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Abstract

The development of AI agents is a challenging task that is also time-consuming. ML
techniques try to tackle this problem, allowing by interacting with the agent to its en-
vironment. However in our test case, there is no ready access to the environment, and
the only data available is recorded data - logs. The data may not contain information
about how the agent perceived its environment before taking action. Moreover, the
data will often be missing information on the agent’s internal processes because the
logs record only globally observable information. This thesis tackles two challenges
when modeling the behavior from logs recorded in continuous environments with
continuous actions. In the first part of the thesis, we focus on the semi-automated
learning of continuous action parameters. The method relies on guidance from a
human domain expert but uses machine learning algorithms to carry out the actual
learning. In the second part of the thesis, we focus on mining sequences of complex
actions that appear in the logs. We build on earlier work in hierarchical sequence
mining to introduce a novel method for mining action sequences where actions are
complex and have discretized parameters. We hope the combination of the techniques
from the two parts will lead towards the capacity for building fuller agent behavior
models from logs of actions and environment settings.
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Chapter 1

Introduction

Artificially-intelligent agents are increasingly being developed for sophisticated appli-

cations such as computer games [44, 54, 66], simulations for training, planning, and

entertainment [16, 21, 38, 77, 79], alongside autonomous service robots [84], personal

assistants, and many others. Such agents carry out complex decision-making pro-

cesses, often mixing both reactive and proactive goal-oriented reasoning. They are

capable of incorporating dynamically-changing information from the environment in

which the agents are situated while taking into consideration other agents with which

they can collaborate or compete.

The development of such agents is both challenging and time-consuming. An

entire area of research, called Agent-Oriented Software Engineering, is devoted to

the investigation of engineering methods, specialized programming languages, and

control architectures to simplify the development process [10,11,17,18,55,69,73,74,83].

This challenge is further exacerbated when the goal is to develop agents capable of

human-level decision-making, such as that required in defense simulations [77] or

crowd simulations [21, 38,79].

One alternative approach developing the decision-making process relies on ma-

chine learning techniques that generate the decision-making procedure by allowing

the agent to interact with its environment. Indeed, much of reinforcement learning, a

popular area of machine learning, is devoted to allowing a learning agent to interact

with its environment, all the while learning to improve its responses. In recent years,
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the use of reinforcement learning has led to impressive successes, including learning

to fly a helicopter [1, 41] or playing Go at the champion level [70].

However, it is not always feasible to allow an agent to interact freely with the

environment, for example, because of the time and resources such interactions require

or due to the lack of ready access to the environment. When we wish to model human

decision-making, it is generally not possible to build a model of an existing agent

without having access to its internal environment.

In these cases, the data available to the machine learning model may consist solely

of recordings, such as logs of the agent’s actions and responses to its environment.

The data may not contain information about how the agent has perceived its envi-

ronment before taking action. Moreover, the data will often be missing information

on the agent’s internal processes because the logs record only globally observable

information.

We focus on behavior modeling that learns the decision-making procedure 𝜋 of an

agent from logs documenting its observable interactions with an environment. The

behavior modeling system is given multiple logs as input, each consisting of multiple

pairs ⟨
−→
𝐸𝑡,

−→
𝐴𝑡⟩, indexed by time 𝑡. Here,

−→
𝐸𝑡 is a collection of environment features that

describe the environment state at time 𝑡, while
−→
𝐴𝑡 refers to the agent’s actions at the

same time 𝑡1. The task of the system is to induce 𝜋𝑖 : ℰ → 𝒜, where ℰ denotes the

space of all possible environment states reached through all possible trajectories over

time, and 𝒜 denotes all possible actions.

Behavior modeling includes or overlaps with grammar induction from text [45,52,

71,72], data- and sequence- mining from logs [13,37,46,60], behavior cloning [7, 67],

programming by demonstration [26,75], and other machine learning techniques. How-

ever, existing techniques for behavior modeling generally do not support learning from

continuous data, where the environment feature values are continuous, the actions are

continuous, or both. Also, they typically do not account for complex values (e.g., a

tuple ⟨𝑥𝑜, 𝑦𝑜, 𝜃𝑜⟩ as a specific value for a location feature) or an action with multiple

continuous parameters. See Chapter 2 for a detailed discussion.

1The null action (no action) is considered a possible value.
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This thesis tackles two challenges when modeling the behavior from logs recorded

in continuous environments with continuous actions. In the first part of the thesis, we

focus on the semi-automated learning of continuous action parameters. The method

relies on guidance from a human domain expert but uses machine learning algorithms

to carry out the actual learning. In the second part of the thesis, we focus on mining

sequences of complex actions that appear in the logs. We introduce the two parts

below.

1.1 Part I: Expert-Guided Learning of Actions from

Logs

In Part I of the thesis, we focus on learning continuous complex actions with one or

more parameters that can take on continuous values. We first establish a baseline for

such learning, using a variety of state-of-the-art classification and regression machine

learning algorithms. After demonstrating the difficulty of the task, we take a series

of steps in which guidance from a domain expert is used to incrementally augment

the learning task, resulting in significant improvements to the learning success.

This systematic semi-automated approach to learning the agent’s decision-making

procedure 𝜋 uses the domain expert’s knowledge to isolate important structural el-

ements in 𝜋. Specifically, the process identifies limits on the agent’s perception, its

internal interpretations of the data, and its potential task-dependent goals.

The first step, discussed in Chapter 3, involves pre-processing information on

the environment’s state
−→
𝐸𝑡 to generate features 𝑆𝑡 that describe the environment

features from the point of view of the agent. This transformation requires knowledge

of the sensory limitations of the agent, which the domain expert needs to provide.

For example, in the domain of simulated soccer, the transformation is from features

describing the location of all agents (environment state), to features describing the

location of agents that a specific agent 𝑎 is able to sense. 𝑆𝑡, for instance, will include

the location of only those agents within range and in front of 𝑎’s simulated cameras.

In Chapter 4, we take additional expert-guided steps to improve the learning out-

3



comes. These are key to enriching the description of the agent’s state by using domain

knowledge regarding its beliefs (i.e., presumptions). In Chapter 5 we enriched the de-

scription of the agent’s state by adding the agent’s goals using domain knowledge.

First, we describe a technique in which a visualization of the parameter values is used

to recognize clusters of action parameter values. These clusters help us distinguish

between different decision-making contexts of the agents. We also describe a tech-

nique by which, given a set of possible agent goals, the logs are searched forward in

time to determine whether an action at time 𝑡𝑖 served to achieve a goal at some time

𝑡𝑗 in the future, when 𝑗 > 𝑖. This allows us to recognize actions in the service of

different goals, and further improve learning outcomes.

Finally, Chapter 6 presents experiments that evaluate the techniques introduced in

the previous chapters, and compares their results to the baseline. These experiments

demonstrate that our approach offers significant improvements over the baseline out-

comes.

1.2 Part II: Mining Complex Action Sequences from

Logs

In Part II of the thesis, we focus on different behavior modeling challenges arising

from the logs of agent interactions in continuous settings. Specifically, we look at

data mining to identify frequently occurring sequences of actions, without guidance.

The ability to identify the frequent repetition of specific sequences (i.e., actions in a

specific order) is an important part of behavior modeling from logs, and can be used

towards various analysis goals [32,34,37].

There exist known techniques for mining sequences, an area of research within

data-mining called sequential pattern mining. These assume a discrete and finite

alphabet from which patterns are formed. In our case, every action, is denoted by a

single, distinct, symbol of the alphabet, including its parameters which is continuous.

This raises a difficult challenge for existing sequence mining techniques.

Actions in continuous spaces have infinite instances. A common method for ad-
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dressing this is to quantize (i.e., discretize) the action parameter space. For example,

the action for turning accepts a parameter that determines the degrees by which the

agent turns. Assuming a half-degree finite quantization, there would be 720 different

symbols just to describe the turning action in all of its instances.

However, this prohibits current mining algorithms from grouping together se-

quences that contain different instances of the same action. For example, a se-

quence containing a turn by 1 degree (denoted here, for simplicity, as (..., 𝑡𝑢𝑟𝑛 −

1 − 𝑑𝑒𝑔𝑟𝑒𝑒, ...)) is just as different from the same sequence with a 1.5 degree turn

(..., 𝑡𝑢𝑟𝑛 − 1.5 − 𝑑𝑒𝑔𝑟𝑒𝑒𝑠, ...) as it is from an otherwise identical sequence with a

180-degree turn (..., 𝑡𝑢𝑟𝑛− 180− 𝑑𝑒𝑔𝑟𝑒𝑒𝑠, ...).

As each such turn becomes a single distinct symbol, we transform a metric variable

into a categorical one, and lose semantic information about the distance between the

different symbols. Now, each combination of parameter values becomes a separate

symbol for the mining algorithm. This problem is exacerbated when the number of

parameters or dimensions in which the action operates increases.

We build on earlier work in hierarchical sequence mining to introduce a novel

method for mining action sequences where actions are complex and have discretized

parameters. In Chapter 7, we explain how to build a hierarchy of actions, based on

multiple discretization resolutions. In Chapter 8 we describe our different measures

for the quality of a hierarchical sequence mining model. In Chapter 9 we defined a

sequence mining problem that seeks a given 𝑘 number of sequences that maximize

the model accuracy. We propose a solution to the problem, by reducing it to a known

algorithmic problem, which can be approximately solved.

1.3 Thesis Overview

This dissertation comprises ten chapters (see Figure 1-1 on page 6), with the core

chapters of the thesis organized into two main parts as described above. This chapter

constitutes the introduction to this thesis, while the next chapter surveys the related

work. Chapters 3 to 6 contain the first part. Chapters 7 through 9
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constitute the second part. Chapter 10 presents the final remarks to this thesis,

providing a summary of the research, conclusions, and possible directions for future

research. It also discuss the combination of the techniques discussed in Parts I and

II.

Chapter 1
Introduction

Chapter 2
Background: Agent Behavior Modeling from Logs

Part I: Expert-Guided Learning of Continuous Actions from Logs
Chapter 3

Learning Actions with Continuous Parameters from Logs

Chapter 4
Adding Domain-Specific Belief Features

Chapter 5
Adding Agent Goals as Features

Chapter 6
Experiments

Part II: Mining Action Sequences from Logs
Chapter 7

Hierarchical Sequence Mining for Discovering Action Sequences

Chapter 8
Accuracy, Coverage, and Compactness

Chapter 9
The Top-𝐾 Summary Problem

Chapter 10
Discussion and Conclusions

Figure 1-1: Thesis Structure
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Chapter 2

Background: Agent Behavior Modeling

from Logs

The development of artificially intelligent agents is a challenging task [10,11,17,18,55,

69,73,74,83]. So much so, that there are several conferences and scientific communities

devoted to the challenges inherent to this task, including: Agent-Oriented Software

Engineering (AOSE)1, the Game-On2 series of conferences on AI in Computer Games,

the International Conference on Social Computing, Behavioral-Cultural Modeling,

Prediction, and Behavior Representation in Modeling and Simulation (SBP-BRiMS3),

the Intelligent Virtual Agents (IVA4) conference, the Multi-Agent-Based Simulation

workshop (MABS5), and more.

As an alternative to the labor-intensive development of sophisticated agents, an

agent can learn and improve from its own interactions with the target environment,

without human supervision. For example, using evolutionary computation methods

or reinforcement learning, the agent can improve itself until it is able to carry out

its task successfully. In recent years, the use of reinforcement learning has led to

impressive successes such as learning to fly a helicopter [1, 41] or playing Go at the

1See http://winf.in.tu-clausthal.de/events/aose12/ for the AOSE conference, and https:

//www.inderscience.com/jhome.php?jcode=ijaose for the affiliated journal.
2https://www.eurosis.org/cms/?q=taxonomy/term/257
3http://sbp-brims.org/
4https://dl.acm.org/conference/iva
5https://easychair.org/cfp/MABS2021
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champion level [70]. The learning process itself can become extremely expensive in

terms of the amount of data required and the computational resources needed.

However, the use of machine learning to automate agent development misses a

fundamental point. Many applications are required to develop agents that display

human-level decision-making, including human biases and mistakes. For example,

these include agents for air combat training simulations [77], emergency crowd evacu-

ations [79], or pedestrian modeling for urban planning [21,38]. Likewise, when devel-

oping agents for computer games, the developer may not wish to have the agents excel

too much at the game, since their objective is to match the human adversary for her

entertainment, not to win the game. In all of these applications and many more, the

agents must act as humanly as possible—including making human-like mistakes—but

not beyond.

Our overall goal in this work is to build training agents that behave similar to

humans. The first phase towards this goal focuses on learning a model of the agent—

rather than a complete agent—from logs. The work we report on here is therefore

related to machine learning techniques that can be or are being used with the obser-

vations of expert agent interactions, as the basis for learning.

A variety of methods, which we generally refer to as imitation learning, have been

proposed to speed up and focus the learning towards specific behaviors. This is done

by providing examples that offer traces of human expert-level decision-making or

observations of expert-level interactions to a machine learning process. The machine

learning then uses the examples to guide and focus its interactions with the task.

Research into programming by demonstration or programming by example, behavior

cloning, and inverse reinforcement learning are all areas where observations about

an agent already interacting with the target environment are used to automatically

build an agent capable of similar or even improved performance on the same target

task. See Section 2.1 for a more detailed discussion of this area, and its differences

with respect to the research reported in this thesis.

That said, it is not always possible to have the agent interact with the environment,

nor is it always desirable. Sometimes the goal is develop a model of the agent for
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analysis. For example, the model may be used to find weaknesses or strengths, or to

find characteristic patterns that allow recognition of the agent when its actions are

observed, etc.

We refer to this type of learning as behavior modeling from logs. In contrast to

imitation learning, behavior modeling does not seek to produce an agent. Instead,

its goal is to produce a model of an agent, by learning from its recorded interactions,

i.e., logs of its actions. In Section 2.2 we discuss various behavior modeling methods

in greater detail and contrast them with the research presented in this thesis.

2.1 Imitation Learning

In general, imitation learning involves inferring knowledge from observations, as well

as experimenting and interacting with the environment, and then fine-tuning the

knowledge to the agent. Such interactions with the real environment are not always

possible or convenient because of cost and availability. For this reason, we decided

to focus on the problem of learning from logs when there is no interaction with

environments or simulated environments. The expert agent acts in an environment,

and the observations along with the execution trace are recorded in logs. These actions

are later imitated by the learning AI agent without accessing the environment.

The inference of knowledge from observations is a task that is also related to

behavior modeling from logs. Thus, we present a brief review of imitation learning

approaches, specifically inverse reinforcement learning (Section 2.1.1), learning from

demonstration (Section 2.1.2), and behavior cloning (Section 2.1.3).

2.1.1 Inverse Reinforcement Learning

In traditional reinforcement learning, the goal is to learn a decision process to produce

behavior that maximizes some predefined reward function. Inverse reinforcement

learning (IRL) [64], also referred to as inverse optimal control [47, 51], as described

by Russell et al., flips the problem. Instead it attempts to extract the reward func-

tion from the observed behavior of an agent. IRL works in two steps. During a
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backward step, the learner attempts to recover a reward function 𝑅(𝑠, 𝑎) from an ex-

pert demonstrator’s policy or by observing this expert’s policy. Then, in a forward

step the learner uses the recovered reward function to determine a policy that max-

imizes 𝑅(𝑠, 𝑎) using reinforcement learning techniques. During the forward step, the

agent tests the learned policy in the target environment; this is a step we avoid in

behavior modeling from logs.

IRL requires a significant amount of interaction data to work. A recent approach

called generative adversarial imitation learning (GAIL) [31] combines generative ad-

versarial networks [25] with IRL. GAIL learns a policy without attempting to recover

the reward function. This is done by using adversarial training to discover it from

the expert’s demonstration data and the learning agent’s data. Another approach,

called state aware imitation learning (SAIL) accomplishes a similar objective by using

temporal difference learning to directly estimate the gradient of the normalized state-

action visitation frequency [68]. While these methods are productive with regards

to the amount of expert data needed for training, they require significant interaction

with the environment, which is not the case in our work.

2.1.2 Learning from Demonstration

Learning from demonstration is another closely-related area of research that also

relies on allowing the learning agent to interact with the environment. Here, the

training trajectories are assumed to have been selected for the purpose of teaching

and therefore contain information that is meaningful to the learning agent.

For example, Sullivan et al. [75] use hierarchical training of agent behaviors

(HiTAB) to learn, in real-time, complex behavior in the form of hierarchical finite-

state automata (HFA). Each state corresponds to an agent’s behavior that can be

represented as atomic behavior already written or another HFA. They apply their

approach to the keepaway problem in the RoboCup2D soccer simulator domain; this

domain is related to the domain we use in this thesis but is much simpler. A key as-

sumption in HiTAB is that the agent’s internal structure is known in advance. Every

atomic behavior (i.e., state in the HFA) is learned separately from demonstrations,
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and then the hierarchy and transitions are put together. In contrast, we do not as-

sume that the internal structure is known. However, we do encourage the domain

expert to provide information about possible goals of the agent, which are used to

categorize the training data to improve learning.

Grollman et al. [26] model a RoboCup team goal scorer policy on an AIBO robot

with a finite state machine. The states and transitions are learned using an approach

called realtime overlapping Gaussian expert regression (ROGER). ROGER did not

learn the behavior transitions. A key assumption ROGER makes is that the input

comes from the robot’s sensors, so there is no uncertainty as to what the learning

agent perceived. This is not the general case that we tackle here. More importantly.

ROGER assumes the actions have no parameters; thus, the number of possible actions

is greatly reduced compared to the learning scenarios in this thesis, especially in

Part I).

2.1.3 Behavior Cloning

Behavior cloning (BC) methods learn a direct mapping from states to trajectories/ac-

tions, without recovering the reward function. Under some settings, this can be an

efficient way to reproduce the demonstrated behavior. The training data for behavior

cloning usually consists of a set of demonstrated state-action pairs {(𝑠𝑖, 𝑎𝑖)}𝑁𝑖=1 of an

expert agent, where 𝑠𝑖 is the agent’s inner state at time i and 𝑎𝑖 is the action at time

𝑖. The learned agent’s policy 𝜋(𝑠𝑡) → 𝑎𝑡 can be learned as the direct mapping from

state to action.

This learning problem can be formulated as supervised learning and solved by off-

the-shelf regression or classification algorithms [7,67]. One crucial problem with this

solution is the fact that supervised learning assumes {(𝑎𝑖, 𝑠𝑖)}𝑁𝑖=1 are i.i.d. Because

behavior cloning learns the optimal action from only a single state value, it is unaware

of the future state distribution the current action will produce. Thus, errors are

compounded in the future states, leading to undesirable agent behavior as shown by

Ross et al. [63].

There are two general approaches to behavior cloning. Model-free methods avoid
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explicit learning or estimating the environment dynamics [58]. For this reason, they

often do not require interactive learning with the environment and are considered

simple to implement compared to model-based methods. However, it is a problem

to validate whether an action/state is feasible in the environment, since the learner

has no model of the environment to use for such validation. In contrast, model-based

methods learn the policy by using information about the environment’s dynamics from

the forward model [80]. This is not always straightforward, given the complexities

of the environment. In general, model-based methods are more time-consuming than

model-free BC methods.

Torabi et al. developed behavioral cloning from observation (BCO) [78], which

first learns the environment’s dynamics through self-supervised exploration where

the action does not always appear and must be inferred from the data. In the next

step, they imitate the expert’s behavior using classic BC methods. The optional

last step requires interaction with the environment, which is not part of our study

requirements. In our study, the premise is that the demonstrated action is implicit.

One of the fundamental challenges in behavior cloning is generalizing the learned

policy to work in unfamiliar settings such as state trajectories that do not appear in

the original data [5]). This would be similar to teaching an autonomous car to drive

by cloning expert behavior where the learner reaches a state that the expert never

encountered [58]. Here the learner’s behavior will be unpredictable. A common ap-

proach to this challenge is to introduce interactions within the tested environment [63];

however, this is not relevant to our case study. Calinon et al. [12,30] developed meth-

ods to generalize alternate goals within a given domain. This is complementary to

our approach in Part I of the thesis, where we allow the domain expert to provide

information about the agent’s goals.

2.2 Data Mining from Logs

There are different areas of relevant research that focus on unsupervised data-mining

from logs. We briefly discuss two such areas: grammar induction (Section 2.2.1) and
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sequential pattern mining (Section 2.2.2). We refer the reader to [13] for a short

survey of using data mining for agents.

2.2.1 Grammar Induction

Grammar induction addresses the automated learning of grammars from data. As-

suming the model of the agent is a grammar of some type (e.g., a probabilistic finite-

state machine, a context-free grammar), it may be possible to apply grammar induc-

tion to construct the model of the agent.

Ryoo et al. [65] defines a game activity representation using context-free grammar

(CFG), which enables a system to recognize events and actively provide proper feed-

back to the human user when the user takes unexpected actions. Ivanov et al. [35] de-

fines stochastic context-free grammar (SCFG) rules to recognize more complicated ac-

tions, e.g., music conducting gestures using hidden markov models (HMM) based [59]

low-level action detectors. Lee et al. [45] study a robot that imitates human demon-

strations to organize objects using SCFG-based task-independent action sequences.

In early work, Nevill-Manning et al. [52] presented the SEQUITUR algorithm, which

can discover hierarchical structures among symbols. Solan et al. [71] presented the

ADIOS algorithm, which induces CFGs and context-sensitive grammars, with some

restrictions (e.g., no recursions), using graphical representations. Ogale et al. [53]

constructed an SCFG grammar based on the frequency of human posed pairs (i.e.,

bigrams), considering slightly varying viewpoints. Kitani et al. [42] presented a frame-

work that discovers human activities from video sequences using an SCFG induction

technique based on work by Stolcke and Omohundro [72].

While grammar induction handles discrete actions and perception, our challenge

is to model an agent that interacts with a continuous environment. Indeed, in gram-

mar induction, each action would be represented by a single symbol or a distinct

sequence of symbols (word). But we cannot make this assumption. In Part II, we

present a method for hierarchically organizing discretizations of the data, to bridge

the continuous environment represented in the logs with a learning method intended

for discrete data. Although we focus on sequence mining, we could have also used
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grammar induction as a technique to solve the hierarchy problem, we leave this for

future work.

2.2.2 Sequential Pattern Mining

Understanding how agents act over time is critical to modeling the agent’s behavior.

Sequential pattern mining, first introduced by Agrawal et al. [3], has become an active

research area in data mining. A survey on sequential pattern mining techniques can

be found at [48]. We focus here on reviewing work that is closely related to behavior

modeling.

Based on the premise that past events influence the behavior of a player, Iglesias

et al. [34] tried to classify the resulting behaviors across supervised learning (Chi-

square test) sequences. They analyze the data from logs and create sequences. These

sequences are composed of events such as pass, dribble, steal, and goal. The results

are preliminary and the component responsible for correlating the acquired knowledge

with the strategy to be adopted by the team presented several limitations. In the

same context, Abreu et al. [2] divided the input space offline using clustering and

associated a strategy with each cluster. However, these approaches can focus on

clustering the strategies while focusing on finding the next action. Moreover, in Part

I expert guidance serves as a necessary step for modeling behavior.

Time series and decision tree learning are used by Visser et al. [81] to induce rules

that describe a team’s behavior. The key idea of that research differs from ours. In

their case, an object in a complex environment is seen as a time series. A qualitative

abstraction of these time series is applied. Then, these time series are discretized to

use the results for learning by C4.5, which cannot capture the temporal ordering of

events. Instead, the temporal ordering is captured by the qualitative abstraction of

the time-series. In contrast, our work directly tackles the temporal ordering of events.

Kaminka et al. [37] recognized basic actions based on descriptive predicates, and

learned relevant sequences of actions using a statistical approach. Horman and

Kaminka [32] expanded on this approach. A similar process is also used by Huang et

al. [33] to find frequent patterns in dynamic scenes. Leece et al. [46] studied frequent
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sequences occurring in StarCraft: Brood War replays to understand micro-level (e.g.,

unit movement) and macro-level behavior (e.g., build orders). However, like most

related work in this area, these previous works assume that actions are discrete and

finite. In this thesis, we focus on actions that have metric parameters and thus require

discretization, which is a challenge when using the techniques above.

Sequential analysis is important in understanding the interactions between players

and games. Kang et al. study [82] lag sequential analysis (LSA) to analyze the

sequential behavior patterns of players. The sequential analysis is conducted on

players’ behavioral code to objectively analyze the quality of video games. Han et

al. [28] learned sequences of game level elements; then sequences of player behavior

are analyzed to find the connection between in-game content and player experiences,

thereby helping improve the quality of automatically generated game content. In our

work, we try to model the agent’s behavior, based on the demonstration given by logs.

Thus, we aim for a model capable of accounting for decisions, not user satisfaction or

experience.

Our work in Part II builds on LASH [6], a hierarchical sequence-mining algorithm

designed for large-scale sequence datasets. It is the first parallel algorithm to discover

frequent sequences by considering hierarchies that are given to it as input. We discuss

our use of LASH in Part II.
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Part I

Expert-Guided Learning of Continuous

Actions from Logs
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Chapter 3

Learning Actions with Continuous

Parameters from Logs

This chapter first introduces an example of the challenging domain that motivated

us to develop and test the techniques presented in this thesis (Section 3.1). We then

explain how to transform the global state information that appears in the logs into

the egocentric state representation used by agents. In this way, we bring the log data

closer to our learning goals (Section 3.2). Finally, we present the baseline results from

applying various state-of-the-art classifiers to learn action parameters in this domain

(Section 3.3), without expert guidance or intervention.

3.1 RoboCup 2D Simulation: A Challenging Domain

The RoboCup2D soccer simulation, shown in Figure 3-1 on page 18, is one of the most

highly investigated robot competition domains [4, 50]. In the game, 11 autonomous

agents play soccer on a simulated two dimensional (2D) field with 5-minute halves.

The game lasts for 6,000 simulation steps, and each one takes 100 milliseconds.

In each of these steps, the agents receive sensory information such as the ball

location, the locations of viewed agents, and field features such as lines or field corners.

The agent’s visual sensor (which is not recorded) reports the objects currently seen,

in an egocentric state coordinate system: distances in meters and angles in degrees
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Figure 3-1: RoboCup2D simulated soccer environment. Screenshot taken from [62].

relative to the current agent’s pose, and head orientation for each step. Other agents

may not be visible to the agent, or they may be completely or partially visible. For

example, the agent may only know their team name but not the uniform number that

identifies them. In this case of incomplete data, the respective piece of information

is left out. The server can also provide information about an agent, the ball velocity,

the agent’s own stamina, and more.

After processing this information, agents select actions such as dashing (moving),

kicking the ball, or turning, each of which may accept parameters. For example,

the turn action accepts a numeric parameter indicating the change of the agent’s

body’s angle. Similarly, the kick command has two parameters: the first parameter

is the power [0, 100] and the second parameter is the relative direction [0, 360].

The RoboCup2D simulation server manual [14] provides a detailed description of the

domain. It lists the main actions an agent can take and the information the agent

perceives from the surrounding environment. Table 3.1 on page 19 lists a few of the

actions and their parameters that can appear in
−→
𝐴𝑡.
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Action
Name

Parameter Meaning Parameter
Range

Description

Kick P1 Power [0, 100] Kick the ball with power(p1)
P2 Direction(degrees) [0, 360] with relative direction(p2)

Tackle P1 Direction [0, 360] Contest the ball with direc-
tion(p1)

P2 Foul [True/False] while intend to foul(p2)

Dash P1 Power [-100, 100] Moves the agent with
power(p1)

P2(optional) Direction(degrees) [0, 360] and relative direction(p2)
Turn P1 Direction(degrees) [0, 360] Change agent body angle.
Turn Neck P1 Direction(degrees) [0, 360] Change agent head angle.

Table 3.1: RoboCup2D actions and parameter metadata.

We use the RoboCup 2D simulation here because of the complexity of the agents’

state and the wealth of logs available from competitions over the years since 19971.

These logs represent a prime example of the behavior modeling task investigated in

this thesis, and the challenges that arise in carrying it out.

Although the soccer simulator communicates with agents using their exact agent

egocentric state, these individual messages are not recorded in the simulator log files.

Each simulation generates several recorded files:

• A recording of the game, including the global environment state
−→
𝐸𝑡 in a global

coordinate system, with files distinguished by suffix .rcg.

• The action from agents as received by the simulator (
−→
𝐴𝑡) in plain text, with

files distinguished by suffix .rcl.

Separating a log file into individual logs for each agent gives us 22 logs. Each such

individual logs is essentially composed of tuples (𝑒𝑡, 𝑎𝑡), where 𝑡 is a time stamp, 𝐸𝑡

is a snapshot of the environment state at time 𝑡, and 𝑎𝑡 is an action, with parameters

selected by the agent. From this limited information, we must incrementally build a

model of each agent’s decision-making process 𝜋.

1Logs are available from: http://chaosscripting.net/files/competitions/RoboCup/
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3.2 From World to Egocentric Coordinates

Our first step is to transform the log information into data from the agent’s perspec-

tive. This is a key challenge in any domain, and the RoboCup2D simulation is no

different. In general, the agent’s egocentric state (𝑆𝑖
𝑡) is not recorded inside the logs,

and must be inferred from
−→
𝐸𝑡. For example, the logs do not reveal which of the objects

and agents on the simulated field are actually perceived by each agent. Moreover,

perceived details about other agents or objects are not recorded in the logs.

3.2.1 Perceived Objects and Agents

The RoboCup simulation server manual [14] notes that the agents receive information

using their own egocentric coordinate system. Thus, our first step is to transform
−→
𝐸𝑡

into the corresponding 𝑆𝑖
𝑡 , where positions, velocities, and angles are recorded from

the agent’s perspective. We used the manual as a guide to help us decide which

objects or agents were perceived by each agent, and how to derive the distance, the

view angle (field of view).

Table 3.2 on page 21 lists a few of the features of the agent’s egocentric state (𝑆𝑖
𝑡).

It also shows the feature type along with a short description.

The field-of-view angle, the agent’s direction, and the neck angle are used to derive

the egocentric coordinates of objects and other agents in the nearby surroundings.

Table 3.3 on page 22 shows the features kept for each object (ball or goal) estimated

to be visible to the agent. The last column shows a mark when we need expert help,

based on the manual, to determine the value of a feature. We computed the visible

object id probability as described in the manual, and considered an object or agent

to be visible if the probability was greater than 0. Similarly, Table 3.4 on page 22

presents the features kept for each visible agent; these agents are considered visible if

the calculated visible agent team probability is greater than 0.
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Feature name Type Description
x agent pos float The agent’s x-position on the field
y agent pos float The agent’s y-position on the field
x agent velocity float The agent’s x-velocity on the field
y agent velocity float The agent’s y-velocity on the field
agent body angle cyclic

angle
The agent’s body angle

agent neck angle cyclic
angle

The agent’s neck angle

robocup agent type int The agent type (constants for each game)
view quality char The agent view quality: high(H), normal(N) or

low(L)
view angle cyclic

angle
The agent view angle

agent stamina float Low stamina slows movement.
robocup focus side char Which team does the agent focus on: Teammate

(’T’) or Opponents (’O’))
robocup focus num int Which agent number (1-11) does the agent fo-

cus on
team name str The agent team name
agent id int The agent ID
playmode str The environment play mode (offside/out of

bound/foul etc.)
perceived objects list List of perceived objects (see Table 3.3)
perceived teammates list List of perceived teammates (see Table 3.4)
Perceived Opponents list List of perceived opponents (see Table 3.4)

Table 3.2: Agent’s belief and perceived state features.
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Feature name Type Description Using
expert
guide
based
on the
manual

x object pos float The object’s global x-coordinate on the field
y object pos float The object’s global y-coordinate on the field
x object velocity float The viewed object’s x-velocity on the field
y object velocity float The viewed object’s y-velocity on the field
relative angle cyclic

angle
The bearing of the object offset from the agent’s
neck angle

√

distance float The distance to the object
√

object id int ball/own goal/opponent goal
visible object id proba-
bility

float The probability that the viewing agent will rec-
ognize the object ID

√

Table 3.3: Viewed object list of features.

Feature name Type Description Using
expert
guide
based
on the
manual

x agent pos float The agent’s global x-position on the field
y agent pos float The agent’s global y-position on the field
x agent velocity float The agent’s x-velocity on the field
y agent velocity float The agent’s y-velocity on the field
speed float The agent’s speed (velocity vector magnitude)

√

heading cyclic
angle

The direction in which the agent is heading
√

relative angle cyclic
angle

The relative bearing to the agent, offset from the
neck angle

√

distance float The distance to the agent
√

agent id int The agent’s id (1-11)
visible agent id proba-
bility

float The probability that the viewing agent will rec-
ognize the agent id

√

visible agent team
probability

float The probability that the viewing agent will rec-
ognize the agent teams

√

Table 3.4: Viewed agent list of features.
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3.2.2 Cyclic Features

The representation of angles is an issue common to transformations from a global co-

ordinate system to an egocentric polar coordinate system (distance and bearing). For

example, in the RoboCup 2D domain, the body angle is given in a global coordinate

system, while the neck angle is given in angles offset relative to the agent’s current

heading. Similarly, the same representation is also used in action parameters (
−→
𝐴𝑡),

such as the kick direction, the tackle direction, turn and turn neck directions, and so

forth.

Angles are one example of what is referred to in machine learning as cyclic features.

Cyclic features have numeric values that cycle from the maximum value back to the

minimal value. For example, 360 degrees is the same as 0 degrees, and expanding a

359-degree angle by 2 degrees involves an angle of 1 degree, not a 361 degree angle.

Time in hours and seconds is often a cyclic feature as well. Adding 20 minutes to

23:50 is given as 0:10 of the next day, not 24:10.

Cyclic features pose a challenge to machine learning algorithms because they have

semantics that are different from ordinary numeric features. Thus, they must be

marked explicitly for the machine learning algorithm or replaced by equivalent fea-

tures that avoid the cycling. We transformed each angle to a tuple in the egocentric

state (𝑆𝑖
𝑡): 𝑑𝑒𝑔 ∈ [0, 360] → ⟨𝑑𝑒𝑔, 𝑠𝑖𝑛(𝑑𝑒𝑔), 𝑐𝑜𝑠(𝑑𝑒𝑔)⟩, where 𝑠𝑖𝑛() and 𝑐𝑜𝑠 refer to

the familiar sine and cosine functions.

3.3 Initial Results

As a baseline for the research presented in this thesis, we focus on autonomous learning

of agent action parameters without human guidance (other than interpreting the

manual and accounting for cycle features ). We show below the results for the kick

action, as it serves to illustrate the magnitude of the challenge to the learning system.

To learn the agent’s kick behavior, we want to predict the kick policy 𝜋𝑡(𝑆𝑖
𝑡) →

(𝑃1, 𝑃2) that will map from the agent egocentric state (𝑆𝑖
𝑡). The basic question is:

Assuming that a decision is made to take a kick action, can the learning system
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predict the kick’s parameters: 𝑃1 and 𝑃2?

3.3.1 Experiment Setup

The learning process dataset we used is from 41 teams over 3 sessions of RoboCup2D

WorldCup2 (2013 - 2015). We used the logs for all teams, including the Gliders

(2013), whose logs contain more than a single kick at the same timestamp, which is

illegal according to the manual rules.

We consider logs with the same team name over a number of years as different,

based on the assumption that the agents’ policies change throughout the years. How-

ever, to simplify and generalize the supervised learning of the parameters for the

agent’s actions (
−→
𝐴𝑡), we chose to merge all the observations of agents in each team,

excluding the goalie, and treat a team as one agent when it comes to behavior. In

other words, we assume that the all agents in the team use the same policy. Appendix

A provides a high-level description of the system built to convert the logs mentioned

above into one merged log with 6,000 records of ⟨
−→
𝐸𝑡, 𝑆

𝑖
𝑡 ,
−→
𝐴𝑡⟩.

We experimented with various learning algorithms, from the open-source package

scikit-learn3 and used the default values for all parameters. All experiments were

run on a computer with an 8-core Intel i7-8550U CPU, under Ubuntu Linux (version

18.04.2 LTS), running at 1.80 GHz, with 16 GB of RAM.

3.3.2 Baseline Results

The consolidated logs were divided into training (75%) and testing (25%) sets. We

experimented with both types of supervised learning algorithms: regression and clas-

sification. Regression algorithms predict the numeric values of parameters. Classifi-

cation algorithms predict discrete labels. But, given a discretization of the parameter

numeric values, they can be used to predict the discretized values.

Figures 3-2 to 3-4 show the results of running 33 different classification and regres-

sion algorithms using default parameters. These were used to predict the 𝑃1 and 𝑃2

2http://chaosscripting.net/files/competitions/RoboCup/WorldCup/
3https://scikit-learn.org/ [56].
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parameters of the kick command, based on the state of the agent as known at the time

of the kick. In all of the figures, the horizontal axis marks the algorithm used. The

vertical axis marks the mean squared error (MSE, Fig. 3-2), the root mean squared

error (RMSE, Fig. 3-3), or the mean absolute error (MAE, Fig. 3-4), respectively.

A lower result is better. The box-plot graph shows the distribution of the learning

results from testing all teams. Each box plot aggregates 41 data points.

A matching view of the results is given in Figure 3-5, which measures the explained

variance in the results. Here, a higher result is better.

For the classification algorithms, we experimented with various uniform discretiza-

tions. The name of the algorithm shows the discretization level. For example, the

classifier ExtraTreeClassifier[5, 30] divides the 𝑃1 range by 5, and the 𝑃2 range by

30. Here are some additional examples, for further clarification:

• kick 𝑃1 = 97, 𝑃2 = 303 is given the label kick[100, 300] 𝑟𝑜𝑢𝑛𝑑(97/5) · 5 = 100,

𝑟𝑜𝑢𝑛𝑑(303/30) · 30 = 10

• kick 𝑃1 = 103, 𝑃2 = 296 is given the label kick[100, 300] 𝑟𝑜𝑢𝑛𝑑(103/5)·5 = 100,

𝑟𝑜𝑢𝑛𝑑(296/30) · 30 = 10

• kick 𝑃1 = 2, 𝑃2 = 10 is given the label kick[0, 0] 𝑟𝑜𝑢𝑛𝑑(2/5) · 5 = 0,

𝑟𝑜𝑢𝑛𝑑(10/30) · 30 = 0

All graphs led to the same conclusion. We see that the regression algorithms

are generally better than the classification algorithms. These regression algorithms

are ExtraTreesRegressor [24], RandomForestRegressor [9], AdaBoostRegressor [20],

GradientBoostingRegressor [22,23,29] and HistGradientBoostingRegressor [15,39,61].

The baseline experiment shows the kind of performance we can expect from pro-

viding the agent with relatively simple transformations of the environment state to its

own egocentric state (𝑆𝑖
𝑡). These results are even more disappointing given that the

settings for the learning task at hand were relatively easy: predict the two parameters

of a single action. It demonstrates how daunting the full task of learning a model of

an agent in this domain can be. The next chapters demonstrate how the judicious

25



ExtraTreeClassifier[10,15]
ExtraTreeClassifier[5,15]
ExtraTreeClassifier[5,30]
ExtraTreeClassifier[10,30]
ExtraTreeRegressor
DecisionTreeClassifier[5,30]
DecisionTreeClassifier[5,15]
DecisionTreeClassifier[10,30]
DecisionTreeClassifier[10,15]
DecisionTreeRegressor
ExtraTreesClassifier[5,15]
HistGradientBoostingClassifier[5,15]
ExtraTreesClassifier[5,30]
ExtraTreesClassifier[10,15]
HistGradientBoostingClassifier[5,30]
ExtraTreesClassifier[10,30]
AdaBoostClassifier[5,15]
HistGradientBoostingClassifier[10,15]
AdaBoostClassifier[5,30]
AdaBoostClassifier[10,30]
AdaBoostClassifier[10,15]
HistGradientBoostingClassifier[10,30]
Random

ForestClassifier[5,15]
Random

ForestClassifier[5,30]
Random

ForestClassifier[10,15]
Random

ForestClassifier[10,30]
OrthogonalM

atchingPursuit
BaggingRegressor
AdaBoostRegressor
GradientBoostingRegressor
Random

ForestRegressor
ExtraTreesRegressor
HistGradientBoostingRegressor

Algorithm Name

3500

4000

4500

5000

5500

6000

M
SE

Figure 3-2: MSE score over 33 off-the-shelf supervised learning algorithms, lower results
are better.
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Figure 3-3: RMSE score over 33 off-the-shelf supervised learning algorithms, lower results
are better.
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Figure 3-4: MAE score over 33 off-the-shelf supervised learning algorithms, lower results
are better.

28



ExtraTreeClassifier[5,30]
ExtraTreeClassifier[5,15]
ExtraTreeClassifier[10,15]
ExtraTreeClassifier[10,30]
ExtraTreeRegressor
DecisionTreeClassifier[5,15]
DecisionTreeClassifier[5,30]
DecisionTreeRegressor
DecisionTreeClassifier[10,30]
DecisionTreeClassifier[10,15]
ExtraTreesClassifier[5,15]
ExtraTreesClassifier[5,30]
AdaBoostClassifier[5,15]
AdaBoostClassifier[5,30]
Random

ForestClassifier[5,15]
Random

ForestClassifier[5,30]
HistGradientBoostingClassifier[5,15]
HistGradientBoostingClassifier[5,30]
ExtraTreesClassifier[10,15]
ExtraTreesClassifier[10,30]
AdaBoostClassifier[10,15]
AdaBoostClassifier[10,30]
Random

ForestClassifier[10,15]
Random

ForestClassifier[10,30]
HistGradientBoostingClassifier[10,15]
HistGradientBoostingClassifier[10,30]
OrthogonalM

atchingPursuit
BaggingRegressor
AdaBoostRegressor
ExtraTreesRegressor
GradientBoostingRegressor
Random

ForestRegressor
HistGradientBoostingRegressor

Algorithm Name

−0.4

−0.2

0.0

0.2

0.4

0.6

Ex
pl

ai
ne

d 
Va

ria
nc

e

Figure 3-5: Explained variance score over 33 off-the-shelf supervised learning algorithms,
higher results are better.
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and focused use of domain knowledge, given by a domain expert, can significantly

boost the performance of the learning system.
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Chapter 4

Adding Domain-Specific Belief Features

In this chapter, we explore the effect of adding features whose significance to predict-

ing the agent’s behavior relies on knowledge of the domain at hand. Relying on a

domain expert, we improve and add to the state of features in the egocentric agent

state, while adding the agent’s beliefs (𝐵𝑖
𝑡). Thus, the learning task is transformed

into learning the mapping (𝑆𝑖
𝑡 , 𝐵

𝑖
𝑡) →

−→
𝐴𝑡.

The key is to add features whose values can be derived from the existing state

features, and significantly affect the agent’s decision-making process. For example,

suppose the agent is close to the opponent’s goal and has the ball. This fact has

significance in a game of soccer, but requires domain expertise to identify. In this

case, a domain expert may suggest adding another feature whose value is true when

the agent is in this significant position, and false otherwise. The value of such a

predicate can assist the machine learning algorithm in distinguishing between kicks

intended for a shot on the goal, from, say, a pass to a teammate.

4.1 Features Affecting Decisions

Much of the agent’s internal belief structure uses information derived from the raw

perceptual data made available from the logs. Background information about the

domain is also used here to drive the agent’s decision-making process.

In the RoboCup 2D soccer domain, the log information does not carry any infor-
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mation about the field structure. This information, shown as a map in Figure 4-1, is

extremely important in understanding agent behavior. Much of the geometric infor-

mation provided to the agent can be understood in relation to this map. Furthermore,

the map, combined with domain knowledge of soccer, allows us to derive additional

features from the available data.
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Figure 4-1: RoboCup 2D soccer field map, taken from [14].

For example, when the ball is on the agent’s own team side of the field, the

behavior of the agent is likely to be different than otherwise. Likewise, the distances

of the agent from its own goal, and that of the opponent, and its angles to either,

also affect its decision making. Another example considers whether the ball is in the

opponent’s penalty box or in the agent’s own team area.

In some cases, continuous-valued features can make it more difficult for learning

algorithms to build a good model for prediction. The machine learning algorithm

cannot easily tell whether a distance of 40.1 meters to a goal is meaningfully different

from a distance of 40.2, for example. To alleviate the learning task, it is advantageous

to discretize such values, in such a way as to reflect their domain significance. We,

again, look to rely on a domain expert in this task.

32



For example, consider the ball’s distance from the opponent’s goal. The expert

can define that three meters should be interpreted as near the goal, distances within

the penalty box can be denoted as close to the goal, distances outside of it will be

considered far, and so on. These distinctions may ease the task of the learning

algorithm in predicting the kicking power needed. Similar examples may include

distinguishing whether a teammate is open for receiving a pass, whether the nearest

opponents may be considered a threat to dribbling, etc.

Table 4.1 lists all the features that were derived from considering the background

knowledge of the agent, and are regarded as important by the domain-expert.

4.2 Reordering Internal Beliefs

The agent’s internal belief state is often complex, i.e., contains sub-structures. For

example, it may contain lists of perceived objects and agents that may sometimes

separate teammates and opponents. This is true in many environments, and also

true of the RoboCup 2D simulation domain used in this thesis (see Table 3.2). Each

of the elements in these lists is described by its own multiple features, such as distance,

heading, and so forth.

Unfortunately, state-of-art machine learning algorithms are incapable of natively

handling complex features. A common solution is to flatten the complex structure

and impose an ordering on the list. For example, this may be done by using an

index number for each element, and appending it to each of the sub-features of each

element.

Unfortunately, the fixed arbitrary ordering of the lists can lead to the loss of

important semantic information. For example, the list of teammates may be ordered

by their increasing distance from the agent, or by their openness for passing, by their

uniform number, or by their type. The choice of the ordering will therefore impact

the results of the learning, as the learning is not aware of order semantics, and only

considers the feature name conveying its index (e.g., "3rd agent in list").

One of the notable improvements in predicting the kick action was made by re-
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Feature Type Description
ball distance - bottom
outside

float The distance of the ball from the bottom outside
line (line b)

ball distance - top out-
side

float The distance of the ball from the top outside line
(line t)

distance from opponent
goal middle point

float The distance from the opponent’s goal middle
point

distance from own goal
middle point

float The distance from the agent’s own goal middle
point

angle from opponent
goal middle point

cyclic
angle

The cyclic relative angle from the opponent’s
goal middle point

angle from own goal
middle point

cyclic
angle

The cyclic relative angle from the agent’s own
goal middle point

distance from opponent
goal top point

float The distance from opponent’s goal top point

distance from own goal
middle top point

float The distance from the agent’s own goal top
point

angle from opponent
goal top point

cyclic
angle

The cyclic relative angle from the opponent’s
goal top point

angle from own goal
top point

cyclic
angle

The cyclic relative angle from the agent’s own
goal top point

distance from opponent
goal bottom point

float The distance from the opponent’s goal bottom
point

distance from own goal
bottom point

float The distance from the agent’s own goal bottom
point

angle from opponent
goal bottom point

cyclic
angle

The cyclic relative angle from the opponent’s
goal bottom point

angle from own goal
bottom point

cyclic
angle

The cyclic relative angle from the agent’s own
goal bottom point

Ball in own goal area bool If the ball is inside the agent’s team goal area
ball in opponent goal
area

bool If the ball is inside the agent’s team goal area

ball in own box bool If the ball is inside the agent’s own penalty box
ball in opponent box bool If the ball is inside the agent’s opponent penalty

box
offense direction to
right side

bool True if the offense direction is the right side,
false for left side

ball in offense bool True if the ball is in the offense court side, false
in case of defense court side

ball close to bottom
outside

float If the distance of the ball from the bottom out-
side line is less than 3 meters

ball close to top outside float If the distance of the ball from the top outside
line is less than 3 meters

opponent is near by bool If the distance of the agent from any opponent
agent is less than 3 meters

Table 4.1: List of added domain-specific features.
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ordering the list of perceived agents. The initial ordering was simply based on the

timing of their perception (i.e., how recently each agent was observed). Reordering

the lists of teammates and opponents by increasing distance, led to significant im-

provements in the learning results, as is noted in later chapters. We were able to

raise the 𝑟2 scores from approximately 0.4 to just under 0.6 for the top regression

algorithms by combining this re-ordering with the domain-specific features described

in the earlier section.

4.3 Mirroring Action’s Parameters

Some internal belief state features are difficult to generalize for a machine, while an

expert guide can simplify the task. For example, degrees may be symmetrical for

right and left side, due to the fact that agent might not have side preferences (though

a human might). This is true in many environments, and also true in the RoboCup

2D simulation domain used in this thesis.

In kick action for example we plotted P1 and P2. We observed that there is

a mirror transform with P2 over the 360 degrees, as shown in Figure 4-2a. As a

result of this mirror transform, we chose to generalize the P2 parameter and ignore

the right/left direction to generalize 𝐺𝑖
𝑡, the plot with applying the mirror transform

shown at 4-2b: degrees in [-180, 0] were transform to [0, 180].

In the tackle action we plot the histogram over P1 by seprate to true and false

case of P2 in order to see the mirror transform shown at 4-3.

Each of the action parameter which used degrees in Table 3.1 on page 19 was

"mirroring", and was similarly transformed.
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(a) P2 without applying mirroring right and left

(b) P2 with mirroring transformation right and left

Figure 4-2: Fast Forward prediction over kick action with P1 and P2
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(a) P1 without applying mirror transformation (P2==False)
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(b) P1 without applying mirror transformation (P2==True)

Figure 4-3: Tackle P1 histogram
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(c) P1 after applying mirror transformation (P2==False)
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(d) P1 after applying mirror transformation (P2==True)

Figure 4-3: Tackle P1 histogram
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Chapter 5

Adding Agent Goals as Features

While the previous chapter considers domain-specific beliefs that are given by the

human domain expert and may be held by the agent, this chapter focuses on the

agent’s possible goals in the domain. When kicking the ball, a soccer-playing agent

may intend to pass the ball to a teammate, to clear the ball, to score, to dribble,

etc. The intent of the agent, as expressed in its decision-making, is only evident—if

at all—when considering the results of the action later on, and not at the time of

the action itself. Yet, that same intent will significantly impact the choice of actions

and/or their parameters.

If we could identify the intent of an action (i.e., its overarching goal), we could

potentially help the learning process better predict the actions and their parameters.

This again requires some interaction with a domain expert to understand what pos-

sible intents an agent may have 𝐺𝑖
𝑡, and which actions parameters are used in the

context of different goals.

This further transforms the learning task. We now aim to learn (𝑆𝑖
𝑡 , 𝐵

𝑖
𝑡, 𝐺

𝑖
𝑡) →

−→
𝐴𝑡.

This general flow of identifying these feature will be explained in Section 5.1. We

will build 𝐺𝑖
𝑡 in two complementary steps. The first step is termed fast forward

(Section 5.2), a technique by which the logs are read forward in time, to identify

what was the domain-specific goal for an action. The goals are given by the expert.

This leads to very significant improvements in the results of the learning, but of course

cannot be used without knowledge of the agent’s goals. Thus a separate mechanism
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can learn to identify the purpose of an action without such skipping ahead.

A second independent step, parameter clustering (Section 5.3) is used to identify

clusters of parameters that are visually and automatically clustered together, with

the hypothesis that these belong to some internal execution state. Once the clusters

are identified, a separate learning mechanism can be used to identify them, and thus

improve the overall prediction of agent actions from the logs.

5.1 Goal Feature Learning Flow

We add the goal state 𝐺𝑖
𝑡 as a feature of the agent’s egocentric state 𝑆𝑖

𝑡 in addition

to beliefs state 𝐵𝑖
𝑡. We create the feature using domain expert to label the example,

in Section 5.2 based on fast forward goals in Section 5.3 based on visualized cluster.

This is Step 1 in flow presented in Figure 5-1 on page 41. The user tags the goals in

either of two ways (Section 5.2 and 5.3)

Step 2 describes the addition of these additional goal features (shown as Per-

fect since the manual classification is the ground truth), which significantly boost

the learning results given the same setup described earlier (see next chapter for the

results). However, as our mission is to predict the actions taken based on a given

state. We cannot rely on having access to the goal information (that was taged by

our domain expert) at the time the prediction is needed. We can only count on using

𝑆𝑖
𝑡 , 𝐵

𝑖
𝑡.

We therefore add a separate learning step (Step 3 in Figure 5-1 on page 41)

that learns the 𝐺𝑖
𝑡 tag using an off-the-shelf classification algorithm as HistGradient-

Boosting [15,39,61], GradientBoosting [22,23,29], Bagging [8], AdaBoost [20], Extra-

Trees [24], or RandomForest [9]. The algorithm learns (𝑆𝑖
𝑡 , 𝐵

𝑖
𝑡) → 𝐺𝑖

𝑡. In essence,

we are using an off-the-shelf classification algorithm to predict the goal of the action.

Later in Step 4, we use the classifier (from Step 3 ) to predict the goal feature (shown

as AUTO). This feature will be used in Step 5 to generate the agent’s beliefs state in

the same learning task.

In Step 2 to Step 5, we divided the logs into training (75%) and testing (25%) sets

40



with 3-fold cross validation. In Step 2 and Step 5, we experimented with regression

algorithms because they achieved better results than classification algorithms in our

initial tests discussed in Section 3.3.2. We picked three of the regression algorithms

based on the best results and shortest run-time for the tests in Section 3.3.2. These

algorithms were: HistGradientBoosting [15, 39, 61], ExtraTrees [24], or RandomFor-

est [9].

Belief State + 

Goal feautre(perfect)Input 

L
e

a
rn

in
g

 p
ro

c
e
s
s

Action Dataset

Belief State

Action Parameters(p1,p2)

Goal feature(Perfect)

step 2

step 3

Test Regression
Predict p1,p2

Train classifier
Predict agent goal

Belief State Input 

predict Goal Feature(AUTO)

User adds Goal feature
(Fast forward/

Parameter Cluster)

step 1

predict

T
e

s
ti

n
g

 p
ro

c
e

s
s

step 4

Test classifier
Predict agent goal

Belief State Input 

predict Goal Feature(AUTO)

Belief State + 

Goal feautre(AUTO)

predict

Test Regression
Predict p1,p2

Action Parameters(p1,p2)

step 5

Input

Action Parameters(p1,p2)

Figure 5-1: The full discovery flow of adding agent goal (fast forward/parameter clustering)
as a feature

41



5.2 Fast Forward

An action taken by a well-designed agent is done with some goal in mind. In simple

domains, the goal may be immediately achieved by the effects of the agent. However,

in the complex, realistic domains this thesis targets, the intent of the action is not

immediately achieved. Rather, the action taken is only one in a complex sequence

of actions taken by the agent, and often others. For example, passing a ball to a

teammate involves one or more kicks to the ball. As the ball leaves the immediate

surroundings of the kicking agent, the pass is not yet complete. Instead, it takes a

while for the ball to move through the field, sometimes in the vicinity of other players,

until it is received by the teammate, if the pass is successful.

A glimpse into the future world state can provide important information about

the agent’s intent at the time an action was taken. Knowledge of what goals or

future states to look for comes from the domain expert. Assuming the domain expert

provides the learning system with a list of potential goals and rules for identifying

them, it is possible to identify and tag each action based on the ultimate purpose it

leads to.

This is done by searching forward in time in the log, identifying which goal was

achieved, and then tagging the action as contributing to the goal. For example, in

RoboCup2D , knowing that the ball reached a team member after an agent’s kick tags

the specific kick action with the feature pass. If instead a goal was scored, the kick

would be tagged kick to goal. We tested our feature fast forward prediction technique

on the tackle and the kick action. We did not test it on the other actions due to the

lack of meaningful future states caused by those actions.

In Figure 6-1 on page 56 the FastForwardPerfect value is associated with the

manual clustering of the fast forward feature based on the environment expert’s prior

knowledge; once that is done we ran the supervised learning using regression over

the actions’ parameters(Step 2 from Section 5.1). The FastForwardAUTO value

is associated with automatically clustering of the fast forward feature, using the

chosen classification algorithm to infer the cluster. We subsequently used this auto

cluster as a feature in the supervised learning of the actions’ parameters (Step 5 from
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Section 5.1).

Kick Action We tested this technique over the same data presented in Section 3.3,

in an attempt to improve the regression of the kick action’s parameters. Initially,

we received guidance from the system expert regarding significant results that were

the result of the kick action; these helped us understand the agent’s goal state (𝐺𝑖
𝑡)

for example, a goal could be dribble, kick to the goal or pass the ball. We manually

clustered each kick action based on prior knowledge over 𝐺𝑖
𝑡.

To automate the clustering process of the 𝐺𝑖
𝑡, we looked for an off-the-shelf al-

gorithm to automate classification of the manual cluster as described in Section 5.1.

The classification results are shown in Figure 5-2 on page 44. As can be observed,

the RandomForestClassifier earned the second-best results concerning all metrics and

target clusters. We therefore chose to use it instead of the GradientBoostClassifier for

the same algorithm we used in the tackle action. We also found the RandomForest-

Classifier to be faster than the GradientBoostClassifier in classifying new samples,

we achieved better results than what was presented in Section 3.3.

We also examined the option of dividing the samples according to the FastForwar-

dAUTO values and then performed regression separately for each group of examples

with the same FastForwardAUTO label. As can be seen in Figure 5-3 on page 47,

there was no significant improvement obtained from splitting up the samples and

then performing the regression as opposed to using FastForwardAUTO as a feature

to perform the regression over all the examples together.

The final regression results (6-1), show that the fast forward technique improves

the results around all measurements.

The results from this procedure to the tackle action are shown in Appendix C.
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Figure 5-3: Kick regression over P1 and P2 using FastForwardAUTO
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5.3 Parameter Clustering

Another complementary technique for identifying an agent’s goals uses human exper-

tise in a different way. Whereas the fast-forward method relied on domain expert

knowledge to identify goals, parameter clustering relies on human visual processing.

The idea is to visualize each action’s parameter value distribution, using a histogram

for single-parameter actions, a scatter plot for two-parameter actions, or some other

visualization method. The human expert then identifies clusters within the visual-

ization, based on the assumption that such clusters indicate some internal goal states

for the agent.

In Step 1 from Section 5.1, we plotted the parameters for each action as described

above. We allowed the human expert to identify approximate clusters in the plot.

Next, we applied clustering algorithms to the data, until we reached an algorithm

and associated parameters that matched the human visualization. This allowed us to

tag each example with the identification of the cluster to which it belong which add

goal state 𝐺𝑖
𝑡 as a feature of the agent’s egocentric state 𝑆

𝑖
𝑡 in addition to beliefs state

𝐵𝑖
𝑡. We tested our feature for the parameters cluster technique over all five actions

mentioned in Table 3.1 on page 19.

In Figure 6-1 on page 56 the ClusterPerfect value is associated with the manual

clustering of the parameter clustering feature. We used an off-the-shelf clustering

algorithm, with manual fine-tuning of the hyper-parameters to get a cluster-based on

the parameter distribution that provides knowledge for the agent’s goal state (𝐺𝑖
𝑡)

(Step 2 from Section 5.1). Then we ran supervised learning using regression over

the actions’ parameters. The ClusterAUTO value is associated with automatically

clustering the parameter clustering feature. We used the chosen classification algo-

rithm to infer the cluster and subsequently used this auto cluster as a feature in the

supervised learning of the actions’ parameters (Step 5 from Section 5.1).

Kick Action We tested the parameter cluster technique over the same data presented

in Section 5.2 in an attempt to improve the regression of the kick action’s parame-

ters. We clustered each kick action using off-the-shelf clustering algorithms such as:
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MiniBatchKMeans, AffinityPropagation, MeanShift, Ward, AgglomerativeClustering,

DBSCAN, Hdbscan, Optics, Birch, or GaussianMixture for more details over the cho-

sen parameters see Appendix B. The results were plotted and provided to the human

expert for manual visual confirmation. Some of the better plots are shown in Figure

5-4 on page 50. Note that the clusetering algorithms were applied it to the data after

the mirroring transformation (here, over P2).

While the human expert chose Hdbscan [49] (5-4d), we ran the regression over P1

and P2, each time adding one of the clusters as a feature, to find the best parameter

clustering cluster. The results are shown in Figure 5-5 on page 52. As can be seen,

the GaussianMixture shown in Figure 5-4b presents the best results for almost all

measurements, while the Hdbscan (5-4d) results did not. The human expert visual-

ization is important to narrow down the list of candidate algorithms, but automated

learning is still needed to determine the best technique.

Having selected the clustering algorithm, we can now use the cluster labels to

learn a classifier—one that will learn to predict the cluster label as a feature of the

data, and thus assist in the action parameter regression. The results of the learned

classifier, when applied to the original problem, are shown in Figure 5-6 on page

54. The figure shows that the HistGradientBoostClassifier provides the best results

concerning all metrics and target clusters. The results from this procedure for other

actions are shown in Appendix D.

The next chapter shows the results for aggregating together all the techniques

introduced in Part I of the thesis. It will show that parameter clustering improves

the results for all measurements.
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(a) DBSCAN

(b) GaussianMixture

Figure 5-4: Kick cluster algorithm plotting
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(c) MiniBatchKMean

(d) Hdbscan

Figure 5-4: Kick cluster algorithm plotting
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Chapter 6

Experiments

This chapter reports on experiments aggregating all the techniques introduced in Part

1, compared to the initial results in Section 3.3. Our goal was to learn the parameters

of each action as mentioned in Table 3.1. The results are shown for all actions.

Kick Action We performed regression on the kick parameters P1 and P2 together;

the results are shown in Figure 6-1 on page 56. As can be observed, by adding the

agent’s domain-specific beliefs state (𝐵𝑖
𝑡) as features, we saw improved results across

all metrics.
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Figure 6-1: Kick final regression over P1 and P2
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Tackle Action Since P1 is float (degree) and P2 is Boolean, even after plotting the

histogram of P1 according to the value of P2, we chose to learn each parameter

separately. We performed the regression over the P1 parameter and present the

results in Figure 6-2 on page 61. By adding the agent’s beliefs state (𝐵𝑖
𝑡) as features,

we were able to observe a slight improvement in the results relative to those obtained

for the kick action. We also classified the P2 parameter and present the results in

Figure 6-3 on page 64. By adding the agent’s beliefs state (𝐵𝑖
𝑡) as features, we noticed

that the results improved across all metrics including recall and precision. It is also

important to mention that the improvement of adding the agent’s beliefs state (𝐵𝑖
𝑡)

compared to other techniques, shows the most improvement.
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Figure 6-2: Tackle final regression over P1
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Figure 6-2: Tackle final regression over P1
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Figure 6-3: Tackle final regression over P2
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Figure 6-3: Tackle final regression over P2
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Figure 6-3: Tackle final regression over P2
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Dash Action We performed regression for the dash parameter P1 while ignoring P2

because P2 appears in only 2% of the dash actions; in the other actions, it appears as

None. Since there are many dash actions, we randomly choose 6,000 actions for each

team. The results are shown in Figure 6-4 on page 66. We noticed that by adding

the agent’s beliefs state (𝐵𝑖
𝑡) as features, we were able to improve the results slightly,

relative to those for the kick action.
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Figure 6-4: Dash final regression over P1
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Figure 6-4: Dash final regression over P1
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Turn Action We performed regression on the turn parameter P1. Since there are

many turn actions, we randomly chose 6,000 actions per team. The results are shown

in Figure 6-5 on page 69. We observed that by adding the agent’s beliefs state (𝐵𝑖
𝑡)

as features, we were able to improve the results slightly, relative to those of the kick

action.
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Figure 6-5: Turn final regression over P1
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Figure 6-5: Turn final regression over P1
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Turn Neck Action We performed regression on the turn-neck parameter P1. Since

there is a lot of turn-neck action, we chose to explore those actions that occur at the

same timestamp as the kick action. The results are shown in Figure 6-6 on page 72.

We observed that by adding the agent’s beliefs state (𝐵𝑖
𝑡) as features, we were able

to improve the results slightly relative to those for the kick action.
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Figure 6-6: TurnNeck final regression over P1
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Figure 6-6: TurnNeck final regression over P1
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Part II

Mining Action Sequences from Logs
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Chapter 7

Hierarchical Sequence Mining for

Discovering Action Sequences

The previous part of the thesis focused on predicting a single action, given the beliefs

(and goals) of the agent at the time the decision on the action is taken. This implies

a Markovian assumption in the sense that each such decision is assumed to be taken

anew, without considering the agent’s possible commitment to a plan, i.e., an ordered

sequence of actions.

This part complements the approach taken above, by focusing on predicting se-

quences of actions, taken together, without considering the agent’s beliefs state. We

focus on mining the logs to discover frequent sequences of actions that may therefore

be considered representative (fragments of) plans taken by the agent. This puts the

beliefs and goals of the agent to the side, and only looks at the actions taken.

Section 7.1 will present the challenge in utilizing hierarchical sequence mining

techniques for mining actions in logs. Section 7.2 will present the challenge raised in

general in hierarchical sequence mining (and in particular in its use for learning from

logs). The next chapters then present the solution approach.
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7.1 Hierarchical Sequence Mining from Logs

In general, sequence mining aims to mine interesting (e.g., frequent) sequential pat-

terns from the potentially large collection of input sequences. In principle, it may

therefore be used to identify repeating interesting sequences of actions that are taken

by agent, i.e., its plans. This allows prediction not only of a single action as dis-

cussed in the previous part, but prediction of multiple actions, in sequence, given a

first action which starts the sequence. A different way of looking at this is that the

prediction of an action will also consider the plans of the agent.

For example, consider the dribble action in the domain of RoboCup2D . The drib-

ble action consists of sequences of three actions: kick with low power (P1) and direc-

tion(P2), followed by turn and move actions with direction which depending on where

the ball rolls. The dribble ends after one or more repetitions of the sequence, when

the last kick is with high power(P1). Predicting or recognizing the first action in the

sequence and identifying it as such, and given knowledge of the expected sequence of

turn and move actions, allows predicting the next few actions in the sequence after

the first action.

The discovery of such representative sequences of actions may be tackled, in princi-

ple, by applying sequential pattern mining algorithms, such as those discussed earlier

in Section 2.2. Such algorithms accept a database of observed sequences (in our case,

a database of action sequences as observed in logs), and extract interesting patterns

(sub-sequences) in the data; where interest is measured via some function, typically

the frequency of appearance in the data. Commonly, such patterns are considered

interesting when they repeat frequently, though there are various measures of interest

depending on intended use.

Unfortunately, actions with continuous parameters pose a significant challenge to

sequence mining algorithms. Sequence mining algorithms assume a finite (discrete)

alphabet of symbols (letters) from which sequences are built. When we treat each

action and its parameters as a separate symbol, the result is an infinite alphabet.

Restricting the parameter values to quantized (discrete) values puts a finite limit

on the number of symbols, but inherently leads to information loss, as we lose infor-
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mation about the distance between parameter values. A kick at an angle of 1 is closer

to a kick at an angle of 2 than to a kick at an angle of 90. This information may be

lost in the discrete version, as different kicks can become different symbols.

To limit the information loss, a common practice is to discretize the continuous

values, by binning (collecting) together close values. For example,a binning at 90

degrees would result in four (4) kick symbols: kick directions at 0 degrees to 90

degrees can be binned together as a single symbol (kick forward-right), kick directions

at 90–180 degrees would be considered kick backward-right, etc. Binning at 1-degree

would result in 360 kick types (just on the direction parameter).

Indeed, one can construct a hierarchical graph of discretization levels—a hierarchi-

cal taxonomy. Figure 7-1 shows an example of such a taxonomy hierarchy, for the Kick

action and its parameters: power 𝑃1 ∈ [0, 100] and direction 𝑃2 ∈ [0, 360]. The figure

shows a portion of the resulting taxonomy from applying only two levels of hierarchy,

for the two parameters. The 𝑃1 is generalized to four values: low (0 ≤ 𝑃1 < 33),

medium (33 ≤ 𝑃1 < 66), high (66 ≤ 𝑃1 ≤ 99), and MAX (𝑃1 = 100). 𝑃2

is similarly generalized to four values: Forward&Right (0 ≤ 𝑃2 < 90), Back-

ward&Right (90 ≤ 𝑃2 < 180), Backward&Left (180 ≤ 𝑃2 < 270), and Forward&Left

(270 ≤ 𝑃2 < 360). The notation uses the # symbol to seperate between the action

name and its parameters. For example, a kick action with 𝑃1 = 100 and 𝑃2 = 0 is

denoted Kick#100#0 and a turn with 𝑃1 = 45 is denoted Turn#45. The symbol ?

is used to denote a wildcard, i.e., a value encompassing all below (the most abstract

level of the taxonomy).

For example, we generalize both kick#75#120 and kick#75#105 to

kick#High#Backward&Right. In the second level of hierarchy over the kick ac-

tion, we will generalize P2 to Forward/Backward only, so to generalize the two

items kick#75#120 and kick#85#200. kick#75#120 in first level of hierar-

chy will generalize to kick#High#Backward&Right and in second level will gen-

eralize to kick#High#Backward. kick#85#200 in first level of hierarchy will

generalize to kick#High#Backward&Left and in second level will generalize to

kick#High#Backward. The third level of hierarchy accounts for any P1 value (marked
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kick#medium#Backward kick#low#Backward 

kick#High#Backward&Left 

kick#medium#Forward kick#High#Backward 

kick#High#Backward&Right 

kick#?#?

kick#?#Forwardkick#?#Backward

kick#75#135kick#75#105 kick#85#200kick#75#120kick#75#90

Figure 7-1: A part of the RoboCup kick taxonomy.

? ). Thus kick#High#Backward and kick#Low#Backward to kick#?#Backward.

The fourth level of hierarchy over the kick action will be over any P2 value,

denoted ? as any value of some parameter. We will generalize kick#?#Backward and

kick#?#Forward to kick#?#? which generalizes kick with any P1 and P2 values,

which generalizes over 36,000 combinations of kick with changing values of P1 and

P2.

Given a taxonomy hierarchy over the continuous parameters of actions, we now

seek to discover (mine) generalized sequences of actions that appear in the logs. The

idea is to adapt the appropriate level of discretization to the data, so as to discover

the most useful sequences.

There are several relevant methods for hierarchical sequential pattern mining,

which are able to find the frequency of sequential patterns combining symbols of

different levels of generalization. Plantevit et al. [57] presented the HYPE algorithm

to incorporate hierarchies in mining multidimensional (multi-parameter) sequences

over several levels of hierarchy. In their approach, they prune hierarchies by only

considering maf-sequences, which are pairs of items (each belonging to a dimension)

that are maximal (i.e., each specialization is infrequent). A known limitation of their

approach is that they do not mine all frequent sequences. While our interest is over
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the coverage and the accuracy of the sequence dataset . MFH-SPAM (Multi-Feature

Hierarchical Sequential PAttern Mining, [85]) is an algorithm that extracts a small

set of patterns that best differentiate sequences of actions taken by students with

different learning behavior profiles, similarly using a taxonomy hierarchy. In MFH-

SPAM again, the known limitation of their approach is that they do not mine all

frequent sequences. Large-Scale Sequence Mining with Hierarchies (LASH) [6] is a

distributed algorithm for mining sequence patterns supporting parallelization, and

allowing for gaps and maximum length constraints.

All of these algorithms assume that the taxonomy hierarchy is given by the human

expert, and we follow in the same path. We ask the human expert to provide the

taxonomy hierarchy for the continuous actions observed in the logs. We then use

LASH to generate a list of sequences with frequency counts. This is the first step in

our approach.

7.2 The Challenge: Generalization vs Accuracy

As we reveal below, there is an open challenge in using the results of hierarchical

sequence mining algorithms as the basis for modeling an agent’s behavior, as recorded

in logs. The challenge is inherent to the use of a taxonomy hierarchy, and is general

to all hierarchical sequence mining algorithms.

To simplify the presentation, we use English vocabulary to illustrate the challenge.

Imagine mining English texts. Symbols are letters, and sequences thus form words.

Let us define a generalization hierarchy for the English letters; a simple hierarchy

with one level, where each letter’s upper and lower cases are generalized together:

The letter a and the letter A will be generalized to general letter a‘, the letter b and

the letter B will be generalized to the general symbol b‘, and so on (Figure 7-2).

Suppose now we apply sequence mining to English texts. Intuitively, we expect

the word the to appear very frequently. A non-hierarchical sequence miner is expected

to yield a sorted list of all sequences found, with their frequency counts, as shown in

Table 7.1 for all instances of the word t’h’e’ (i.e., all mixed lower- and upper- case
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b`c`

hC
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bc H

Figure 7-2: English part of vocabulary with hierarchy between items example.

forms of the). For each sequence 𝑠𝑖, we see its count 𝑐𝑖, i.e., the number of times it

appears in the data. The lower-case word the appears 3000 times. The word The

appears 2000 times. We see also there are some marginal counts of other mixed-case

instances: tHe, thE, tHE.

𝑠1: THe 𝑐1: 0
𝑠2: ThE 𝑐2: 0
𝑠3: THE 𝑐3: 0

. . .
𝑠8: tHe 𝑐8: 2
𝑠9: thE 𝑐9: 5
𝑠10: tHE 𝑐10: 7

. . .
𝑠16: The 𝑐16: 2000

. . .
𝑠20: the 𝑐20: 3000

Table 7.1: Non-hierarchical counts of the word the in sequence dataset. We explicitly show
entries with 0 counts, though in practice these would not be represented explicitly.

A hierarchical sequence mining algorithm, however, does not stop there, as it

also discovers all generalized forms of the word, as shown in Table 7.2. It becomes

apparent that more general sequences appear more frequently, as they combine the

frequencies of the more specific instances which they generalize. For example, the
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generalized sequence 𝑠21 (th’e) appears 3002 times. Of those, 3000 appearances are

of the instance the (𝑠20), and the other two are of the instance tHe (𝑠8). 𝑠27 appears

5014 times, the sum of all instanciations of the word t’h’e’ in all possible letter cases

in the dataset.

𝑠1: THe 𝑐1: 0
𝑠2: ThE 𝑐2: 0
𝑠3: THE 𝑐3: 0
𝑠4: t’He 𝑐4: 0
𝑠5: t’hE 𝑐5: 0
𝑠6: Th’E 𝑐6: 0
𝑠7: THe’ 𝑐7: 0
𝑠8: tHe 𝑐8: 2
𝑠9: thE 𝑐9: 5
𝑠10: tHE 𝑐10: 7
𝑠11: t’HE 𝑐11: 7
𝑠12: tHe’ 𝑐12: 9
𝑠13: t’He’ 𝑐13: 9
𝑠14: th’E 𝑐14: 12
𝑠15: t’h’E 𝑐15: 12
𝑠16: The 𝑐16: 2000
𝑠17: The’ 𝑐17: 2000
𝑠18: Th’e 𝑐18: 2000
𝑠19: Th’e’ 𝑐19: 2000
𝑠20: the 𝑐20: 3000
𝑠21: th’e 𝑐21: 3002
𝑠22: the’ 𝑐22: 3005
𝑠23: th’e’ 𝑐23: 3014
𝑠24: t’he 𝑐24: 5000
𝑠25: t’h’e 𝑐25: 5002
𝑠26: t’he’ 𝑐26: 5005
𝑠27: t‘h‘e‘ 𝑐27: 5014

Table 7.2: Counts for the generalized word the appearing in sequence dataset, a product
of a hierarchical sequence mining. We explicitly show entries with 0 counts, though in
practice these would not be represented explicitly.

Given the output of the hierarchical sequence mining algorithm, it is not clear how

to best proceed. For instance, even if we limit ourselves to selecting a single sequence

out of the list to stand for the texts, the choice is not clear: In the example above,

the most general sequence 𝑠27 t’h’e’ has the highest frequency, and accounts for all

instances appearing in the mined texts. Yet we understand intuitively, that it does
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not at all represent the distribution of the instances in the text, as it implies that

all instances are equally likely to appear. Instead the sequence 𝑠24 t’he has higher

fidelity to the distribution of the instances in the texts, despite not accounting for 14

instances. Moreover, if we allow two sequences to be selected, should we select the

two top sequences 𝑠24, 𝑠20? The sequences represented by 𝑠20 are already a part of

the top sequence, so the selection of 𝑠20 does not seem to add information. Instead,

selecting 𝑠24 and either 𝑠15 or 𝑠14 seems more informative: it accounts for almost all of

the sequences found, while separating the most frequent sequences from those whose

appearance seems to be an outlier.

These examples reveal an inherent trade-off in choosing an appropriate general-

ization level, between accuracy and representative power.

• Higher taxonomy levels generalizes words, and this results in fewer mined se-

quences accounting for observed words. A single sequence t’h’e’ covers (repre-

sents) all words found in the database. However, the single sequence has limited

accuracy. Seeing an upper case T, the sequence only allows predicting that the

next letter is either an upper case or lower case h’, though clearly, based on the

data, it is a lower case h. Put differently, the general sequence also represents

sequences not found in the logs, and is therefore not accurate.

• On the other hand, more specific mined sequences can be much more accurate,

but lose the generalization property. For example, selecting exactly the five

sequences appearing in the data (the, The, tHe, tHE, thE ) surely allows accu-

rate prediction (within likelihoods) of letter appearance within the sequence.

However, we now require five sequences to represent the words. If we follow this

methodology, the only accurate description of a words database is a list of all

words appearing in it, with counts.

Note that had we asked for the minimal number of sequences balancing accuracy

and coverage, a reasonable answer would include two sequences (the (𝑠16) and The

(𝑠20), which account for 5000 of the sequences in the data out of 5014 (thus provide

excellent coverage of the words observed in the data), while providing very high
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accuracy as to the distribution of words. The few instances not covered by these

sequences English speakers would naturally classify as typos.

This is a general challenge for hierarchical sequence mining. Given 𝐾, a limit on

the size of the set of mined sequences of a given length, the sequence mining process

has to balance representative power (coverage; the number of actual sequences in

the logs that are represented by sequences in 𝐾), with accuracy (reducing the errors

implied by generalization). Or, given a target accuracy level or coverage level, the

algorithm has to minimize |𝐾|.
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Chapter 8

Accuracy, Coverage, and Compactness

We present preliminaries for discussing hierarchical sequence mining (HSM) (Sec-

tion 8.1). Then we describe our different measures for the quality of a sequence

mining model (the result of running a mining algorithm) in Section 8.2. We then

show how the balance between these different measures can be formally described

(Section 8.3).

8.1 Formal Preliminaries

We begin with a formal definition of the hierarchical sequence mining (HSM) problem

and related concepts. The notation and terminology closely follow standards in the

sequence mining literature and differ only when necessary.

8.1.1 Datasets, symbol sequences, and taxonomies

The sequence dataset which is mined is a multiset 𝐷 = {𝑠1, 𝑠2, . . . , 𝑠|𝐷|}. Each se-

quence 𝑠 ∈ 𝐷 is a series of symbols 𝑠 ≡ (𝑤1, 𝑤2, . . . , 𝑤|𝑠|), where each symbol 𝑤𝑖 is

taken from a set of symbols 𝛴, called an alphabet and assumed to be a finite set.

Action logs, taken together as discussed above, can serve as a sequence dataset for

hierarchical sequence mining. The mining algorithm will look for patterns of symbols

which appear in the sequences making up the logs. A partial example of a dataset

appears in Table 8.1. It shows subsequences of length 2 and 3 that appear within the
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full dataset.

𝑠1: the 𝑠2: the 𝑠3: the
𝑠4: The 𝑠5: The 𝑠6: The
𝑠7: The 𝑠8: thE 𝑠9: ThE
𝑠10: tHE 𝑠11: ThE 𝑠12: ch
𝑠13: the 𝑠14: the 𝑠15: CH
𝑠16: the 𝑠17: ch 𝑠18: ch
𝑠19: ch 𝑠20: CH 𝑠21: Ch
𝑠22: bg 𝑠23: bg 𝑠|𝐷|: BG

Table 8.1: English partial sequence dataset.

A taxonomy hierarchy 𝐻(𝛴)1 over the alphabet 𝛴 is a directed graph ⟨𝑉,𝐸⟩ where

𝑉 is a set of vertices, and 𝐸 is a set of edges. The sets 𝑉 and 𝐸 are defined as follows.

1. All members of 𝛴 are members of 𝑉 , i.e., 𝜎 ∈ 𝛴 =⇒ 𝜎 ∈ 𝑉 . We call these

the grounded symbols.

2. For any member 𝑣 ∈ 𝑉 which is generalized to a symbol 𝑢, then by definition

𝑢 ∈ 𝑉 , and (𝑢, 𝑣) ∈ 𝐸. We then denote 𝑢→ 𝑣, and say 𝑢 is a generalization of

𝑣.

3. For all 𝜎 ∈ 𝛴, there exist no member 𝑣 ∈ 𝑉 such that 𝜎 → 𝑣, i.e., the grounded

symbols are never generalizations of another symbol, grounded or otherwise.

This makes the grounded symbols leafs in the graph. 𝜎 ∈ 𝑉 ∧𝜎 ∈ 𝛴 =⇒ ∄𝑢 ∈

𝑉, (𝑢, 𝜎) ∈ 𝐸

4. Given three vertices 𝑣, 𝑢, 𝑟 ∈ 𝑉 such that 𝑣 → 𝑢, and 𝑢 → 𝑟, there must not

exist 𝑣 → 𝑟. The hierarchical path 𝑣 → 𝑢→ 𝑟 can be annotated 𝑣 ⇝ 𝑟.

5. A member in 𝑉 is either a grounded symbol, or it is a generalization of a different

member in 𝑉 . It may not generalize itself, and if it is not a ground symbol, it

must generalize some symbol.

6. A symbol 𝑣 ∈ 𝑉 which has a positive out-degree but in-degree of 0 (i.e., gener-

alizes other symbols, but is not generalized by any) is called a root symbol.

1We use 𝐻 for short, when 𝛴 is clear from context.
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This definition of the taxonomy hierarchy results in clear hierarchical structures,

with grounded symbols as leaves, and generalizations of symbols proceeding one level

at a time along hierarchical edges. Note that a leaf (or any vertex) may have multiple

parents that have a single joint parent, and thus there may be multiple hierarchical

paths leading from a leaf to an intermediate vertex. However, no cycles are possible

along the directed edges. We have seen example taxonomies in the previous chapter,

for both English letters, as well as RoboCup kick actions (generalizing over the power

and direction parameters).

8.1.2 Grounded and Generalized Sequences in sequence dataset

Given a dataset 𝐷 containing sequences made of symbols of an alphabet 𝛴, and a

taxonomy 𝐻(𝛴) = ⟨𝑉,𝐸⟩, we can also now extend the generalization to sequences,

rather than single symbols. Specifically, we say that a sequence 𝑠 = (𝑠1, 𝑠2, . . . , 𝑠|𝑠|)

generalizes a sequence 𝑡 = (𝑡1, 𝑡2, . . . , 𝑡|𝑡|) if each symbol of 𝑠, in order, is either equal

to the corresponding symbol in 𝑡, or generalizes to it. This by itself allows identical

sequences to be considered generalizations of each other, and so we also add the

condition that at least one symbol in 𝑠 is different from the corresponding symbol

in 𝑡 (combined with the previous condition, this means that necessarily at least one

symbol in 𝑠 generalizes the corresponding symbol in 𝑡). Formally, 𝑠 generalizes 𝑡

(denoted 𝑠→ 𝑡) if the following hold:

1. |𝑠| = |𝑡|

2. ∀𝑠𝑖 ∈ 𝑉, ∀𝑡𝑗 ∈ 𝑉, 0 ≤ 𝑖, 𝑗 ≤ |𝑠|

3. ∀𝑖, 0 ≤ 𝑖 ≤ |𝑠|, either 𝑠𝑖 = 𝑡𝑖, or 𝑠𝑖 → 𝑡𝑖

4. ∃𝑗, 0 ≤ 𝑗 ≤ |𝑠| where 𝑠𝑗 ̸= 𝑡𝑗

Part of hierarchy sequence tree over the English domain is shown in Figure 8-1a.

In this example, the sequences 𝑠1 = 𝑇ℎ𝑒, 𝑠2 = 𝑡‘ℎ‘𝑒, 𝑠3 = 𝑡‘ℎ𝑒‘, 𝑠4 = 𝑡‘ℎ‘𝑒‘ satisfy

𝑠2 −→ 𝑠1, 𝑠3 −→ 𝑠1, 𝑠4 −→ 𝑠3, 𝑠4 −→ 𝑠2, and 𝑠4 ⇝ 𝑠1 (𝑠4 is the most general

form of 𝑠1, we re-use the notation ⇝ used for symbols). Here, 𝑠1 has more than one
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direct parent (𝑠2 as well as 𝑠3), a good example of a common property of generalized

sequences.

s: tHe 

c: 3881 

s: THe 

c: 3987 

s: The 

c: 4059 

s: thE 

c: 3854 

s: the 

c: 3915 

s: THE 

c: 3999 

s: ThE 

c: 4032 

s: tHE 

c: 3941 

s: t`h`e 

c: 15842 

s: Th`e` 

c: 16077 

s: t`h`E 

c: 15826 
s: t`He` 

c: 15808 

s: t`he` 

c: 15860 

s: t`h`e` 

c: 31668 

s: th`e` 

c: 15591 

s: The` 

c: 8091 

s: Th`e 

c: 8046 

s: t`he 

c: 7974 

s: the` 

c: 7769 

s: t`hE 

c: 7886 

s: tHe` 

c: 7822 

s: th`E 

c: 7795 

s: THe` 

c: 7986 

s: t`He 

c: 7868 

s: Th`E 

c: 8031 

s: th`e 

c: 7796 

s: t`HE 

c: 7940 

(a) Part of English sequence hierarchy tree between items over length 3 example.

f: bG 
c: 201 

f: Bg 
c: 201 

f: BG 
c: 207 

f: dh 
c: 198 

f: DH 
c: 210 

f: Dh 
c: 204 

f: dH 
c: 204 

f: bg 
c: 195 

f: c`H 
c: 412 

f: c`h` 
c: 812 

f: Ch` 
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f: d`F 
c: 410 

f: Df` 
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f: d`f 
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f: c`h 
c: 400 

f: ch` 
c: 400 

f: d`f` 
c: 808 

f: df` 
c: 398 

f: Bg` 
c: 408 

f: Dh` 
c: 414 

f: d`H 
c: 414 

f: b`G 
c: 408 

f: b`g 
c: 396 
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c: 402 

f: d`h 
c: 402 

f: bg` 
c: 396 

f: c`g 
c: 398 

f: Bh` 
c: 410 

f: Cg` 
c: 410 

f: b`h 
c: 398 

f: b`H 
c: 410 

f: c`G 
c: 410 

f: b`h` 
c: 808 

f: bh` 
c: 398 

f: c`g` 
c: 808 

f: cg` 
c: 398 

f: Cg 
c: 202 

f: d`h` 
c: 816 

f: bh 
c: 196 

f: cG 
c: 202 

f: CG 
c: 208 

f: BH 
c: 208 

f: Bh 
c: 202 

f: b`g` 
c: 804 

f: bH 
c: 202 

f: cg 
c: 196 

f: Df 
c: 202 

f: cH 
c: 203 

f: dF 
c: 202 

f: DF 
c: 208 

f: CH 
c: 209 

f: Ch 
c: 203 

f: ch 
c: 197 

f: df 
c: 196 

(b) Part of English sequence hierarchy tree between items over length 2 example.

Figure 8-1: Part of English sequence hierarchy tree between items example.

We distinguish leaf (ground) sequences (denoted 𝑊+
𝐿𝑒𝑎𝑓 ) that are composed solely

of ground symbols, from root sequences (denoted 𝑊+
𝑅𝑜𝑜𝑡), made solely from root sym-

bols. All other sequences, which are not made from all ground or all root symbols,

are called intermediate sequences, and denoted 𝐼+. 𝐼+ = 𝑊+ ∖ (𝑊+
𝑅𝑜𝑜𝑡∪𝑊

+
𝐿𝑒𝑎𝑓 ). Note
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that we omit the data set for brevity, as it is typically clear from context. In our

example:

• 𝑊+
𝐿𝑒𝑎𝑓 = {𝑡ℎ𝑒, 𝑇ℎ𝑒, 𝑇𝐻𝑒, 𝑏𝑔, 𝐵𝐺, . . . , 𝑐ℎ}

• 𝑊+
𝑅𝑜𝑜𝑡 = {𝑡‘ℎ‘𝑒‘, 𝑏‘𝑔‘, . . . , 𝑐‘ℎ‘}

• 𝐼+ = {𝑡‘ℎ‘𝑒, 𝑇ℎ‘𝑒, 𝑇𝐻𝑒‘, 𝑏‘𝑔,𝐵𝑔‘, . . . , 𝑐‘ℎ}

8.1.3 Sequential Pattern Summary of a Sequence Data Set

A sequence dataset 𝐷 will contain only leaf sequences, made of grounded symbols.

Commonly, sequence mining algorithms seek to determine a set of sequences that best

represent 𝐷, in a compact form, generally a list of sequences and their relative count

in 𝐷 (this is called support in data mining literature). Non-hierarchical algorithms

output a set of ground sequences and their counts. As it is impractical (and not useful)

to simply output the list of all ground sequences, there are common constraints on

the sequences, e.g., that their frequencey in 𝐷 is above some support threshold, and

they satisfy some statistical property.2

We use the term Summarized Data Set to denote the frequency count of all se-

quences in the data set, without any filtering (e.g., ignoring support threshold and

any statistical property testing). The Summarized Data Set is the most basic sum-

mary of a sequence dataset 𝐷. It is a set of tuples (𝑠, 𝑐), where 𝑠 is a sequence and 𝑐

is its frequency in the data set.

Non-hierarchical algorithms can only output the ground-truth Summarized Data

Set : A list of all sequences appearing in the data, each with its frequency count.

Hierarchical algorithms can shorten this list of sequences, by using a single generalized

sequence 𝑔 to capture the appearances of multiple ground sequences 𝑠𝑖 in 𝐷, if ∀𝑠𝑖 ∈

𝐷, 𝑔 ⇝ 𝑠𝑖. For example, instead of providing both The and the in the resulting

sequence list, a hierarchical miner may return t‘he, which not only is a more compact

representation of both sequences, but also admits a more accurate statistical property

checks (as it captures the underlying language knowledge).

2See [19] for surveys of such properties and their significance.

88



The task is to determine a set of sequences—leaf, intermediate, or root—that

best describes 𝐷, in the sense of frequency, i.e., the number of times a given sequence

appears in 𝐷. The challenge for hierarchical algorithms is to shorten this list while

not sacrificing other properties (e.g., fidelity of the description).

We begin with notations and definitions. Supposed we are given a sequence 𝑠,

and a sequence dataset 𝐷. We use the notation 𝐷(𝑠) to denote the multi-set that

contains all appearances of 𝑠 in 𝐷, or all appearances of any sequences in 𝐷 which 𝑠

generalizes. 𝐷(𝑠) is induced by the appearances of 𝑠 in 𝐷, as follows:

𝐷(𝑠) := {𝑡|𝑡 ∈ 𝐷 ∧ (𝑠 = 𝑡 ∨ 𝑠⇝ 𝑡)}

The frequency of a sequence 𝑠𝑑𝑒𝑠𝑡 in a given sequence dataset 𝐷 is then simply the

size of the induced multiset 𝐷(𝑠𝑑𝑒𝑠𝑡), which we denote 𝐹𝑟𝑒𝑞(𝑠𝑑𝑒𝑠𝑡, 𝐷). For example,

in sequence dataset is 𝐷𝑝𝑎𝑟𝑡 represent in Table 8.1 on page 85, we have:

𝐹𝑟𝑒𝑞(𝑡ℎ𝑒,𝐷𝑝𝑎𝑟𝑡) = |𝐷𝑝𝑎𝑟𝑡(𝑡ℎ𝑒)|

= |{𝑠1, 𝑠2, 𝑠3, 𝑠13, 𝑠14, 𝑠16}|

= |{𝑡ℎ𝑒, 𝑡ℎ𝑒, 𝑡ℎ𝑒, 𝑡ℎ𝑒, 𝑡ℎ𝑒, 𝑡ℎ𝑒}| = 6

𝐹𝑟𝑒𝑞(𝑡‘ℎ𝑒,𝐷𝑝𝑎𝑟𝑡) = |𝐷𝑝𝑎𝑟𝑡(𝑡‘ℎ𝑒)|

= |{𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6, 𝑠7, 𝑠13, 𝑠14, 𝑠16}|

= |{𝑡ℎ𝑒, 𝑡ℎ𝑒, 𝑡ℎ𝑒, 𝑇ℎ𝑒, 𝑇ℎ𝑒, 𝑇ℎ𝑒, 𝑇ℎ𝑒, 𝑡ℎ𝑒, 𝑡ℎ𝑒, 𝑡ℎ𝑒}| = 10

𝐹𝑟𝑒𝑞(𝑏‘𝑔‘, 𝐷𝑝𝑎𝑟𝑡) = |𝐷𝑝𝑎𝑟𝑡(𝑏‘𝑔‘)|

= |{𝑏𝑔, 𝑏𝑔, 𝐵𝐺}| = |{𝑠22, 𝑠23, 𝑠|𝐷|}| = 3

We use the term Summarized Data Set to denote the sequential pattern mining

result, i.e, the output of a mining algorithm. The most basic form of Summarized

Data Set is a set of tuples (𝑠, 𝑐), where 𝑠 is a sequence and 𝑐 is its frequency in

the data set. Thus for instance, a possible Summarized Data Set for the data in
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sequence dataset (𝐷𝑓𝑢𝑙𝑙) can be found in Table 8.2 on page 90. It consists of tuples

(𝑠𝑖 ∈ 𝐷,𝐹𝑟𝑒𝑞(𝑠𝑖, 𝐷)). For example, the sequence 𝑠2 = the‘ appears in 𝐷𝑓𝑢𝑙𝑙, 7769

times, in two grounded forms: the (3915 times, see Figure 8-1 above), and thE (3854

times, Figure 8-1). Indeed, we add the 𝑐𝑖 = 𝐹𝑟𝑒𝑞(𝑠𝑖, 𝐷
𝑓𝑢𝑙𝑙) to each sequence 𝑠𝑖 ∈ 𝑊+

appearing in Figure 8-1 on page 87.

(𝑠1, 𝑐1) : (The, 4059)
(𝑠2, 𝑐2) : (the‘, 7769)
(𝑠3, 𝑐3) : (tHe‘, 7822)
(𝑠4, 𝑐4) : (t‘h‘e‘, 31688)
(𝑠5, 𝑐5) : (c‘h‘, 812)
(𝑠6, 𝑐6) : (b‘g, 816)
(𝑠7, 𝑐7) : (b‘G, 4059)

Table 8.2: English domain 𝑆𝐷𝑆𝐷𝑒𝑠𝑡

The Ground Truth Summarized Data Set of a dataset 𝐷 is the set of tuples made

of all ground sequences in the 𝐷 and their frequency count, i.e.,

𝑆𝐷𝑆𝐺𝑇 := {(𝑠, 𝑐)|𝑠 ∈ 𝐷 ∩𝑊+
𝐿𝑒𝑎𝑓 , 𝑐 = 𝐹𝑟𝑒𝑞(𝑠,𝐷)}

For the example English domain 𝐷𝑓𝑢𝑙𝑙, the 𝑆𝐷𝑆𝐺𝑇 is shown in Table 8.3 on page 90.

(𝑠1, 𝑐1) : (The, 4059)
(𝑠2, 𝑐2) : (the, 3915)
(𝑠3, 𝑐3) : (ThE, 4032)
(𝑠4, 𝑐4) : (THe, 3987)
(𝑠5, 𝑐5) : (thE, 3854)
(𝑠6, 𝑐6) : (tHe, 3881)
(𝑠7, 𝑐7) : (THE, 3999)
(𝑠8, 𝑐8) : (tHE, 3941)
(𝑠9, 𝑐9) : (cH ,203)
(𝑠10, 𝑐10) : (ch, 197)
(𝑠11, 𝑐11) : (CH, 209)
(𝑠12, 𝑐12) : (Ch, 203)
(𝑠13, 𝑐13) : (Bg, 201)
(𝑠14, 𝑐14) : (bg, 195)
(𝑠15, 𝑐15) : (bG, 207)
(𝑠16, 𝑐16) : (BG, 201)

Table 8.3: English domain 𝑆𝐷𝑆𝐺𝑇

90



The ground truth 𝑆𝐷𝑆𝐺𝑇 , is the basis for computing the quality of any other

Summarized Data Set. The size of 𝑆𝐷𝑆𝐺𝑇 is, by definition, the largest and so it gives

a measure of the worst-case length of the Summarized Data Set. Intuitively, however,

the 𝑆𝐷𝑆𝐺𝑇 also represents a best case, as it is the most accurate description of the

data, an exact histogram of the data set. All ground sequences are present and

precisely counted.

In contrast, the General Summarized Data Set of a dataset 𝐷 is the set of tuples

made of all general sequences in the 𝐷 and their frequency count, i.e.,

𝑆𝐷𝑆𝑔 := {(𝑠, 𝑐)|𝑠 ∈ 𝐷 ∩𝑊+
𝑅𝑜𝑜𝑡, 𝑐 = 𝐹𝑟𝑒𝑞(𝑠,𝐷)}

For the same 𝐷𝑓𝑢𝑙𝑙, the 𝑆𝐷𝑆𝑔 is shown in Table 8.4 on page 91.

(𝑠1, 𝑐1) : (t‘h‘e‘, 31668)
(𝑠2, 𝑐2) : (b‘g‘, 804)
(𝑠3, 𝑐3) : (c‘h‘, 812)

Table 8.4: English domain 𝑆𝐷𝑆𝑔

𝑆𝐷𝑆𝑔 is the basis for computing the compactness of any other Summarized Data

Set. It accounts for every possible sequence in the database, but its size is the smallest

possible . It there measures the best-case length of any Summarized Data Set with

maximum coverage. Intuitively, however, the 𝑆𝐷𝑆𝑔 may be a less accurate description

of the data, as ground truth sequence counts can only be inferred from the their

combined totals in their general forms.

8.2 Evaluating the Quality of a Summarized Data Set

The building of 𝑆𝐷𝑆𝐷𝑒𝑠𝑡 needs to evaluate the trade-off between several measures:

• Compactness, which is the size of the Summarized Data Set (number of entries

in |𝑆𝐷𝑆𝐷𝑒𝑠𝑡|), discussed in Section 8.2.1.

• Coverage, which measures how many of the sequences in the database 𝐷 are

accounted for by the 𝑆𝐷𝑆𝐷𝑒𝑠𝑡 (Section 8.2.2).
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• Accuracy, which measures the number of correct predictions represented by

𝑆𝐷𝑆𝐷𝑒𝑠𝑡, with respect to the ground truth sequence frequency counts (Sec-

tion 8.2.3).

8.2.1 Compactness

A Summarized Data Set is a set of tuples, which represent a dataset. Different SDSs

can be more or less compact (i.e., can vary in size). The compactness of an SDS is

easily measured by its size compared to the size of the ground truth representation

𝑆𝐷𝑆𝐺𝑇 (Eq. 8.1). It takes values from 1
|𝑆𝐷𝑆𝐺𝑇 | (best, a single sequence) to 1 (worst,

same size as the ground truth SDS).

𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠(𝑆𝐷𝑆, 𝑆𝐷𝑆𝐺𝑇 ) :=
|𝑆𝐷𝑆|

|𝑆𝐷𝑆𝐺𝑇 |
(8.1)

The size of the SDS is easily manipulated simply by inserting or removing se-

quences from it. What we require is a measure of the fidelity of the SDS to the data.

We do this using two separate factors: coverage and accuracy.

8.2.2 Coverage

We define the Coverage of a candidate Summarized Data Set over 𝐷 (denoted SDS )

as the total number of ground sequences which are either directly contained in it, or

are a specialization of a generalized sequence appearing in it.

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑆𝐷𝑆,𝐷) := |{𝑒 ∈ 𝐷|(𝑠, 𝑐) ∈ 𝑆𝐷𝑆 ∧ (𝑠⇝ 𝑒 ∨ 𝑠 = 𝑒)}| (8.2)

The definition is somewhat close to the definition of frequency, but it prohibits

counting a grounded sequence more than once. Two sequences in a SDS may in-

duce the same grounded sequence, and it should be counted only once for the pur-

poses of coverage. For example, suppose we are evaluating the coverage of a SDS

for the data set 𝐷𝑓𝑢𝑙𝑙 (Figure 8-1), where SDS is based on two sequences The

and Th‘e. The frequency of the sequence The is 4059 (𝐹𝑟𝑒𝑞(𝑇ℎ𝑒,𝐷𝑓𝑢𝑙𝑙)). The
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frequency of the sequence Th‘e in the same data set is 8046 (it generalizes both

The and THe). Thus SDS := {(The,4059), (Th‘e,8046)}. Naively, one would

assume 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒(SDS, 𝐷𝑓𝑢𝑙𝑙) = 4059 + 8046. However, because Th‘e⇝The, then

𝐷𝑓𝑢𝑙𝑙(𝑇ℎ𝑒) ⊂ 𝐷𝑓𝑢𝑙𝑙(𝑇ℎ‘𝑒). The count 8046 includes the count 4059, and therefore

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒(SDS, 𝐷𝑓𝑢𝑙𝑙) = 8046. Similarly, given SDS := {(𝑇ℎ‘𝑒, 8046), (𝑇𝐻𝑒, 3987)},

it is still the case that 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒(SDS, 𝐷𝑓𝑢𝑙𝑙) = 8046, as we avoid double-counting over

the sequence intersection.

Relative Coverage Given a specific SDS , it is possible to compute its coverage in

relative terms, i.e., the percentage of sequences it covers compared to the entire data

set. This is easily computed by dividing 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒(SDS, 𝐷) by the coverage of the

ground truth 𝑆𝐷𝑆 (Eq. 8.3).

𝑅𝐶(𝑆𝐷𝑆𝐷𝑒𝑠𝑡, 𝐷) :=
𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑆𝐷𝑆𝐷𝑒𝑠𝑡, 𝐷)

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑆𝐷𝑆𝐺𝑇 , 𝐷)
(8.3)

This normalized measure of the coverage of a 𝑆𝐷𝑆𝐷𝑒𝑠𝑡 ranges from 0 to 1. A RC

of 1 represents maximum coverage over 𝐷, while a value of 0 represents no coverage.

By nature, two specific SDS always have perfect relative coverage of 1: 𝑆𝐷𝑆𝐺𝑇 ,

and 𝑆𝐷𝑆𝑔. The first, because all sequences are present in the ground truth 𝑆𝐷𝑆𝐺𝑇 ,

and the latter, because it includes all top-generalized sequences, which generalize all

grounded sequences, and thus covers all of them. Intuitively, we understand however

that these two descriptions of the data have differences which are very meaningful.

Their compactness is very different, and likewise their accuracy with respect to the

frequency counts. We discuss this next.

8.2.3 Accuracy

Intuitively, 𝑆𝐷𝑆𝐺𝑇 is maximally accurate, as it reports on the precise counts of each

ground sequence. Likewise intuitively, 𝑆𝐷𝑆𝑔 which includes only the most general

sequences is not likely to be accurate, as it reports only on the sum of the ground se-

quence frequencies, which means that generally, the exact counts of ground sequences

are unknown.
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Here we formalize these intuitions in a measure of the accuracy of a candidate

SDS . The idea is that the accuracy of a candidate SDS should be increased with the

number of correct counts.

We are given an summary description 𝑆𝐷𝑆, and a dataset 𝐷. Tuples 𝑡 = (𝑠, 𝑐) ∈

𝑆𝐷𝑆 are supposed to represent (summarize) the occurrence of 𝑠 in 𝐷, i.e., ideally

𝑐 = 𝐹𝑟𝑒𝑞(𝑠,𝐷). We will define an accuracy measure that aggregates the predictions

of all individual tuples in 𝑆𝐷𝑆. Our definition of accuracy is based on standard

definitions in machine learning, which considers accuracy to be the ratio of the number

of correct predictions, to the total number of predictions.

We begin by considering the simplest case. A singleton 𝑆𝐷𝑆, containing a single

summary tuple (𝑠, 𝑐) ∈ 𝑆𝐷𝑆 where 𝑠 is a ground sequence. In this case, the accuracy

of the 𝑆𝐷𝑆 with respect to 𝐷 is given by

𝜓1(𝑠, 𝑐,𝐷) :=

⎧⎪⎨⎪⎩
𝑐

|𝐷| 𝑐 < 𝐹𝑟𝑒𝑞(𝑠,𝐷)

max(0,2𝐹𝑟𝑒𝑞(𝑠,𝐷)−𝑐)
|𝐷| 𝑐 ≥ 𝐹𝑟𝑒𝑞(𝑠,𝐷)

(8.4)

The accuracy is measured by considering the number of correct predictions of 𝑠 im-

plied by (𝑠, 𝑐). Suppose 𝑠 ∈ 𝐷, then 𝐹𝑟𝑒𝑞(𝑠,𝐷) > 0. There are three cases when this

is true:

1. If 𝑐 = 𝐹𝑟𝑒𝑞(𝑠,𝐷), then the number of correct predictions of 𝑠 is indeed

𝐹𝑟𝑒𝑞(𝑠,𝐷) = 𝑐, which is (2𝐹𝑟𝑒𝑞(𝑠,𝐷)− 𝑐).

2. If 𝑐 < 𝐹𝑟𝑒𝑞(𝑠,𝐷) it means 𝑐 underestimates 𝐹𝑟𝑒𝑞(𝑠,𝐷). Then 𝑐 is the number

of correct predictions.

3. Otherwise, 𝑐 over-estimates 𝐹𝑟𝑒𝑞(𝑠,𝐷). In this case, we want to penalize the

accuracy score, by "folding" the excess (𝑐 − 𝐹𝑟𝑒𝑞(𝑠,𝐷)) and subtracting it

from the correct value 𝐹𝑟𝑒𝑞(𝑠,𝐷): 𝐹𝑟𝑒𝑞(𝑠,𝐷) − (𝑐 − 𝐹𝑟𝑒𝑞(𝑠,𝐷)). If 𝑐 is

more than twice 𝐹𝑟𝑒𝑞(𝑠,𝐷), this will be a negative number. Hence the use

of max(𝑥, 2𝐹𝑟𝑒𝑞(𝑠,𝐷)− 𝑐) to bound the nominator from below at 0.

If 𝑠 /∈ 𝐷, the 𝐹𝑟𝑒𝑞(𝑠,𝐷) = 0, and indeed the number of correct predictions is 0
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(max(0, 2 · 0− 𝑐)).

Let us now consider a more general case. Suppose we are considering a single-

ton 𝑆𝐷𝑆, containing a single tuple (𝑠, 𝑐), where 𝑠 is a non-ground sequence, that

generalizes multiple ground sequences.

We denote the set of all ground sequences generated from 𝑠 by 𝐿𝑒𝑎𝑣𝑒𝑠(𝑠) (Def. 8.5).

𝐿𝑒𝑎𝑣𝑒𝑠(𝑠) = {𝑠𝑔 ∈ 𝑊+
𝐿𝑒𝑎𝑓 |(𝑠⇝ 𝑠𝑔) ∨ (𝑠 = 𝑠𝑔)} (8.5)

In the case that the sequence itself is a leaf (a ground sequence), the set will only

include the leaf sequence itself, 𝐿𝑒𝑎𝑣𝑒𝑠(𝑠𝑟) = {𝑠𝑟} if 𝑠𝑟 ∈ 𝑊+
𝐿𝑒𝑎𝑓 . Here are some

examples:

1. |𝐿𝑒𝑎𝑣𝑒𝑠(𝑇ℎ𝑒)| = |{𝑇ℎ𝑒}| = 1

2. |𝐿𝑒𝑎𝑣𝑒𝑠(𝑡‘ℎ𝑒)| = |{𝑇ℎ𝑒, 𝑡ℎ𝑒}| = 2

3. |𝐿𝑒𝑎𝑣𝑒𝑠(𝑐‘ℎ‘)| = |{𝐶𝐻,𝐶ℎ, 𝑐𝐻, 𝑐ℎ}| = 4

4. |𝐿𝑒𝑎𝑣𝑒𝑠(𝐵𝑔‘)| = |{𝐵𝑔,𝐵𝐺}| = 2

5. |𝐿𝑒𝑎𝑣𝑒𝑠(𝑡‘ℎ‘𝑒‘)| = |{𝑇ℎ𝑒, 𝑡ℎ𝑒, 𝑇ℎ𝐸, 𝑇𝐻𝑒, 𝑡ℎ𝐸, 𝑡𝐻𝑒, 𝑇𝐻𝐸, 𝑡𝐻𝐸}| = 8

When 𝑠 is a generalized sequence, its count 𝑐 is the total for all ground sequences

that are generated from 𝑠. Lacking other information, we assume that the ground se-

quences generated from 𝑠 are uniformly distributed. The implication is that the sum-

mary tuple (𝑠, 𝑐) generates a set of summary tuples {(𝑠𝑖, 𝑐
|𝐿𝑒𝑎𝑣𝑒𝑠(𝑠)|)|𝑠𝑖 ∈ 𝐿𝑒𝑎𝑣𝑒𝑠(𝑠)}.

For example, Leaves(Th’e’) yields the set {THE, THe, The, ThE}. Suppose we

are given the summary tuple 𝑡 = (𝑇ℎ′𝑒′, 4000). The implication of the uniform

distribution assumption is that the tuple 𝑡 stands for four summary tuples 𝑡1 =

(𝑇𝐻𝐸, 4000
4
), 𝑡2 = (𝑇𝐻𝑒, 4000

4
), 𝑡3 = (𝑇ℎ𝑒, 4000

4
), 𝑡4 = (𝑇ℎ𝐸, 4000

4
).

More generally, given a summary tuple (𝑠, 𝑐), the ground tuple set of a summary

tuple (𝑠, 𝑐) is given by:

𝑔𝑡𝑠(𝑠, 𝑐) := {(𝑠𝑖,
𝑐

|𝐿𝑒𝑎𝑣𝑒𝑠(𝑠)|
)|𝑠𝑖 ∈ 𝐿𝑒𝑎𝑣𝑒𝑠(𝑠)}. (8.6)
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Note that for the case where 𝑠 is a ground sequence, this still holds, as 𝐿𝑒𝑎𝑣𝑒𝑠(𝑠) = 𝑠

in this case, with |𝐿𝑒𝑎𝑣𝑒𝑠(𝑠)| = 1.

Let us now remove the assumption the our 𝑆𝐷𝑆 is a singleton, and instead consider

a more general case of an 𝑆𝐷𝑆(𝑠𝑖, 𝑐𝑖), 𝑖 ≥ 1 made of several tuples. We form a ground

summary 𝐺𝑟𝑜𝑢𝑛𝑑(𝑆𝐷𝑆) by collecting together all ground tuple sets resulting from

tuples in 𝑆𝐷𝑆:

𝐺𝑟𝑜𝑢𝑛𝑑(𝑆𝐷𝑆) :=
⋃︁

(𝑠,𝑐)∈𝑆𝐷𝑆

𝑔𝑡𝑠(𝑠, 𝑐) (8.7)

In principle, the accuracy of 𝑆𝐷𝑆 can now be calculated as the sum of the accuracy

values of each tuple in 𝐺𝑟𝑜𝑢𝑛𝑑(𝑆𝐷𝑆), i.e.,

𝜓(𝑆𝐷𝑆,𝐷) :=
∑︁

(𝑠𝑖,𝑐𝑖)∈𝐺𝑟𝑜𝑢𝑛𝑑(𝑆𝐷𝑆)

𝜓1(𝑠𝑖, 𝑐𝑖, 𝐷)

However, a closer examination reveals that this is not straightforward, because

some sequences may be summarized more than once in 𝐺𝑟𝑜𝑢𝑛𝑑(𝑆𝐷𝑆), i.e., it is

possible that there are two elements (𝑠, 𝑐), (𝑠, 𝑛) ∈ 𝑆𝐷𝑆 such that 𝑐 ̸= 𝑛. In that

case, the accuracy for the same sequence will be measured twice, and added to the

sum.

For example, consider the following 𝑆𝐷𝑆 = {(𝑇ℎ𝑒, 4050), (𝑡′ℎ′𝑒′, 31688)} (a subset

of 𝑆𝐷𝑆𝐷𝑒𝑠𝑡 appearing in Table 8.2). The ground summary is computed by Eq. 8.7,

which in turn relies on Eq. 8.6:
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𝐺𝑟𝑜𝑢𝑛𝑑(𝑆𝐷𝑆) =
⋃︁

(𝑠,𝑐)∈𝑆𝐷𝑆

𝑔𝑡𝑠(𝑠, 𝑐) Eq. 8.7

= 𝑔𝑡𝑠(𝑇ℎ𝑒, 4050) ∪ 𝑔𝑡𝑠(𝑡′ℎ′𝑒′, 31688)

= 𝑔𝑡𝑠(𝑇ℎ𝑒, 4050) ∪ {(𝑡ℎ𝑒, 3961), (The,3961), . . . , (𝑇𝐻𝐸, 3961)}

= {(The,4050)} ∪ {(𝑡ℎ𝑒, 3961), (The,3961), . . . , (𝑇𝐻𝐸, 3961)}

The last two lines demonstrate the problem. The first of the lines shows the

expansion of 𝑔𝑡𝑠(𝑡′ℎ′𝑒′) into the ground summary tuple set. The general sequence

t’h’e in 𝑆𝐷𝑆 is replaced in 𝐺𝑟𝑜𝑢𝑛𝑑(𝑆𝐷𝑆) by every ground sequence generated

from it, i.e., every sequence in 𝐿𝑒𝑎𝑣𝑒𝑠(𝑡′ℎ′𝑒′). Each of these is given a count of

31688
|𝐿𝑒𝑎𝑣𝑒𝑠(𝑡′ℎ′𝑒′)| = 31688

8
= 3961. In particular, a summary tuple is created for the se-

quence The: (𝑇ℎ𝑒, 3961). The last line shows that a second summary was generated,

from the ground tuple (𝑇ℎ𝑒, 4050). Thus 𝐺𝑟𝑜𝑢𝑛𝑑(𝑆𝐷𝑆) contains two elements for

the same sequence, with two different counts, making the value of 𝜓(𝑆𝐷𝑆) incorrect

if we simply sum 𝜓1 of the 𝑆𝐷𝑆 elements.

Given multiple predictions for the same sequence, both implied by the same SDS

(i.e., both are members of 𝐺𝑟𝑜𝑢𝑛𝑑(𝑆𝐷𝑆)), we should prefer the element with the

greater accuracy Thus before computing the sum in Eq. 8.9 directly, we collect the

maximally accurate value for each sequence 𝑠.

We do this by further filtering the 𝐺𝑟𝑜𝑢𝑛𝑑(𝑆𝐷𝑆) set, to remove members that

are duplicate, in the sense that they offer additional counts for the same sequence.

We leave only the most accurate counts.

𝑀𝑖𝑛𝑖𝑚𝑎𝑙(𝑆𝐷𝑆,𝐷) := {(𝑠, 𝑐) ∈ 𝐺𝑟𝑜𝑢𝑛𝑑(𝑆𝐷𝑆)|𝑐 = argmax
𝑥

𝜓1(𝑠, 𝑥,𝐷)} (8.8)

We can now make a slight change to the definition of 𝑝𝑠𝑖. Instead of summing

the counts from the ground 𝑆𝐷𝑆 it should sum the counts from the minimal 𝑆𝐷𝑆
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(Eq. 8.8):

𝜓(𝑆𝐷𝑆,𝐷) :=
∑︁

(𝑠𝑖,𝑐𝑖)∈Minimal(SDS,D)

𝜓1(𝑠𝑖, 𝑐𝑖, 𝐷) (8.9)

8.3 Optimizing Accuracy, Coverage and Compactness

Given a database 𝐷, the quality of a Summarized Data Set of 𝐷 is measured by three

factors discussed in Section 8.2:

• Its compactness (the size of the description, described in Section 8.2.1)

• Its relative coverage (the percent of sequences in 𝐷 which are summarized, as

described in Section 8.2.2)

• Its accuracy (its ability to correctly summarize the number of appearances in

𝐷, for each sequence in the summary, as described in Section 8.2.3)

The three factors are somewhat independent of each other. The ground-truth

summary 𝑆𝐷𝑆𝐺𝑇 has perfect relative coverage, and perfect accuracy, but worst com-

pactness (the size of 𝐷, worst case). The general summary 𝑆𝐷𝑆𝑔 has perfect cover-

age, bad accuracy (in general), and perfect compactness. Any proper subset of the

ground-truth summary can have good compactness, but will lose coverage, and likely

have imperfect accuracy. Table 8.5 shows examples of the three measures for different

possible summaries, all for the dataset shown in Figure 8-1a.

We are therefore interested in balancing the three factors, in a manner that allows

explicit trading the achievement of one factor for improvements in the others. For

example, one may with to ask for an 𝑆𝐷𝑆𝐷𝑒𝑠𝑡 that has limited compactness (i.e., 𝐾

is bounded), and achieves the maximum accuracy and coverage possible. Or one may

ask for an 𝑆𝐷𝑆𝐷𝑒𝑠𝑡 that maintains accuracy and coverage above some a threshold,

and ask for the minimal 𝐾 that is able to do so. This balancing of the three factors

can be illustrated as a triangle (Figure 8-2).
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Figure 8-2: The three parameter we need to balance when searching for a good SDS.

Balancing Accuracy and𝐾 Given as an input the database 𝐷, one can can compute

the ground truth 𝑆𝐷𝑆𝐺𝑇 which represents an ideal summary, from the point of view

of accuracy and relative coverage (i.e., for both accuracy and coverage its score is 1).

However, its size 𝐾, in the worst case, is |𝑆𝐷𝑆𝐺𝑇 |. This raises several computational

problems involving selecting an 𝑆𝐷𝑆 that balances the accuracy and 𝐾:

• We may fix 𝐾 ≪ |𝑆𝐷𝑆𝐺𝑇 | and optimize accuracy, a problem we referred to as

the Top-𝐾 Summary Problem.

• Or we may set a target accuracy threshold, and minimize the summary size 𝐾.

We refer to this problem as the Minimal Accuracy Summary Problem.



Chapter 9

The Top-𝐾 Summary Problem

We tackle the problem of finding an optimal bounded-size summary of the dataset,

i.e., the Top-𝐾 Summary Problem. We are given a bound on the compactness 𝑘 ≪

|𝑆𝐷𝑆𝐺𝑇 |. The task is find a summary 𝑆𝐷𝑆𝑂𝑃𝑇
𝐷𝑒𝑠𝑡 that which maximize accuracy, with

compactness no worse than 𝑘. In other words, determine 𝑆𝐷𝑆𝐷𝑒𝑠𝑡 such that (i)

accuracy is maximized, and (ii) |𝑆𝐷𝑆𝐷𝑒𝑠𝑡| ≤ 𝑘.

9.1 Greedy Sequence Selection is Not Enough

One may think that a simple greedy approach may suffice to solve the Top-𝐾 Sum-

mary problem, by sorting 𝑆𝐷𝑆𝐺𝑇 according to each sequence’s individual accuracy,

and then selecting the Top 𝐾 sequences. But this is not the case.

The underlying assumption in this procedure is that the accuracy value of the

combination of sequences is correlated with the sum of individual-sequence accuracy

values. In other words, the assumption is that by selecting 𝐾 sequences with the

highest accuracy individual values (thus maximizing the sum of accuracy values), we

will also be maximizing the accuracy of the combined 𝐾-sequence summary.

Unfortunately, this approach does not work in general. In the special case where

the 𝐾 sequences have no overlaps (i.e., no sequence among the 𝐾 is a generalization

of another), the accuracy of the combined summary is indeed a sum of the individual

sequence accuracy values. But as we saw earlier, when one sequence is a generalization
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of another, their combined accuracy is not a sum of their individual accuracies, due

to the use of max in the maximal union (⊎) operator used in the definition of the

𝐺𝑟𝑜𝑢𝑛𝑑(𝑆𝐷𝑆) set.

9.2 Solving the Top-𝐾 Summary Problem

The Top-𝐾 Problem is almost a 0-1 Knapsack Problem: We are given a finite number

of items (sequences) to select from, each with weight 1. Each sequence may or may

not be selected for the knapsack (0-1 constraint), with no duplicates (each sequence

is different). The total weight of the sequences selected is bounded by the knapsack

capacity 𝐾. We wish to select the 𝐾 sequences which together maximize the profit—

the accuracy of the selected set.

However, differently from the familiar definition of the 0-1 Knapsack problem, the

objective function (the profit) is not a simple sum of the individual sequence accuracy,

as we have discussed in the previous section. Instead, the accuracy of 𝐾 sequencs is

a monotonically non-decreasing function, which is submodular.

It is easy to see that the variant, is at least as hard as the 0-1 Knapsack Problem,

which is known to be NP-Complete. [43] This is because the case where the sequences

do not overlap, a special case of the top-𝐾 problem, is precisely a 0-1 Knapsack

problem.

This type of variant knapsack problem has been studied directly by different au-

thors, mostly in efforts to find useful approximation algorithms. A key result is

presented by Sviridenko [76], who shows that a previously published algorithm by

Khuller et al. [40] can find an approximate solution for this variant in time 𝑂(𝑛5),

with a performance guarantee of (1− 𝑒−1), which is optimal.

Tight integration of hierarchical sequence counting and top-𝐾 summary selection.

The pipeline of the mining process can be found in Figure 9-1 on page 103. We

first apply the LASH algorithm [6] to generate counting of the hierarchical sequences.

The results are used to solve the Top-𝐾 problem, e.g., by using the approximation



algorithm discussed above.

Figure 9-1: Pipeline of the mining process, rectangles represent processes while rhombuses
represent data.



A reasonable question that might be asked is to combine the counting and the

mining task to one with one algorithm. Yu et al. [86] a streaming knapsack algorithm

intended for knapsack problems with monotone submodular objective function. The

incorporation of a streaming algorithm should allow, in principle, online selection of

sequences even while the LASH main algorithm is generating their counts. Likewise,

the use of interactive submodular optimization [27] is a different approach towards

the same goal. We envision an active-learning component selecting sequences to be

counted, to accelerate the creation of the set of 𝐾 sequences.



Chapter 10

Discussion and Conclusions

In Part I of the thesis, we relies on the human domain expert to interact in the

behavior modeling process, by infusing the machine learning problem definitions with

domain-dependent insights, with respect to the ordering of features, the recognition of

cyclic features, the distinction of goals and visual affirmation of clusters in the data,

etc. In Part II, the human domain-expert is involved in the definition of a symbol

generalization hierarchy—its taxonomy.

The two parts tackle different challenges within the overall task of behavior mod-

eling from logs. The first part tackles the challenge of associating the modeled agent’s

beliefs and goals with its decision on the next action (in its continuous parameter-

ized form) to be taken by the agent. It thus focuses on a single future action, in

great detail. In contrast, second part sacrifices detail to attempt to discover abstract

repeating patterns, which may generate insight into multi-step decision-making pro-

cesses that the agent employs. Put another way, Part I examines the agent as if it

were completely reactive, while Part II seeks to discover underlying multi-step plans

that are the result of a deliberative decision-making process.

We hope the combination of the techniques from the two parts will lead towards

the capacity for building fuller agent behavior models from logs of actions and en-

vironment settings. In particular, immediate steps to consider are the identification

of beliefs and goals that would lead an agent to select a multi-step plan, discovery

of beliefs that cause the agent to interrupt a plan, or to choose between different
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variations on it, etc.

Consider the following example. Suppose that the hierarchical sequence miner dis-

covers two sequences with an identical prefix: (𝐾𝑖𝑐𝑘#100#30;𝑇𝑢𝑟𝑛#90) appearing

300 times, and (𝐾𝑖𝑐𝑘#100#30;𝑇𝑢𝑟𝑛𝑁𝑒𝑐𝑘#270) appearing 100 times. The tech-

niques in Part I may be able to predict the first action 𝐾𝑖𝑐𝑘#100#30. The prior

probabilities for the second action will then be 0.75 for 𝑇𝑢𝑟𝑛#90, and 0.25 for

𝑇𝑢𝑟𝑛𝑁𝑒𝑐𝑘#270, even if no prediction is possible based on the agents inferred be-

liefs or goal.

Several research thrusts for future work are relevant. Chief among them would be

identifying a solution for the Minimal Accuracy Summary problem, i.e., the problem

of finding the smallest-size 𝑆𝐷𝑆 whose accuracy satisfies a required threshold. We

believe a very useful lead towards this goal is presented by Iyer and Bilmes [36]. They

had shown a close relation between the two problems, which they term Submodular

Cost Submodular Knapsack (which is analogous to the top-𝐾 problem), and Submod-

ular Cost Submodular Cover (which is analogous to the minimal accuracy problem),

and provide approximation algorithms for both.

We have also discussed briefly another important direction for future work; finding

an efficient integration of the procedures for counting hierarchical sequences (currently

achieved by relying on the LASH sequence miner [6]), and for selecting the target 𝑆𝐷𝑆

either via top-𝐾 summary generation or by generating a satisficing summary. The

separation of the two procedures in the current form is highly inefficient, as many

sequences are counted only to be discarded later in the process.
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Appendix A

High-Level View of Our Approach as a

System

As part of the thesis work, we defined a new log format that will be accessible

to humans and machines, to enable the algorithms to be tested on the data from

RoboCup2D as well as in other domains. The log content reflects movements, ac-

tions, and states of various agents’ environment and the environment state. It is

important to find a format that does not require a particular storage platform.

In order to implement our approach, several steps need to be done. The flow of

our approach is shown in Figure A-1 on page 114.

Figure A-1: Our approach implementation flow.

Running System: As a first step, we need to run the domain’s original system as

a demonstrator; the output of this step will be the raw log of the system, without
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adherence to the file format. For example in our domain, RoboCup2D , the system

outputs raw logs will be in formats .rcg and .rcl.

Log Adapter: The step input will be the raw logs from the running system, while

it is output will be the parsed logs. The parsed logs will concentrate on two Goals:

1. The log format will be readable for humans and machines as well. 2. It will be

robust for as many environments as possible.

Parsed Log: To handle the Goals mentioned above, we defined the base format,

using one line record file. We designate the mandatory keys name and possible

values to help our system handle a new domain easily. Each record contains the

key TimeStamp (For example at RoboCup2D domain TimeStamp ∈ [1 − 6, 000, 000]

where the unit equivalent to millisecond), another necessary key is 𝑅𝑒𝑐𝑜𝑟𝑑𝑇𝑦𝑝𝑒 ∈

{𝐴𝑔𝑒𝑛𝑡𝐴𝑐𝑡𝑖𝑜𝑛,𝐴𝑔𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒, 𝐸𝑛𝑣𝑆𝑡𝑎𝑡𝑒} while the other possible keys in record will be

derived by the RecordType value. AgentAction represents an action that the agent

acts at each TimeStamp. AgentState represents the agent’s knowledge of the world

through his eyes including viewed objects/agents, position, velocity and any other

feature that is related to the agent at some specific TimeStamp. EnvState represents

the global environment state at some TimeStamp.

The Convert of the raw log to parsed log will need to handle some challenges;

sometimes the raw logs are in a global view, so the EnvState is supplied while the

AgentState will need to be inferred from the EnvState. This inference is based on the

knowledge of the agent’s sense. For example, the agent’s range of view, figuring out

which objects or agents were viewed by the learned agent. Also, there is a need to

convert the viewed objects or agents’ position and velocity from absolute measure to

relative to the viewing agent’s position.

Learning Process: This step input is the parsed log, while the output will be the

FSM. We will try to learn this FSM with several AI techniques. First, we will learn

the number of states using cluster techniques. Then we will learn the partial-policies

of each execution state using supervised learning. Last we will learn the transition



between the execution states.



Appendix B

Clustering Algorithm Experiment Setup

We used the clustering technique with several algorithms. We used the following

parameters in the different algorithms.

DBSCAN: eps: 4.5

min_sample: 512

algorithm: ball_tree

leaf_size: 60

HDBSCAN: min_sample: 512

algorithm: boruvka_balltree

leaf_size: 60

alpha: 4.5

MiniBatchKMeans: n_clusters: 4/5

Ward: n_clusters: 4

AgglomerativeClustering: n_clusters: 4

Birch: n_clusters: 3

GaussianMixture: n_components: 5/6/7
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Optics: min_sample: 512

min_cluster_size: 0.1



Appendix C

Additional Results for Feature Fast

Forward

C.1 Tackle Action

We tested the fast forward technique over the same data presented in Section 5.2, to

improve the regression of tackle P1 and the classification of tackle P2. Initially, we

received guidance from the system expert regarding significant results that were later

caused by the tackle action; these helped us determine the agent’s goal state (𝐺𝑖
𝑡).

To automate the clustering process, we looked for an off-the-shelf classification

algorithm to automatically classify the manual cluster. As can be seen in the classi-

fication results shown in Figure C-1 on page 120 , the RandomForestClassifier earns

the best results concerning all metrics and target clusters.

The final results of regression tackle P1 are shown in Figure 6-2 on page 61 and

the classification tackle P2 appears in Figure 6-3 on page 64. As can be seen, the

fast forward cluster did not improve significantly across all measurements. Also,

as expected, the manual cluster (FastForwardPerfect) was more significant than the

automatic cluster (FastForwardAUTO).
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Appendix D

Additional Results for Parameter

Clustering

D.1 Tackle Action

We tested the parameter cluster technique over the same data noted in Section 5.3,

to improve the regression of tackle P1 and the classification of tackle P2.

We chose to generalize the P1 parameter, ignoring the right/left direction based on

the mirror transform. Moreover, because tackle P2 is Boolean, we used the parameter

clustering technique based on P1 only.

We plotted P1 using manual clustering to find a good distribution cluster and

produced the parameter’s histograms using an off-the-shelf cluster algorithm such as:

MiniBatchKMeans, AffinityPropagation, Ward, AgglomerativeClustering, DBSCAN,

Hdbscan, Optics, Birch, or GaussianMixture. Based on the results of our attempts,

as shown in Figure D-1 on page 122, we chose the GaussianMixture cluster algorithm

(D-1d)

We validate that we chose the best cluster of the agent’s goal state using the

parameter clustering technique. We ran the regression over P1 and the classification

over P2 by adding in each run, one of the clusters (whose plot is shown in Figure

D-1) as a feature to determine the agent’s goal state best Parameter Clustering al-

gorithm. The results over P1 regression are shown in Figure D-2 on page 127 and
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Figure D-1: Plots for tackle cluster algorithms
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those for P2 classification are shown in Figure D-3 on page 130. As can be seen, the

GaussianMixture showed the best results for almost all measurements.

To automate the clustering process, we looked for an off-the-shelf algorithm to

automate classification of the manual cluster. Based on the classification results

shown in Figure D-4 on page 131, we can see that the HistGradientBoostClassifier

earns the best results for all metrics and target clusters.

The final results over P1 regression are shown in Figure 6-2 on page 61 while the

P2 classification can be found in Figure 6-3 on page 64. As can be seen, the parameter

clustering improves the results for all measurements.

It is important to note that for the regression over tackle P1, the parameter clus-

tering technique provided a more significant improvement than the fast forward tech-

nique. When it comes to the classification of tackle P2, the results show no advantage

for any technique. As expected, the manual cluster (CluserPerfect) was more signifi-

cant than the automatic cluster (CluserAUTO).
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D.2 Dash Action

We tested the parameter cluster technique over the same data in an attempt to

improve the regression of dash P1.

We plotted P1 with manual clustering to find a good distribution cluster, and

generated the parameter’s histograms using some of the standard off-the-shelf cluster

algorithms such as: MiniBatchKMeans, AffinityPropagation, SpectralClusteringtral,

Ward, AgglomerativeClustering, DBSCAN, Hdbscan, Optics, Birch, and Gaussian-

Mixture. The best results are shown in Figure D-5 on page 133. We chose the

GaussianMixture cluster algorithm shown in Figure D-5d.

To automate the clustering process, we looked for an off-the-shelf classification

algorithm, as describe in Section 5.3, to automate classification of the manual clus-

ter. The classification results shown in Figure D-6 on page 135 indicate that the

HistGradientBoostClassifier has the best results for all metrics and target clusters.

The final results presented in Figure 6-4 on page 66 show that the parameter

clustering technique improves the results around all measurements, with a severe gap

in relation to the other actions. Also, as expected, the manual cluster(ClusterPerfect)

was more significant than the automatic cluster(ClusterAUTO).
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Figure D-5: Dash cluster algorithm plots
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D.3 Turn Action

We tested the parameter cluster technique over the same data presented in Section

6, in an attempt to improve the regression of turn P1. We chose to generalize the

P1 parameter by ignoring the right/left direction based on the mirror transform over

the agent’s goal state (𝐺𝑖
𝑡).

We plotted P1 with manual clustering to find a good distribution cluster that

provides information over the agent’s goal state. We generated the parameter’s his-

tograms over some standard off-the-shelf cluster algorithms such as: MiniBatchK-

Means, AffinityPropagation, Ward, AgglomerativeClustering, DBSCAN, Hdbscan,

Optics, Birch, and GaussianMixture. Those with the best results are shown in Fig-

ure D-7 on page 137. We chose the GaussianMixture cluster algorithm presented in

Figure D-7d.

To automate the clustering of the agent’s goal state (𝐺𝑖
𝑡) process, we looked for

an off-the-shelf classification algorithm to automate classification of the manual 𝐺𝑖
𝑡

cluster. The classification results are shown in Figure D-8 on page 139. As can be

seen, the HistGradientBoostClassifier earns the best results for all metrics and target

clusters.

The final results shown in Figure Figure 6-5 on page 69 demonstrate that the Pa-

rameter Clustering technique improves the results for all measurements. As expected,

the manual cluster(ClusterPerfect) showed a more significant improvement than the

automatic cluster(ClusterAUTO).
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Figure D-7: Turn cluster algorithm plotting tries
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Figure D-7: Turn cluster algorithm plots
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D.4 Turn Neck Action

We tested the parameter cluster technique over the same data presented in Section 6

to improve the regression of turn-neck P1.

Here too, we chose to generalize the P1 parameter by ignoring the right/left di-

rection based on the mirror transform over the agent’s goal state. We plotted P1

with manual clustering to find a good distribution cluster. We generated the param-

eter’s histograms over some standard off-the-shelf cluster algorithms such as: Mini-

BatchKMeans, AffinityPropagation, Ward, AgglomerativeClustering, DBSCAN, Hdb-

scan, Optics, Birch, or GaussianMixture. We present those with the best results in

Figure D-9 on page 141. We chose the GaussianMixture cluster algorithm noted in

Figure D-9d.

To automate the clustering of the agent’s goal state process, we looked for an

off-the-shelf classification algorithm. The classification results shown in Figure D-10

on page 143 indicate that the HistGradientBoostClassifier earns the best results for

all metrics and target 𝐺𝑖
𝑡 clusters.

The final results in Figure 6-6 on page 72 show that the parameter clustering

technique improves the results around all measurements. As expected, the manual

cluster(ClusterPerfect) showed a more significant improvement than the automatic

cluster(ClusterAUTO).
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Figure D-9: Turn Neck cluster algorithm plotting tries
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Figure D-9: Turn neck cluster algorithm plots
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