Bar-llan University
Department of Computer Science

Topics in Multi-Robot Teamwork

by

Meytal Traub

Advisor: Prof. Gal Kaminka

Submitted in partial fulfilment of the requirements for the Master’s degree
in the department of Computer Science

Ramat-Gan, Israel
July 2011
Copyright 2011

This work was carried out under the supervision of
Prof. Gal A. Kaminka

Department of Computer Science, Bar-1lan University.

Abstract

In recent years there is a growing interest in multi-robgttems, where a group
of N robots are working collaboratively in order to execute aegivask. This
thesis addresses two open challenges in multi-robot sgstéhe first is the chal-
lenge of deciding on which robot, out of a group of robots, tidravel to a
goal location, to carry out a task there. The second is thiecigge of integrating
multiple and different multi-robot controllers into a raisystem.

A common decision problem in multi-robot applications ilwes deciding on
which robot, out of a group dfl robots, should travel to a goal location, to carry
out a task there. Trivially, this decision problem can bevedlgreedily, by se-
lecting the robot with the shortest expected travel timeweleer, this ignores the
inherent uncertainty in path traversal times; we may prafebot that is slower
(but always takes the same time), over a robot that is expdotecach the goal
faster, but on occasion takes a very long time to arrive. éfifst part of this
thesis we make several contributions that address thit¢ecig@. First, we bring
to bear economic decision-making theory, to distinguidiivben different selec-
tion policies, based on risk (risk averse, risk seeking).e®econd, we introduce
social regret(the difference between the actual travel time by the setecibot,
and the hypothetical time of other robots) to augment dexsisnaking in practice.
Then, we carry out experiments in simulation and with rebbts, to demonstrate
the usefulness of the selection procedures under reathsettings, and find that
travel-time distributions have repeating charactesstic

In the second part, we address the challenge of integratirtijphe and dif-
ferent multi-robot controllers into a robust system. Muttbot formations are of
increasing interest to robotics researchers (as a canoagmzarch problem), and
to robot system builders (e.g.,for unmanned convoys).ddd#here exists vast lit-
erature on various techniques for maintaining formationa variety of settings,
and for a variety of robots. However, little attention hagibgiven to the pos-
sibility of using multiple formation controllers, all ingeated together for greater
formation robustness. In this part, we make two contrimgid-irst, we address a

key challenge in integration, that of joint distributedeszion and execution of the
correct controller, at the same time. We demonstrate howilineua teamwork

software engine to automate this joint selection. Secoedjescribe one such in-
tegrated system, which uses several different formatiamtanance controllers

for greater robustness.

Acknowledgments

This thesis would not have been possible without the supgfomiany people.
First, | would like to express my gratitude to Prof. Gal Kakanfor giving me
the opportunity, advising and supporting me, | wish he wdldble to drink his
coffee quietly from now on.

| am indebted to Noa Agmon, for being wonderful researchngaist and for
helping me through the entire process even on her spare time.

To Yehuda Elmaliach, Dan Erusalimchik, Alon Levy, Eran Sa@r and
Vladimir Sadov for their help and sleepless nights durirgphoject.

To the MAVERICK lab, for being my friends and making me feel ld&iehome.
Lastly, | am grateful to my family, for loving and supportimge through this
journey.

This research was supported in part by Israeli Science Fdiomd(ISF) grant
#1357/07.

Contents

1 Introduction
1.1 Selecting a Robotto ReachaGoal

1.2 Integrating Redundant Multi-Robot Formation Controlléos

Robustness,

| Who Goes There? Selecting a Robot to Reach a Goal Us-

ing Social Regret

2 Background: Choosing a Robot
2.1 TaskCostPrediction
2.2 Market-Based Techniques

3 Selecting a Robot

3.1 Risk-Based Selection

3.1.1 Risk-Neutral Selection
3.1.2 Risk-Averse Selection

3.1.3 Risk Seeking Selection

3.1.4 Bounded-Risk Selection

3.2 Regrettingthe Selection.

3.2.1 When Should We Overrule The Selection?
3.2.2 A Short-Cut to Determinin§wF
3.2.3 Minimal Expected Cost is Safe Selection

4 Path Travel in Practice
4.1 ExperimentswithRobots

4.1.1 Physical Robot Experiments

4.1.2 Simulation Experiments
4.2 Selection Based on ExperimentData
4.2.1 Simulation Experiments

4.2.2 Physical Robot Experiments

12

4.3 Parametric travel time distributions 49

Using Teamwork to Integrate Redundant Multi-Robot

Formation Controllersfor Robustness 52
5 Background: Formations and Teamwor k 54
6 Teamwork Software for Joint Formation Control 59
6.1 ControlProcess 60
6.1.1 Principal Control Algorithm 62
6.2 Collaborative World Modeling 63
7 Integrating Multiple Controllers 67
7.1 Robust Formations by Switching SBC Formations 7 6
7.2 Robust Formations by Communication-Based Formation Clontr68
7.3 Integrating Controllers 71
8 Discussion and Evaluation 73
8.1 ItWorks! 73
8.2 Robustness 75
8.3 Using a Teamwork Architecture Cuts Development Efforts ... 79
8.4 What Does Not Work (atleastnoteasily)? 83
9 Conclusions 84

List of Figures

3.1 Three robots in exploration task. Map was generatedjuaser-

based SLAM. 20
4.1 RV400robot. 34
4.2 The mapped lab used in the robotics experiments.34
4.3 RV-400 Travel Time Distributions. 53
4.4 The mapped simulated environment. 36
4.5 Ry Travel Time Distributions to pointA. 38
4.6 Ry Travel Time DistributionstopointB. 39
4.7 Ry Travel Time DistributionstopointC. 40
4.8 Ry Travel Time Distributions to pointD. 41
4.9 Ry Travel Time Distributions to pointA. 42
4.10 Ry Travel Time DistributionstopointB. 43
4.11 Ry Travel Time Distributions to pointC. 43
4.12 Rs Travel Time Distributions to pointA. 44
4.13 Rz Travel Time Distributions to pointB. 44
4.14 R3 Travel Time Distributions to pointC. 45
4.15 R3 Travel Time Distributions to pointD. 46

4.16 Distribution ofR;’s travel times to poinB in a static environ-
ment, over 132 path following experiments. The line shoves th
fitted log-logistic distribution. The goodness of fit acdogito
Kolmogorov-Smirnov testis0.0565. 51
4.17 Measured minimal travel time versus fitted shift. 51

6.1

7.1
7.2
7.3
7.4

8.1
8.2
8.3
8.4
8.5
8.6
8.7

A Behavior graph for simple SBC control. Each robot runswa

local copy of this graph. Node names appear at the top of each
node above. Other text refers to names of conditions andqotst
utilized in the different nodes, and described in the papgows
coming out of the tab marked ‘c* are task-decomposition edge
while those coming out from the tab marked ‘n‘ are sequential

orderingedges. 61
Different control graphs for triangle formation. 68
A Behavior graph for the switching controller. 69
A Behavior graph for communication-based controller. 70
The complete Behaviorgraph. 72
The Blue-Botics Shrimps lllrobot. 74
Three shrimps robots in Stage simulator. 74
Three shrimps robots in an indoor environment. 75
Three shrimps robots in an indoor environment. 76
Three shrimps robots in an outdoor environment. 76
Three shrimps robots in an outdoor environment. 77
Three shrimps robots in an outdoor environment. 77

List of Tables

3.1
3.2

3.3

3.4

4.1
4.2

4.3
4.4

Possible cost distribution f&t; » 3 for arriving toF. 21
Robots distributions of costs to arrive at a goal. Expkctest and
expectedSoRare shown. Selecting; over R, makes sense in
practice. e 25
Robots’ distributions of costs to arrive at a goal. Expeé&oR

are shown. Selecting, overR; does not make sense, if we want

to guarantee best worst-case settings. 7. 2
The bounded cost does not minimizes the expestd®l When
shouldwereplace 28
Selected robots for targets, according to each policy. 47
The robots expected minimal cost, and expe&iefdfor the min-

imal cost of 88, while competingonpoiA 48
Selected physical robot, according to each policy. 49

The average fitness of the top three matching distribsitising
Kolmogorov-Smirnov & Anderson-Darling tests. The loweeth
number the better the distribution fits. 50

List of Algorithms

A WODN P

MinExpMaxCost(R)
MaxExpMinCost(R),

CONTROL

FUSEINFORMATIONWITHTEAMMATES v v v v v v v e e

Chapter 1
| ntroduction

In recent years there is a growing interest in multi-robgttems, where a group
of N robots are working collaboratively in order to execute aegivask. This
thesis addresses two open challenges in multi-robot sgstdrhe first (Section
1.1) is the challenge of deciding on which robot, out of a grad N robots,
should travel to a goal location, to carry out a task theres §décond (Section 1.2)
is the challenge of integrating multiple and different mudtoot controllers into a
robust system. We describe the two parts in detail below.

1.1 Selecting a Robot to Reach a Goal

A common decision problem in multi-robot settings involEiding on which
robot, out of a group oN robots, should travel to a goal location, to carry out
a task there. This decision repeats in many applicationsnutti-robot explo-
ration (e.g., deciding who should go to explore a new frajtia package delivery
robots (e.g., deciding who should go to pick up a package),immother service
robotics applications (e.g., in hospitals). In all of thessbots can plan a path
to reach their destination, in an environment that is—f@r tfost part—known
to them. Thus, in principle, they can analytically prediatit travel time to any
location.

Trivially, this decision problem can be solved greedily,d9®fecting the robot
with the shortest predicted travel time [61], or using a re&tkased allocation

scheme (see [15]). However, this ignores the inherent veeign the actual path
traversal times, due both to motion and sensing errors, Aasveultiple factors

that affect a robot’s velocity (e.g., battery level, unkmoabstacles). Solutions
that have been proposed to address these challenges insingemachine learn-
ing to better predict actual travel times under varying ¢towls [37, 66, 38], or

other path-generation techniques that provide estimatg].

A common thread through previous work is that it focuses @lasqredic-
tions; a single number that denotes the expected travelfomeach robot. Un-
fortunately, scalar predictions hide important inforroatabout the uncertainty in
the predictions. In particular, a scalar denoting expectst ignores information
about the distribution of possible costs, best- and wasecosts, etc. As aresult,
guarantees on the cost of task execution are not possible.

For instance, supposed that we must send one of two robotaitget location
X. RobotA’s path toX takes 100 seconds, through a free corridor. But if the
corridor is busy with traffic (a rare occurrence), it may taketo 200. In contrast,
robot B’s travel time is always 150 seconds, through a specialieedice way.
Since the corridor is normally clear, we might choose robétr the task. But if
we wanted to absolutely guarantee delivery within 150 sdspmwe would choose
robotB. Note that if we only know the expected (i.e., mean) travektiwe cannot
make the necessary distinction that allows this decision.

In Part | of this thesis, we make several contributions tddtass the challenge
involved in selecting a robot to go to a target location, gitleat each robot has a
distribution over predicted travel times: First, we briogiear economic decision
theory that distinguishes between different selectioticpesd, based onisk: risk
averse, risk seeking, risk neutral, and bounded-risk 8efecSecond, we show
that under some conditions, the selected robot may stilbe@treasonable choice
in practice. We thus introduce the usesgufcial regret(the difference between
the actual travel time by the selected robot, and the hypiodig¢ime of another
robot) to augment decision-making. Social regret is iresplyy economic notions
of regret, though the definitions differ.

Then, we carry out experiments in simulation and with rebbts, to demon-
strate the usefulness of the selection procedures undexoela settings. We em-
pirically demonstrate that even under static conditionthefenvironment, when

it is completely known to the robots, sensor and actuatamretleads to signif-
icant variance in the execution of path-following tasks.isTvariance leads to
non-trivial distribution of costs, which in turn necess#s reasoning about the
different optimization criteria when making the selectimtween robots. Finally,
we show empirically that travel time distributions haveeating characteristics
(specifically, they fit extreme value distributions).

The work reported in this part has been published in:

e Meytal Traub, Gal A. Kaminka and Noa Agmon. 20M/ho Goes there?
Using Social Regret to Select a Robot to Reach a GlvaProceedings of
the International Conference on Autonomous Agents and ket Sys-
tems (AAMAS-2011) (Full paper).

1.2 Integrating Redundant Multi-Robot Formation
Controllersfor Robustness

Multi-robot formation maintenance is of increasing insit® robotics researchers
(as a canonical research problem), and to robot systemebsil@.g., for un-
manned convoys). In formation maintenance, the goal is fgroap of robots
to move while maintaining relative positions with respeceach other (typically
describing a specific geometric shape).

Indeed, there exists vast literature on various technifpreaintaining for-
mations in a variety of settings, and for a variety of robothis includes de-
tailed discussions of separation-bearing control (SBC) 125,13], separation-
separation control (SSC) [25, 14, 13], the use of dead-rengoend communi-
cations [23], and more. Different controllers can be usedifferent settings;
they have advantages and disadvantages which can compleawtrnother. How-
ever, little attention has been given to the possibility sihg multiple formation
controllers, all integrated together for greater formatiobustness.

Unfortunately, integrating multiple controllers togethe not an easy task.
Within each type of multi-robot controller ,each robot exiss its own individ-
ual controller, and the formation is created by the disteduexecution of the
individual controllers. To be effective, the selection loé individual controllers,

10

and their parameters (e.g., which robot is following whomistrbe coordinated.
Moreover, if multiple multi-robot (joint) control schemexist, then the robots
must also coordinate their selection, so that the same sleselected by all
robots, at the same time.

We tackle these key challenges in integration, that of je@lection and ex-
ecution of an agread upon multi-robot controller, at the eséime. We demon-
strate how to utilize a teamwork software engine to autortfasgoint selection.
Teamwork software (such as BITE [44, 45] or CogniTAO [11]) aMosharing of
information, and in particular allows synchronous joirestion of controllers for
execution.

Its use in robotics has been reported before [44, 45], butawotsing on for-
mation maintenance or integration of different controlestles. Here, we describe
in detail how such software significantly eases the devetgnintegration, and
execution of multi-robot formation controllers.

Building on the ability to jointly select and execute a distited multi-robot
controller, we describe a formation maintenance systerigtwhtegrates together
several different formation-maintenance controllersdgogater robustness. The
robots jointly switch between different controllers, sotasaddress intermittent
failures in sensing or communications. As a result, rolesgrof the formation
increases. Moreover, the robots—now acting as a team—mdgporobot death
failures: when one robot fails, the others stop. We dematesthe capabilities of
the system using real and simulated robots.

11

Part |

Who Goes There? Selecting a Robot
to Reach a Goal Using Social Regret

12

A common decision problem in multi-robot applications ilwes deciding on
which robot, out of a group dfl robots, should travel to a goal location, to carry
out a task there. Trivially, this decision problem can beadigreedily, by select-
ing the robot with the shortest expected travel time. Howes ignores the in-
herent uncertainty in path traversal times; we may prefebatrthat is slower (but
always takes the same time), over a robot that is expectezhtirthe goal faster,
but on occasion takes a very long time to arrive. We make akeentributions
that address this challenge. First, we bring to bear ecandagision-making the-
ory, to distinguish between different selection policieassed on risk (risk averse,
risk seeking, etc.). Second, we introdusxgcial regret(the difference between
the actual travel time by the selected robot, and the hypiodidime of other
robots) to augment decision-making in practice. Then, weyaaut experiments
in simulation and with real robots, to demonstrate the use&s of the selection

procedures under real-world settings, and find that traxed-distributions have
repeating characteristics.

13

Chapter 2
Background: Choosing a Robot

A common decision problem in multi-robot settings invohgeiding on which
robot, out of a group oN robots, should travel to a goal location, to carry out
a task there. This decision repeats in many applicationsnuti-robot explo-
ration (e.g., deciding who should go to explore a new frajtia package delivery
robots (e.g., deciding who should go to pick up a package),imother service
robotics applications (e.g., in hospitals). In all of thessbots can plan a path
to reach their destination, in an environment that is—fer thost part—known
to them. Thus, in principle, they can analytically predlatit travel time to any
location.

Trivially, this decision problem can be solved greedily,9®}ecting the robot
with the shortest predicted travel time [61], or using a re&tkased allocation
scheme (see [15]). However, this ignores the inherentvegign the actual path
traversal times, due both to motion and sensing errors, Aasveultiple factors
that affect a robot’s velocity (e.g., battery level, unkmoabstacles). Solutions
that have been proposed to address these challenges insingemnachine learn-
ing to better predict actual travel times under varying ¢towls [37, 66, 38], or
other path-generation techniques that provide estimatg|.

A common thread through previous work is that it focuses @lasqredic-
tions; a single number that denotes the expected travelfomeach robot. Un-
fortunately, scalar predictions hide important inforroatabout the uncertainty in
the predictions. In particular, a scalar denoting expectet ignores information

14

about the distribution of possible costs, best- and waasecosts, etc. As aresult,
guarantees on the cost of task execution are not possible.

Section 2.1 describes the related work on task cost prediethile Section
2.2 address the related work on market based techniques

2.1 Task Cost Prediction

There have been several investigations that attempt tagbtealvel time or related
costs. To the best of our knowledge, none addressed cong#tbutions.

Bobrow [6] presented an algorithm using B-spline polynomiatgyenerating
optimized paths for a three degrees of freedom elbow typetrioban environ-
ment which contains obstacles. The algorithm requiresdime gisplacement as
a function of the path parametrization, and estimates the tif execution.

Heero et al. [38] present a method for learning the shorist ip a partially-
known environment by using a rectangular grid-based map.e&oh path they
saved four parameters: number of re-plans, travel timeekidistance and devia-
tion from the originally pre-planned path. According toitregorithm, when an
unknown path need to be followed (i.e. that does not appetireilknown paths
list) then the path is being chosen by the shortest distanoe the robot position
to the goal and the parameters are being saved for this néwlp#te robot need
to reach a goal that already have been learned than the oheahgitiowest re-
planning is being chosen. But the learning is path-specifianges in the start or
end point requires learning the new path from scratch. Euntbre, the method
used the distance and time without considering the errdisimobot movements
and sensors which were removed from the training data.

Chaudhry [10] presented an algorithm for generating patmgusatrix rep-
resentation of the robot’s previous path traversals. Netvgpare created by ap-
plying transformations to the matrix, given the new pathuregments. Both in-
vestigations use the previous experiences to generatd tnane predictions.

Sofman et al. [62] demonstrated an approach for learningsSan distribu-
tions associated with the local environments of the rolwoiriprove navigation
and the travel speed. They use the models to generalize temamnments. The
learning process is done using Bayesian probabilistic freorike But although

15

the model is represented as distribution, it is being mabatea Gaussian and the
calculations are being done using the mean and varianceedb#tussian while
our distributions are heavy tailed distributions. They d¢ learn travel time dis-
tributions, and in any case as we show, travel time distiobgtare not Gaussian.

A related—though inverse—problem to ours is the problem tadosing a
path, out ofk possible paths, for a single robot to reach a goal locatioaigi
and Veloso developed ROGUE [37]. It learns situation-dépehrules based on
the success or failure in carrying out its tasks, and in galdr, learns to take
different paths depending on the time of day, expected ugbeotorridor, etc.
ROUGE learns these situated-dependent cost predictiorgdyining the mean
costs of travel for given locations. Thurn et al. developd®EFRVA, an interac-
tive tour guide robot for the Smithsonian museum [66]. ItcUB®OMDP methods
to learn and plan its motion. The use of POMDP is similar torikk-neutral
policy, one of a number we present in this chapter.

Our notion of regret is inspired by—but different than—oo of regret in
economics. Economic regret were introduced by Bell [4] and-bgmes and
Sugden [52], who concluded that people do not necessarikimiee their ex-
pected utility, but also consider the possible loss theyalleng to accept from
making a choice. They defined regret as a symmetric functiibim rgspect to
two choices: choosing rather thamB (and the associated gain/loss depending
on the outcome) minus the gain/loss from chood®n@ther tharA. In our case
we calculate the regret with respect to all other choicestha comparison be-
tween the symmetric cases is done after the calculatiorcéhenr regret function
is asymmetric).

Foster and Vohra [26] discussed regret in online decisiakiny. Here, the
goal is to choose a series of actions that will have minimatage loss with re-
spect to the possible world’s states, based on the previatessof the world. It
considers decision schemes, according to which decisiensiade along time
(decision functions). The internal regret of a scheme is haweh one will lose
while choosing according to this scheme in different wotidess. The external re-
gret is how much one will lose when comparing choices of se&wiand scheme
B. Our definition of regret is similar to the definition of inted regret, as we do
not compare between different decision schemes, but mageex@ computation

16

as for how much we will be sorry for making a certain choicéwéspect to other
possible outcomes. However we evaluate with respect tortimpilities of costs,
rather than on a limited history over time.

2.2 Market-Based Techniques

Market-based methods are sometimes used to assigningsrubtdasks (e.g., a
goal location to be reached; see [15] for a survey). In géni@se methods rely
on scalar cost estimates, and do not utilize informatioruabavel cost distribu-
tions. However, they do address self-interest on the patttefobots, while in
our work we assume robots are cooperative and truthful. igostral. [48] uses a
regret function, different from ours, to improve such aoicsi.

In task allocation using market-based approaches, eachcomputes its cost
and encapsulates it in the bid. The bids are being sent tattimaeer whose duty
is to choose the best option according to the bids.

Moreover, some frameworks for task allocation using mabested tech-
nigues have been implemented. The frameworks deals witinateed and dis-
tributed planning for the task allocation.

Dias et al. [20] dealt with dynamic environment in the cohtEhcommunica-
tion problems, partial robot malfunction and robot deatit,they did not handle
the problem caused by the uncertainty of the environmerause of noise and
changes in the environment. Zlot et al [68] worked on solharploration prob-
lem using market-based approach, but their cost functioelé&ing between the
robot resources by using the distance that the robots isngassreach the goal.
Their algorithm deals with communication problems but tHeyot pay attention
to the uncertainty in the distance measurements of thespantl therefore do not
handle the case of wrong price estimation. Tradebot [18],[26] [17] is a dis-
tributed mechanism framework which in some cases changmgiechanism to
a centralized mechanism in order to improve the complexitytae efficiency of
the solution, but this framework as well works on a given tasét cost functions.
Jones et al [41] have worked on the case of pickup robots tearg market-based
approach in atreasure hunt domain. They tests their workjusiadebot, but they
as well used the distance that the robot requires to movesao#t function.

17

Gerkey and Mataric [28] presented a taxonomy for task afiosabased on
scalar costs which were calculated using weights betweeanpeers of the ob-
jective function. They did not deal with distribution of ¢ssin another case [31]
they compose a sensor-actuator network while in this nétwa goals would be
achieved using market-based approach. But they made ariexglie that the
cost should be a metric cost and left the question of whatascdst as an open
guestion. MURDOCH [30] is a distributed framework which implents market-
based approach using negotiation between the robots. Buostefunction is
given to the framework according to the problem, therefbey tare not dealing
with the noise of the environment. In the experiments whieieandone using this
framework, the cost function was build using the distanoenfthe goal position
to the robot according to the image which was acquired froenctmera. In the
framework experiment the bid is a scalar and there is nortresat to the sensors
noise.

Sheng et al. [60] proposed a distributed algorithm for ara aeploration
problem using bidding. But they used this mechanism in omlehbose the best
choice from the options that were given. In their proposep@thm they are
counting on perfect sensing and therefore do not take caresthkes because of
sensing errors.

Simmons et al. [61] proposed an algorithm for coordinatgulaation using
market-based approach, where the robots send array of diideofitiers in the
map to explore, and the auctioneer chose the winning robotdes those who
offered the best offer for any frontier. The bids are corded by the distance
between the robots and the frontiers. But they too did notesddthe effects of
sensing and location-estimation errors.

Bererton et al [5] developed a method for solving path plagrproblems
using loosely coupled MDP. But they still using market-baapproach, and they
did not use any limit on the mistakes of the algorithm.

Hoplites [43] chooses between negotiation mechanisms assiye mecha-
nism in order to give the best solution to the given task. Batt#dsk and the bid
function is given to the framework. The framework does natdie the cost and
utility functions at all.

M+ [8] is an implementation of Contract Net protocol for tafloeation prob-

18

lem. Botelho and Alami send a list of attributes and constsatio fulfill by the
robots that wants to participate in the auction, but they atodeal with the cost
estimation of the robots bids.

Shehory and Kraus [59] showed an algorithm that allocatslsstéo coali-
tions of autonomous agents. They used market-based approader to decide
which task to allocate to which coalition, and showed how diggamic of the
environment effects on the size of the group and therefortherbids that were
offered. But they used the market-based approach for coadinf self-interested
agents, where the relation between the coalitions is nghe@bive. Kraus [49]
also showed cases where the agents are self interesteddpgratve and there-
fore may use market-based approaches in order to allocke. tBut those cases
do not fit multi-robot teams because the cost of two robotsptetimg a mission
in the same conditions is equal and not different as in thescdsat we discus.

19

Chapter 3
Selecting a Robot

The problem is to select a robB, out of a group oN robotsRy, ... Ry, to carry
out a task, while minimizing the cost. We assume that eachtroén estimate
its cost of task execution with some discrete probabilistribution overk cost
valuescy, .. ., C. Each roboR; has a vector of sizk, < p}, p), ..., p| > such that

pij Is the probability that the cost of task execution (traveldj in our case) by
robotR; is c; andz'j‘:1 pij =1 (note thaipij can be equal to 0). We use this discrete
distribution formalization for simplicity, in lieu of theamtinuous distribution case
which is more natural for estimated travel times. Note &isd ¢ach robot’s travel
time is an independent random variable, i.e., the prolighol robot R, having
actual cost ot; does not depend on the probability of some other robot having
this or other cost.

El L o -;

Figure 3.1: Three robots in exploration task. Map was gdadnasing laser-based
SLAM.

20

We use the following running example throughout this secti¢-igure 3.1
shows three robot§R;, Ry, Rs}. One of these robots is to be sent to explore a
new frontier,F;, shown in the bottom right corner (circled). Each robot ¢arcds
a path (not shown) to the new location, and reports a digtobwver estimated
travel times. As we show in the experiments (Section 4.19nem a completely
static environment (let alone in dynamic environmentg)sseand motion uncer-
tainties cause some variance in this distribution.

Suppose the travel time distributions reported by the 3 tolboe as given
in Table 3.1. Each row shows the distribution of a differestiat, with different
columns denoting different costs. The last column showsthan (expected) cost
for each robot. Given different decision objectives, we ldothoose different
robots to go td~;. For instanceRy is most likely to reach, faster (has a 87%
chance of reachin§ in 86 seconds). BuR, may also take up to 134 seconds
for the same path. If we wanted to guarantee arrival withinir2utes, we would
chooseRs.

| [c1=86 [c2=98 [c3=110 [c;=122 [cs=134 [E(C) |
Rt | pi=0 pi=06 | pi=023[pi=017 [pi=0 10484
R. | pi=087 [pf=003 | pj=0 |[p;j=0 |[pZ=01 |9L16
Re | p3—=06 |pi=022|pi=01 |p;=008|pi=0 9392

Table 3.1: Possible cost distribution figg » 3 for arriving toF.

3.1 Risk-Based Selection

Choosing the roboR: € {Ry,...,Ry} to perform the given task is dependent on
a decision policy, which prefers robots—all else being ¢égtmased on the risk
involved. For instance, if we have a fixed amount of time tol@vga given area,
we may want to select a robot that will definitely reach itgédmwithin the time
allotted. On the other hand, we may decide to take more iiigksng to reach the
target faster than expected.

Such decision policies are well known in economic deciskmoty. We dis-
tinguish four well-defined policies, and outline the satattlgorithm for each:

1. Minimize the expected travel time (risk neutral selatti®ection 3.1.1).

21

2. Minimize the expected maximal travel time (risk averded®n, Section
3.1.2).

3. Maximize the expected minimal travel time (risk seekialgstion, Section
3.1.3).

4. Bound the travel time by a constahtbounded risk, Section 3.1.4).

3.1.1 Risk-Neutral Selection

Risk-neutral selection implies that we select the robotrthiatmizes the expected
(mean) travel time. To do this, we compute the mean of evéagti®distribution,
and choose the robot whose mean is minimal
k
MIinExpc = argmin{ $ pfci}

1<a<N &

where in case of a tie, we choose arbitrarily.

3.1.2 Risk-Averse Selection

In some cases we want to make sure that the worst-case sceraaldressed first,
and that we have an absolute guarantee that the task willrbeataut within a
given amount of time. To do this, we need to look at the robdisse greatest
time of arrival is minimal. Of course, the probability of aatly taking this long
time must also be taken into account. Thus what we want is tbthe robot
which minimizes the expected maximal cost. This is done go#ithm 1.

Algorithm 1 MinExpMaxCost(R)
Require: C={cy,C,...,c},R={Ry,Ra...,Rn}
v+ k
Robotgst < {R1,Re,...,Rn}
while 3p} = pl), R}, R, € Robotsgs; do
Robotgst «+ argmirh,—eRobotﬁst{p{/}
v—v—-1 .
Feturn :argmirg, crobots;g 1PV}

22

Note that ties can be broken in different ways. For instam@can choose
the robot with the lower expected time among those that aoened.

We use Table 3.1 to illustrate. The algorithm creates a figtllahe robots
that available to execute the tasRi{ R>, Rs}, and starts the run with the highest
cost (134). It looks for two robots with the same probabitiyarrive the goal
in cost 134. In this examplR; andR; have the same probabilitypf = p2 = 0),
so the loop will be entered. The algorithm choose the robdtis the minimal
probability to execute the task in cost 134 by argmin. By daingll the robots
with probability higher than O will be removed from the lisg. robotR,. The
algorithm then examines the next highest cost, 122. Whilkitgpon the remain-
ing robots Ry, R3}, their probability to arrive the target is different, tledor the
loop will not be entered and the robot with the lowest proligitio use this cost
will be returned:Rs (p3 = 0.17 > p; = 0.08).

3.1.3 Risk Seeking Selection

The opposite policy to being risk averse is to be risk seekinghope for the
best possible travel time of any of the robots. Here the seleds exactly the
inverse of the above: We select the robot that maximizes xpeated minimal
cost. Algorithm 2 is thus the inversion of Algorithm 1.

Algorithm 2 MaxExpMinCost(R)
Require: C={cy,C,...,c},R={R1,Ra...,Rn}
ve1
Robotgst < {R1,Rp,...,Rn}
while 3p} = pl, R}, R, € Robotgs; do
Robotgst + argma&.eRobotﬁst{p{,}
V—vVv+1

return :argmax crobots;q 1PV}

We again use Table 3.1 to illustrate. The algorithm stamsrtin with the
lowest cost, i.e. 86. It looks for two robots with the samelaaility to arrive the
goal in cost 86. In this example, there is no two such robatd,so it does not
enter the loop and return the robot with the highest prolighid arrive the goal
in this costR; (pj = 0 < p3 = 0.6 < pz = 0.87).

23

3.1.4 Bounded-Risk Selection

Finally, we may want to choose the robot that maximizes toéability of reach-
ing the target within some limited amount of time. This isfeliént from guar-
anteeing arrival within this time; it would still be possgthat in the worst case,
travel time will be longer. Nevertheless, we want to impriise€hances of success
within the time allotted.

Suppose we are given a time linfit We can then calculate for each robot the
cumulative probability that its travel time be smaller tAigrand choose the robot
that maximizes this probability.

For each roboR,, we will calculate the following probability:

PC<=T]= pic;
ci<—Z,cieC -

We will choose the robot that maximize the result of this ¢iguma Note, that if
only one robot have distribution of cost bellow the consttdren it will be chosen
with probability of 1. If there is more than one robot that fitss, then we can
select based on any of the other criteria (e.g., the bessasking robot out of the
candidates that fit the boud.

3.2 Regretting the Selection

Despite the economic elegance of the selection policiesitbes above, choosing
the robot according to the risk type will not always give ugasonable selection

in practice. To see this, consider the following case (Tal#¢. Here, we apply the
risk-averse policy, and seleRp: It is guaranteed to reach the goal in 199 seconds.
However, unless this risk-averseness is somehow extrestrédy, Ry would have
been a more reasonable choice: 90% of the time it would haahes the goal in

1 second. And even when it fails, it would do it in 200 secords\ere 1 second
more tharR,.

Note that this is not always the case: It depends very muchewdlues;.
If the ¢; would have been,2, 200 rather than , 199,200, our deliberation would

24

’ ‘ ci=1 ‘ C = 199 ‘ C3 = 200 ‘ E(C) ‘ ESOR ‘
Ry pl=09 pL=0 pL=01 209 |01
Ry pP2=0 =1 p2=0 199 178.2

Table 3.2: Robots distributions of costs to arrive at a goatpdeted cost and
expectedSoRare shown. SelectinB; overR, makes sense in practice.

not have reached the same conclusion, and the selectRnvwduld have held.

To conduct this deliberation formally, we define thecial regretfunction,
which measures, intuitively, the post-hoc payment (ingtdawne) that we make,
given the selected robot.

Social RegreSoRis defined as the difference between #wtual costc, of
the task executed by robBf;, and the minimal cost of task execution in case some
other robot would have executed the task in lower cost. lerotfords, looking
at it from the team’s perspective: How bad did the team do losimg robot
R, to perform the task, giveRy’s actual cost was;. Formally, SoRof robot R,
executing a task with actual castis SORRy, ¢r) = maX; (¢ —Cj, r > j).

Since we do not knovoRfor any specific selection (it is by definition hy-
pothetical), we compute thexpected SoRor each robotR,, given all other
robots, and all possible outcomes. The expected sociatrégm choosingR;,
EsoRRa). is the probability that some other robot will execute trsktaith lower
cost multiplied by the difference between the costs. We tetite probability
that the actuaminimal cost of task execution by some robot other tf&ns ¢
by PM;(Rs). Note that byminimal cost we mean that there is no other robot
that executed the task with cast j < i, and that at least one robot executed the
task with cost;. ThereforeEgogRa) = p§ x 0+ p5 x PM(Ra)(C2 — €1) + p§
[PM1(Ra)(c3 —c1) + PM32(Ry)(c3 —C2)] + ..., and formally

k i—1
EsoRRa) = i; P x j;P'V'j (Ra)(Ci —¢j)

In order to complete the definition, it is necessary to detee®®M; (Ra), i.e.,
the probability that some rob&%, 1 < o <N, o # awill have minimal cost ot;.
This is the probability that all robots have minimal costhegthanc;_; minus
the probability that all robots have minimal cost highemthg i.e.,EgggRa) =

25

i—1 N,h#a k

k N.h£a k
YRy el [(3= 13 ol
i= i= =1 I=]

h=1 I=)j+1

3.2.1 When Should We Overrule The Selection?

Intuitively, EgogRa) measures the potential cost of selectiRgto carry out a
task, given the estimated costs of its peers. Suppose thhavwetwo robotsR
andR;. What we want, is to compare the difference in the expe8@of the
two robots, to the gain from choosing one over the other. iff ¢fain is smaller
than the difference in expect&bR then we should consider switching between
them.

To illustrate, supposB; has been selected by some policy, and has a predicted
travel timeg; (this is, for instance, its maximal time). Suppose we wagbiasider
switching to a different roboR;, with predicted cost;. In order to compute
the profit form switching two robots we will calculate the tdisce between the
expectedSoRof R andR;, EgggR) — EgoRRj). We compare this value to
the difference in costs betwe&h andR;, which is €j — ¢;), using the following
function.

The Switch functiorSwFis defined as follows:

SwE— { L if (EsoRR) ~ EsoRRy) > (6~ @)
0 otherwise

If the SwFis 1, the social regret of using is greater than the expected gain
of using it, and we should consider switching our selectioikf instead. We
examine this in different selection policies below.

Example: Minimizethe expected maximal cost Table 3.2 above describes the
cost distributions for two robot$3; andRy. As previously discussed, strict risk-
averse policy would sele&b for the task, since it is guaranteed to reach the target
in 199 seconds. However, by risking just one additional sdcwe actually have
much better average performance if we chd@se

SwFidentifies this opportunity. The difference betwesnR;’s cost) andc,
(Ro's cost) is 1, while the distance between gy R2) andEgogR1) is 178.1.

26

ThusSweFis 1, and we should consider switching our selection to theratobot.

Example:Maximize the expected minimal cost We use another example, this
time of risk-seeking policy, to illustrate further. In trssenario we try to reach
the best performances but not necessarily we will chooseothat with the best
expected regret, i.e., a case where there is a robot wittgarlaninimal cost but
with a lower expecte@oR.

Table 3.3 shows distribution of costs of two robd®s,andR,. According to
the risk-seeking policy describe above, the chosen robeteoute the task would
be R;. But althoughR>'s minimal cost is higher than the minimal costi{, in
most of the caseR; will preform the task in 200 seconds whife will always
perform the task in 2 seconds. Therefore we will prefer tagwour chosen robot
to beR, and notR;.

Again, SwFcan help us make this decision. By looking on the distance be-
tween the two minimal costs of the robot, we can see that c; = 4, while
the distance between the expec&aRis 175.1. ThusSwF= 1, and we should
consider switching t&, as the selected robot.

’ ‘Clzl ‘02—5 ‘C3=200 ‘ESOR
R1 p% =0.1 p% =0 p% =0.9 1755
R pZ=0 p5=1 p3=0 0.4

Table 3.3: Robots’ distributions of costs to arrive at a gdakpectedSoRare
shown. Selectindr, over R; does not make sense, if we want to guarantee best
worst-case settings.

Example: Switching in the case of a bounded risk Using a bounded-risk pol-
icy, we normally select the risk the is most likely to carryt the task within the
time allotted. But by bounding the cost, we are not boundimegédgret function.

In other words, choosing the best robot given the botlindoes not reduce our
expectedSoRfor the bounded cost, and we can still choose to switch based o
SwE

27

For example, table 3.2.1 shows distributions of costs of telmts,R; and
R>. A bound of T = 7, yields selectiomr; (with cumulative likelihood @), over
Ro (cumulative likelihood 0). But the expect&@bRof R; is much higher that
the expectedoRof Ry. Indeed, using th&wFwe might consider to change the
constanfT to be higher. By changing the constanfrom 7 to 10,R, will have
higher probability tharfr; to execute the task under the new bound. We will pay 3
in the bound but gain 70.6 in the expected reg$ K (R1)) — EgorR2)). The
SwFwillbe 1 (706 > 3).

| =1 [c2=5 [cs=10 [c1=100 |EgeR |
Ry pi=0.1 p;=0.1 p:i=0 p;=0.8 72
R, [pf=0 p;=0 p3=1 ;=0 14

Table 3.4: The bounded cost does not minimizes the exp&RdwWhen should
we replace

3.2.2 A Short-Cut to Deter mining SwF

The computation oEggRfor each robot, which is necessary whenever we select
robots based on a policy different from risk-neutral setettis tedious, and po-
tentially time-consuming if the distribution’s domaingadarge, or there are many
robots.

Thankfully, it turns out that we do not need to compig,rdirectly. To
computeSWF, we want the differencEgyR) — EgorRj) for the two robots
Ri,R;j. It turns out that this difference is exactly the differemeexpected costs
of the two robots, which is much easier to compute:

Theorem 1. The difference between the expected costs of any two robots in a
given team of N robot§Ry, ..., Ry} (each with a discrete probability distribution
over possible costs;c...,cy) is equal to the distance between the expected SoR
of the same robots.

Proof. Let Ry and R, be two robots in a team, with discrete probability dis-
tribution {p}, p3,..., pt} and {p?,p3,...,p2} (respectively) over possible costs

28

C1,...,C Of @ given task. We prove thakX ; ptci — ¥, p?ci = EgoR(R1) —

EsorRe).

EgoRR1), can be represented as,
5K pil{zlj_:ll[(ci - Cj)(ﬂ”:z(zr:j p|h_) - ﬂ”:z(zrzj+1 P}
Similarly, Egor(Rz) = St o{PA(Z\ZAl(G — ci) (T PO (MThzs(Ti PY) —
(35=j+1 P%) ﬂ”:s(zr:jﬂ)}

ThereforEgorR1) —EgoRR2)
= Z!‘:z'pil{fj;ll[(ci - Cj)(ﬂﬁ:z(zr:j(pr)) - ﬂ”:z(zr:j+1 I —
SEo Py Al - ci) (T3 PO (Mh=a(Zis; PM) -
(i1 PO (Mhes(Tija PO} |
= ¥Eopte Moo (3 P — e Mo (Ea o) + S e (Mhea (5 e) —
HR':z(ZI‘:_,-)] - Zg(zg prlc (zlj(:l p}) I'lh':3<z',-‘:1 p?) -
ci<kz?_1p'j)<nﬁ_3<sz_i)+ AT PO Mss (i1 PY)
(3155 P (Mh=a(31% 1)) |
= IoPHaMo() — aMha(Ep) + 2ioici(Miia(Si P -
I‘I_h':z(zl‘:,- M) — Sopiais(l) — (3 phNhs(is P+
S G (T PD TASs(I 0 P — (315 PD MAZa(SHe o)
= 31 o pHei— i MR 2 (3= P + 3 -1 6 (MA2(EH 2 P — MI2(SH)]~
5o PPl —ai(S i P MAa(5 P + 5216 (212 PP NI a(EH 1 P —
(3155 PP Mhea(Sis;)] _
= 3P + S —pra MLa(S 5o P)) + 3io 3121 pie MR 2(5f P —
S5 o1 Phici M-2(xf o) + 5o~ PG +
SKo pri (5 PP MAzs (i P — SHo 33 PPei (S 1 P MIRSs (310 P +
Sio 31 PPei(2H) P Mhos(Zi P
= Sfopla - Iopa + TSN -plapi M)+
SEo zij_:]i Zij_:ll Prei P Mies(ZiC i P — 31s Z‘,-;ll(zl‘:,- prci pY) Mh=s(ie; P+
S a3 PP MIN-a(2 i P — i 23 (51 joa P PP R-a(Z e P +
12 32 (I pieip) Mhea(Sie; P

By opening the equation,

= SKopia = YiopPa — pePsMThes(SiaP) -
P3C2P3 Mh=a(3 o P) — - — P3caPE Mh-a(3 52 PY) — P3cap3 Mh-a(3 3 P}) —

29

PP A MR s(Z5aP]) — o — PRePEMhs(EfsP) — . -

PiclKI PR Mh_a(3 s)+ p3c1p3 Mhos(Sf o P + pacip3 MR_s(F1 o o) + -

P3C1PE Mh=a(T12 P + P3c1P3 Mh=a(SiC2) + Pacip Mh=s(Sio P +

P3C1PE Mh-3(31"2 P") + P3C2P3 MTh-3(31 "3 P") + P3C2P3 Mh-a(3 s P +

P3C2P Mh- 3(Z| 3PP + -+ PRePE Mhos (Sl 2p|)+pk01p2|_|h 3(2| 2P
3(

TR b h

-+ PRCPEMTha(S1 2 P + PRc2P3Mh_a(S1 s Pl + PEc2pa [Th- Zl N4

)
) 3()
+pﬁ02pk|_|h 3(Zs P + .- + prc-1PE 5P — PacaPg M s (S B —
P3C1P5 MTh-3(31<1 P) — - — P3ctPE Mh=a(Tiea) — 3Clp1|_|h (T p) -
P3C1P3Mh_a(T1e P — - — P3cePE Mh=a(Tio1) — P3caps Mha(S 1o P —
P3C2P3Mhoa(TioP) — o — PRPEMMhes(Tiop) - o -
PkC1PIMh-s(S11) — pkclpzﬂh 3(Z1app) — -—p&clp%rlh‘zs(z.kzlp{‘)—
PkC2P3 Mh- 3(Z| 2p|) ka2p3|_|h 3(T1o P — p|<02|0|<|_|k'\1l 3T P —
— prokcaPEaMhea(T 1)~ Proc1PEMhes(Sioe P +
p202|°2|_|h 3(21 2p1)+p3°2p2|_|h 3(21 2p1>+ "‘kaszﬂh 3(21 2p,)
P3CaP3 Mh_a(3 P}) + P2CaP3 M a(T s P}) + - + PecaP3 Mh_a(3 3 P} +
.+ PEclK PE MR=3(PR) — P3C1P3 MTh_a(S 12) — p%clp% Mhea(Zia P —
Phc1P3 Mha(Zf 2) — PEcLP3 MR a(S1 2 P) — PRcaPs MRLa(Sf 2 P) — - —
Pkc1P3 Mha(Zf 2) — P3c2P3MTR_s(S s Pf) — Pic2P3 AL 3(z|k P = -
PeC2P3 Mhoa(31 3P — - — PIC1PE M a(3 12 P) — pZClpknh 3T P -
— prcaPEMh_a(S1 o B — P3c2PE Mh-s(S s B — p3°2pk Mhea(Xisp) —
— PPk Mhs(S1 <3 PP — - — Pk_1CGc- 1P} Hﬁzswk) PicCk-1P; Th-s(PY)
pictP3Mha(S11 PY) + P3ctP3[Tha(Si e P + - + PiceP3[Tha(Zi e P
PIC1P3 Mhoa(31C1) + P3C1P3 Ma(X 11) + - + PRC1P3 Mhoa(Z1C 1 P)
P2C2P3 Mh- 3(Z| 2p|)+p302p3|_|h 3T 2F’|)7L -+ PrC2P3 M- a(Z1 2 P)
: + plapEMhss(Tieap) + praPEMhis(Tieap) +
Pkc1Pi Mhoa(Xioa) + PaC2PRMha(Zi 2P + PEC2PiThoa(Si2P)
+ PRC2PRMhs(Zi2P) + -+ PleaSk1PRMMR (S 1 P
PiCk—1PR A a(Zf k1 P)
And by minimization of the elements,
= Sopla - Stopfa + 0 Sopiap (R -
S o preips I'Iﬁzs(z'j‘zl p})
= 31 2 PiCi — 512 PYCi + PrCL 5 o B — PECLT 2 Pk
= Si o ple — 3, pPei + prea(1— p?) — piea(1— pp)

+ o+ o+ o+ + + o+

30

= 31 2 Piti — 12 PYCi + pic1 — PreLpipic + —Picip]
= y1 o pia — 3, pei + pies — pia
= ¥ Pl — i phe
Therefore the distance between the expected costs of angotwats, and the
distance between the expect®dRare equal.
O

3.2.3 Minimal Expected Cost is Safe Selection

For one of the policies we introduced, it turns out that we dbrreed to consider
regret. We prove that by minimizing the expected cost, tipeeted social regret
function, SoR is minimized as well, and thus we would not want to switch to a
different robot.

Theorem 2. Given ateam of N robotfRy, ..., Ry} each with a discrete probabil-
ity distribution over possible costg.v.., v for a given task, if we choose a robot
R: that minimizes the expected cost for the task, then the ®gsocial regret
function SoR is minimized.

Proof. Let {Ry,...,Ry_1 be a team oN robots. We will assume, without loss of
generality thaR; minimizes the executed cost of the task execution. Thezefor
particular,R; minimizes the expected cost for all the possible couplestodts in
the environment, i.e., for any given pair of rob¢®,R;) where 1<i <N -1,
the selection oR; results in a minimal cost compared to the selectioRofWe
will prove thatR; minimizes the expecte8oRfor N robots.

Let Ry be a robot that joins the task executionRifs expected cost is smaller
thanRy’s expected costEc(R1) < Ec(Rn)) (Ri’s expected cost is minimized),
then according to Theorem (Ego{R1) — EggRRn) = (Ec(R1) —Ec(Rn) <0,
i.e., the expected social regretif is minimized.

If Ry’s expected cost is bigger thay's expected costEc(Ry) > Ec(Ry))
(Rn's expected cost is minimized), then again according to Témo 1,
(EgoRR1) — EgopRv) = (Ec(R1) — Ec(Rn) > 0, i.e., the expected social re-
gret of Ry is smaller than the expected social regreR@fand of any other robot
in the team.

31

Therefore, the theorem holds fidk robots,N > 2, i.e. if we choose a robot
Rc that minimizes the expected cost for the task, then the ¢éxgesocial regret
function SoRis minimized. H

Example, table 3.2 gives travel times distributions of twbats to a goal. As
it shows in the table, if we will choose robBf by minimizing its expected cost,
we will minimizes theEggras well.

32

Chapter 4
Path Travel in Practice

We experimented with simulated and physical robots, to éxaithe travel time
distributions, and evaluate the use of social regret intmm@acWe use the results
to demonstrate in Section 4.1 that even under ideal comditimbots do indeed
have variance in the time that it takes them to travel a givath,pand that this
variance needs to be taken into account as described abeirgy those variance
we examine and evaluate in Section 4.2 the decision-malofigigs we showed
earlier. Finally in Section 4.3 we show that the travel timstributions have
distinctive shapes, and in general fit the Generalized Edr¥alue family of
distributions.

4.1 Experimentswith Robots

We used our laboratory as the environment for the expersndritst, we used
a popular open-source laser-based SLAM package, GMapp#jgtp allow the
robots to construct a map of the environment. The resulte@gkploration and
mapping process were used as the basis for the experimieistss to make sure
that all path-planning and movements were carried out usintgap with realis-
tic quality. For path planning, we useéd with a fixed 4-neighbor grid laid out
over the map. If the robot discovered an unknown obstacldhewsy, it tried
to go around the obstacle until a timeout occurred, in thegea@new path was
planned from the current location to the goal, given the méarimation about the

33

Figure 4.1: Rv400 robot.

o ¢
(5 e

.

i 2@ r.,,_!__,f"f".__

fl -W~é-;f | W

Figure 4.2: The mapped lab used in the robotics experiments.

discovered obstacle.

4.1.1 Physical Robot Experiments

We utilized the RV-400 differential-drive robots (see Higé.1) for experiments
in our lab. The RV-400 was equipped with a Hokuyu UTM-30LXdgswith
nominal range of 3@ (though in practice effective range was slightly smaller).
The RV-400 robot has an approximate sizex4@0 (width, length), and so this
was used as the grid cell-size. We kept the environmentstaith no obstacles
or other changes to the environment that are unknown to tha.ro

34

Figure 4.2 shows the environment used for the experimesitsag@ped by the
robot. We tested three paths: A shod® path (point 2 to point 3), with a narrow
pass; an 8 path (1 to 2), through open space; and &tdpath which combined
both (1 to 3). We measured the travel time in each of thesesd#ttimes.

Time

(a) 6.4m path. (b) 8mpath.

st 600 0

(c) 14m path.

Figure 4.3: RV-400 Travel Time Distributions.

Figures 4.3(a), 4.3(b), and 4.3(c) show the distributianhistogram form,
of travel time that were measured in these experiments,hi@6dm, 8m, and
14m paths. For each of the settings, the planned path was idéraied the en-
vironment kept strictly static. The associated figure shihesath traversal time

35

R_L I & R_3 L
- | g

T B
.
| i r D_ Ra—.z

Figure 4.4: The mapped simulated environment.

(horizontal axis) versus its probability (vertical axif)espite these ideal condi-
tions, the robot took varying amount of time getting to thegéd locations. This
variance is caused because of inaccuracies in the movemerseasing, which
lead to actual execution of the path to differ between rumsddition, changes to
battery power also affect the robots linear and angularciets. Indeed, Figure
4.3(b) does not include four data points that were removau the data, because
in their associated runs the robot operated with a faultiebgtand was almost
twice as slow as in the other runs.

4.1.2 Simulation Experiments

We also conducted experiments in simulation, where we dagethe number
and complexity of the paths. We utilized the Webots 3D plhssbiased robotics
simulator [54] to create the virtual world which the robotapped and navigated
as part of the experiments (see Fig. 4.4 for the resulting) mpbots has high fi-
delity, and models realistic sensor and motion errors, ademgonstrate below. In
the simulation experiments, we simulated three RV-400 t©bad their Hokuyu
lasers. The openings between the rooms are doors which werear close ac-
cording to the evaluated criteria. Minor obstacles (boxese bypassed) are not
shown. The doorway between the rooms.Brwide.

The following configurations were used in the simulationexkpents: From
every robot location, to targets locatifnB, C (9 combinations), and robokg , R3

36

to target locatio. we tested 4 obstacle settings: (i) static world (i.e., ooming
to the map); (ii) with an unknown obstacle (a box placed onglaaned path,
that can be avoided and bypassed); (iii) an unexpectedctldser blocking the
original path (if the path was through an opening); and (& tinexpected closed
doors blocking the original path, then a re-planned patlcheéthe configuration
(11 initial-target location pairs, 4 obstacle settingsywepeated 30 times. In all
the experiments the robot had a path to the last target.

A small subset of the results from the simulation experimeamnte shown in
Figures 4.5(a)—4.5(c) (the rest of the results are disddsser). These are the re-
sults for one roboR;, and for a single target poit Our intent is to demonstrate
the variance that exists even under idealized simulateditons.

Figure 4.5(a) shows the distribution of traversal timedRpffor arriving at
targetA in a static world. As seen in the figure, even for a static waltt even
under the relative noise-free world of simulation, therevasiance in traversal
time, due to motion and sensing uncertainties.

Of course, when choosing a robot for executing a task thedagahnot typ-
ically be assumed to be static. These increase the variantte iactual travel
times. Figure 4.5(b) shows the wider distribution of traatitimes when an ob-
stacle was added to the path of the robot, in 50% of 60 caseX(#xis scale is 80
to 350). This obstacle could be locally avoided (bypassau),thus only a minor
change was required to the pre-planned path. Note, thdteatlistribution of the
static environment become a part of the first bin of the newrilligion. Figure
4.5(c) shows the even wider distribution when we also take account a door
that was closed in a third of 90 cases, and which blocked tiggnat path. This
requires a new path to be planned and executed from the pberexthe closed
door was discovered, to the target location.

The results above are similar to the distributions colle@éte the other exper-
iment configurations, i.e., for other robots and other telggations. In all cases,
even for paths that involve very few heading changes, andastaoles or narrow
passages, we see distributions that require reasoning awhazh robots to select,
given the decision-maker’s policy towards risk.

Figures 4.6-4.15 show the distributions collected for ttheepexperiment con-
figurations. The figures describe the histogram as followked:static environ-

37

o0 018 \
0.04 [~ 008

|
o 0 e —

82 84 86 88 a0 92 94 96 100 160 200 250 300
X

(a) Static environment. The X axis scql® Avoidable obstacle in 50% of trials.
is 80 to 100. The X axis scale is 80 to 350.

0.64 \

048 ‘l

056 044
04

036
032
028

& ez i Z o
02
0.8

018 013
008 \

0.08
k 04 >|<’__
0 0 .

d
200 400 600 800 1000 200 400 600 800 1000
®

(c) Moving in a static environment, fagd) Moving in a static environment,
ing occasional avoidable obstacles, dacing occasional avoidable obstacles,
sometimes needing to re-plan a pabmetimes needing to re-plan a path and

The X axis scale is 80 to 1050. sometime needing to re-plan a path more
than once. The X axis scale is 80 to
1050.

Figure 4.5:R; Travel Time Distributions to point A.

ment, B - Avoidable obstacle in 50% of trials, C - Moving in atgt environment,
facing occasional avoidable obstacles, and sometimesntetaire-plan a path
and D - Moving in a static environment, facing occasionalidable obstacles,
sometimes needing to re-plan a path and sometime neediagptam a path more
than once. The X and Y axis scales are indicated under theeBgiNote, when
the robot located in the same room as the target, histogratgpes C and D do
not exist.

38

1(x)

03]
0 072
0.4 /’ 064
0.364
0551
0324
0.481
0284
024] o
0.2 0321
0.16]
0.12]
o] 0154
R .
0 - : B T ; —
100 105 110 15 120 200 400 800 800 1000
x x
(@) X: 99 t0 120. Y: 0 to 0.44. (b) X: 99 to 1150. Y: 0 to 0.86.
g
i
nes 1{ \
LEY S
07z
i 064
056
LE
0.4
0.4 0.4
5] 03z
024
021
016
01 %\ 0.08 ‘q
o i o
500 1000 1500 2000 2500 500 1000 1500 2000 2900
X x

(c) X: 9910 2625. Y: 0 to 1.

(d) X: 99-2625. Y: 0-0.83.

Figure 4.6:R; Travel Time Distributions to point B.

39

flx)

094
084
07q
0.6
05
0.4
0.3
024

0.1

N s

100 150 260 250 300 350 400 450
X

(a) X: 851t0487.5. Y: 0to 1.

\

100 200 300 400 500 600

(c) X: 8510 600. Y: 0 to 0.52.

Figure 4.7:R; Travel Time Distributions to point C.

40

m

100

(b) X: 85 to 487.5. Y: 0 to 0.68.

150

200 250

400

\

™~

s i

100

(d) X: 85 to 600. Y: 0't0 0.4.

200

E)

400

500

600

o)

0.24
0.2z

0.z
g
01E
014
01z

a1
0.08
0.08
004
0.0z

7

s
5=

135

(a) X: 130 to 153.

140
X

Y:

046
052
0.48
044

0.4
036
0.32
0.28
024

01
012
ong
004

145 150

0to 0.27.

flg

016
ong
o L ——

200 400 600 800 1000
®

(b) X:130to 1127. Y: 0 to 0.66.

|

N

e

200 400

600 a00 1000
x

(c) X:130to 1127. Y: 0to 0.59.

Figure 4.8:R; Travel Time Distributions to point D.

41

fix)

044

04
0.36
032
0.28
0.24

0.2
016
012
008
004

T—1—

) 95 100
X

105 110

(a) X: 86 to 111. Y: 0 to 0.32.

\

[

——

100 120 140 160 180 200 220 240 260
x

(c) X: 86 t0 265. Y: 0 to 0.47.

052
048
0.44

04
0.36

0.32-

- 028
0.24
02
016
012
0.08
0.04

(b) X: 8610 265. Y: 00 0.7.
|
\\—:‘:'%—1

(d) X: 86 to0 650. Y: 0 to 0.52.

Figure 4.9:R, Travel Time Distributions to point A.

42

fix)

1(x)

0524
0484

044
04

0.36]
032
028
0.24]

0.2
0.16°
0.129
0.08]

0.04

S

0.6
0.56
062
0.48
0.44

0.4
0.36

0.24
0z
016
0.12
0.08

0.04
0

|

80 70 80 90 100 110 120

x

(a) X: 54 to 127. Y: 0 to 0.82.

B0 a0 100 120 140 160 180 200 220
®

(b) X: 54 t0 230. Y: 0'to 0.6.

\

|

—

T o

\

\7

|

=

B0 80 100 120 140 160
x

180 200 220

(c) X:5410230. Y:0to 0.4.

80 120 160 200 240 280 320 360
x

(d) X: 54 to 386. Y: 0to 0.38.

Figure 4.10:R, Travel Time Distributions to point B.

052

048
0.44

04
0.6
032
028
0.24

0.2
016
012
008
0.04

] 0

fog

75 80 85 0 o5 100
x

05 110 115 420

(a) X: 75t0 121. Y: 0 to 0.54.

SEEES

80 100 120 140 160 180 200
X

(b) X: 75t0 207. Y: 0 to 0.55.

Figure 4.11:R, Travel Time Distributions to point C.

43

0.04
——
[}

112 116 120 124 128 132 136 140 144
x

(a) X: 111 to 145. Y: 0 to 0.45.

03
028
0.26
024
022

018
016
014
01z

01
ong
006
004
ooz

/

s

120

130

®

140 150

(b) X: 111 to 197. Y: 0 to 0.4

Figure 4.12:R3 Travel Time Distributions to point A.

()
i3]

: 1 |

70 80 90 100 10
x

(a) X: 63 to 145. Y: 0to 0.36.

0\

a0

100

(b) X: 63t0 156. Y: 0to 0.31.

Figure 4.13:R3 Travel Time Distributions to point B.

44

6

N

—
00 320 340

052
0.48
0.44

0.4
036
0.32
0.28
0.24

0.z
016
012
0.08
0.04

(a) X: 197 to 345. Y: 0t0 0.4.

[

Yﬁ

—

200

300 400
X

500

600

(c) X: 18410 670. Y: 0to 0.53.

fog

200 250 300
X

(b) X: 184 t0 345. Y: 0 to 0.36.

|

%

200 400 600 800 1000
®

(d) X: 184 t01220. Y:0t0 0.7.

Figure 4.14:R3 Travel Time Distributions to point C.

45

1200

o)

04 o 064
0.36 056
032

0.48
0.28
did /_ _ 04

=z

0.z = pa3z
016 B
01z

016
0.08 /
0.04] uis
u|/ [i

120 140 160 100 200 300 400 500 600 oo 800
X ®

(a) X: 100 to 180. Y: 0'to 0.44. (b) X: 100 to 800. Y: 0 to 0.68.

0.4 |[032 ,(
0.4
s 0.8
0.32 024
0.8
0z
0.24] =
016
0.2
016 012
012
0.08
0.08
004 M~
0.04 ‘tl
0 1 i
100 200 300 400 500 800 700 300 100 200 300 400 500 600 700 800
H ks

(c) X: 100 to 800. Y: 0to 0.46. (d) X: 100 to 800. Y: 0 to 0.34.

Figure 4.15:R3 Travel Time Distributions to point D.

46

4.2 Selection Based on Experiment Data

We use the collected data to execute the decision-makingig®mdescribed ear-
lier, in both the simulated and physical world. To do this, digcretized the col-
lected data into bins of approximately 25 seconds, and dhesebots according
to the different decision policies.

4.2.1 Simulation Experiments

Robots{R;, Ry, Rs} compete on reaching targeAsB,C, and robots{R;, Rz} on
targetD. Table 4.1 shows the chosen robot using each of the decisiangs.

MIinEXxpc MinExpMax MaxExpMirg
(risk-neutral) (risk-averse) (risk-seeking)
A R3 R3 Ry
B R3 R3 R,
C R, R, Ry
D Ri Rs Rs

Table 4.1: Selected robots for targets, according to ealitypo

We find that indeed, the selected robot is not always the siamee to the
target. For instancedys is closest to poinA. But when selecting a risk-seeking
policy, Ry is chosen. LikewiseRs is closest to poinB, and yetR; is selected when
a risk-seeking policyRs is also closer t®, yetR; is selected in the risk-neutral
policy. Moreover,R3 is selected in the risk-averse and the risk-seeking pslicie
but not is the risk neutral policy (Figures 4.8 and 4.15).sTikia direct result of
the uncertainty inherent in the robots’ movements.

We note that the selected robots for points {A, B, C} in the rislerse
MinExpMax criteria were the same as the robots with the minimal explexist.
This is because the robots were in the same rooms with thettications, and
thus the closing and opening of doors—which would otherwisate large worst
case travel times (and therefore large expected maximab)did not affect the
ability of the robots to reach these targets.

47

Table 4.2 shows a case where an overruling of the selected ®hbecom-
mended by th&wFfunction. When selecting which of the robots should reach
targetA through a risk-seeking policy, both robd®s, R, have a minimal cost of
88. However, roboR; is chosen because its probability for this cost is a bit highe

|| pes | Esor |
R, | 0.438679 84,5507
R, | 0.433333 492834
Rs |0 29,0444

Table 4.2: The robots expected minimal cost, and expest®for the minimal
cost of 88, while competing on poiat

But looking at theEggrof the robots, it is clear tha; has lower expected
regret tharR;. Plugging these values into tissvFfunction yields the following:

(EsoRR1) —EsoRRe2)) = 84.5507—49.2834 (4.1)
=35.2673 (4.2)
>0 (4.3)
= 8888 (4.4)
= min(Rz) —min(Ry) (4.5)

In this caseSwFreturns 1, and we should consider selectaglespite its slightly
higher expected minimal traversal time.

4.2.2 Physical Robot Experiments

We utilized the RV-400 data in similar experiments. Abdiragaway from the
map, we used the distributions for traversal times .dh§ 8m and 146m paths,
for three robots:R\W; positioned 64m away from a target poinfR\% positioned
8maway from the same point, afys which is positioned 146maway. Table 4.3
shows the chosen robot in each of the decision policies.

48

MinExpc MinExpMax MaxExpMirg
(risk-neutral) (risk-averse) (risk-seeking)
[Rv [R [Rvi |

Table 4.3: Selected physical robot, according to eachyolic

The results show that in the physical world as well, the dbsebot is not
always the robot to choose. Due to the narrow pass in #@ path, the worst
case travel time foR\; was worse (though less likely) than the worst casB\&f
(which traveled & through open space).

4.3 Parametrictravel timedistributions

The experiments conducted reveal repeating charactsristithe emerging dis-
tributions, in particular their sharp lower bound and load. tThis is a result of
having a clear lower bound on path traversal time (therefaid&s to how quickly
a path can be traversed), and the increasingly rare (bubstiirring) long arrival
times, due to getting stuck by unforeseen obstacles, déngehattery levels, etc.
On such occasions, robots would re-plan their path sevienakton the way to
the goal, and would sometimes need to traverse long distaod®/pass a closed
door.

We thus hypothesized that in fact known (parametrized) ywailed contin-
uous distributions may fit the data, allowing for improveedgiction. We be-
gan experimentally, by fitting familiar distributions toettdata, and using the
Kolmogorov-Smirnov and Anderson-Darling fitness testsdtetmine the best-
fitting distributions.

The fitness results for the best three distributions are showable 4.4. The
table shows the average matching functions, for all thespttiat were followed,
for the top three matching functions that were found.

The three best-fitting functions were found to be the GenleogltLogistic
(also called the 3-parameter Log-Logistic distributiothe General Extreme

49

Gen. Log-Logistic | Gen. Extreme Value Frechet(3P)
Kolmogorov- 0.132 0.135 0.136
Smirnov
Anderson- 1.051 1512 0.69
Darling

Table 4.4: The average fitness of the top three matchingilisns using
Kolmogorov-Smirnov & Anderson-Darling tests. The lowee titumber the better
the distribution fits.

Value, a limit distribution of the maximum of a sequence add@pendent ran-
dom variables which are identically distributed. and Fe2¢BP), a special case
of the General Extreme Value distribution. The table shdwet The General
Log-Logistic distribution has the best average fitnessgig&immogorov-Smirnov
test, and Frechedt3P) has the best average fithess using Anderson-Darling test.
Both of them, however, are strongly related (special case#f)eoGeneral Ex-
treme Value distribution. Figures 4.5(a), 4.5(b), 4.5(@w a curve which is the
best-fit Log-Logistic continuous probability distributiditting the simulation ex-
periments data. In addition, Figure 4.16 shows the traweési distribution of
robotRy, traveling to pointB in a static environment, 132 times. As seen is the
figure, as the number of experiments grow the log-logiststritiution is a good
fit.

We focused on the General Log-Logistic distribution. It ttage parameters:
shape, scale and shift. The shift parameter was found tonhesalperfectly lin-
early correlated with the minimal travel time of each one o paths that were
traveled. Figure 4.17 shows the relation between the mirewecution time of all
the paths that were traveled, and the shift parameter of émef@l Log-Logistic
distribution that was fitted to the histogram of the path ¢tdimes. It is clear
from the figure that there exist a direct relation betweerloe

Looking on the other parameters, we found that the shapenedea was quite
steady on values betweer89304 to 33684 while its declaration i§—co,). We
did not find a consistent value for the scale parameter.

50

fix)

0.4
0.36
0321
0.28]
024

027
0.16-
042
0.08-
0.04

/

\

——

05

95

100

T T T 1
105 110 115 120
Time

Figure 4.16: Distribution oR;’s travel times to poinB in a static environment,
over 132 path following experiments. The line shows thedittgy-logistic distri-
bution. The goodness of fit according to Kolmogorov-Smirtest is 0.0565.

400
350 .
300 * a
o P
£ oo vor
150 »*
100 ,"
50 +®
(8} T ¥ T ¥ ¥ T 1
1} 50 100 150 200 250 300 350 400
shife

Figure 4.17: Measured minimal travel time versus fittedtshif

51

Part ||

Using Teamwork to I ntegrate
Redundant M ulti-Robot Formation
Controllersfor Robustness

52

Multi-robot formations are of increasing interest to rabstresearchers (as
a canonical research problem), and to robot system builgegsfor unmanned
convoys). Indeed, there exists vast literature on variecisrtiques for maintaining
formations in a variety of settings, and for a variety of rishoHowever, little
attention has been given to the possibility of using mudtipirmation controllers,
all integrated together for greater formation robustndssthis part, we make
two contributions. First, we address a key challenge ingraion, that of joint
distributed selection and execution of the correct colgrght the same time. We
demonstrate how to utilize a teamwork software engine toraate this joint
selection. Second, we describe one such integrated sysibith uses several
different formation-maintenance controllers for greatdaustness.

53

Chapter 5

Background: Formationsand
Teamwork

There exists vast literature on various techniques for taaiimg formations in a
variety of settings, and for a variety of robots. We canngiéhto cover it all. We
therefore provide a sample of important works from this afe@search.

In formation-maintenance tasks, the objective is to moveoag of robots
on a desired path, while they maintain their relative positvith respect to their
peers, according to a desired geometric shape. Variousatmmmaintenance
methods have been investigated (e.g., [2, 13, 53, 51, 274,%61 9, 39, 46, 23]).
We discuss the most popular methods below.

Many controllers assign each robot with a single or multiptaghboring
robots €arget9 that it must monitor to maintain the given geometric shapédev
moving. Desai et al. [14, 13] show, in theory, how a formatan be maintained
if each robot monitors an angle and distance to another i(@kparation-bearing
control), or distances to two other robots (separatiorassgn control). They
use an un-weighted directed graph, calbedtrol graph to describe monitoring
from a global perspective. The graph is formed by the set bbt®o (vertices)
and the monitoring relationship (directional edges), framobot to its target(s).
Desai et al. discuss how joint (synchronous) switching ef geometric shape
defining the formations (and the associated control gragdns)oe used to tackle
terrain changes, but do not address how such joint syncheoswitching can be

54

implemented in practice. Our paper focuses on a principkgfar implementing
controllers in practice, such that synchronized switcltiawg be executed robustly.

In Separation-Bearing Contr@lSBC), each robot maintains its distance (sep-
aration) and angle (bearing) to no more than one other raladied a target. If
() the control graph is connected; (ii) there exists exactie target with an out-
degree of zero (calle@aden; and (iii) there exists a graph path from each robot
to the leader, then maintenance of the control graph leads time, to the robots
stably maintaining their relative positions in the fornoat{25, 14, 13].

Another important methods for formation maintenance incfica is
Separation-Separation Contr¢6SC). In SSC, each robot (but the leader) main-
tains its distance with respect to two different targets(i)lthe control graph is
connected; (ii) there exists exactly one target with andmgree of zero (called
leader); and (iii) there exists a graph path from each robot to tadée, then once
again, maintenance of the control graph leads to the robaistaining a stable
formation [25, 14, 13].

For a given geometric formation, combinatorically-largenber of stable pos-
sible control graphs can exist [14, 13]; this scaleup is edaated when a variety
of sensors exists. Thus there is a need to efficiently gemgraid control graphs.
Kaminka et al. [46] discuss a general way for efficiently commpy optimal SBC
controllers for a given formation, and a given set of robois their sensors. This
is done by the robots using a version of Dijkstra’s algorittitntompute the op-
timal control graph from a compact hyper-graph represemtatf all possible
control graphs. Mourikis and Roumeliotis [55] discuss optisensor schedul-
ing policies for SBC formations, in which sensor use for laalon within the
formation is optimally balanced between resource consiomé.g., energy) and
localization accuracy.

Fierro et al. [25] analyzed the stability of SBC and SSC cdiars, and pro-
posed using manually-constructed control targets to allpwo three robots to
switch between alternative SSC and SBC schemes, in esseritoisg between
alternative control graphs controllers on-line withodyirey on communications.
Our work does use communications (at the teamwork softvesed)| but allows
for any number of robots to participate, up to the bandwitithitations.

Lemay et al. [51] and Michaud et al. [53] present a distriduteethod for

55

assigning robots to their positions in a formation. Eaclotab a formation de-
termines a cost for assigning its teammates to positionsargiven formation,
assuming it is the leader (which they refer tocasducto). Then the best (mini-
mal cost) assignment of roles to robots (including the leadanade. This type
of negotiations over roles and position assignments idyeamdeled and exe-
cuted in teamwork software, as we demonstrate in this papewever, we did
not experiment with leader assignment, only with dynamssgasnent of robots
to follower roles. Furthermore, the work by Lemay et al. ancthdud et al.
allows switching of the formation shapes, which we do notraegislin this paper.

In general, there are other control methods for formatitentaining forma-
tion while moving requires the robots to locate themseleesaling to reference
points. We discuss several different methods below.

Balch and Arkin [2] examine three techniques for formationintemance.
Two of these I(eader-Referencednd Neighbor-Referenc@dechniques are es-
sentially SBC controllers, using static (fixed) control drap The third,Unit-
Center-Referenceds fundamentally different. Here, the robots place thdwese
according tax,Y coordinates defined by the formation. Balch and Arkin’s study
compares between the methods using teams of up to four pilydiomogeneous
robots, and attempts to draw conclusions as to their relatwnefits. Our approach
builds such comparisons to allow switching between diffetgpes of control as
best fits the immediate needs of the robots.

Balch and Hybinette [3] use social potential fields which ugeaetion and
repulsion to position robots within their relative posit®in a defined formation.
This technique is robust to obstacles in the path of the sylaot important chal-
lenge our approach does not yet take into account.

Fredslund and Matati[27] describe an algorithm for generating SBC moni-
toring rules for robots in a given formation. The robots asuamed to have spe-
cific sensing capabilities, and the position of the leadgiven. The monitoring
rules are supplemented by communications for robustniegs,fusing SBC and
communications-based control. Elmaliach and Kaminka [28d on this to ex-
periment with different ways of integrating communicasand SBC controllers
(switching between them and/or fusing their actions). Hmweneither inves-
tigation discusses integration of multiple controllergygneral, and both ignore

56

the requirement for a principled way for the robots to joirdelect their control
scheme. In this paper, we describe how to use teamwork seftwautomate the
joint online selection of controllers by the robots.

Teamwork software (sometimes referred to as "teamwork efighns been
been discussed in the multi-agent systems and multi-rofstéms literature. Its
beginnings are in the use of formal logic to describe idediéboration between
agents [36, 12, 35]. These theoretical investigations kigasaissed a number of
principles for collaboration between abstract agents, iarmhrticular point out
the importance of team-members agreement on a goal to beebaand a plan
by which to achieve it.

Theory inspired implementations of software frameworlat tlacilitate the
development of distributed multi-agent systems that boltate towards a joint
goal, via an agreed-upon plan of execution [40, 64, 65]. Wimny of these
systems have been applied in simulations and virtual emments (see, e.g., [58,
22], there have been a few that have been utilized with robots

BITE (Bar llan Teamwork Engine) is a behavior-based distribuézaniwork
control software, specifically targeting multi-robot teaid4, 45, 47]. While
BITE has been used with multi-robot formations [45], it hadydmeen previ-
ously used with a single type of controller (SBC). CogniTAO [isLth commer-
cial teamwork software development kit, which can be siryilased to develop
multi-robot applications. We use CogniTAO in this paper.

Goldberg et al. [32, 33] have explored a different basis faltkrmobot archi-
tectures. Rather than taking a behavior-based approackpb&gl et al. focus
on extending a 3-tier architecture with an impressive seaphbilities, including
task-sequencing and task-allocation, and distributeduree management. We
believe that the lessons in this paper regarding the usermhsgnized task se-
guencing and joint selection of tasks can be used in thelmtacture (which has
not been applied to multi-robot formations).

There have been many other multi-robot investigations wiocus on au-
tomating interactions between robots. However, they mdstus on task alloca-
tion, rather than synchronization and joint selection aivéces.

Among those, the ALLIANCE behavior-based architecture fo¢lises on ro-
bustness, by allowing robots to dynamically re-allocateikelves to tasks, based

57

on failures in themselves in their teammates. ALLIANCE dffewbust dynamic
task allocation, but does not explicitly synchronize rebas they jointly take on
tasks.

Other systems have focused on using auctions and markedb@sk-
allocation methods in multi-robot systems. TraderBot [19)lered the use of
markets to allow robots to bid for tasks in spatial sensingaios. Goldberg et al.
[33] explore a distributed three-tier architecture, in gthimultiple robots interact
with each other at all three layers using market-based res@liocation. Gerkey
and Matart [29] discuss the use of such methods in contrast to others.

Farinelli et al. [24] explore novel methods for task allecatin robot teams.
Their token-passing method are suitable for teams of lasgale than those dis-
cussed in this paper. It should be possible to use this tpkssing allocation
mechanism for use in large-scale formations.

Jung and Zelinsky [42] have explored the use of a distribatethitecture,
which is behavior-based. However, the focus of this worknis@operative spatial
planning, and no synchronized joint selection of contrslllur et al. [1] offer
a comprehensive framework for spatial coordination of ipldtrobots, and have
applied it to formation control, but only using a single tyggdormation controller
at a time (in particular, SBC). They did not address joint syactzed switching
between alternative formation controllers.

58

Chapter 6

Teamwor k Software for Joint
For mation Control

First, we briefly describe the principles of behavior-bassgimwork software.
Then, we describe a simple separation-bearing control (SBGgrse, imple-
mented using such teamwork software.

We utilize a behavior selection mechanism, in which behavawe proposed
and selected based on their preconditions matching thertuworld state (as
perceived by the sensors); once a behavior is selectedeitsigon is terminated
when its termination conditions are satisfied. We descittitie pprocess below
briefly, and refer the reader to [64, 44] for additional detai

A behavior-based teamwork controller is divided into twongpuitational com-
ponents. The first component isnrld-modeling processwhich is responsible
for processing sensor and communication data, and forrgh#ris information
(when needed) with other team-members. The second comipeniie control
process which runs the control process behavior-manager alguoribelecting
and deselecting behaviors). These two components arelEgtrelow. For the
purpose of clarity, however, we begin by describing the mmtrocess (Section
6.1) and only then describe the world-modeling processt(@e6.2).

59

6.1 Control Process

A task behavior graplspecifies the sequential and hierarchical relationships be
tween task-oriented behaviors. Each behavior is a semeperident module, re-
sponsible for a portion of the overall task.

Formally, a task behavior graph is an augmented connectaphgtuple
(B,SV,bp), whereB is a set of task-achieving behaviors (as vertic€&andV
are sets of directed edges between behaviaima/(= 0), andbg € B is a behavior
in which execution begins. Each behaviorBrmay have preconditions which
enable its selection (the robot can select between enableaviors), and termi-
nation conditions that determine when its execution musitbpped.Sis a set
of sequentialedges, which specify temporal order of execution of behravié
sequential edge frofm to by specifies thab; must be executed before executing
b,. A path along sequential edges, i.e., a valid sequence @vi@is, is called
anexecution chainV is a set of verticatask-decompositiordges, which allow
a single higher-level behavior to be broken down into exeouthains contain-
ing multiple lower-level behaviors. At any given momente ttobot executes a
complete path—root-to-leaf—through the behavior graptgugntial edges may
form circles, but vertical edges cannot. Thus behaviordearpeated by choice,
but cannot be their own ancestors.

Behaviors whose execution is to be coordinated in some faghenceforth,
team behaviofsare tagged in advance by the designer. Each robot execigtes a
copy of the behavior graph [64, 57, 33, 44]. It is the resgahtyi of the team-
work architecture to automatically takes actions (typicddy communications)
to select and de-select these in different robots, whenogpiate [64, 44]. Fig-
ure 6.1 shows an example of a simple behavior graph, comstrfrar multi-robot
formation maintenance tasks using SBC control.

The teamwork architecture selects and de-selects teamvdoes by using
communications to make sure that relevant details of thetsobollabora-
tive world-model(Section 6.2) are synchronized, and by applying negotatio
procedures—decision-making protocols—to ensuring aggmtly select their
next behavior, and jointly terminate its execution oncecteld.

To allow a teamwork architecture to automate synchroromative impose a

60

FlalfoveSBC
CndDynGr || CndFalse

|TskMo\teS DnpSelac

PlpGetfo ystick
CrdTruel || CndFalss

[TskG etjo |

[

i

#inErecuteShoGraph
CndTrosf) CndMotSes

finFrackVisionDnce
CndSesBlo || CndMiddle

| | DnpSelect |

[

#inFoliower
CndTruel || CndPzl)
FskFollo DnpSelec |

i?s_kExecut |

m

o

bi] i

Figure 6.1: A Behavior graph for simple SBC control. Each ratowis its own

local copy of this graph. Node names appear at the top of eadd &bove. Other
text refers to names of conditions and protocols utilizethm different nodes,
and described in the paper. Arrows coming out of the tab nthi&eare task-

decomposition edges, while those coming out from the tatketam‘ are se-

quential ordering edges.

constraint on the semantics of multiple outgoing edges. dwigoing sequential
edges(a,b), (a,c) signify a choice point betweealternative execution chains:
Either b or ¢ must be selected by the robot once its executioa & finished.
When these execution chains are composed of team behavierselection be-
tween alternatives must be coordinated—all (relevan®t®must select the same
execution chain (we discuss below complex cases in which @ettain subteam
members must coordinate). Thus synchronization (see heétotniggered when
multiple execution chains are enabled, and the robots nogstimate their joint
selection.

To automate allocation, we impose a related semantic @nstn decompo-
sition edges. Two outgoing decomposition ed@es), (a,c) signify complemen-
tary execution chains: Both the execution chain beginning Wwiémd the execu-
tion chain beginning witlt must terminate fom to be considered complete (by
convention, vertical edges point only to the first behavarexecution chains).
Thus such multiple outgoing edges indicate that the childsebtasks) can be al-
located to different subteams. Therefore, similarly togiiechronization points,

61

allocation services are triggered when multiple deconmjmosedges are enabled.

There is one final point in which synchronization is needezhritwork theory
states that when an agent privately believes that a joirltlggsabeen achieved, or
should be abandoned, the agent must make this belief muitleitsvteammates.
The communication of beliefs is handled by the collaboeatworld modeling pro-
cess (next section). Here, the implication is that robotstrterminate their exe-
cution of team behaviors in a coordinated fashion. Thus vehezam behavior’s
termination conditions are satisfied for a robot, BITE isdaged to coordinate
the termination of this behavior with the other robots.

To summarize, a teamwork architecture can easily detersyinehronization
and allocation points given the constraints above. A splgaquence edges lead-
ing to team behaviors signifies a synchronization point. it spdecomposition
edges leads to allocation, and synchronized terminatitigigered when a team
behavior is de-selected. In all of these, the architectwstmoordinate with the
other robots, through their own local instances of the syste

6.1.1 Principal Control Algorithm

Each of the robots executes Algorithm 3, using its own copgh@behavior graph.
The control loop executes behavior stack-root behavior to leaf—where top
behaviors on the stack are executed simultaneously with¢heently selected
children.

Execution begins by pushing the initial behavior of the grap the execu-
tion stack (lines 1-2). Then the algorithm loops over fouag®#s in order. (i) It
recursively expands the children of the behavior, allogathem to sub-teams if
necessary (lines 3a—3c). (ii) It then executes the behatak in parallel, wait-
ing for the first behavior to announce termination (lines43—All descendants
of a terminating behavior are popped off the stack (i.e.ir teecution is also
terminated—Iline 4b), and then (iii) a synchronized terrtioratakes place (line
6). This can result in a newly-allocated behavior withintherent parent context,
in which case, it will be put on the stack for expansion (line @therwise, (iv)
this indicates that the robot should select between anyleaequential transi-
tions from the terminated behavior (lines 8a—8e). This @ssamormally results in

62

new behaviors put on the stack, and then a final goto (line & tmaline 3 begins
again.

The recursive allocation of children behaviors to sub-teamiines 3a—3c re-
lies on the call to théllocatg) procedure. It takes the current execution context
(i.e., current stack, available children), and then cdiés appropriate allocation
protocol (defined by the architecture [64], or by the prograan[22, 44, 45]) to
make the allocation decision. The current execution staalsed to help guide
allocations, e.g., by conveying information about wherthmbehavior graph the
allocation is taking place. Once a final allocation is deiagd, Allocate) re-
turns, for each robot, the child behavior for which it is resgible as part of the
split sub-team (or individually, if the sub-team is compbsaly of the individual
robot).

Synchronized termination (line 5-7) and selection (lin@s&:) similarly rely
on calls to the procedurd®rminaté¢) andDecid€), respectivelyTerminaté) is
responsible for evoking the execution termination inteaacbehavior, which can
return a new child behavior for execution under the curreméept. If it doesn't,
then the next behavior in the execution chain must be selégtBecidd), which
calls a synchronization protocol. Since synchronizedctiele involves all mem-
bers of the current sub-teams selecting together, thisviimhaould normally
communicate with the members of the team. Note that in steywe3hlso han-
dle the case where no more behaviors are available in theigsechain. This
case signals a termination of an execution chain, whichrimgignals termination
of the parent, thus the branching back to line 5. We omitteé tee obviously
needed check on whether a parent actually exists—if nan, ttie end of the be-
havior graph has been reached, and execution halts.

6.2 Collaborative World Modeling

Recent behavior-based architectures, inspired from aeégainccognitive archi-

tectures in Al, introduced the world-model as a separatepctational process.
This process carries out both traditional sensor-filteand processing, it also ex-
ecutes collaborative algorithms, which share informatiathh other robots. We

focus on this aspect here.

63

Algorithm 3 ConTROL

Input: behavior grapkB, SV, b)

1.
2.
3.

© N o O

so < bg // initial behavior for execution

pushsy onto a hew behavior stack.

while 9 is non-atomic // has children
(@) A« {b}, s.t.,(s0,b;) is a decomposition edge
(b) if Ahas only one behavidy, pusiG,b).

(c) elseb «+AllocatgG, s,A), pusiG,b).
(d) sy« b.

. execute in parallel for all behavidoson G: // Execution

(a) executdy; until it terminates
(b) whileb; #top(G), pop(G)
(c) break parallel execution, goto 5.

b+ pop(G) // Terminate joint execution

¢ «Terminat€G, b)

if c# NIL, pushG,c)

else: // Select next behavior in execution chain
(@) LetQ+«+ {s}, s.t.(by,s) is a sequential edge
(b) if Qis empty, goto 5 // terminate parent
(c) if Q has one elemerst push{G,s)
(d) elses«+DeciddG, by, Q)
(e) sos

If G not empty, goto 3.

64

While protocols may exchange information as needed (e.gesvand vote
outcomes), there are more basic communication needs thetlimbehavior ex-
ecution. To illustrate, consider the following examplepfaose a robot has deter-
mined that a running behavior is to be terminated (becasgeriination condi-
tion matches). A call is made to a synchronized-terminagiatocol. But as it
contacts the other robots, it refers to information thatriewn only to the robot
initiating the dialog. Obviously, the termination protbcan be fixed such that
it first transmits the missing information, and then arguastérmination. But
rather than duplicate this functionality in all terminatiprotocols, it makes sense
to allow this to happen—in a flexible manner—in the world-ralay process.

Indeed, the world-modeling process can execute distmbutiéormation-
sharing algorithms. The algorithms can be as simple as aritdm that up-
dates all team-members with any change in perception; ayuldcbhe complex
and sophisticated, able to consider uncertainties in fugiformation about the
world [63].

A naive approach broadcasts all changed information. Faioab reasons of
bandwidth usage, itis ruled out in favor of a more focusedrligm, which broad-
casts information about changes in the preconditions amndiriation conditions
of currently-executing behaviors of team-members. Thieeg with theoreti-
cal notions of teamwork, which specify that team-membeas finivately come
to belief a proposition relevant to the team, must estaltisitual belief in this
proposition [12]. Thus such information is only broadcdste relevant team-
members (i.e., to team-members currently executing a b&haffected by the
new information). The algorithm appears below (Algorithjn 4

Algorithm 4 FUSEINFORMATIONWITHTEAMMATES
Input: behavior grapkB, SV, bp), set of robots

1. for all behaviord on behavior staclG:
(a) if a termination conditior of b is satisfied,
Inform(b, t, ¢)

(b) if a precondition p of a behavidr, where(b, f) a sequence edge, is satisfied,
Inform(b,t, p)

65

In Algorithm 4, each robot determines whether new infororaaffects its be-
havior stack (e.g., newly-satisfied conditions). Thesemixlly affect the robot’s
teammates, and must therefore be communicated to them bgftren() proce-
dure, which refers to an appropriate protocol for commumgarelevant infor-
mation to others.

For instance, suppose a team of robots is executing the frarmeask de-
scribed above (Figure 6.1). Suppose that the robots areixgtheMoveSBC
behavior. One robot (the leader) is executing @etJoystidbehavior, while the
other robots are executing thellower behavior. Algorithm 4 is used to informed
all the robots in the sub-team that the pre-condition of etiag the behavior to-
gether is satisfied. The two next behaviors of the followgexkVisionOncand
ExecuteSbcGrapaire being executed in a chain as soon as the termination-condi
tion informed. Algorithm 3 guarantees that if one of thedualing robots behavior
ExecuteSbcGrapterminates, than the termination conditionndbveSBChehav-
ior will be satisfied as well. Algorithm 4 guarantees thahi trobot discovers a
termination condition foMoveSBCthen it will inform the members of the sub-
team associated witBetJoystiandExecuteSbcGraph

66

Chapter 7
|ntegrating Multiple Controllers

We now turn to discussing various controllers which we iraggd together. Sec-
tion 7.1 describes the implementation of switching sepamabearing control

(SBC) [46]. Section 7.2 describes the implementation of conmication-based

formation control [23]. Finally, Section 7.3 ties these tsaphisticated controllers
together.

7.1 Robust Formations by Switching SBC Forma-
tions

Glick-Schecter et al. [46] have shown that for robustnegssam of robots moving
in formation may want to switch its SBC control graph to allabots to switch
their targets (i.e., which robots they monitor), when tre@nsing of the other
robots fails or becomes too costly. For example, the treafigtmation may be
maintained by either of the following control graphs (Figur1).

The robots continuously monitor the cost of maintainingrtterget (corre-
sponding to the rate of sensing failures), and when eitheotrdecides that this
cost has reached a given threshold, a new control graphdhbeultilized. In this
case, the robots are to jointly select a new control grapteasribed in [46].

This process is easily modeled in behavior-based teamwogie 7.2). It
works as follows: all the robots start the behawnBlind together and theIn-
MovePtzToStartinder it. PInMovePtzToStarhitializes all the robots cameras to

67

() (b)

Figure 7.1: Different control graphs for triangle formatio

a fixed starting point. By executing the behavkRinUpdateSBCa scan of the
area in carried out, in order to find all the visible robots.clEéime a robot is
located, the scanning robot sends the relative locatiomefrbbot to the other
robots. In this way a matrix of the visible robots is creatiédch robot knows the
relative angle and distance to the other robots. The behtiminates after the
camera scanned 180 degrees. Using the matrix the next beR&vRunDijkstra
runs Glick-Shechters algorithm to build a graph of visiléats. After running
once the behavior terminates. Because the SBC graph needdomected, if the
formation graph becomes disconnectedRieBlind behavior will be re-executed,
as evidences the sequential edge from itself back intd.itsel

7.2 Robust Formations by Communication-Based
Formation Control

A different approach for maintaining robust formation hagt described by El-
maliach and Kaminka [23]. Here, the agents utilize commatioos and dead-
reckoning, rather than SBC, for formation control. The cdfgranultiplexes and

fuses between open-loop and close-loop in order to prevscduoihection caused
by failures of the robots sensors and increase the numbésafikrable obstacles

68

PinBlnd
CndisFai CndFalse

DnpSelec

CapToget
C

FlaMovePtzfoStast

PloUpdate SEC PilnRunDikstra

CndTruel) CndPtzAts CndTrusl || cndprzat CndTruel || CndOneCy
TskMowvePt anSeIecf ________ DnpSelec |a—[TskRun "
S e -
" [5
¥ i¥ ¥

Figure 7.2: A Behavior graph for the switching controller.

in the environment.

This process is modeled in the following way (Figure 7.3).I the robots
are executing th®InMoveSBQogether. This behavior runs allocation protocol,
DapSelectFirstwhich choses the robot with the lowest id to be the leader and
allocates it to thé’InGetJoystidehavior, while allocating the other robots to ex-
ecute thePInFollower behavior.PInGetJoystidehavior is responsible for getting
the drive commands from the user, while tReFollower starts the formation
tracking. The two next behaviors of the followdtkirackVisionOncandPInEx-
ecuteSbcGraphre being executed in a chain as soon as the terminationtmandi
is satisfied. But in contrast to the simple formation conttiog PInExecuteSbc-
Graphbehavior does not controls the tracking using vision, bat tmore parallel
behaviors run as welRInTrackVisiorandPInTrackComm

TrackVision is responsible for calculating distance and angle to thditey
robot by vision recognition, while th&rackCommexecuting track by commu-
nication between the robots and synchronization of the ishies. Thus, the
ExecuteSbcGraptuses and multiplexes between the results of the two behavio

69

AkosforaSic

D.ﬂﬂélll:. |
N Captulec

. ™ TR o
i
rr
Sk 0 e S s 0" o Ao et S0 G e B
E - = ;
) <
T T Ir

Figure 7.3: A Behavior graph for communication-based cdietro

70

7.3 Integrating Controllers

Using a teamwork architecture, we can easily tie the diffecentrollers together,
to achieve enhanced robustness. We do this by construcbaegavior graph that
contains the others, with appropriate selection and teatiin conditions.

A complete behavior graph containing the two previouslycassed con-
trollers is presented in Figure 7.4. Here, the executiortsstay initialize the
graph totriangle formationandline formation Execution begins with triangle
formation, and can (under specific conditions) switch tolitne formation. Both
formations use one behavidteveSBG which implements the SBC graph con-
troller presented above (Section 7.2).

This controller terminates as a result of a lost of at least @inthe robots in
the graph. In this case the behavior will terminate and thx Inehavior will start
to execute.

The Blind behavior executes the second controller (section 7.1),hiclwa
new SBC graph is build. In this case all the robots stop in plsyechronize and
start the new controller together. As explained above, émroller ends when a
new SBC graph is created. If the new graph is founded to be aectethgraph the
next chosen behavior will return to bdove SBCotherwise the allocation protocol
will start the controller again in order to look for a new cewted graph.

71

Alina Yo

Abnsf o rasac
ZndlaPai cndPalam

ZndCy ndr | | SndPala
'nl.nw-:l an: TakElind | CnpSmlnc
Dlp!.l CapTogsk
= c
i

£

Aol ad st sa
cndonmiy

ndTrumt CndPEaE
Cnpamlnc

ndTrum

Afecfarmdte 7 St
ndTru ndrbe
Cnp3mleck

i

i £

B e ot A G R B

Rl fhac i s mDnca
ndJmmEln “ndRiddla SndTruatt “ndAotes
| Cnpasl Taker
MA T
i

i

Al T K om i
cndralam

(=.L.ETT1]

i

I

Figure 7.4: The complete Behavior graph.

72

Chapter 8
Discussion and Evaluation

Evaluation of the use of a teamwork behavior-based ardhitedor formations
is challenging, as we are not interested in the evaluatiche@tomponent con-
trollers per-se, and not even in their combined strengteshase are known).
Rather, the principal hypothesis underlying the use of tlolitacture is that it
facilitates deployment in some fashion. For instance, wg wiah to argue that
the use of the architecture saves programming effort (bgimgucode, or automat-
ing procedures that were previously manually built), oréases robustness. Of
course, there are also limits to the usefulness of usingravieak architecture as
we have, and we discuss these as well.

8.1 ItWorkd

We fully implemented the behavior graphs and controllercdbed above, us-
ing the CogniTAO commercial behavior-based teamwork agchite [11]. The
system was deployed with three Blue-Botics Shrimps 1l rol§st®wn in Fig-
ure 8.1), and also in the Stage simulator (shown in Figurg 8Be robots uti-
lized IEEE 802.11g communications, as well as Sony PTZ cas&VI-D100P
model) and Hokuyo lidars (URG-04LX model). Each robot wastcled by a
VIA C7 CPU, utilizing 512MB ram.

A key component in the switching SBC formation controllethattthe robots
need to uniquely identify each other. Relying on the robotsheras, we used

73

Figure 8.1: The Blue-Botics Shrimps Ill robot.

Figure 8.2: Three shrimps robots in Stage simulator.

74

Figure 8.3: Three shrimps robots in an indoor environment.

color segmentation in indoor settings (see Figures 8.3—8Woutdoor settings,
we utilized the ARToolKit package for specific pattern regibign, with each
robot having its own unique visual pattern (Figures 8.5%8.7

8.2 Robustness

The use of teamwork architecture gives the ability to irdégdifferent controller
in a simple way and increase the robustness of the formaf@ch of the con-
troller described above was proposed to address a diffeegrif potential fail-
ures. Their combination, made possible by the use of theweaknarchitecture,
provides robustness against a wide variety of failures.

The communication-based controller was designed to sobadgms of short-
duration intermittent failures to visually recognize agetrrobot, by allowing a
follower robot to follow its target blindly. The target tremits information as to
its movements; the follower translates these into its owgetacoordinates, and
moves accordingly. We found such failures occur often irciica, especially

75

Figure 8.4: Three shrimps robots in an indoor environment.

Figure 8.5: Three shrimps robots in an outdoor environment.

76

Figure 8.6: Three shrimps robots in an outdoor environment.

Figure 8.7: Three shrimps robots in an outdoor environment.

77

when encountering a small vertical obstacle (when the taadet passed over
the top, or started climbining from the low point, it beconb@sporarily invisible
to the followers, whose vertical heading is in an oppositeddion).

On the other hand, the switching SBC controller was desigmedder to solve
longer-duration sensing failures, e.g., caused by perntdoss of the identifica-
tion pattern, or relatively long visual loss when a targeidléook a sharp turn.
In these cases the robots look for a new SBC control graph ierdadkeep the
formation structure.

By integrating these controller, we save each controllebsistmess abilities
and make the system robust to all the problem described abf@veobot loses its
vision abilities temporarily, the use of the communicatimased controller works
to maintain the formation for a short duration using comroations from the lead
robot. If and when this fails, the switching SBC controlledlwstart and a new
connected graph will be build in order to maintain the foriorat

Moreover, the use of teamwork architecture increase thastabss by adding
new features to the system:

¢ In the case of a robot-death failure, the teamwork architecenable the
user to remove the robot from the team and continue workitig asmaller
team of robots.

¢ All robots start and stop together. A key built-in featuretiodé teamwork
architecture is that information privately available ty @amdividual robot is
broadcast to its peers, automatically, if it causes a changfge behavior
(i.e., if it causes a condition to be satisfied). As a resul; eobot that
needs to stop (e.g., because it loses its place in the famatutomatically
tells all others to stop. And likewise, when the leader stambving, it
automatically tells the others to move; they don’t wait fergeption of its
movement. As a result, the caterpillar effect often obd@le/an convoys
and other formations is gone.

e Because of the above, follower robots are no longer ignorety/pical for-
mation maintenance, the formation is susepctible to roleath and robot
kidnapping in the followers. In particular, because theotslare coordinat-
ing, but are not collaborating, no target robot is respdaditr the success

78

of its followers. If a follower robot falls behind, or is stped in place, the
target robot does not stop. However, when using the teamarotitecture,
as long as the follower robot is able to communicate, it wilcenatically
let the others know if it fails, and as a result they will stopavait for it.
Potentially, specific behaviors could be run to handle tispseial cases.

8.3 Using a Teamwork Architecture Cuts Develop-
ment Efforts

The overall size of the binary code just under 1MB. There a@@pmately
11,000 lines of code in the project, excluding the teamwork iéecture code to
which we have no access. Given the source code, we can estisiag standard
software engineering models the effort involved in prodgdit, and contrast it
with the actual development time to validate the model. Ildittah, we can also
estimate the size (in lines of code) of modules that we woadehneeded to
develop, had we not had made use of the architecture. By stingjahese two
totals, we can estimate the savings in development effargéstd the use of the
teamwork architecture.

We begin by using standard software engineering tools tesinyate exist-
ing source code. We use the Wheeler's SLOCCount software [6€ptmt
lines of code, and generate estimatesdffort, schedule andexpected number
of programmers The software makes these estimates using the basic CoCoMo
model [7], well known in the software engineering community

When we use SLOCCount on the source code tree, it predicts a 34r96n-
month effort (2.66 person-years), which is actually faabcurate. The code was
developed over two years. The team working on the code iedud

e Two programmers working at 60% for a year. One continuede¢cs#tond
year of work; the other only worked for three months in theosecyear.

e Two MSc students who contributed work a few months out of ar yap-
proximately 2 months working on the devices)

79

Module LOC With CogniTAO LOC Without CogniTAO (est.)

Devices and Robot Interfaces 5681 5681
BDI Architecture 0 6714
Behaviors 2958 3268
Conditions 1063 1063
Variables 927 1007
Protocols 330 647
Total 10959 18380

e Two PhD students who contributed work. One managed the girajed
worked also on key portions of the code (about 3 months,ildiged over
the two years of work). The other worked for no more than a imofithe
project (worked on getting the outdoor vision system to Work

We thus feel comfortable using the predictions of the SLOCEeystem in esti-
mating effort.

There are number of essential components in the systeme(Bab) leftmost
column): Devices and Robot Interfacesfer to code written to tie the control
code, through the player/stage APl and the shrimps robot #&Rlhe actual hard-
ware (including motors, sensors, color segmentation, the@function and var-
ious utility code, etc.). This code would have had to be emiftregardless of
what type of architecture is used (and even if no specificiacture is used).
The next two modules are specific to behavior-based or BDitaathres (even if
not supporting teamwork)Behaviors(first data row) correspond to nodes in the
behavior graph described in Figure 7Gonditionsrefer to the preconditions and
terminations conditions (e.g., a condition that checkstiiea robot has not seen
its target in the last 30 frames). TNariablesmodules mixes both teamwork and
individual code. It contains code to initialize and updadeiable values in mem-
ory. Protocolsrefer to the synchronization and allocation procedurgsically
utilizing communications, to coordinate the robots. Thatgcols utilize existing
mechanisms in the architecture (e.g., distributed sharemhany, message pass-
ing) and need only be specialized to the task.

There are two data columns in Table 8.3. The first, matik@@ With Cogni-
TAQ, lists the lines of code in each of the main software comptsdrhe second,

80

markedLOC Without CogniTAO (est.)sts theestimatechumber of lines of code
in each of these components, had we not used CogniTAO. By stingathese
two, we can learn about the relative contribution that treeafSCogniTAO brings
to the system. To estimate the number of code lines withouhi{dJa¢, we fol-
lowed the following procedure (utilized in [64] for similgurposes). While the
estimated numbers should not be considered accurate, oheylect qualitatively
the effort spent, and can be used to draw useful lessons.

First, we needed to estimate the number of lines of code forlsoBBehavior-
based architecture, that does not have built-in teamwoeku¥®d the SLOCCount
software on the UMPRS system [50], a BDI system developed dt/tiiversity
of Michigan and available in open-source form. UMPRS was ehdecause it is
considered mature, and is a prototypical BDI system. UMPRSistmof about
6.7 thousands lines of code. This is a very conservativenagti for the number
of lines of code that would be needed to build a BDI system feruke of the
formation maintenance application, as there are certaitufes that we utilize in
the system (such as maintenance behaviors [47]) which apresent in UMPRS.

Next, we turned to estimating the work involved in modifyitinge individual
BDI code so that it supported the necessary teamwork logipp&se we started
with an individual BDI system that had all the necessary idial controller
pieces (i.e., each of the robot could execute its role in diyeodifferent types of
formation-maintenance schemes). What effort would be waein making sure
the teamwork logic was in place? This would include code tahyonize shared
variables (e.g., for conditions), make joint allocatioridens via protocols, send
messages back and forth, synchronize the beginning andgotibehavior exe-
cution, etc.

We use the behavior graph described in Figure 7.4 as thefbagie estimate.
In different nodes in the behavior graph as it exists, thgm@mmer relied on the
teamwork architecture to carry out specific teamwork-eglagervices, such as
synchronizing the selection of new behaviors, making alion decisions, syn-
chronizing the termination of executing behaviors, staatire values of variables,
etc. Indeed, most of this is completely invisible to the pemgmer. For example,
during the move in formation, in case of a failure of one of tbieots, the team-
work architecture automatically stop the behavior andrmfon the failure to all

81

other robots. Although the leader is allocated to a diffeser-team, it is being
informed on the failure and stops its execution.

We estimated the number of code lines it would have takenpbaiie this ca-
pability in each instancéy 80 source code lines, based on example code we wrote
for sending and acknowledging a message (both server aant slde, socket ex-
ceptions, etc.). We include in this code necessary for nétting variables, which
includes also serialization of the variables internal&tites, etc. An additional
piece of needed code would have handled the sharing of \@sialoross threads,
and at least basic thread synchronization and managemeatcowvservatively
estimate this at 135 source lines, using a prepared codéwanics two parallel
threads. This number does not include the memory managemdnhe mutexes
needed for synchronization. The shared memory managensnéestimated as
40 lines of code using the same method.

We now use these estimates to get a sense of the number obficesle it
would have taken to replicate the system without the use ohJég@. We con-
servatively assume that the programmer would have addedotnenunications
code once for each protocol (each is a separate set of filesprace for all seri-
alized variables. A less conservative estimate assumegdtfigon of those lines
of code at each instance of the protocol and for each varidlblis estimate gives
less credit to the programmers (and/or the software engngeprocess) in terms
of the expected reuse, and this in fact was the estimate ysethéers [64]. Nev-
ertheless, we use the more conservative estimate.

Contrasting the two columns reveals interesting insightst,Fa very sizeable
portion of the source code is devoted to interfacing withrtitot hardware, sen-
sors, and actuators. In the version using CogniTAQO, thiswatsdfor about 50%
of the code, and another 50% (approximate 5000 lines of ca@e)ised to build
the actual controllers. In the non-CogniTAO version, ab&)0Q0 lines of code
are used to build the application.

Ignoring the interfaces component in both cases, we sedhbalogniTAO
version uses only about 42% of the source code lines of therA@nversion, i.e.,
it offers almost 60% savings in development efforts. Abalt bf these are in the
individual BDI architecture, and the rest in the teamwork/ges.

82

8.4 What Does Not Work (at least not easily)?

Due to the communication protocol of the teamwork architecheeded for the
team synchronization, in case of communication suffews,uge of the architec-
ture is going to go bad. This is in some sense limiting for fations, because one
can certainly build formations that don’t use communiaagidut we cannot do it
with a teamwork architecture.

Without the communication, formation would not be as rolasstvith. There
would be no ability to inform the other team members on cadailire, or to in-
crease the robustness with the communication controlletwhprove the track-
ing and handle vision failure and robustness to obstacles.

Moreover, the switch controller would not be able to chosew 8BC graph,
because it would not have the ability to build a new full grdphthe Dijkstra
algorithm or insure that the graph is connected.

83

Chapter 9
Conclusions

In Part | of this thesis, we developed techniques that alloot selection that
maintains bounds and guarantees as to travel times, evemn undertainty. We
showed that even under the term of static environment, @stalte robots varying
amount of time getting to a target location. Due to this vae& choosing a robot
to perform a task cannot be done based on greedy selectiorigstpath).

Thus, we introduced a decision making technique, inspiyegidonomic deci-
sion theory, to distinguished between different policiasdal on risk. The exper-
iments in simulated and physical robots demonstrated ftiffat@ht robots were
chosen according to the different policies because of trewet variance: And in-
deed sometimes the closest robot is not the one to be selgoted the decision-
making policy. Furthermore, we have shown that under somditions, choosing
the robot according to the selection policies will not alwaye a reasonable se-
lection in practice. We defined the social regret functBmRwhich measure the
cost of choosing specific robot over all other robot, andvallis to evaluate the
gain from switching the chosen robot to a robot that will pref better. In our
future work we plan to expand this techniques for allocateams ofN robots to
K tasks.

While examining the experiments’ data, we found that the datibutions
had a good fit to the family of General Extreme Value distiiing, and specif-
ically to the General Log-Logistic distribution. We plan éaplore this fit and
learn to predict the parameters of the distributions fourfeireal world paths and

84

obstacles.

In the second part of the thesis, we showed the use and aadritof a team-
work architecture. First, we described the principles dfawor-based teamwork
software and the use of collaborative algorithms, whicbvedl to share informa-
tion with other robots. Then, we presented an implementaifa robust forma-
tion control using integration of different controllersemthe teamwork architec-
ture described.

We showed that the use of this architecture increases tlse r@ucode and
gives the developer the ability to work only on the formatalgorithms and re-
duce the need to handle the team communication and synehtmm.

But while saving programming efforts, the teamwork architee rely on a
perfect communication. Any limitation of the communicatiwill reduce the
robustness of the formation and will limit the use of sometculers.

85

Bibliography

[1] R. Alur, A. Das, J. Esposito, R. Fierro, G. Grudic, Y. Hur, R.Kumar,
l. Lee, J. Ostrowski, G. J. Pappas, B. Southall, J. Spletaa C. J. Taylor.
A framework and architecture for multirobot coordinatiomternational
Journal of Robotics Researchl1(10-11):977-995, 2002.

[2] T. Balch and R. Arkin. Behavior-based formation control foulti-robot
teams. IEEE Transactions on Robotics and Automafidd(6):926—939,
1998.

[3] T. Balch and M. Hybinette. Social potentials for scalabieltirobot for-
mations. InProceedings of IEEE International Conference on roboticd an
automation (ICRA-0Q)2000.

[4] D. E. Bell. Regret in decision making under uncertain@perations Re-
search 30(5):961-981, 1982.

[5] C. Bererton, G. Gordon, S. Thrun, and P. Khosla. Auctionmaecsm de-
sign for multi-robot. Inin Proc. 17th Annual Conf. on Neural Information
Processing Systems (NIPS.08T Press, 2003.

[6] J. Bobrow. Optimal robot path planning using the minimtime criterion.
IEEE Journal of Robotics and Automatiof(4):443-450, 1988.

[7] B. W. Boehm.Software Engineering EconomidBrentice Hall PTR, Upper
Saddle River, NJ, USA, 1st edition, 1981.

[8] S.Botelho and R. Alami. M+: a scheme for multi-robot cogigm through
negotiated task allocation and achievementIGRA-99 volume 2, pages
1234-1239, 1999.

86

[9] S. Carpin and L. Parker. Cooperative leader following insrdbuted multi-
robot system. InProceedings of the IEEE International Conference on
Robotics and Automati@i2002.

[10] A. Chaudhry. Path generation using matrix represeoriatof previous robot
state data. 112006 45th IEEE Conference on Decision and Contpalges
6790-6795, 2006.

[11] L. CogniTeam. CogniTAO (Think As One). Think As One.
[12] P. R. Cohen and H. J. Levesque. Teamwdtkus 35, 1991.

[13] J. P. Desai. A graph theoretic approach for modeling itealmbot team
formations.Journal of Robotic System9(11):511-525, 2002.

[14] J. P. Desai, J. P. Ostrowski, and V. Kumar. Modeling amaitiol of forma-
tions of nonholonomic mobile robotdEEE Transactions on Robotics and
Automation 17(6):905-908, 2001.

[15] M. Dias, R. Zlot, N. Kalra, and A. Stentz. Market-basedltinobot coordi-
nation: A survey and analysifroceedings of the IEE®4(7):1257-1270,
2006.

[16] M. B. Dias. TraderBots: A New Paradigm for Robust and Efficient Multi-
robot Coordination in Dynamic Environment®hD thesis, Robotics Insti-
tute, Carnegie Mellon University, 2004.

[17] M. B. Dias and A. Stentz. A free market architecture fastdbuted con-
trol of a multirobot system. Ii6th International Conference on Intelligent
Autonomous Systems (IAS-pages 115-122, 2000.

[18] M. B. Dias and A. Stentz. Traderbots: A market-based agpghn for re-
source, role, and task allocation in multirobot coordimati Technical Re-
port CMU-RI TR-03-19, Robotics Institute, Pittsburgh, PA, 2003

[19] M. B. Dias and A. T. Stentz. A free market architecturedatributed con-
trol of a multirobot system. I®th International Conference on Intelligent
Autonomous Systems (IAS-pages 115-122, 2000.

87

[20] M. B. Dias, M. B. Zinck, R. M. Zlot, and A. Stentz. Robust mudibot
coordination in dynamic environments. IGRA-04 volume 4, pages 3435—
3442, 2004.

[21] M. B. Dias, R. M. Zlot, M. B. Zinck, J. P. Gonzalez, and A. StenA versa-
tile implementation of the traderbots approach for muitobcoordination.
In IAS-8 2004.

[22] T. D.Vu, J. Go, G. A. Kaminka, M. M. Veloso, and B. BrowninglONAD:
A flexible architecture for multi-agent control. FProceedings of the Sec-
ond International Joint Conference on Autonomous Agents\vautl-Agent
Systems (AAMAS-03)003.

[23] Y. Elmaliach and G. A. Kaminka. Robust multi-robot fortie@s under hu-
man supervision and contralournal of Physical Agent2(1):31-52, 2008.

[24] A. Farinelli, L. locchi, D. Nardi, and V. A. Ziparo. Asgnment of dynami-
cally perceived tasks by token passing in multi-robot systeProceedings
of the IEEE 2006. Special issue on Multi-Robot Systems.

[25] R. Fierro, A. K. Das, V. Kumar, and J. P. Ostrowski. Hybadntrol of
formations of robots. IfProceedings of IEEE International Conference on
Robotics and Automation (ICRA-QR001.

[26] D. Foster and R. Vohra. Regret in the on-line decision jgmob Games and
Economic Behaviqr29(1-2):7-35, 1999.

[27] J. Fredslund and M. J. Mataric. A general algorithm folbat formations
using local sensing and minimal communication&EEE Transactions on
Robotics and Automatiori8(5):837-846, 2002.

[28] B. P. Gerkey and M. M. J. A formal analysis and taxonomyagktallocation
in multi-robot systems. The International Journal of Robotics Research
23(9):939-954, 2004.

[29] B. P. Gerkey and M. Matati A formal analysis and taxonomy of task allo-
cation in multi-robot systemsinternational Journal of Robotics Reseaych
23(9):939-954, 2004.

88

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

B. P. Gerkey and M. J. Mataric. Sold!: Auction methods fioulti-robot
coordination.TROA 2001. Special Issue on Multi-robot Systems.

B. P. Gerkey and M. J. Mataric. A market-based formulatod sensoe-
actuator network coordination. AAAI Spring Symposium on Intelligent
Embedded and Distributed Systempages 21-26, 2002.

D. Goldberg, V. Cicirello, M. B. Dias, R. Simmons, S. Smitnd A. T.
Stentz. A distributed layered architecture for mobile rtoboordination:
Application to space exploration. laroceedings of the 3rd International
NASA Workshop on Planning and Scheduling for Sp2662.

D. Goldberg, V. Cicirello, M. B. Dias, R. Simmons, S. Smitnd A. T.
Stentz. Market-based multi-robot planning in a distribulayered archi-
tecture. InMulti-Robot Systems: From Swarms to Intelligent Automata:
Proceedings from the 2003 International Workshop on MRttbot Systems
volume 2, pages 27-38. Kluwer Academic Publishers, 2003.

G. Grisettiyz, C. Stachniss, and W. Burgard. Improvinglgrased SLAM
with Rao-Blackwellized particle filters by adaptive propssahd selective
resampling. INCRA-05 pages 2432-2437, 2005.

B. J. Grosz and S. Kraus. Collaborative plans for compl@ug actions.
Artificial Intelligence 86:269-358, 1996.

B. J. Grosz and C. L. Sidner. Plans for discourse. In P. R. @ ahéMorgan,
and M. Pollack, editordntentions in Communicatiqipages 417-445. MIT
Press, Cambridge, MA, 1990.

K. Z. Haigh and M. M. Veloso. Planning, execution anditeag in a robotic
agent. InProceedings of the International Conference on Atrtificiaklh-
gence Planning Systepsages 120-127. AAAI Press, 1998.

K. Heero, J. Willemson, A. Aabloo, and M. Kruusmaa. Rabfrtd a better
way: A learning method for mobile robot navigation in pdtyiainknown
environments, 2004.

89

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

G. Inalhan, F. Busse, and J. How. Precise formation flgmgrol of multiple
spacecraft using carrier-phase differential GPRrirceedings of AAS/AIAA
Space Flight Mechani¢2000.

N. R. Jennings. Controlling cooperative problem sohimgdustrial multi-
agent systems using joint intentionAsttificial Intelligence 75(2):195-240,
1995.

E. G. Jones, B. Browning, M. B. Dias, B. Argall, M. Veloso, ahdStentz.
Dynamically formed heterogeneous robot teams performgidly-coupled
tasks. INCRA-06 2006.

D. Jung and A. Zelinsky. An architecture for distribditeooperative plan-
ning in a behaviour-based multi-robot systefRobotics and Autonomous
Systems (RA&S26:149-174, 1999.

N. Kalra, D. Ferguson, and A. Stentz. Hoplites: A matkated framework
for planned tight coordination in multirobot teams.I@RA-05 pages 1170—
1177, 2005.

G. A. Kaminka and I. Frenkel. Flexible teamwork in belmasbased robots.
In Proceedings of the Twentieth National Conference on Artifilrigelli-
gence (AAAI-05)2005.

G. A. Kaminka and I. Frenkel. Integration of coordimatimechanisms in
the BITE multi-robot architecture. INlCRA-07 2007.

G. A. Kaminka, R. Schechter-Glick, and V. Sadov. Usingsse morphology
for multi-robot formationslEEE Transactions on Roboticgages 271-282,
2008.

G. A. Kaminka, A. Yakir, D. Erusalimchik, and N. Cohen-WoTowards
collaborative task and team maintenancePtaceedings of the Sixth Inter-
national Joint Conference on Autonomous Agents and MukirA&ystems
(AAMAS-07)2007.

90

[48] S. Koenig, X. Zheng, C. Tovey, R. Borie, P. Kilby, V. Markakand P. Ke-
skinocak. Agent coordination with regret clearing.AAAI-08 pages 101-
107, 2008.

[49] S. Kraus. Negotiation and cooperation in multi-agemtinments.Artifi-
cial Intelligence 94(1-2):79-97, 1997. Economic Principles of Multi-Agent
Systems.

[50] J. Lee, M. J. Huber, P. G. Kenny, and E. H. Durfee. UM-PRS&:ifple-
mentation of the procedural reasoning system for multir@pplications.
In Proceedings of the Conference on Intelligent Robotics itdFieactory,
Service, and Space (CIRFFSS-94ages 842—-849, 1994.

[51] M. Lemay, F. Michaud, D. Létourneau, and J.-M. Valin. tBmomous ini-
tialization of robot formations. IfProceedings of IEEE International Con-
ference on Robotics and Automation (ICRA;@2004.

[52] G. Loomes and R. Sugden. Regret theory: An alternativerthef rational
choice under uncertaintythe Economic Journap2(368):805-824, 1982.

[53] F. Michaud, D. Létourneau, M. Gilbert, and J.-M. ValDynamic robot for-
mations using directional visual perception.Aroceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Syst@®@2.

[54] O. Michel. Webot8V: Professional mobile robot simulation.CoRR
abs/cs/0412052, 2004.

[55] A.l. Mourikis and S. I. Roumeliotis. Optimal sensor sdh&ng for resource
constrained localization of mobile robot formationEEE Transactions on
Robotics 22(5):917-931, October 2006.

[56] D. J. Naffin and G. S. Sukhatme. Negotiated formation®rbceedings of
the Eighth Conference on Intelligent Autonomous Systenss§)A2004.

[57] L. E. Parker. ALLIANCE: An architecture for fault tolenamultirobot co-
operation.l[EEE Transactions on Robotics and Automatida(2):220-240,
1998.

91

[58] P. Scerri, L. Johnson, D. Pynadath, P. Rosenbloom, MNSEchurr, and
M. Tambe. A prototype infrastructure for distributed rofagent-person
teams. InProceedings of the Second International Joint ConferencAwen
tonomous Agents and Multi-Agent Systems (AAMAS208)3.

[59] O. Shehory and S. Kraus. Methods for task allocationagant coalition
formation. Artificial Intelligence 101(1-2):165-200, 1998.

[60] W. Sheng, Q. Yang, J. Tan, and N. Xi. Distributed mudtbot coordination
in area explorationRAS 54(12):945-955, 2006.

[61] R. Simmons, D. Apfelbaum, W. Burgard, M. Fox, D. an Moors,T8run,
and H. Younes. Coordination for multi-robot exploration andpping. In
AAAI-0Q 2000.

[62] B. Sofman, E. Lin, J. A. Bagnell, J. Cole, N. Vandapel, andsfentz. Im-
proving robot navigation through self-supervised onlgerhing.Journal of
Field Robotics23(11-12):1059-1075, 2006.

[63] A. W. Stroupe, M. C. Martin, and T. R. Balch. Distributed senfusion for
object position estimate by multi-robot systems. Aroceedings of IEEE
International Conference on Robotics and Automation (ICRA-Pages
1092-1098. IEEE Press, 2001.

[64] M. Tambe. Towards flexible teamworklournal of Artificial Intelligence
Research7:83-124, 1997.

[65] M. Tambe, D. V. Pynadath, N. Chauvat, A. Das, and G. A. Kdi Adap-
tive agent integration architectures for heterogeneoastsmembers. In
Proceedings of the Fourth International Conference on Mgkint Systems
(ICMAS-00) pages 301-308, Boston, MA, 2000.

[66] S. Thrun, M. Beetz, M. Bennewitz, W. Burgard, A. B. Cremerd)€llaert,
D. Fox, D. Hahnel, C. Rosenberg, N. Roy, et al. Probabilistiorilgms and
the interactive museum tour-guide robot MinerVae International Journal
of Robotics Research9(11):972—999, 2000.

92

[67] D. A. Wheeler. Sloccount.

[68] R. M. Zlot, A. Stentz, M. B. Dias, and S. Thayer. Multi-rdbexploration
controlled by a market economy. IGRA-02 volume 3, pages 3016-3023,
2002.

93

