that there is no point

that is covered more than twice.

The best-case coverage time for the backtracking MSTC algorithm is the same as for the non-

backtracking version, i.e.,n
k
− 1. This is because in the best case, the initial positions of the robots

are equidistant, and the robots can cover their sections without backtracking. The worst-case coverage

time is analyzed below:

Theorem 3.2.1(MSTC Backtracking Worst Case). The worst-case running time for Algorithm 5 is

n/2− 1 whenk > 2, andd2n/3− 1e whenk = 2.

Proof. There are two cases, depending on the value ofk. Case 1 (k = 2). In the worst case, one of

the robots has a sectionx that is less than or equal to half the path. Ifx is longer than a third (1/3)

of the entire path, the other robot covers a section less than2/3 of the path, and we are done. Ifx is
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Algorithm 5 backtracking MSTC(STC pathP , ordered positionsS0, . . . , Sk−1)
Require: initialization phase

1: Let s ← my own id (in the range0 . . . k − 1)
2: Let t ← s⊕ 1 // next robot’s position, cyclically
3: while current position6= one edge of yoursec do
4: Move towards edge of yoursec along STC, according yourD1 argument
5: if yourD2 6= null then
6: yourD1 ← yourD2
7: yourD2 ← null
8: Go to 3
9: else

10: Announce completion of yoursec
11: while Rt is alive and there isi such thatseci incompletedo
12: Wait
13: if Rt is not alive and and there isi such thatseci incompletethen
14: s ← t
15: t ← t⊕ 1
16: Go to 3 // Take over role of failing robot
17: Stop

equal to a1/3 of the path, then the other robot covers2/3 of the path, i.e.,d2n/3 − 1e, and we are

done. Otherwise,x is shorter than a1/3 of the path, i.e.,x = n/3 − y, y > 0. The robot that coversx

backtracks over it. In this time the other robot passes twice that length, i.e.,2(n/3 − y) = 2n/3 − 2y.

At this point, the portion of the path remaining uncovered isn − (n/3 − y) − (2n/3 − 2y) = 3y. The

two robots cover it together so each of them covers half of it. Hence, the total time taken by each is

2n/3− 2y + 1.5y = 2n/3− y/2. If y is even, then, this is at most2n/3− 1. If y is odd, then one robot

coversby/2c and the otherby/2c+ 1; i.e., the worst time in this case is2n/3− by/2c − 1 = 2n/3− 1.

Case 2 (k > 2). If there is no section that is longer than half of the path, then when every robot covers

its section, no robot covers more than half of the path. On the other hand, if there is a section longer than

half the path, then necessarily it is the only one. We denote it as[Sh, Si) (as in the algorithm). There are

three possible cases:

• |[Si, Sj)| < |[Sj, Sf )|. |[Si, Sj)| + |[Sj, Sf )| < half of the entire path⇒ |[Si, Sj)| < 1/4 of

the entire path.Rj passes twice over half of[Si, Sj) and over[Sj, Sf ) so the its total path is:

|[Si, Sj)| + |[Sj, Sf )| < half of the entire path.Ri passes twice over half of[Si, Sj) and over

[Sh, Si) until it meetsRh. In the time thatRj passes half of[Si, Sj) and backtracks,Rh passes

this distance (|[Si, Sj)|) toRj ⇒ The remaining area to cover is(|[Sh, Si)| + |[Si, Sj)|)/2 ⇒ The

number of steps for every one of them is:|[Sh,Si)|+|[Si,Sj)|
2

+ |[Si, Sj)| = |[Sh, Si)|/2 + |[Si, Sj)|/2.

|[Sh, Si)| ≤ n−(|[Si, Sj)|+ |[Sj, Sf )|)⇒ |[Sh, Si)|/2+ |[Si, Sj)|/2 ≤ n−|[Sj, Sf )|/2 ≤ n/2−1

• |[Si, Sj)| ≥ |[Sj, Sf )| and h = f . This case could only happen with three robots. The proof is

analogous to that of the previous case.
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• |[Si, Sj)| ≥ |[Sj, Sf )| while h 6= f . Rf passes twice over half of[Sj, Sf ) and over[Sf , Sf⊕1) , so

its total path is|[Sj, Sf )|+ |[Sf , Sf⊕1)|. Rj passes twice over half of[Sj, Sf ) and over[Si, Sj) , so

its total path is|[Si, Sj)|+ |[Sj, Sf )|. |[Sh, Si)| > half of the entire path⇒ |[Si, Sj)|+ |[Sj, Sf )|+
|[Sf , Sf⊕1)| ≤ half of the entire path⇒ Rj andRf covered less than half of the entire path.Rh

andRi passes half of[Sh, Si). |[Sh, Si)| < length of the entire path⇒ Rh andRi covered less

than half of the entire path.

Thus in all cases, three or more robots take no more thann/2− 1 to complete coverage.

The key insight offered by these results is that non-backtracking, the property that no portion of the

work-area is covered more than once, is a distinct performance criteria from that of efficiency. These

converge in the single robot case, but not in general. Indeed, it can be shown thatonly utilizing some

backtracking can we guarantee improved coverage time. To see this, consider a case where the two

robots are behind each other, in a corridor leading into the work area. Unless the second robot covers at

least a portion of the area covered by the first robot, there is no way for the robots to split the covering

task between them. Without some redundancy, the first robot will necessarily have to cover almost all

of the work area by itself.

To see this, consider the situation in Fig. 3.4. Here, the two robots are in a corridor leading into the

work area. Unless the second robot covers at least a portion of the area covered by the first robot, there

is no way for the robots to split the covering task between them. Without some redundancy, the first

robot will necessarily have to cover almost all of the work area by itself.

 

 

 

Figure 3.4: A situation example when backtracking is a must to increase efficiency

This result is not intuitive. For instance, in their 2004 paper on multi-robot coverage using limited

communications, Rekleitis et al. write in the introduction [22]:

“. . . we seek to reduce repeat coverage, which is defined as any robot covering previously

covered space. Any reduction in repeat coverage increases the performance, as more robots

cover simultaneously new space.”

19



We offer a revised version of this goal. Reduction in redundancy may cause anincreasein coverage

time, and thus reduce the performance. The deployment of multiple robots must take this into account,

and balance redundancy and efficiency as required.
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Chapter 4

Efficiency in off-line coverage

In the previous chapter we introduced two off-line algorithms and analyzed their characteristics. We now

introduced an improved algorithm and discuss different efficiency aspects of the three algorithms. We

first introduce the polynomial-timeoptimalbacktracking MSTC algorithm, and show that its coverage

time is significantly better than the simple backtracking algorithm (Section 4.1). We then examine the

possibility to use our algorithms with heterogenous robots with different speeds or different fuel/battery

time (Section 4.2). In the last section we discuss the option to build a more efficient spanning tree which

can improve the overall coverage time of our three off-line algorithms (Section 4.3).

4.1 Optimal Backtracking MSTC

Algorithm 5 in the previous chapter allows backtracking for only two robots and only in the case where

one robot has to cover more than half of the entire working area. It does not generate an optimal

allocation of robots to assigned sections and directions, and thus, while it guarantees a better worst-case

coverage time than the non-backtracking algorithm, its average performance can be improved.

The optimal backtracking MSTC initialization algorithm below (Algorithm 6) allows all robots to

backtrack over any number of steps, in order to achieve the best time for the given initial configuration. It

is intended as a drop-in replacement for Algorithm 4, initializing tasks for each robot. While intuitively

it may seem that the run-time complexity will grow combinatorically, with the number of possible

allocations, it turns out that given the discretization of the problem, a polynomial-time solution exists.

The algorithm is described below. It assigns asolutionto each robot, where this solution is a tuple

〈R, L1, L2, D1, D2〉. R is the index of the robot in question,0 ≤ R ≤ k − 1. L1 is the length of

the section to take before switching directions.L2 is the length of the section to take after switching

directions. If no switching is needed, its value will be zero.D1 is the first direction to take;D2 is the

direction to take after travelling lengthL1 along the STC, in directionD1. D1, D2 can therefore becw

(clockwise),ccw (counterclockwise), ornull (not switching direction). As before, we use|[Sl, Sj]| to

denote the length of the section[Sl, Sj], taken along the shortest path along the STC cycle.

The key to the algorithm resides in the discretization of the problem. Because we divide the working
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Algorithm 6 Optimal(STC pathP , ordered positionsS0, . . . , Sk−1)
1: t ← ∅
2: for i ← 0 to k − 1 do
3: for l ← 0 to |[Si, Siª1]| do
4: if not Check(i, l, |[Si, Si⊕1]|) then
5: continue to nextl
6: else ifCheck(i, l, 0) then
7: t ← Solution(i, l, 0, t)
8: break inner loop
9: else

10: r ← Search(0, |[Si, Si⊕1]|, i, left,′ right search′)
11: t ← Solution(i, l,r, t)
12: for r ← 0 to |[Si, Si⊕1]| do
13: if not Check(i, |[Si, Siª1]|, r) then
14: continue to nextr
15: else ifCheck(i, 0, r) then
16: t ← Solution(i, 0, r, t)
17: break inner loop
18: else
19: l ← Search(0, |[Si, Siª1]|, i, right,′ left search′)
20: t ← Solution(i, l, r, t)
21: returnt

area to cells and sub-cells, each robot can move a finite number of steps. The algorithm checks all

options for an optimal assignment of paths, using a binary search.

For each robot (line 2), Algorithm 6 checks all the possible steps that the robot can move in a

counterclockwise direction along the spanning tree path, until it reaches the robot next to it (line 3). For

each possible step, we check whether the robot should backtrack and move in the opposite direction.

The total movement duration is the value of that solution. We first check that it is a valid solution,

meaning that within the solution duration time all the robots can complete to cover the rest of the area

(the procedure Check in lines 4–5 and in the function Search). We then store this solution if it is the best

so far (the procedure Solution in lines 7 and 10). We similarly test the other side, i.e. check all possible

steps in the clockwise direction along the spanning tree path, until it reaches the robot next to it (lines

12–20).

TheCheckprocedure works as follows. We get a configuration of robot,i, and its movements, and

have to calculate if the other robots can complete the coverage in the same time it takes to roboti to

complete its sections. The idea is that when fixing the movement of one robot to determine overall

coverage time, all other robots have only one opportunity for movement within the same time frame, so

the check for the validity of the solution is linear in the number of robots. First, roboti’s coverage time

is calculated. To minimize the total coverage time, if roboti has to backtrack, it will do so in the smaller

section (line 1). We then check what is the distance that the next robot can cover in the same time. If

there is a remaining area between the robots which both did not cover it is not a valid solution (line 4). If
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not, this robot has a remaining area between it and the robot next to it (lines 7,10) that has to be covered

in the same time frame, so we repeat the check between them. The check is done cyclically for all the

robots (line 3), and if the total area can be covered within the time frame which was determined by the

given configuration, the solution is valid.

Algorithm 7 Check(roboti, ccw movement amountleft, cw movement amountright)
1: time ← min(left, right) · 2 + max(left, right)
2: area ← |[Si, Si⊕1]| − right
3: for r ← [i⊕ 1, i⊕ 2, . . . , iª 1] do
4: if area > time then
5: returnfalse
6: else ifarea · 2 ≥ time then
7: area ← |[Sr, Sr⊕1]|
8: else
9: best ← max(time− 2 · area, time−area

2
)

10: area ← max(|[Sr, Sr⊕1]| − best, 0)
11: if area > right then
12: returnfalse
13: else
14: returntrue

The Solutionprocedure (Algorithm 8) creates a new solution tuple, if it is better than the existing

best solutiont. First, in lines 1–3, the new solution length is compared to the existing solution length.

If the existing solution is better or equal to the new solution, the existing solution is returned (line 4).

Otherwise, the new solution tuple is calculated. If the amount of CCW movementleft is zero, then

the only movement is in the CW direction. The length of that movementL1 is equal to the amount of

movement in the CW direction,right, and the first direction to take is in the CW (clockwise) direction.

This is done in lines 5–8. A similar check is done for the opposite direction (lines 9–12). However, if the

solution calls for moving bi-directionally, than the algorithm first checks which direction involves less

movement, CCW (lines 13–17) or CW (18–22). In either case, the direction involving less movement is

taken first, since it will be backtracked-over in the counter direction.

TheSearchprocedure (Algorithm 9) performs a binary search over the length of a section between

one robot to another. It gets a fixed movement length in one direction for a specific robot, and searches

for the shortest length that this robot can move in the other direction, while still enabling the other

robots to complete the coverage of the remaining area in the same time it takes to this robot to complete

its two direction movement. This check is done withCheckprocedure (lines 6, 11), recursively, until

the length is found (lines 1–2). The direction of search is determined by the ’type’ argument: aright

searchmeans that the ’movement’ argument is a fixed counterclockwise movement along the spanning

tree, with a length ofmovement, so the search is done for the length of the clockwise movement. Aleft

searchmeans the opposite. Before the call to this procedure we examine that there is a valid solution

with this robot with the maximal possible movement (lines 4–5 in Algorithm 6) to guarantee that the

procedure will not be stuck in an endless loop.
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Algorithm 8 Solution(roboti, ccw movementleft, cw movementright, current best solutiont)
1: V AL ← min(left, right) · 2 + max(left, right)
2: tV AL ← min(tleft, tright) · 2 + max(tleft, tright)
3: if tV AL ≤ V AL then
4: returnt
5: if left = 0 then
6: L1 ← right
7: D1 ← clockwise
8: D2 ← null
9: else ifright = 0 then

10: L1 ← left
11: D1 ← counterclockwise
12: D2 ← null
13: else ifleft ≤ right then
14: L1 ← left
15: L2 ← right
16: D1 ← counterclockwise
17: D2 ← clockwise
18: else
19: L1 ← right
20: L2 ← left
21: D1 ← clockwise
22: D2 ← counterclockwise
23: return〈i, L1, L2, D1, D2〉

Algorithm 9 Search(low borderlow, high borderhigh, robot indexi, one side movementmovement,
type of searchtype)

1: if low = high then
2: returnlow
3: else
4: half ← b low+high

2
c

5: if type = ’right search’then
6: if Check(i, movement, half ) then
7: Search(low, low+high

2
, i, movement, ’right search’)

8: else
9: Search(half + 1, high, i, movement, ’right search’)

10: else
11: if Check(i, half , movement) then
12: Search(low, low+high

2
, i, movement, ’left search’)

13: else
14: Search(half + 1, high, i, movement, ’left search’)
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Algorithm 6 generates the optimal allocation of robots to sections (and their backtracking, if neces-

sary), such that coverage is achieved at the best possible time. This is proven in Theorem 4.1.1 below.

The optimality is according to the MSTC movement rules which introduced before: all the robots move

along the same spanning tree without crossing it, and every robot backtracks only on its own steps. The

only case where a robot has to cover another robot’s cell is where the latter failed and its entire allocated

section has to be covered by another robot.

Theorem 4.1.1(Optimal MSTC Optimality). Algorithm 6 generates an optimal allocation of sections

such that the overall coverage time is minimal.

Proof. The value of an solution for a given initial configuration is its overall coverage time. If this is

optimal, then for each robot, its individual coverage time is less than or equal to this value; and there

exists at least one robot whose coverage time is exactly that (otherwise this is not an optimal solution).

By choosing the best valid solution of each robot and comparing it to the other robots’ best solutions,

we guarantee finding the optimal solution.

The run-time of the allocation itself is polynomial inn, the number of sub-cells, andk, the number

of robots. This is shown in Theorem 4.1.2 below.

Theorem 4.1.2(Optimal Backtracking Run-Time). Algorithm 6 runs in timeO(nk2 log n).

Proof. The main loop is executedk times. In each phase there are2 loops, both executed at most

O(n) times because this is the maximum number of possible steps. In each loop the function Check is

executed twice and then the function Search and Solution (in the worst case). In the function Check there

is only one loop which runsk − 1 times thus its running time complexity isO(k). The function Search

runs a binary search on one section of the spanning tree path, and uses Check function in each phase so

its running time complexity isO(k log n). The function Solution uses only a constant number of check

so its running time complexity isO(1). So, the overall running time complexity isO(nk2 log n).

Typically the number of robots is much smaller than the number of cells in the area to be covered,

i.e.,k << n. Thus in applications, we expect the runtime to be mostly affected by then log n factor.

The actual running time can be further improved if the algorithm is modified to skip checking values

which are bigger than the largest initial section. However, while this is a useful implementation note, it

does not affect theoretical runtime complexity.

4.2 Heterogeneous Robots

So far we assumed homogeneous robots, with equal speeds and fuel capacities. Thus, the coverage time

for a given section, between neighboring robots, was considered equal regardless of which robot was

chosen to traverse it. We now describe how heterogeneous robots, in speed and/or fuel capacity, can be

taken into account.
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The non-backtracking algorithm (Algorithm 2) will work in the same manner for robots with differ-

ent speeds, as no optimization is attempted. The simple backtracking algorithm (Algorithm 5), however,

will not function correctly. It might even result in a worse coverage time than the non-backtracking al-

gorithm for the same initial configuration. For example, suppose we have four robots as described in

figure 4.1. The values near the braces describe the number of sub-cells between the robots. Suppose

R0 is a slow robot that can move in a speed of 1 sub-cell/second and R1 is a fast robot that can move

in a speed of 10 sub-cells/second. The other robots can move at a speed of 5 sub-cells/second. When

following the non-backtracking algorithm the coverage will be completed in 20 seconds, which is the

time for R3 to cover its section. In that time the other robots can complete to cover their sections too.

If the backtracking algorithm will be executed, the coverage will take 105 seconds. This long time is

due to the slow movement of R0 which has to cover half of the section between it and R1 (distance of

5 sub-cells), backtrack (again distance of 5 sub-cells) and cover almost half of the section between it

and R3 (distance of 95 sub-cells). The backtracking algorithm has a simple mechanism which considers

only distances between the robots thus it fails when we change the assumption of homogenous robots

with equal speeds.
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Figure 4.1: An example where the backtracking algorithm generates bad solution if the robots has
different speeds.

The optimal backtracking algorithm (Algorithm 6) works can be easily extended to address robots

with heterogeneous speeds. The extension needed involves modifying the way coverage time is calcu-

lated in the Check procedure (Algorithm 7) and in the Solution procedure (Algorithm 8). Instead of

calculating coverage time based on the length of the section, it should be calculated based on the length

given the maximum speed of the robot in question (lines 7,9-10 in Algorithm 7). With this modification,

Algorithm 6 is guaranteed to return a solution that is optimal in coverage time, even taking into account

heterogeneous speed limits.

We will also want to consider the case where the robots are equipped with different amount of fuel

or different battery capacity. The simple algorithms (Algorithms 2, 5) do not address this case, and may
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return a planned path that cannot be executed by the robots, given their fuel capacity.

However, the optimal backtracking algorithm provides a solution in this case as well. Algorithm

7 requires a modification in the calculation of the distance that a robot can cover within a given time

frame, such that the calculation also takes into account the fuel available. With this change, the optimal

backtracking algorithm is guaranteed to produce a solution that is feasible given the robots’ fuel or

battery constraints. However, this solution still minimizes coverage time, rather than fuel consumption.

4.3 Optimal Spanning Tree

Our off-line multi-robot algorithms as well as the single-robot version in [9] use a spanning tree to create

a circular path which completely cover the area. When building this spanning tree in a single robot

system, the influence of the structure of the tree is almost irrelevant for the coverage time. This results

from the fact that coverage time is linear in the size of the grid, since each cell except for the boundary

cells is covered once, hence the total coverage time isn (the number of sub-cells). The structure of the

tree may only affect efficiency due to the number of turns it requires, and other similar issues. On the

other hand, in our multi-robot systems, the structure of the tree can have crucial consequences on the

coverage time of the terrain. The choice of the spanning tree can change the robots’ initial positions

from being concentrated, i.e., placed as a bundle, to being scattered along the spanning tree path - all

without actually changing the physical initial position of the robots. That is mean that if the tree is

appropriately built, the structure of the tree itself can substantially decrease the coverage time obtained

by algorithms based upon it.

When constructing this tree we try to minimize the maximal distance between every two consecutive

robots along the spanning tree path. If such tree is obtained, all versions of the MSTC algorithm ran

on these tree will achieve substantially better coverage time. An illustration of the importance of the

right choice of spanning tree is given in Figure 4.2. The figure presents an example for a terrain in

which n = 120, k = 3 and two different trees are suggested as base for coverage. The spanning tree

is described by the bold lines, and we use the different kinds of dashed lines to describe the spanning

tree path, each dashed line represents the distance between two adjacent robots along the path. In order

to clarify the example, the section between each two adjacent robots is given a different background as

well. Note that in both grids the robots are initially located in the same positions. The tree in Figure

4.2a. places the robots almost uniformly along the tree path, thus non-backtracking algorithm will cover

the area in 50 steps, the backtracking algorithm will cover it also in 50 steps and the optimal algorithm

will cover it in 44 steps. However, in Figure 4.2b. the robots are placed arbitrarily along the tree path,

thus the non-backtracking algorithm will cover the area in 112 steps, the backtracking algorithm will

cover it in 57 steps and the optimal algorithm will cover it in 56 steps.

To formally define our problem, we are given a graph structure, G(V,E) of our cellular decomposi-

tion. V is the nodes set, which are the center points of each cell, and E is the edges set, which are the

line segments connecting centers of adjacent cells. Each cell is decomposed to 4 sub-cells. We are also
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Figure 4.2: Illustrating how different trees can influence coverage time.

given initial locations ofk robots on sub-cells ofG’ cells. For every spanning tree ofG, STG, moving

along the path which circumnavigatesSTG orders the robots. LetDij be the distance along the spanning

tree path between two consecutive robots. Out problem is to findSTG that minimizesmax i∈kDij.

The construction of an optimal spanning tree is believed to beNP-Hard [30]. However, an ap-

proximation algorithm (co-authored with Noa Agmon and Gal Kaminka) exists [2]. It is presented in

Appendix A.
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Chapter 5

On-line coverage algorithm

We focus in this chapter on the on-line coverage case, in which the robots do not have apriori knowledge

of the work-area, i.e., the exact work-area boundaries and all the obstacles locations (which are assumed

to be static), but their absolute initial positions. We first introduce the algorithm, and prove that it

is complete, non-redundant and robust (Section 5.1). We then analyze the assumptions underlying the

algorithmic requirements and present various approximation techniques for these requirements, to allow

the algorithm to work in real world situations (Section 5.2).

5.1 On-line MSTC Algorithm

Our on-line algorithm basic assumptions are the same as with previous work [9] and with our off-line

case in chapter 3. Each robot has an associated tool shaped as a square of sizeD. The objective is to

cover the work-area using this tool. In real-world applications, the tool may correspond to sensors that

must be swept through the work-area to detect a feature of interest, and the sizeD may be determined

by the effective range of the sensors. Or, in vacuum cleaning application, the tool may correspond to the

opening of the vacuum itself, typically underneath the robot. We also assume robots can move (with the

tool) in the four basic directions (up/down, left/right), and can locate themselves within the work-area

to within a cell of sizeD.

We divide the area into square cells of size4D, each one consists of four (4) sub-cells of sizeD.

Denote the number of cells in the grid byN , and denote the number of sub-cells byn,i.e.,N = 4n. The

area occupancy in the beginning is unknown so every cell is initially considered to be empty.

The algorithm starting point is the work-area andk robots with their absolute initial positions:

A0, . . . , Ak−1. The initial position of every robot is assumed to be in an obstacle-free cell, and the

robot should know its position. Indeed, one assumption the algorithm makes—as previous work [9]

does—is that robots can locate themselves within an agreed-upon grid decomposition of the work area.

In practice, of course, this assumption is not necessarily satisfied. Section 5.2 below discusses methods

for approximating this assumption in practice, which we utilize in our work with physical robots.

We seek algorithms that arecomplete, non-redundant, androbust. An algorithm is complete if, fork
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robots, it produces paths for each robot, such that the union of allk paths complete covers the work area.

An algorithm is non-redundant if it does not cover the same place more than one time. The robustness

criteria ensures that as long as one robot is still alive, the coverage will be completed.

The algorithms below are run in a distributed fashion, and generate on-line coverage that is com-

plete, non-redundant, and robust. Each robot runs the initialization algorithm first (Algorithm 10), and

then executes (in parallel to its peers) an instance of the ORMSTC (On-line Robust Multi-robot STC,

Algorithm 11). Each ORMSTC instance generates a path for its controlled robot on-line, one step at a

time. It is the union of these paths that is guaranteed to be complete, non-redundant, and robust.

We begin by describing Algorithm 10. The initialization procedure constructs the agreed-upon co-

ordinate system underlying the grid work area. It then allows each robot to locate itself within the grid,

and update its peers on the initial position of each robot.

Algorithm 10 On-line MSTC initialization()
1: Decompose the working area into a2D × 2D grid, agreed among all the robots.
2: Decompose each2D × 2D cell to 4D ×D sub-cells
3: i ← my own robot ID
4: if Ai 6= the middle of a sub-cellthen
5: si ← the closest sub-cell
6: Move tosi

7: else
8: si ← Ai

9: Si ← the cell that containssi

10: AnnounceSi as your starting location to the other robots
11: Update your map aboutS0, . . . , Sk−1 // the other robots starting cells
12: Initialize connection[0 . . . k − 1][0, 1] ← null

Once the grid is constructed—though of course, not traversed, nor mapped—and robots know their

initial positions, coverage can begin. This is carried out by Algorithm 11, executed in a distributed

fashion by all robots. This recursive algorithm gets two parameters:X, the cell that the robot just

entered, andW , the cell from which the robot have arrived. In the first recursive call to the algorithm,

the argumentX is the robot’s starting cellSi, andW can theoretically be any neighboring cell ofSi.

In order to be consistent with the other algorithm steps we chooseW as the cell which is closest to the

robot sub-cell starting position and if it enter to that cell it will be its right bottom sub-cell from the robot

point of view. See Figure 5.1 for the four possible states. Note that for clarity purpose in the algorithm

pseudo code we denote a cell with an obstacle in one (or more) of its 4 sub-cells, or with the robot’s

own spanning tree edge, as ablockingcell.

The main idea behind the algorithm is that every robot gradually builds a local spanning tree of the

uncovered cells that it discovers, while tracking the state of its peers which it meets. The spanning tree

is built by a depth-first-like procedure: Scan for a non-occupied neighboring cell (Lines 1–2), build a

tree edge to it (Line 18), enter that cell (Line 19) and continue recursively with this cell (Line 20). If

there is not any free cell, the robot goes back along its local spanning tree to the previous covered cell
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Algorithm 11 ORMSTC(W , X)
1: N1..3 ← the 3 neighboring cells ofX in clockwise order, starting afterW
2: for i ← 1 to 3 do
3: if Ni = blocking cellthen
4: continue to the nexti
5: if Ni has already a tree edge of another robotj then
6: ask robotj if it is alive
7: if robotj answeredthen
8: if connection[j][0] = null then
9: connection[j][0] = connection[j][1] = the edge fromX to Ni

10: continue to the nexti
11: else
12: connection[j][1] = the edge fromX to Ni

13: continue to the nexti
14: else
15: // robotj is not alive
16: remove robotj from your connections array and broadcast it
17: mark its tree cells as empty on the map and broadcast it
18: construct a tree edge fromX to Ni and broadcast it
19: move to a sub-cell ofNi by following the right-side of the tree edges
20: execute ORMSTC(X, Ni)
21: if X 6= Si then
22: move back fromX to W along the right-side of the tree edges
23: return from recursive call
24: if W 6= blocking cellthen
25: execute ORMSTC(X, W )
26: move to your starting sub-cellsi along the right-side of the tree edge
27: broadcast completion of your work
28: while not all the robots announced completion of their workdo
29: check periodically that the robots which you a have a connection with are alive
30: if robotj is not alivethen
31: mark robotj tree cells as empty on the map and broadcast it
32: broadcast that you didn’t complete your work
33: decide which connection:connection[j][0] or connection[j][1] is closer to your place when

moving in clockwise or counter-clockwise direction along your tree edges
34: move to this connection in the appropriate direction
35: X ← your connection cell
36: Y ← robotj’s connection cell
37: remove robotj from your connections array and broadcast it
38: construct a tree edge fromX to Y and broadcast it
39: move to a sub-cell ofY by following the right-side of the tree edges
40: execute ORMSTC(X, Y )

31



 

W

W

W

W 

Figure 5.1: The 4 possible initial positions, and the recommendedW choose for them

(Line 22) and the recursion is folding back (Line 23).

During this exploration and covering process, the first time a roboti meets a cell with robotj’s

tree-edge (i 6= j), it examines its peer’s state (Lines 5–6). If robotj is still alive, roboti saves the edge

which connects its tree to robotj’s tree asconnection[j][0] (Lines 8–9). From this point on, if roboti

meets again a cell with robotj edge it examines again its peer’s state and if it is still alive, roboti saves

this edge also asconnection[j][1] (Line 12). This will occur whenever roboti meets a cell with robot

j’s tree-edge; it updatesconnection[j][1] to save the last edge which connects its tree to robotj’s tree.

If, during this phase, roboti discovers that robotj is not alive anymore, it announces to the other robots

that robotj is dead. Then all robots delete the entries for robotj from theirconnection arrays, and the

cells which robotj was responsible for are considered as empty cells (Lines 15–17). Roboti and the

other robots can now build their spanning tree edges to these cells and cover them.

When a robot has no neighboring cells to cover, and it is back in its initial position cell (line 24) it

checks if it did not leave the cell which was first declared asW uncovered (line 24). If so, it turns to

coverW in the same recursive covering procedure (line 25). if not, the robot finishes to cover its starting

cell and announces to the other robots about completion of its work (lines 26–27). The coverage process

is not completed until all the robots announce completion of their work. Until then, a robot who finishes

its work monitors the state of all the robots with who it has a non-emptyconnection entry (line 28–29).

If one of them (suppose it isj) is not alive anymore, the robot updates the other robots that robotj is

dead, thus the cells which have its tree edges should be considered as empty cells without tree edges

(line 31). It then turns to cover robotj’s cells, thus announces to the other robots that it did not finish

its work (line 32). The robot has two possibilities to reach robotj’s cells: move along the left side of

its spanning tree edges till it reachesconnection[j][0], the first connection edge between it and robot

j, or to move in an opposite direction along the right side of the spanning tree edges till it reaches

connection[j][1], the last connection edge between it and robotj. The robot chooses the best option

and moves to the chosen connection edge (lines 33–34). Now it can delete robotj from the connection

array (line 37), and continue to construct the spanning tree edges for the new free cells with the previous

described recursive way (lines 38–40).

In lines 1–3, the robot has to explore its three neighboring cells. Each robot must have the ability to

sense and determine if its three neighboring cells are free from obstacles. If the cell is partially occupied

with an obstacle it will not be covered.

The ORMSTC algorithm requires reliable communication to operate well. Each informative mes-
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sage that a robot receives (a cell that is now occupied with a tree edge, a dead robot, etc.) updates the

map and overall world state (in the memory of its peers). Obviously, there is also an assumption here

that robots are cooperative, in that when a robot is asked if it is alive, it broadcasts truthfully if it can.

In lines 18 and 38 the robot builds a local spanning tree edge. A synchronization problem could

occur if more than one robot wants to construct a tree edge in the same cell. It can be solved by any

synchronization protocol, and we chose a simple one (for our algorithm implementation): before the

robot builds the edge it notifies the other robots. If one or more robots wants this cell too, all of them

decide between them who will take it (by the highest ID number or by the smallest number of cells

covered so far). The robots which lose the cell should treat it as a cell with another robot’s spanning tree

edge and continue with the algorithm.

Lines 15–17 and 30–40 guarantee the robustness. If one robot fails, there is always at least one robot

that will detect it and will take the responsibility to cover its section (see below for formal proof).

We now address the completeness of the ORMSTC algorithm. Each robot constructs its own span-

ning tree and circumnavigate it to produce a closed curve which visits all the sub-cells of the tree cells.

Completeness is achieved by ensuring that every cell (within the area boundaries) will have a tree edge

connection from one of the trees. Note that this approach to achieve completeness is different from out

previous off-line approach (Theorem 3.1.1 in chapter 3): In the on-line algorithm, if not stopped from

going into certain cells (e.g., because they have already been visited), the robot will expand its tree to

cover the entire work-area. This is in contrast to the off-line algorithms where a single spanning tree is

constructed, and every robot covers only a portion of this spanning tree path.

Theorem 5.1.1(Completeness). Given a grid work-areaW , andk robots, Algorithm 11 generatesk

pathski, such that
⋃

i ki = W , i.e., the paths cover every cell within the work-area.

Proof. By induction on the number of robotsk.

Induction Base (k = 1). with only one robot, ORMSTC operates exactly like the On-line STC Algo-

rithm which was proven to be complete (Lemma 3.3 in [9]).

Induction Step. Suppose it is known thatk − 1 robots completely cover the area. We will prove it

for k robots. Without loss of generality, let us consider roboti. Executing ORMSTC,i will build its

local spanning tree edges, and generate a path to cover some cells. The other robots treat these cells as

occupied, exactly as if they were filled with obstacles. Therefore all the other cells will be part ofk − 1

pathes and covered by thek − 1 robots, according the induction relaxation. Roboti treat all the cells of

the otherk − 1 robots as occupied cells, so it will completely cover its cells according to the induction

base case.

One result which emerges from Theorem 5.1.1 is that each robot can use the algorithm in any direc-

tion, and the algorithm will still function correctly. In other words, Algorithm 11 will work even if one

or more robots reverse the scan, i.e., the scan is done in a counter-clockwise direction and the movement

is along the left side of the tree edges.
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We now turn to examining ORMSTC with respect to coverage optimality. In our off-line algorithm

chapter (Chapter 3) we discussed several optimization criteria, one of which isredundancy, the number

of times a subcell is visited. We showed that the two efficiency and redundancy are not the same.

Indeed multi-robot coverage is more efficient under some conditions, when some redundancy is allowed.

Specifically, some backtracking of a robot over its own previously-visited cells (upto, and beyond, its

initial position) can be beneficial to overall coverage time. However, we believe that in on-line settings,

backtracking is not advisable. Before the robot reaches again its initial position it is does not know if

the backtracking will improve or decrease the coverage time because it does not has a complete map of

the area. After it reaches a border of its region, it makes no sense for it to go back towards its initial

position, because any cell which is accessible from the robot initial position would have already been

covered.

ORMSTC can be shown to be non-redundant. Theorem 5.1.2 below guarantees that the robots visit

all the cells only once (if no failure has occurred—see below for a discussion of robustness). This

guarantee is in fact a feature of many spanning-tree coverage algorithms, as circumnavigating a tree

produce a closed curve which visits all the sub-cells exactly one time [9].

Theorem 5.1.2(Non-Redundancy). If all robots use Algorithm 11, and no robot fails, no cell is visited

more than once.

Proof. If no robot fails, then each robot only covers the cells for which it builds a tree edge. If there is

already a tree edge to a cell, the robot will not enter it (Line 5). Thus every cell is covered only by a

single robot. Since robots never backtrack, every point is only covered once.

As key motivation for using multiple robots comes from robustness concerns, we prove that Algo-

rithm 11 above is robust to catastrophic failures, where robots fail and can no longer move.

Theorem 5.1.3(Robustness). Algorithm 11 guarantees that the coverage will be completed in finite

time even with up tok − 1 robots failing.

Proof. Based on the completeness theorem (Theorem 5.1.1), every number of robots can cover the work

area so if one or more robots fail all the cells that were not occupied by tree edges of the failing robots

and are accessible to other live robots will be covered. So all we have to prove is that cells with tree

edges of a dead robot, or cells which are accessible only to a robot that have died will be covered by

another robot. It can be possible to have such cells because of the work area structure or because the

robot can create a line of covered cells which blocks the access for other robots to a group of free cells.

Cells with tree edges of a robot are treated by the other robots as cells with obstacles. According the

completeness theorem, there is at least one robot that will cover a neighboring cell of one of these cells,

thus will have a connection to this cell. There are two possible cases:

1. A robot failed before a robot that has a connection with it reach the connection- In that case, lines

16–17 ensures that the dead robot’s covered cells will be declared free so they and the cells which

were accessible only to the dead robot will be covered by other robots.
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2. A robot fails after all the robots that have a connection with it reach the connection- In that case,

lines 31 and 37 ensures that the robot’s covered cells will be declared free so they and the cells

which were accessible only to the dead robot will be covered by other robots.

In both possible cases, the algorithm is thus robust.

5.2 From Theory to Practice

In real-world settings, some of the assumptions underlying ORMSTC can not be satisfied with certainty,

and can only be approximated. This section examines methods useful for such approximations, and their

instantiations with physical robots.

In particular, we have implemented the ORMSTC algorithms for controlling multiple vacuum clean-

ing robots, the RV-400 manufactured by Friendly Robotics [8]. Each commercial robot was modified

to be controlled by an small Linux-running computer, sitting on top of it. A generic interface driver for

the RV-400 robot was built in Player[11], and a client program was built to control it. Each robot has

several forward-looking sonar distance sensors, as well as sideways sonars. One robot is shown Figure

5.2.

Figure 5.2: RV-400 robot used in initial experiments.

The ORMSTC algorithm (indeed, many of the STC algorithms) make several assumptions. First,

there are assumptions as to the work area being provided as input. ORMSTC assumes, for instance,

that the work-area has known bounds, and that it is divided into a grid that is known by all robots (i.e.,

all robots have the same division). ORMSTC assumes robots can communicate reliably, and locate

themselves within a global coordinate system. Finally, ORMSTC makes assumptions about the sensory

information available to the robots. In particular, ORMSTC makes the assumption that each robot can

sense obstacles within the front, left, and right4D cells.

One challenging assumption is that of a global coordinate system that all robots can locate them-

selves within. In outdoor environments, a GPS signal may in principle be used for such purposes (note
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that the position only has to be known within the resolution of a sub-cell). However, in circumstances

where a global location sensor (such as the GPS) is unavailable, a different approach is needed. In

particular, this is true in the indoor environments in which the vacuum cleaning RV-400 is to operate.

For the purposes of the experiments, we have settled on letting the robots know theirinitial location

on an arbitrary global coordinate system. Once robots began to move, however, they relied solely on

their odometry measurements to position themselves. In the future, we hope to use a dynamic initial-

ization procedure, where robots will sense identify their relative positions. Then, a translation/rotation

matrix can be computed for each robot, given an arbitrarily selected global origin for a coordinate sys-

tem.

One advantage of ORMSTC in this regard is that its movements are limited to turns of90◦ left or

right, and to moving forward a fixed distance. This offers an opportunity for both reducing errors by

calibration for odometry errors specific to this limited range of movements, and by resetting after each

step, thus avoiding accumulative errors. Indeed, this was the approach taken in the experiments (see

Chapter 6).

Given a global coordinate system, ORMSTC also requires robots to agree on how to divide up the

work-area into a grid. This agreement is critical: Differences in the division may cause grids created

by different robots to be mis-aligned, or overlap. To do this, the bounds of the grid have to be known,

in principle. Once the bounds are known, the robots only have to decide on the origin point for the

approximate cell decomposition.

Here again a number of approximating solutions were found to be useful. First, one can have the

robots use a dynamic work-area. During the initialization phase, the robots determines the maximal

distances,Xmax andYmax (along the X- and Y- axes, respectively), over all pairs of robots. They then

build a temporary rectangular work-area around them, with sides greater or equal toXmax, Ymax (see

Figure 5.3). As the robots move about, they will push the boundaries of the work-area into newly

discovered empty cells that lie beyond the bounds, or they will encounter the real bounds of the work

area, which will be regarded as obstacles. A related approximation is to provide the robots with an

initial work-area that is known to be too big, and allow the robots to discover the actual bounds. This

was the technique we utilized.

Robustness against collisions is an additional concern in real-world situations. Normally, as each

robot only covers the path along its own tree, Theorem 5.1.2 guarantees that no collisions take place.

This separation between the paths of different robots decreases the chance of collisions. In practice,

localization, movement errors, and the way the grid is constructed may cause the robot to move away

from its assigned path, and thus risk collision. We utilized our bumps sensors to cope with this problem

as they are often used as a key signal in vacuum-cleaning robots. Our heuristic is to simply respond to

a bump by moving back a little, waiting for a random (short) period of time and trying again. If bumps

occur three times in a row in the same location, the location is marked as a bound or obstacle. A more

complicated solution which requires more communication is to coordinate between the robots that have

adjacent tree edges when a collision is likely to occur.
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Figure 5.3: Initial dynamic work area

A final challenge was offered by the robots’ limited sensor range. The robot is equipped with ten

sonar sensors which are not capable of sensing all three neighboring cells of the robot cell at the same

time as described in the algorithm requirements before. We solved this problem by dividing the original

sensing and movement phases to three steps. The robot first senses its first cell by turning its sensors

towards it. If it is empty, it continues with the regular algorithm flow. If not, in moves forward to be

as close as possible to the border of the next require-sensing cell and only then it turns to sense it and

continues with the algorithm. The same procedure is performed to the third neighboring cell. Although

it slowed down the algorithm performance this fix enabled us to run the algorithm in the simulation with

the robots constraints, so it can be applied also to run the algorithm on different real robots with limited

sensors.
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Chapter 6

Experiments

To empirically evaluate the performance of the algorithms, we conducted an extensive set of exper-

iments. We first compare our off-line algorithms with different environments and different starting

positions 6.1. We then describe our implementation of the on-line algorithm for controlling multiple

vacuum cleaning robots 6.2.

6.1 Off-line algorithms experimental results

We empirically evaluated the performance of the different off-line algorithms. In a first set of experi-

ments, 3 to 30 robots were assigned for covering a grid of size30× 20 cells, i.e., 2400D-size subcells.

In each trial of the experiments, the number of robots was fixed, and their initial positions were ran-

domly generated. Then the different coverage algorithms were run to calculate the coverage time. Each

such trial was repeated 100 times. We repeated these experiments for both an empty grid, as well as grid

with 804D obstacle cells, whose position was randomly generated.

Figure 6.1-a shows the results of these experiments, in the empty grid case. In the figure, the X-axis

shows the number of robots, while the Y-axis shows the running time. The figure shows several curves.

The worst-case curves were calculated analytically, and show the worst-case coverage-times for the

backtracking and non-backtracking algorithms. The best-case curve was also calculated analytically,

and is shown so as to provide a benchmark against which to interpret the actual algorithms running

times. Figure 6.1-b shows similar results, but for the grid with obstacles.

The figure shows that the simple non-backtracking and backtracking algorithms have a difference in

performance for small teams, but converge and show the same run-time for larger teams. However, the

optimal backtracking algorithm is clearly superior to the two techniques. This shows that the run-time

can be significantly improved by carefully considering how the initial positions of the robots affect their

planned coverage paths.

We thus wanted to explore further the affect of the initial positions of robots on their performance.

In the experiments above, the initial positions were randomly generated, and thus in the limit, their

average position would have been a distance ofn
k

from each other, i.e., the best case. However, real-
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Figure 6.1: Results of experiments with different MSTC coverage algorithms. Each data point is the
average of 100 trials

world settings typically do not have the flexibility of landing robots in their perfect initial positions.

To better simulate real-world conditions, we ran a second set of experiments, where 3–30 robots

were assigned to bases, and the number of bases (and their positions) were controlled. For a team of

k robots, we allowed forb bases, where1 ≤ b ≤ k. We then split thek robots into theb bases, and

randomly selected the position of each base. Whenb = 1, it is the worst case for the non-backtracking

case (or close to it), where all robots start from the same position. Whenb = k, it is the case of the

experiments above.

Figure 6.2 shows a subset of the results of these experiments. In all subfigures, the X axis shows

the total number of robots in the bases, and the Y axis shows coverage time. In Figure 6.2-a, all robots

leave from a single base. The two backtracking algorithms converge to a value much below that of

the non-backtracking algorithm, whose faced with its worst case (approximately). In Figure 6.2-b, the

performance of the three robots is clearly differentiated, yet in Figures 6.2-c,d the simple backtracking

and non-backtracking algorithms converge (as we saw in the first set of results, above). In all figures,

however, the optimal algorithm significantly outperforms its competitors.

6.2 On-line algorithm experimental results

We conducted systematic experiments with our implementation of our on-line algorithm ORMSTC

(Algorithm 11), to measure its effectiveness in practice with the RV400 robot. The experiments were

conducted using the Player/Stage software package [11], a popular and practical development tool for

real robots. Initial experiments were carried out with physical RV400 robots, to test the accuracy of

the simulation environment used. However, to measure the coverage results accurately, the experiments

below were run in the simulation environment. Figure 6.3 shows a screen shot of running example with

six robots in the one of the simulated environments used in the experiments.

In the first experiment, we focused on demonstrating that the ORMSTC algorithm—and our im-
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Figure 6.3: Simulation screen shot of six robots covering an outdoor environment
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plementation of it for real robots—indeed manages to effectively use multiple robots in coverage. We

run our algorithm with 2,4,6,8 and 10 robots. Each team was tested on two different environments: an

outdoor and indoor environments. For each team size and environment type, 10 trials were run. The

initial positions were randomly selected.

The results are shown in Figure 6.4. The X-axis measures the number of robots in the group. The Y-

axis measures the coverage time. The two curves represent the two different environments. Every data

point represents the average ten trials, and the horizontal line at each point is the standard deviation.

Figure 6.4: Overall coverage time

The results show that in both environments, coverage time decreases in general when increasing the

group size. However, we can also see that the marginal coverage decreases with the addition of new

members. This is a well-known phenomenon (in economics, but also in robotics [12, 23]). It is due to

the overhead imposed on a bigger group of robots, in collisions avoidance and communication load. The

overhead cost can be also seen when comparing the indoor and outdoor environment coverage times.

Although the indoor environment is smaller than the outdoor one, the coverage time is almost the same

because there are more obstacles and doors to pass and there is a bigger chance to collide with walls or

team mates.

A second experiment compared the performance of ORMSTC with our off-line backtracking MSTC

algorithm 5 in bad initial positions scenarios. In general, off-line algorithms have an advantage, in

that they can optimize the generated paths for the obstacles, as these are known to them. To compute

its performance, we calculated the path for a given initial position, and used the empirically-derived

average velocity of the robot, to estimate the off-line coverage time.

We empirically discovered that when placed in off-line worst-case conditions (all the robots start at

adjacent cells 3.2.1), the on-line algorithm performs significantly better as additional group members

were used. This is in contrast to the off-line MSTC algorithm, whose performance does not improve

noticeably as additional robots are used for coverage. The results are shown in Figure 6.5. Again, the
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X-axis shows the number of robots in the group, while the Y-axis shows the coverage time. Every point

is the average over 10 trials.

Figure 6.5: Coverage time of worst-case positions. Off-line results are calculated based on empirically-
measured average velocity.

When comparing ORMSTC’s performance in the worst-case initial positions with our previous re-

sults (Fig.6.4) it can be seen that it achieved longer coverage time. But when comparing it to the off-line

algorithm, our algorithm performs better where there are more than two robots. The cause for this

phenomena is that in contrast to the off-line algorithm the on-line spanning trees are being build dynam-

ically along the algorithm execution, thus the robots are always trying to break into uncovered areas as

long as they have ones.
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Chapter 7

Conclusion and Future Work

Many real-world coverage applications require multiple robots to completely cover a given work-area.

Some applications lend themselves easily tooff-line coverage, where the robots are given a map of the

work-area, and can therefore plan their paths ahead of deployment [4]. For instance, in many outdoor

operations, aerial photos or maps might be available. Examples of such applications include de-mining

operations [19], harvesting [20], or aerial surveillance. We presented a family of off-line algorithms

and have shown that these algorithms are complete and robust in face of catastrophic individual robot

failures. We examined the efficiency of these algorithms in terms of coverage time, and have shown that

the initial positions of the robots have significant impact on the coverage time. In particular, while all

algorithms carry the potential for best-case coverage in timen/k (wheren is the number of cells, and

k the number of robots), non-backtracking coverage has a worst-case time essentially equal to that of

a single robot. Unfortunately, this is the common case where robots start right next to each other. In

contrast, the backtracking algorithm is guaranteed to halve the coverage time of a single robot. We have

also introduced a novel polynomial-time optimal backtracking coverage algorithm, capable of handling

heterogeneous robots with different speeds and fuel capacity. We have shown in systematic experiments

that its performance is a significant improvement over the simpler backtracking and non-backtracking

algorithms.

However, many applications must utilizeon-linecoverage algorithms. Here, the robots cannot rely

on apriori knowledge of the work-area, and must construct their movement trajectories step-by-step,

addressing discovered obstacles (and/or collisions, in the case of multiple robots) as they move. Some

applications that currently utilize on-line algorithms include vacuum cleaning [6], lawn mowing [15],

and hazardous waste cleaning [13]. We presented the ORMSTC, an on-line multi-robot coverage algo-

rithm and analytically showed that it is complete and robust in face of catastrophic robot failures. As

there is always a gap between theory and practice, we analyzed the assumptions underlying the algo-

rithmic requirements. We discuss various approximation techniques for these requirements, to allow

the algorithm to work in real world situations. Based on early trials with real-robots, we conducted

systematic experiments with our implementation, to measure the ORMSTC’s effectiveness in practice.

The results show that the algorithm works well in different environments and group sizes. ORMSTC
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also seems to work well in some of off-line coverage worst cases.

In future work we intend to expand the algorithms we presented. Here we suggest some of the areas

that should be explored:

Optimal backtracking algorithm run-time improvements. The optimal backtracking algorithm checks

all options for an optimal assignment of paths, using a binary search. In its current implementa-

tion it may check the same case twice. For instance, one check for the optimal solution is when

one robot goes to the half of the distance between it and its neighboring peer. This check is done

for every robot for both directions, although the case when one robot goes this distance in one

direction is identical to the case where its neighboring peer goes the same distance in the opposite

direction. We would like to decrease the number of checks by identifying the repeated cases and

check them once. We would also like to explore the relation between the given initial configura-

tion and its optimal solution coverage time. We noticed that for some initial configurations there is

more than one optimal solution. All of them have the same overall coverage time, but the assign-

ment of paths among the robots is different. Sometimes there is only two solutions, but sometimes

there are many optimal solutions. A better understanding of this link between the initial configura-

tion and the number and structure of the optimal solutions could give as the possibility to forecast

the expected optimal coverage time. This can improve our algorithm significantly, by reducing

the number of options to check.

Classification of the optimal tree problem and our heuristic. We would like to establish the com-

plexity class which the problem of building optimal tree belongs to. It is believed (strengthened by

[30]) that this problem isNP-Hard, although it is not proven yet. We would also like to guarantee

something about the optimality of the heuristic presented in the appendix. Is it within a certain

epsilon of the optimal?

On-line algorithm improvements. We would like to improve the algorithm to generate paths with

less turns and to cover also cells which are partially covered by obstacles. Another important

improvement is to enable the algorithm to work with less communication.

Effectiveness of our approximation techniques.We would like to empirically test the effectiveness

of our approximation technics. We introduced some approximation technics and used them in

our on-line algorithm implementation. We would like to run the algorithm without using these

technics and compare the affect on the algorithm performance.

Repeated coverageWe would like to explore how will our algorithms change if we redefine the prob-

lem such that:

• The objective is not to visit every cell at least once, but to visit every cell at leastm times.

Or

• The objective is to visit every cell with uniform frequency (the time between visits is equal).
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Integration with search theory. One of the branches of operational research is the search theory. The

aim of the algorithms from search theory is to find one or more targets in a specified area. They get

information about the possibility of the targets to be in the different regions and have to decide at

which order to search and how much time to spend at each region. One case is where the algorithm

has to find all the targets but it does not get the information of how many targets exists and it has

unlimited time. It can be seen that this is just another version of the our coverage problem. It may

be interesting to combine their ideas with our algorithms to solve this type of problems.
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Appendix A

Approximation for efficient spanning tree

In this appendix we describe the algorithmCreate_Tree. This algorithm creates spanning trees while

considering the initial location of all robots in the team and trying to minimize the maximal distance be-

tween any two adjacent robots on the tree. As before,N is the number of cells in the grid approximation

andk is the number of robots.

The algorithm is composed of two stages. First, a subtree is created gradually for each robot starting

from the initial position of the robot, such that in each cycle either one or two cells are added to each

subtree. Denote the subtree originated in robotRi by TRi
. The cells are chosen in a way that maximizes

the distance from current expansion of all other trees. First, the algorithm tries to find the longest

possible path for the tree. When it fails to continue, it tries to performHilling, in which it looks for

two joint unoccupied cells adjacent to the path. If it found such cells, then it adds them to the path as

demonstrated in Figure A.1. If the algorithm failed to find more hills, then it expands the tree, from both

sides of the path, as symmetrically as possible. First it attempts to add one cell to its right, then one cell

to its left, and so on, until the entire grid is covered by allk disjoint subtrees.

After such k subtrees are generated, it is only left to connect them (second stage). De-

note an edge connecting two different treesTRi
and TRj

by bridge(TRi
, TRj

). As we are

given k subtrees to be connected to one tree covering the entire grid, it is required to find

k − 1 bridges. These bridges should be chosen in a way that the resulting tree does not

contain cycles or, equivalently, cover the entire grid. For example, ifk = 4 then pos-

sible valid choice of bridges are{bridge(TR1 , TR2), bridge(TR1 , TR3), bridge(TR3 , TR4)}, where

{bridge(TR1 , TR2), bridge(TR2 , TR3), bridge(TR1 , TR3)} is invalid, as TR4 remains disconnected.

Create_Tree picks a valid choice ofk − 1 bridges at random, and calculates the maximal sub-cells

distance between two adjacent robots when moving along the tree. It repeats the processk2 times, and

reports the best tree it observed, according to the above criterion.

Clearly, the algorithm provides complete coverage of the terrain, as the first stage of constructing

subtrees does not end before every cell is occupied by some subtree. The first stage terminates, as in

each cycle at least one cell is added to at least one subtree, hence given a finite terrain the algorithm

halts.
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Figure A.1: Illustration of theHilling procedure.

Algorithm Create_Tree (work-area W , robots initial positions
S0, . . . , Sk−1)

1. Build k subtrees as follows.

For every robotRi, 1 ≤ i ≤ k Do:

(a) For each possible next cell (up, down, right, left), compute the Man-

hattan distance from the current location of all other robots.

(b) If more than one possible next move exists,then pick the one whose

minimal distance to any other robot is maximized.

(c) If there is no next possible move,then perform ProcedureHilling from

the last main branch.

(d) If failed to find an unoccupied cell inHilling, then branch out, as sym-

metric as possible, from the main branch to all possible directions.

2. Find all possible bridges between thek trees.

3. For i = 0 to k2 Do:

(a) At random, find a valid set of bridgesBi between trees such that they

create one tree with allN vertices.

(b) Compute the setSi of distances between every two consecutive robots

on the tree.

(c) BestRes is initialized withS0.

(d) If the maximal value inSi is lower than the maximal value in

BestRes, then BestRes← Si.

4. Return the tree associated withBestRes.
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Theorem A.0.1. The time complexity ofCreate_Tree algorithm isO(N2 + k2N).

Proof. In the stage wherek subtrees are created, in the worst case when adding one cell to a subtree

the algorithm runs over all current cells in the subtree (duringHilling or while branching out), hence the

complexity is at mostO(N2). In the second stage, where the trees are connected,k2 different choices of

trees are examined, each time the entire tree is traversed, thus the complexity of this stage isO(k2N).

Hence the entire complexity of the algorithm isO(N2 + k2N).
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