
Bar-Ilan University

Department of Computer Science

Topics in Multi-Robot Teamwork

by

Meytal Traub

Advisor: Prof. Gal Kaminka

Submitted in partial fulfillment of the requirements for the Master’s degree

in the department of Computer Science

Ramat-Gan, Israel

July 2011

Copyright 2011

This work was carried out under the supervision of

Prof. Gal A. Kaminka

Department of Computer Science, Bar-Ilan University.

Abstract

In recent years there is a growing interest in multi-robots systems, where a group

of N robots are working collaboratively in order to execute a given task. This

thesis addresses two open challenges in multi-robot systems. The first is the chal-

lenge of deciding on which robot, out of a group of robots, should travel to a

goal location, to carry out a task there. The second is the challenge of integrating

multiple and different multi-robot controllers into a robust system.

A common decision problem in multi-robot applications involves deciding on

which robot, out of a group ofN robots, should travel to a goal location, to carry

out a task there. Trivially, this decision problem can be solved greedily, by se-

lecting the robot with the shortest expected travel time. However, this ignores the

inherent uncertainty in path traversal times; we may prefera robot that is slower

(but always takes the same time), over a robot that is expected to reach the goal

faster, but on occasion takes a very long time to arrive. In the first part of this

thesis we make several contributions that address this challenge. First, we bring

to bear economic decision-making theory, to distinguish between different selec-

tion policies, based on risk (risk averse, risk seeking, etc.). Second, we introduce

social regret(the difference between the actual travel time by the selected robot,

and the hypothetical time of other robots) to augment decision-making in practice.

Then, we carry out experiments in simulation and with real robots, to demonstrate

the usefulness of the selection procedures under real-world settings, and find that

travel-time distributions have repeating characteristics.

In the second part, we address the challenge of integrating multiple and dif-

ferent multi-robot controllers into a robust system. Multi-robot formations are of

increasing interest to robotics researchers (as a canonical research problem), and

to robot system builders (e.g.,for unmanned convoys). Indeed, there exists vast lit-

erature on various techniques for maintaining formations in a variety of settings,

and for a variety of robots. However, little attention has been given to the pos-

sibility of using multiple formation controllers, all integrated together for greater

formation robustness. In this part, we make two contributions. First, we address a

key challenge in integration, that of joint distributed selection and execution of the

correct controller, at the same time. We demonstrate how to utilize a teamwork

software engine to automate this joint selection. Second, we describe one such in-

tegrated system, which uses several different formation-maintenance controllers

for greater robustness.

2

Acknowledgments

This thesis would not have been possible without the supportof many people.

First, I would like to express my gratitude to Prof. Gal Kaminka, for giving me

the opportunity, advising and supporting me, I wish he will be able to drink his

coffee quietly from now on.

I am indebted to Noa Agmon, for being wonderful research partners and for

helping me through the entire process even on her spare time.

To Yehuda Elmaliach, Dan Erusalimchik, Alon Levy, Eran Sadeh-Or and

Vladimir Sadov for their help and sleepless nights during the project.

To the MAVERICK lab, for being my friends and making me feel likeat home.

Lastly, I am grateful to my family, for loving and supportingme through this

journey.

This research was supported in part by Israeli Science Foundation (ISF) grant

#1357/07.

1

Contents

1 Introduction 8
1.1 Selecting a Robot to Reach a Goal 8
1.2 Integrating Redundant Multi-Robot Formation Controllersfor

Robustness . 10

I Who Goes There? Selecting a Robot to Reach a Goal Us-
ing Social Regret 12

2 Background: Choosing a Robot 14
2.1 Task Cost Prediction . 15
2.2 Market-Based Techniques . 17

3 Selecting a Robot 20
3.1 Risk-Based Selection . 21

3.1.1 Risk-Neutral Selection 22
3.1.2 Risk-Averse Selection 22
3.1.3 Risk Seeking Selection 23
3.1.4 Bounded-Risk Selection 24

3.2 Regretting the Selection . 24
3.2.1 When Should We Overrule The Selection? 26
3.2.2 A Short-Cut to DeterminingSwF 28
3.2.3 Minimal Expected Cost is Safe Selection 31

4 Path Travel in Practice 33
4.1 Experiments with Robots . 33

4.1.1 Physical Robot Experiments 34
4.1.2 Simulation Experiments 36

4.2 Selection Based on Experiment Data 47
4.2.1 Simulation Experiments 47
4.2.2 Physical Robot Experiments 48

2

4.3 Parametric travel time distributions 49

II Using Teamwork to Integrate Redundant Multi-Robot
Formation Controllers for Robustness 52

5 Background: Formations and Teamwork 54

6 Teamwork Software for Joint Formation Control 59
6.1 Control Process . 60

6.1.1 Principal Control Algorithm 62
6.2 Collaborative World Modeling 63

7 Integrating Multiple Controllers 67
7.1 Robust Formations by Switching SBC Formations 67
7.2 Robust Formations by Communication-Based Formation Control . 68
7.3 Integrating Controllers . 71

8 Discussion and Evaluation 73
8.1 It Works! . 73
8.2 Robustness . 75
8.3 Using a Teamwork Architecture Cuts Development Efforts 79
8.4 What Does Not Work (at least not easily)? 83

9 Conclusions 84

3

List of Figures

3.1 Three robots in exploration task. Map was generated using laser-

based SLAM. 20

4.1 RV400 robot. 34

4.2 The mapped lab used in the robotics experiments. 34

4.3 RV-400 Travel Time Distributions. 35

4.4 The mapped simulated environment. 36

4.5 R1 Travel Time Distributions to point A. 38

4.6 R1 Travel Time Distributions to point B. 39

4.7 R1 Travel Time Distributions to point C. 40

4.8 R1 Travel Time Distributions to point D. 41

4.9 R2 Travel Time Distributions to point A. 42

4.10 R2 Travel Time Distributions to point B. 43

4.11 R2 Travel Time Distributions to point C. 43

4.12 R3 Travel Time Distributions to point A. 44

4.13 R3 Travel Time Distributions to point B. 44

4.14 R3 Travel Time Distributions to point C. 45

4.15 R3 Travel Time Distributions to point D. 46

4.16 Distribution ofR1’s travel times to pointB in a static environ-

ment, over 132 path following experiments. The line shows the

fitted log-logistic distribution. The goodness of fit according to

Kolmogorov-Smirnov test is 0.0565. 51

4.17 Measured minimal travel time versus fitted shift. 51

4

6.1 A Behavior graph for simple SBC control. Each robot runs itsown

local copy of this graph. Node names appear at the top of each

node above. Other text refers to names of conditions and protocols

utilized in the different nodes, and described in the paper.Arrows

coming out of the tab marked ‘c‘ are task-decomposition edges,

while those coming out from the tab marked ‘n‘ are sequential

ordering edges. 61

7.1 Different control graphs for triangle formation. 68

7.2 A Behavior graph for the switching controller. 69

7.3 A Behavior graph for communication-based controller. 70

7.4 The complete Behavior graph. 72

8.1 The Blue-Botics Shrimps III robot. 74

8.2 Three shrimps robots in Stage simulator. 74

8.3 Three shrimps robots in an indoor environment. 75

8.4 Three shrimps robots in an indoor environment. 76

8.5 Three shrimps robots in an outdoor environment. 76

8.6 Three shrimps robots in an outdoor environment. 77

8.7 Three shrimps robots in an outdoor environment. 77

5

List of Tables

3.1 Possible cost distribution forR1,2,3 for arriving toF1. 21

3.2 Robots distributions of costs to arrive at a goal. Expected cost and

expectedSoRare shown. SelectingR1 over R2 makes sense in

practice. 25

3.3 Robots’ distributions of costs to arrive at a goal. Expected SoR

are shown. SelectingR2 overR1 does not make sense, if we want

to guarantee best worst-case settings. 27

3.4 The bounded cost does not minimizes the expectedSoR. When

should we replace . 28

4.1 Selected robots for targets, according to each policy. 47

4.2 The robots expected minimal cost, and expectedSoRfor the min-

imal cost of 88, while competing on pointA. 48

4.3 Selected physical robot, according to each policy. 49

4.4 The average fitness of the top three matching distributions using

Kolmogorov-Smirnov & Anderson-Darling tests. The lower the

number the better the distribution fits. 50

6

List of Algorithms

1 MinExpMaxCost(R) . 22

2 MaxExpMinCost(R) . 23

3 CONTROL . 64

4 FUSEINFORMATIONWITHTEAMMATES 65

7

Chapter 1

Introduction

In recent years there is a growing interest in multi-robots systems, where a group

of N robots are working collaboratively in order to execute a given task. This

thesis addresses two open challenges in multi-robot systems. The first (Section

1.1) is the challenge of deciding on which robot, out of a group of N robots,

should travel to a goal location, to carry out a task there. The second (Section 1.2)

is the challenge of integrating multiple and different multi-robot controllers into a

robust system. We describe the two parts in detail below.

1.1 Selecting a Robot to Reach a Goal

A common decision problem in multi-robot settings involvesdeciding on which

robot, out of a group ofN robots, should travel to a goal location, to carry out

a task there. This decision repeats in many applications: inmulti-robot explo-

ration (e.g., deciding who should go to explore a new frontier), in package delivery

robots (e.g., deciding who should go to pick up a package), and in other service

robotics applications (e.g., in hospitals). In all of these, robots can plan a path

to reach their destination, in an environment that is—for the most part—known

to them. Thus, in principle, they can analytically predict their travel time to any

location.

Trivially, this decision problem can be solved greedily, byselecting the robot

with the shortest predicted travel time [61], or using a market-based allocation

8

scheme (see [15]). However, this ignores the inherent variance in the actual path

traversal times, due both to motion and sensing errors, as well as multiple factors

that affect a robot’s velocity (e.g., battery level, unknown obstacles). Solutions

that have been proposed to address these challenges includeusing machine learn-

ing to better predict actual travel times under varying conditions [37, 66, 38], or

other path-generation techniques that provide estimates [10, 6].

A common thread through previous work is that it focuses on scalar predic-

tions; a single number that denotes the expected travel-time for each robot. Un-

fortunately, scalar predictions hide important information about the uncertainty in

the predictions. In particular, a scalar denoting expectedcost ignores information

about the distribution of possible costs, best- and worst-case costs, etc. As a result,

guarantees on the cost of task execution are not possible.

For instance, supposed that we must send one of two robots to atarget location

X. RobotA’s path toX takes 100 seconds, through a free corridor. But if the

corridor is busy with traffic (a rare occurrence), it may takeup to 200. In contrast,

robot B’s travel time is always 150 seconds, through a specialized service way.

Since the corridor is normally clear, we might choose robotA for the task. But if

we wanted to absolutely guarantee delivery within 150 seconds, we would choose

robotB. Note that if we only know the expected (i.e., mean) travel time, we cannot

make the necessary distinction that allows this decision.

In Part I of this thesis, we make several contributions that address the challenge

involved in selecting a robot to go to a target location, given that each robot has a

distribution over predicted travel times: First, we bring to bear economic decision

theory that distinguishes between different selection policies, based onrisk: risk

averse, risk seeking, risk neutral, and bounded-risk selection. Second, we show

that under some conditions, the selected robot may still notbe a reasonable choice

in practice. We thus introduce the use ofsocial regret(the difference between

the actual travel time by the selected robot, and the hypothetical time of another

robot) to augment decision-making. Social regret is inspired by economic notions

of regret, though the definitions differ.

Then, we carry out experiments in simulation and with real robots, to demon-

strate the usefulness of the selection procedures under real-world settings. We em-

pirically demonstrate that even under static conditions ofthe environment, when

9

it is completely known to the robots, sensor and actuator errors leads to signif-

icant variance in the execution of path-following tasks. This variance leads to

non-trivial distribution of costs, which in turn necessitates reasoning about the

different optimization criteria when making the selectionbetween robots. Finally,

we show empirically that travel time distributions have repeating characteristics

(specifically, they fit extreme value distributions).

The work reported in this part has been published in:

• Meytal Traub, Gal A. Kaminka and Noa Agmon. 2011.Who Goes there?

Using Social Regret to Select a Robot to Reach a Goal. In Proceedings of

the International Conference on Autonomous Agents and Multiagent Sys-

tems (AAMAS-2011) (Full paper).

1.2 Integrating Redundant Multi-Robot Formation

Controllers for Robustness

Multi-robot formation maintenance is of increasing interest to robotics researchers

(as a canonical research problem), and to robot system builders (e.g., for un-

manned convoys). In formation maintenance, the goal is for agroup of robots

to move while maintaining relative positions with respect to each other (typically

describing a specific geometric shape).

Indeed, there exists vast literature on various techniquesfor maintaining for-

mations in a variety of settings, and for a variety of robots.This includes de-

tailed discussions of separation-bearing control (SBC) [25,14, 13], separation-

separation control (SSC) [25, 14, 13], the use of dead-reckoning and communi-

cations [23], and more. Different controllers can be used indifferent settings;

they have advantages and disadvantages which can complement each other. How-

ever, little attention has been given to the possibility of using multiple formation

controllers, all integrated together for greater formation robustness.

Unfortunately, integrating multiple controllers together is not an easy task.

Within each type of multi-robot controller ,each robot executes its own individ-

ual controller, and the formation is created by the distributed execution of the

individual controllers. To be effective, the selection of the individual controllers,

10

and their parameters (e.g., which robot is following whom) must be coordinated.

Moreover, if multiple multi-robot (joint) control schemesexist, then the robots

must also coordinate their selection, so that the same scheme is selected by all

robots, at the same time.

We tackle these key challenges in integration, that of jointselection and ex-

ecution of an agread upon multi-robot controller, at the same time. We demon-

strate how to utilize a teamwork software engine to automatethis joint selection.

Teamwork software (such as BITE [44, 45] or CogniTAO [11]) allows sharing of

information, and in particular allows synchronous joint selection of controllers for

execution.

Its use in robotics has been reported before [44, 45], but notfocusing on for-

mation maintenance or integration of different control schemes. Here, we describe

in detail how such software significantly eases the development, integration, and

execution of multi-robot formation controllers.

Building on the ability to jointly select and execute a distributed multi-robot

controller, we describe a formation maintenance system, which integrates together

several different formation-maintenance controllers forgreater robustness. The

robots jointly switch between different controllers, so asto address intermittent

failures in sensing or communications. As a result, robustness of the formation

increases. Moreover, the robots—now acting as a team—respond to robot death

failures: when one robot fails, the others stop. We demonstrate the capabilities of

the system using real and simulated robots.

11

Part I

Who Goes There? Selecting a Robot

to Reach a Goal Using Social Regret

12

A common decision problem in multi-robot applications involves deciding on

which robot, out of a group ofN robots, should travel to a goal location, to carry

out a task there. Trivially, this decision problem can be solved greedily, by select-

ing the robot with the shortest expected travel time. However, this ignores the in-

herent uncertainty in path traversal times; we may prefer a robot that is slower (but

always takes the same time), over a robot that is expected to reach the goal faster,

but on occasion takes a very long time to arrive. We make several contributions

that address this challenge. First, we bring to bear economic decision-making the-

ory, to distinguish between different selection policies,based on risk (risk averse,

risk seeking, etc.). Second, we introducesocial regret(the difference between

the actual travel time by the selected robot, and the hypothetical time of other

robots) to augment decision-making in practice. Then, we carry out experiments

in simulation and with real robots, to demonstrate the usefulness of the selection

procedures under real-world settings, and find that travel-time distributions have

repeating characteristics.

13

Chapter 2

Background: Choosing a Robot

A common decision problem in multi-robot settings involvesdeciding on which

robot, out of a group ofN robots, should travel to a goal location, to carry out

a task there. This decision repeats in many applications: inmulti-robot explo-

ration (e.g., deciding who should go to explore a new frontier), in package delivery

robots (e.g., deciding who should go to pick up a package), and in other service

robotics applications (e.g., in hospitals). In all of these, robots can plan a path

to reach their destination, in an environment that is—for the most part—known

to them. Thus, in principle, they can analytically predict their travel time to any

location.

Trivially, this decision problem can be solved greedily, byselecting the robot

with the shortest predicted travel time [61], or using a market-based allocation

scheme (see [15]). However, this ignores the inherent variance in the actual path

traversal times, due both to motion and sensing errors, as well as multiple factors

that affect a robot’s velocity (e.g., battery level, unknown obstacles). Solutions

that have been proposed to address these challenges includeusing machine learn-

ing to better predict actual travel times under varying conditions [37, 66, 38], or

other path-generation techniques that provide estimates [10, 6].

A common thread through previous work is that it focuses on scalar predic-

tions; a single number that denotes the expected travel-time for each robot. Un-

fortunately, scalar predictions hide important information about the uncertainty in

the predictions. In particular, a scalar denoting expectedcost ignores information

14

about the distribution of possible costs, best- and worst-case costs, etc. As a result,

guarantees on the cost of task execution are not possible.

Section 2.1 describes the related work on task cost prediction while Section

2.2 address the related work on market based techniques

2.1 Task Cost Prediction

There have been several investigations that attempt to predict travel time or related

costs. To the best of our knowledge, none addressed completedistributions.

Bobrow [6] presented an algorithm using B-spline polynomialsfor generating

optimized paths for a three degrees of freedom elbow type robot in an environ-

ment which contains obstacles. The algorithm requires the joint displacement as

a function of the path parametrization, and estimates the time of execution.

Heero et al. [38] present a method for learning the shortest path in a partially-

known environment by using a rectangular grid-based map. For each path they

saved four parameters: number of re-plans, travel time, travel distance and devia-

tion from the originally pre-planned path. According to their algorithm, when an

unknown path need to be followed (i.e. that does not appear inthe known paths

list) then the path is being chosen by the shortest distance from the robot position

to the goal and the parameters are being saved for this new path. If the robot need

to reach a goal that already have been learned than the one with the lowest re-

planning is being chosen. But the learning is path-specific; changes in the start or

end point requires learning the new path from scratch. Furthermore, the method

used the distance and time without considering the errors inthe robot movements

and sensors which were removed from the training data.

Chaudhry [10] presented an algorithm for generating paths using matrix rep-

resentation of the robot’s previous path traversals. New paths are created by ap-

plying transformations to the matrix, given the new path requirements. Both in-

vestigations use the previous experiences to generate travel time predictions.

Sofman et al. [62] demonstrated an approach for learning Gaussian distribu-

tions associated with the local environments of the robot, to improve navigation

and the travel speed. They use the models to generalize to newenvironments. The

learning process is done using Bayesian probabilistic framework. But although

15

the model is represented as distribution, it is being modeled as a Gaussian and the

calculations are being done using the mean and variance of the Gaussian while

our distributions are heavy tailed distributions. They do not learn travel time dis-

tributions, and in any case as we show, travel time distributions are not Gaussian.

A related—though inverse—problem to ours is the problem of choosing a

path, out ofk possible paths, for a single robot to reach a goal location. Haigh

and Veloso developed ROGUE [37]. It learns situation-dependent rules based on

the success or failure in carrying out its tasks, and in particular, learns to take

different paths depending on the time of day, expected use ofthe corridor, etc.

ROUGE learns these situated-dependent cost predictions byexamining the mean

costs of travel for given locations. Thurn et al. developed MINERVA, an interac-

tive tour guide robot for the Smithsonian museum [66]. It used POMDP methods

to learn and plan its motion. The use of POMDP is similar to therisk-neutral

policy, one of a number we present in this chapter.

Our notion of regret is inspired by—but different than—notions of regret in

economics. Economic regret were introduced by Bell [4] and byLoomes and

Sugden [52], who concluded that people do not necessarily maximize their ex-

pected utility, but also consider the possible loss they arewilling to accept from

making a choice. They defined regret as a symmetric function with respect to

two choices: choosingA rather thanB (and the associated gain/loss depending

on the outcome) minus the gain/loss from choosingB rather thanA. In our case

we calculate the regret with respect to all other choices, yet the comparison be-

tween the symmetric cases is done after the calculation (hence our regret function

is asymmetric).

Foster and Vohra [26] discussed regret in online decision-making. Here, the

goal is to choose a series of actions that will have minimal average loss with re-

spect to the possible world’s states, based on the previous states of the world. It

considers decision schemes, according to which decisions are made along time

(decision functions). The internal regret of a scheme is howmuch one will lose

while choosing according to this scheme in different world states. The external re-

gret is how much one will lose when comparing choices of schemeA and scheme

B. Our definition of regret is similar to the definition of internal regret, as we do

not compare between different decision schemes, but make a general computation

16

as for how much we will be sorry for making a certain choice with respect to other

possible outcomes. However we evaluate with respect to the probabilities of costs,

rather than on a limited history over time.

2.2 Market-Based Techniques

Market-based methods are sometimes used to assigning robots to tasks (e.g., a

goal location to be reached; see [15] for a survey). In general, these methods rely

on scalar cost estimates, and do not utilize information about travel cost distribu-

tions. However, they do address self-interest on the part ofthe robots, while in

our work we assume robots are cooperative and truthful. Koenig et al. [48] uses a

regret function, different from ours, to improve such auctions.

In task allocation using market-based approaches, each robot computes its cost

and encapsulates it in the bid. The bids are being sent to the auctioneer whose duty

is to choose the best option according to the bids.

Moreover, some frameworks for task allocation using market-based tech-

niques have been implemented. The frameworks deals with centralized and dis-

tributed planning for the task allocation.

Dias et al. [20] dealt with dynamic environment in the context of communica-

tion problems, partial robot malfunction and robot death, but they did not handle

the problem caused by the uncertainty of the environment because of noise and

changes in the environment. Zlot et al [68] worked on solvingexploration prob-

lem using market-based approach, but their cost function isrelating between the

robot resources by using the distance that the robots is passing to reach the goal.

Their algorithm deals with communication problems but theydo not pay attention

to the uncertainty in the distance measurements of the robots, and therefore do not

handle the case of wrong price estimation. Tradebot [18],[21], [16] [17] is a dis-

tributed mechanism framework which in some cases changing the mechanism to

a centralized mechanism in order to improve the complexity and the efficiency of

the solution, but this framework as well works on a given taskand cost functions.

Jones et al [41] have worked on the case of pickup robots team using market-based

approach in a treasure hunt domain. They tests their work using Tradebot, but they

as well used the distance that the robot requires to move as the cost function.

17

Gerkey and Mataric [28] presented a taxonomy for task allocation, based on

scalar costs which were calculated using weights between parameters of the ob-

jective function. They did not deal with distribution of costs. In another case [31]

they compose a sensor-actuator network while in this network the goals would be

achieved using market-based approach. But they made an explicit note that the

cost should be a metric cost and left the question of what is the cost as an open

question. MURDOCH [30] is a distributed framework which implements market-

based approach using negotiation between the robots. But thecost function is

given to the framework according to the problem, therefore they are not dealing

with the noise of the environment. In the experiments which were done using this

framework, the cost function was build using the distance from the goal position

to the robot according to the image which was acquired from the camera. In the

framework experiment the bid is a scalar and there is no treatment to the sensors

noise.

Sheng et al. [60] proposed a distributed algorithm for an area exploration

problem using bidding. But they used this mechanism in order to choose the best

choice from the options that were given. In their proposed algorithm they are

counting on perfect sensing and therefore do not take care ofmistakes because of

sensing errors.

Simmons et al. [61] proposed an algorithm for coordinated exploration using

market-based approach, where the robots send array of bids for frontiers in the

map to explore, and the auctioneer chose the winning robot between those who

offered the best offer for any frontier. The bids are constructed by the distance

between the robots and the frontiers. But they too did not address the effects of

sensing and location-estimation errors.

Bererton et al [5] developed a method for solving path planning problems

using loosely coupled MDP. But they still using market-basedapproach, and they

did not use any limit on the mistakes of the algorithm.

Hoplites [43] chooses between negotiation mechanisms and passive mecha-

nism in order to give the best solution to the given task. But the task and the bid

function is given to the framework. The framework does not handle the cost and

utility functions at all.

M+ [8] is an implementation of Contract Net protocol for task allocation prob-

18

lem. Botelho and Alami send a list of attributes and constraints to fulfill by the

robots that wants to participate in the auction, but they do not deal with the cost

estimation of the robots bids.

Shehory and Kraus [59] showed an algorithm that allocates tasks to coali-

tions of autonomous agents. They used market-based approach in order to decide

which task to allocate to which coalition, and showed how thedynamic of the

environment effects on the size of the group and therefore onthe bids that were

offered. But they used the market-based approach for coalitions of self-interested

agents, where the relation between the coalitions is not cooperative. Kraus [49]

also showed cases where the agents are self interested but cooperative and there-

fore may use market-based approaches in order to allocate tasks. But those cases

do not fit multi-robot teams because the cost of two robots completing a mission

in the same conditions is equal and not different as in the cases that we discus.

19

Chapter 3

Selecting a Robot

The problem is to select a robotRi, out of a group ofN robotsR1, . . .RN, to carry

out a task, while minimizing the cost. We assume that each robot can estimate

its cost of task execution with some discrete probability distribution overk cost

valuesc1, . . . ,ck. Each robotRi has a vector of sizek, < pi
1, p

i
2, . . . , p

i
k > such that

pi
j is the probability that the cost of task execution (travel time, in our case) by

robotRi is c j and∑k
j=1 pi

j = 1 (note thatpi
j can be equal to 0). We use this discrete

distribution formalization for simplicity, in lieu of the continuous distribution case

which is more natural for estimated travel times. Note also that each robot’s travel

time is an independent random variable, i.e., the probability of robot Ri having

actual cost ofc j does not depend on the probability of some other robot having

this or other cost.

Figure 3.1: Three robots in exploration task. Map was generated using laser-based
SLAM.

20

We use the following running example throughout this section. Figure 3.1

shows three robots{R1,R2,R3}. One of these robots is to be sent to explore a

new frontier,F1, shown in the bottom right corner (circled). Each robot constructs

a path (not shown) to the new location, and reports a distribution over estimated

travel times. As we show in the experiments (Section 4.1), even in a completely

static environment (let alone in dynamic environments), sensor and motion uncer-

tainties cause some variance in this distribution.

Suppose the travel time distributions reported by the 3 robots are as given

in Table 3.1. Each row shows the distribution of a different robot, with different

columns denoting different costs. The last column shows themean (expected) cost

for each robot. Given different decision objectives, we would choose different

robots to go toF1. For instance,R2 is most likely to reachF1 faster (has a 87%

chance of reachingF1 in 86 seconds). ButR2 may also take up to 134 seconds

for the same path. If we wanted to guarantee arrival within 2 minutes, we would

chooseR3.

c1 = 86 c2 = 98 c3 = 110 c4 = 122 c5 = 134 E(C)

R1 p1
1 = 0 p1

2 = 0.6 p1
3 = 0.23 p1

4 = 0.17 p1
5 = 0 104.84

R2 p2
1 = 0.87 p2

2 = 0.03 p2
3 = 0 p2

4 = 0 p2
5 = 0.1 91.16

R3 p3
1 = 0.6 p3

2 = 0.22 p3
3 = 0.1 p3

4 = 0.08 p3
5 = 0 93.92

Table 3.1: Possible cost distribution forR1,2,3 for arriving toF1.

3.1 Risk-Based Selection

Choosing the robotRc ∈ {R1, . . . ,RN} to perform the given task is dependent on

a decision policy, which prefers robots—all else being equal—based on the risk

involved. For instance, if we have a fixed amount of time to explore a given area,

we may want to select a robot that will definitely reach its target within the time

allotted. On the other hand, we may decide to take more risks,hoping to reach the

target faster than expected.

Such decision policies are well known in economic decision theory. We dis-

tinguish four well-defined policies, and outline the selection algorithm for each:

1. Minimize the expected travel time (risk neutral selection, Section 3.1.1).

21

2. Minimize the expected maximal travel time (risk averse selection, Section

3.1.2).

3. Maximize the expected minimal travel time (risk seeking selection, Section

3.1.3).

4. Bound the travel time by a constantA (bounded risk, Section 3.1.4).

3.1.1 Risk-Neutral Selection

Risk-neutral selection implies that we select the robot thatminimizes the expected

(mean) travel time. To do this, we compute the mean of every robot’s distribution,

and choose the robot whose mean is minimal

MinExpC = argmin
1≤a≤N

{
k

∑
i=1

pa
i ci}

where in case of a tie, we choose arbitrarily.

3.1.2 Risk-Averse Selection

In some cases we want to make sure that the worst-case scenario is addressed first,

and that we have an absolute guarantee that the task will be carried out within a

given amount of time. To do this, we need to look at the robots whose greatest

time of arrival is minimal. Of course, the probability of actually taking this long

time must also be taken into account. Thus what we want is to find the robot

which minimizes the expected maximal cost. This is done in Algorithm 1.

Algorithm 1 MinExpMaxCost(R)
Require: C= {c1,c2, . . . ,ck},R= {R1,R2 . . . ,Rn}

v← k
Robotslist ←{R1,R2, . . . ,Rn}

while ∃p j
v = ph

v,Rj ,Rh ∈ Robotslist do
Robotslist ← argminRi∈Robotslist

{pi
v}

v← v−1
return :argminRi∈Robotslist

{pi
v}

22

Note that ties can be broken in different ways. For instance,we can choose

the robot with the lower expected time among those that are returned.

We use Table 3.1 to illustrate. The algorithm creates a list of all the robots

that available to execute the task {R1,R2,R3}, and starts the run with the highest

cost (134). It looks for two robots with the same probabilityto arrive the goal

in cost 134. In this exampleR1 andR3 have the same probability (p1
5 = p3

5 = 0),

so the loop will be entered. The algorithm choose the robots with the minimal

probability to execute the task in cost 134 by argmin. By doingit, all the robots

with probability higher than 0 will be removed from the list,i.e. robotR2. The

algorithm then examines the next highest cost, 122. While looking on the remain-

ing robots {R1,R3}, their probability to arrive the target is different, therefor the

loop will not be entered and the robot with the lowest probability to use this cost

will be returned:R3 (p1
4 = 0.17> p3

4 = 0.08).

3.1.3 Risk Seeking Selection

The opposite policy to being risk averse is to be risk seeking; to hope for the

best possible travel time of any of the robots. Here the selection is exactly the

inverse of the above: We select the robot that maximizes the expected minimal

cost. Algorithm 2 is thus the inversion of Algorithm 1.

Algorithm 2 MaxExpMinCost(R)
Require: C= {c1,c2, . . . ,ck},R= {R1,R2 . . . ,Rn}

v← 1
Robotslist ←{R1,R2, . . . ,Rn}

while ∃p j
v = ph

v,Rj ,Rh ∈ Robotslist do
Robotslist ← argmaxRi∈Robotslist

{pi
v}

v← v+1
return :argmaxRi∈Robotslist

{pi
v}

We again use Table 3.1 to illustrate. The algorithm starts the run with the

lowest cost, i.e. 86. It looks for two robots with the same probability to arrive the

goal in cost 86. In this example, there is no two such robots, and so it does not

enter the loop and return the robot with the highest probability to arrive the goal

in this cost,R2 (p1
1 = 0< p3

1 = 0.6< p2
1 = 0.87).

23

3.1.4 Bounded-Risk Selection

Finally, we may want to choose the robot that maximizes the probability of reach-

ing the target within some limited amount of time. This is different from guar-

anteeing arrival within this time; it would still be possible that in the worst case,

travel time will be longer. Nevertheless, we want to improveits chances of success

within the time allotted.

Suppose we are given a time limitT. We can then calculate for each robot the

cumulative probability that its travel time be smaller thanT, and choose the robot

that maximizes this probability.

For each robotRa, we will calculate the following probability:

P[C<= T] = ∑
ci<=T,ci∈C

pa
i ci

We will choose the robot that maximize the result of this equation. Note, that if

only one robot have distribution of cost bellow the constant, then it will be chosen

with probability of 1. If there is more than one robot that fitsthis, then we can

select based on any of the other criteria (e.g., the best risk-seeking robot out of the

candidates that fit the boundT).

3.2 Regretting the Selection

Despite the economic elegance of the selection policies described above, choosing

the robot according to the risk type will not always give us a reasonable selection

in practice. To see this, consider the following case (Table3.2). Here, we apply the

risk-averse policy, and selectR2: It is guaranteed to reach the goal in 199 seconds.

However, unless this risk-averseness is somehow extremelystrict,R1 would have

been a more reasonable choice: 90% of the time it would have reached the goal in

1 second. And even when it fails, it would do it in 200 seconds,a mere 1 second

more thanR2.

Note that this is not always the case: It depends very much on the valuesci.

If the ci would have been 1,2,200 rather than 1,199,200, our deliberation would

24

c1 = 1 c2 = 199 c3 = 200 E(C) ESoR
R1 p1

1 = 0.9 p1
2 = 0 p1

3 = 0.1 20.9 0.1
R2 p2

1 = 0 p2
2 = 1 p2

3 = 0 199 178.2

Table 3.2: Robots distributions of costs to arrive at a goal. Expected cost and
expectedSoRare shown. SelectingR1 overR2 makes sense in practice.

not have reached the same conclusion, and the selection ofR2 would have held.

To conduct this deliberation formally, we define thesocial regretfunction,

which measures, intuitively, the post-hoc payment (in travel time) that we make,

given the selected robot.

Social RegretSoRis defined as the difference between theactual costcr of

the task executed by robotRa and the minimal cost of task execution in case some

other robot would have executed the task in lower cost. In other words, looking

at it from the team’s perspective: How bad did the team do by choosing robot

Ra to perform the task, givenRa’s actual cost wascr . Formally,SoRof robotRa

executing a task with actual costcr is SoR(Ra,cr) = maxj 6=i(cr −c j , r > j).

Since we do not knowSoRfor any specific selection (it is by definition hy-

pothetical), we compute theexpected SoRfor each robotRa, given all other

robots, and all possible outcomes. The expected social regret from choosingRa,

ESoR(Ra), is the probability that some other robot will execute the task with lower

cost multiplied by the difference between the costs. We denote the probability

that the actualminimal cost of task execution by some robot other thanRa is ci

by PMi(Ra). Note that byminimal cost we mean that there is no other robot

that executed the task with costc j , j < i, and that at least one robot executed the

task with costci . Therefore,ESoR(Ra) = pa
1×0+ pa

2×PM1(Ra)(c2−c1)+ pa
3×

[PM1(Ra)(c3−c1)+PM2(Ra)(c3−c2)]+ . . ., and formally

ESoR(Ra) =
k

∑
i=2

pa
i ×

i−1

∑
j=1

PM j(Ra)(ci−c j)

In order to complete the definition, it is necessary to determine PM j(Ra), i.e.,

the probability that some robotRo, 1≤ o≤N, o 6= a will have minimal cost ofc j .

This is the probability that all robots have minimal cost higher thanc j−1 minus

the probability that all robots have minimal cost higher than c j , i.e.,ESoR(Ra) =

25

k

∑
i=2

pa
i {

i−1

∑
j=1

(ci−c j)[
N,h6=a

∏
h=1

(
k

∑
l= j

ph
l)−

N,h6=a

∏
h=1

(
k

∑
l= j+1

ph
l)]}

3.2.1 When Should We Overrule The Selection?

Intuitively, ESoR(Ra) measures the potential cost of selectingRa to carry out a

task, given the estimated costs of its peers. Suppose that wehave two robotsRi

andRj . What we want, is to compare the difference in the expectedSoRof the

two robots, to the gain from choosing one over the other. If this gain is smaller

than the difference in expectedSoR, then we should consider switching between

them.

To illustrate, supposeRi has been selected by some policy, and has a predicted

travel timeci (this is, for instance, its maximal time). Suppose we want toconsider

switching to a different robotRj , with predicted costc j . In order to compute

the profit form switching two robots we will calculate the distance between the

expectedSoRof Ri and Rj , ESoR(Ri)−ESoR(Rj). We compare this value to

the difference in costs betweenRi andRj , which is (c j − ci), using the following

function.

The Switch functionSwFis defined as follows:

SwF=

{

1 if (ESoR(Ri)−ESoR(Rj))> (c j −ci)

0 otherwise

If the SwFis 1, the social regret of usingRi is greater than the expected gain

of using it, and we should consider switching our selection to Rj instead. We

examine this in different selection policies below.

Example: Minimize the expected maximal cost Table 3.2 above describes the

cost distributions for two robots,R1 andR2. As previously discussed, strict risk-

averse policy would selectR2 for the task, since it is guaranteed to reach the target

in 199 seconds. However, by risking just one additional second, we actually have

much better average performance if we chooseR1.

SwFidentifies this opportunity. The difference betweenc3 (R1’s cost) andc2

(R2’s cost) is 1, while the distance between theESoR(R2) andESoR(R1) is 178.1.

26

ThusSwFis 1, and we should consider switching our selection to the other robot.

Example:Maximize the expected minimal cost We use another example, this

time of risk-seeking policy, to illustrate further. In thisscenario we try to reach

the best performances but not necessarily we will choose therobot with the best

expected regret, i.e., a case where there is a robot with a larger minimal cost but

with a lower expectedSoR).

Table 3.3 shows distribution of costs of two robots,R1 andR2. According to

the risk-seeking policy describe above, the chosen robot toexecute the task would

beR1. But althoughR2’s minimal cost is higher than the minimal cost ofR1, in

most of the casesR1 will preform the task in 200 seconds whileR2 will always

perform the task in 2 seconds. Therefore we will prefer to switch our chosen robot

to beR2 and notR1.

Again, SwFcan help us make this decision. By looking on the distance be-

tween the two minimal costs of the robot, we can see thatc2− c1 = 4, while

the distance between the expectedSoRis 175.1. ThusSwF= 1, and we should

consider switching toR2 as the selected robot.

c1 = 1 c2 = 5 c3 = 200 ESoR
R1 p1

1 = 0.1 p1
2 = 0 p1

3 = 0.9 175.5
R2 p2

1 = 0 p2
2 = 1 p2

3 = 0 0.4

Table 3.3: Robots’ distributions of costs to arrive at a goal.ExpectedSoRare
shown. SelectingR2 overR1 does not make sense, if we want to guarantee best
worst-case settings.

Example: Switching in the case of a bounded risk Using a bounded-risk pol-

icy, we normally select the risk the is most likely to carry out the task within the

time allotted. But by bounding the cost, we are not bounding the regret function.

In other words, choosing the best robot given the boundT, does not reduce our

expectedSoRfor the bounded cost, and we can still choose to switch based on

SwF.

27

For example, table 3.2.1 shows distributions of costs of tworobots,R1 and

R2. A bound ofT = 7, yields selectionR1 (with cumulative likelihood 0.2), over

R2 (cumulative likelihood 0). But the expectedSoRof R1 is much higher that

the expectedSoRof R2. Indeed, using theSwFwe might consider to change the

constantT to be higher. By changing the constantT from 7 to 10,R2 will have

higher probability thanR1 to execute the task under the new bound. We will pay 3

in the bound but gain 70.6 in the expected regret(ESoR((R1))−ESoR(R2)). The

SwFwill be 1 (70.6> 3).

c1 = 1 c2 = 5 c3 = 10 c4 = 100 ESoR
R1 p1

1 = 0.1 p1
2 = 0.1 p1

3 = 0 p1
4 = 0.8 72

R2 p2
1 = 0 p2

2 = 0 p2
3 = 1 p2

4 = 0 1.4

Table 3.4: The bounded cost does not minimizes the expectedSoR. When should
we replace

3.2.2 A Short-Cut to Determining SwF

The computation ofESoRfor each robot, which is necessary whenever we select

robots based on a policy different from risk-neutral selection, is tedious, and po-

tentially time-consuming if the distribution’s domains are large, or there are many

robots.

Thankfully, it turns out that we do not need to computeESoRdirectly. To

computeSwF, we want the differenceESoR(Ri)−ESoR(Rj) for the two robots

Ri,Rj . It turns out that this difference is exactly the differencein expected costs

of the two robots, which is much easier to compute:

Theorem 1. The difference between the expected costs of any two robots in a

given team of N robots{R1, . . . ,RN} (each with a discrete probability distribution

over possible costs c1, . . . ,ck) is equal to the distance between the expected SoR

of the same robots.

Proof. Let R1 and R2 be two robots in a team, with discrete probability dis-

tribution {p1
1, p

1
2, . . . , p

1
k} and{p2

1, p
2
2, . . . , p

2
k} (respectively) over possible costs

28

c1, . . . ,ck of a given task. We prove that,∑k
i=1 p1

i ci −∑k
i=1 p2

i ci = ESoR(R1)−

ESoR(R2).

ESoR(R1), can be represented as,

∑k
i=2 p1

i {∑
i−1
j=1[(ci−c j)(∏N

h=2(∑
k
l= j ph

l)−∏N
h=2(∑

k
l= j+1 ph

l))]}.

Similarly, ESoR(R2) = ∑k
i=2{p

2
i (∑

i−1
j=1[(ci − c j)((∑k

x= j p1
x)(∏N

h=3(∑
k
l= j ph

l)) −

(∑k
x= j+1 p1

x)∏N
h=3(∑

k
l= j+1 ph

l))]}.

Therefor,ESoR(R1)−ESoR(R2)

= ∑k
i=2 p1

i {∑
i−1
j=1[(ci − c j)(∏N

h=2(∑
k
l= j(p

h
l)) − ∏N

h=2(∑
k
l= j+1 ph

l))]} −

∑k
i=2 p2

i {∑
i−1
j=1[(ci − c j)((∑k

x= j p1
x)(∏N

h=3(∑
k
l= j ph

l)) −

(∑k
x= j+1 p1

x)(∏N
h=3(∑

k
l= j+1 ph

l)))]}

= ∑k
i=2 p1

i [ci ∏N
h=2(∑

k
j=1 ph

j) − ci ∏N
h=2(∑

k
j=i ph

j) + ∑i−1
j=1c j(∏N

h=2(∑
k
l= j+1 ph

l) −

∏N
h=2(∑

k
l= j ph

l))] − ∑k
i=2 p2

i [ci(∑k
j=1 p1

j)∏N
h=3(∑

k
j=1 ph

j) −

ci(∑k
j=1 pi

j)(∏
N
h=3(∑

k
j=i ph

j)) + ∑i−1
j=1(c j(∑k

l= j+1 p1
l)∏N

h=3(∑
k
l= j+1 ph

l) −

(∑k
l= j p1

l)(∏
N
h=3(∑

k
l= j ph

l)))]

= ∑k
i=2 p1

i [ci ∏N
h=2(1) − ci ∏N

h=2(∑
k
j=i ph

j) + ∑i−1
j=1c j(∏N

h=2(∑
k
l= j+1 ph

l) −

∏N
h=2(∑

k
l= j ph

l))] − ∑k
i=2 p2

i [ci ∏N
h=3(1) − ci(∑k

j=i p1
j)∏N

h=3(∑
k
j=i ph

j) +

∑i−1
j=1c j((∑k

l= j+1 p1
l)∏N

h=3(∑
k
l= j+1 ph

l)− (∑k
l= j p1

l)∏N
h=3(∑

k
l= j ph

l))]

=∑k
i=2 p1

i [ci−ci ∏N
h=2(∑

k
j=i ph

j)+∑i−1
j=1c j(∏N

h=2(∑
k
l= j+1 ph

l)−∏N
h=2(∑

k
l= j ph

l))]−

∑k
i=2 p2

i [ci−ci(∑k
j=i p1

j)∏N
h=3(∑

k
j=i ph

j)+∑i−1
j=1c j((∑k

l= j+1 p1
l)∏N

h=3(∑
k
l= j+1 ph

l)−

(∑k
l= j p1

l)∏N
h=3(∑

k
l= j ph

l))]

= ∑k
i=2 p1

i ci + ∑k
i=2−p1

i ci ∏N
h=2(∑

k
j=i ph

j) + ∑k
i=2∑i−1

j=1 p1
i c j ∏N

h=2(∑
k
l= j+1 ph

l) −

∑k
i=2∑i−1

j=1 p1, ic j ∏N
h=2(∑

k
l= j ph

l) + ∑k
i=2−p2

i ci +

∑k
i=2 p2

i ci(∑k
j=i p1

j)∏N
h=3(∑

k
j=i ph

j)−∑k
i=2∑i−1

j=1 p2
i c j(∑k

l= j+1 p1
l)∏N

h=3(∑
k
l= j+1 ph

l)+

∑k
i=2∑i−1

j=1 p2
i c j(∑k

l= j p1
l)∏N

h=3(∑
k
l= j ph

l)

= ∑k
i=2 p1

i ci − ∑k
i=2 p2

i ci + ∑k
i=2∑k

j=i−p1
i ci p2

j ∏N
h=3(∑

k
j=i ph

j) +

∑k
i=2∑i−1

j=1∑i−1
j=1 p1

i c j p2
l ∏N

h=3(∑
k
l= j+1 ph

l)−∑k
i=2∑i−1

j=1(∑
k
l= j p1

i c j p2
l)∏N

h=3(∑
k
l= j ph

l)+

∑k
i=2(∑

k
j=i p1

j ci p2
i)∏N

h=3(∑
k
j=i ph

j)−∑k
i=2∑i−1

j=1(∑
k
l= j+1 p1

l c j p2
i)∏N

h=3(∑
k
l= j+1 ph

l)+

∑k
i=2∑i−1

j=1(∑
k
l= j p1

l c j p2
i)∏N

h=3(∑
k
l= j ph

l)

By opening the equation,

= ∑k
i=2 p1

i ci − ∑k
i=2 p2

i ci − p1
2c2p2

2∏N
h=3(∑

k
j=2 ph

j) −

p1
2c2p2

3∏N
h=3(∑

k
j=2 ph

j)− . . .− p1
2c2p2

k ∏N
h=3(∑

k
j=2 ph

j)− p1
3c3p2

3∏N
h=3(∑

k
j=3 ph

j)−

29

p1
3c3p[2,4]∏N

h=3(∑
k
j=3 ph

j) − . . . − p1
3c3p2

k ∏N
h=3(∑

k
j=3 ph

j) − . . . −

p1
kc[k]p2

k ∏N
h=3(∑

k
j=3 ph

j)+ p1
2c1p2

2∏N
h=3(∑

k
l=2 ph

l)+ p1
2c1p2

3∏N
h=3(∑

k
l=2 ph

l)+ . . .+

p1
2c1p2

k ∏N
h=3(∑

k
l=2 ph

l) + p1
3c1p2

2∏N
h=3(∑

k
l=2 ph

l) + p1
3c1p2

3∏N
h=3(∑

k
l=2 ph

l) + . . .+

p1
3c1p2

k ∏N
h=3(∑

k
l=2 ph

l) + p1
3c2p2

3∏N
h=3(∑

k
l=3 ph

l) + p1
3c2p2

4∏N
h=3(∑

k
l=3 ph

l) + . . .+

p1
3c2p2

k ∏N
h=3(∑

k
l=3 ph

l) + . . .+ p1
kc1p2

1∏N
h=3(∑

k
l=2 ph

l) + p1
kc1p2

2∏N
h=3(∑

k
l=2 ph

l) +

. . .+ p1
kc1p2

k ∏N
h=3(∑

k
l=2 ph

l) + p1
kc2p2

3∏N
h=3(∑

k
l=3 ph

l) + p1
kc2p2

4∏N
h=3(∑

k
l=3 ph

l) +

. . .+ p1
kc2p2

k ∏N
h=3(∑

k
l=3 ph

l) + . . .+ p1
kck−1p2

k ∏k
2(p

h
k)− p1

2c1p2
1∏N

h=3(∑
k
l=1 ph

l)−

p1
2c1p2

2∏N
h=3(∑

k
l=1 ph

l)− . . .− p1
2c1p2

k ∏N
h=3(∑

k
l=1 ph

l)− p1
3c1p2

1∏N
h=3(∑

k
l=1 ph

l)−

p1
3c1p2

2∏N
h=3(∑

k
l=1 ph

l)− . . .− p1
3c1p2

k ∏N
h=3(∑

k
l=1 ph

l)− p1
3c2p2

2∏N
h=3(∑

k
l=2 ph

l)−

p1
3c2p2

3∏N
h=3(∑

k
l=2 ph

l) − . . . − p1
3c2p2

k ∏N
h=3(∑

k
l=2 ph

l) − . . . −

p1
kc1p2

1∏N
h=3(∑

k
l=1 ph

l)− p1
kc1p2

2∏N
h=3(∑

k
l=1 ph

l)− . . .− p1
kc1p2

k ∏N
h=3(∑

k
l=1 ph

l)−

p1
kc2p2

2∏N
h=3(∑

k
l=2 ph

l)− p1
kc2p2

3∏N
h=3(∑

k
l=2 ph

l)− . . .− p1
kc2p2

k ∏N
h=3(∑

k
l=2 ph

l)−

. . . − p1
kck−1p2

k−1∏N
h=3(∑

k
l=k−1 ph

l) − p1
kck−1p2

k ∏N
h=3(∑

k
l=k−1 ph

l) +

p1
2c2p2

2∏N
h=3(∑

k
j=2 ph

j)+ p1
3c2p2

2∏N
h=3(∑

k
j=2 ph

j)+ . . .+ p1
kc2p2

2∏N
h=3(∑

k
j=2 ph

j)+

p1
3c3p2

3∏N
h=3(∑

k
j=3 ph

j)+ p1
4c3p2

3∏N
h=3(∑

k
j=3 ph

j)+ . . .+ p1
kc3p2

3∏N
h=3(∑

k
j=3 ph

j)+

. . .+ p1
kc[k]p2

k ∏N
h=3(p

h
k)− p1

2c1p2
2∏N

h=3(∑
k
l=2 ph

l)− p1
3c1p2

2∏N
h=3(∑

k
l=2 ph

l)− . . .−

p1
kc1p2

2∏N
h=3(∑

k
l=2 ph

l)− p1
2c1p2

3∏N
h=3(∑

k
l=2 ph

l)− p1
3c1p2

3∏N
h=3(∑

k
l=2 ph

l)− . . .−

p1
kc1p2

3∏N
h=3(∑

k
l=2 ph

l)− p1
3c2p2

3∏N
h=3(∑

k
l=3 ph

l)− p1
4c2p2

3∏N
h=3(∑

k
l=3 ph

l)− . . .−

p1
kc2p2

3∏N
h=3(∑

k
l=3 ph

l)− . . .− p1
1c1p2

k ∏N
h=3(∑

k
l=2 ph

l)− p1
2c1p2

k ∏N
h=3(∑

k
l=2 ph

l)−

. . .− p1
kc1p2

k ∏N
h=3(∑

k
l=2 ph

l)− p1
2c2p2

k ∏N
h=3(∑

k
l=3 ph

l)− p1
3c2p2

k ∏N
h=3(∑

k
l=3 ph

l)−

. . .− p1
kc2p2

k ∏N
h=3(∑

k
l=3 ph

l)− . . .− p1
k−1ck−1p2

k ∏N
h=3(p

h
k)− p1

kck−1p2
k ∏N

h=3(p
h
k)+

p1
1c1p2

2∏N
h=3(∑

k
l=1 ph

l) + p1
2c1p2

2∏N
h=3(∑

k
l=1 ph

l) + . . .+ p1
kc1p2

2∏N
h=3(∑

k
l=1 ph

l) +

p1
1c1p2

3∏N
h=3(∑

k
l=1 ph

l) + p1
2c1p2

3∏N
h=3(∑

k
l=1 ph

l) + . . .+ p1
kc1p2

3∏N
h=3(∑

k
l=1 ph

l) +

p1
2c2p2

3∏N
h=3(∑

k
l=2 ph

l) + p1
3c2p2

3∏N
h=3(∑

k
l=2 ph

l) + . . .+ p1
kc2p2

3∏N
h=3(∑

k
l=2 ph

l) +

. . . + p1
1c1p2

k ∏N
h=3(∑

k
l=1 ph

l) + p1
2c1p2

k ∏N
h=3(∑

k
l=1 ph

l) + . . . +

p1
kc1p2

k ∏N
h=3(∑

k
l=1 ph

l) + p1
2c2p2

k ∏N
h=3(∑

k
l=2 ph

l) + p1
3c2p2

k ∏N
h=3(∑

k
l=2 ph

l) +

. . . + p1
kc2p2

k ∏N
h=3(∑

k
l=2 ph

l) + . . . + p1
k−1ck−1p2

k ∏N
h=3(∑

k
l=k−1 ph

l) +

p1
kck−1p2

k ∏N
h=3(∑

k
l=k−1 ph

l)

And by minimization of the elements,

= ∑k
i=2 p1

i ci − ∑k
i=2 p2

i ci + ∑k
i=2 p1

1c1p2
i ∏N

h=3(∑
k
j=1 ph

j) −

∑k
i=2 p1

i c1p2
1∏N

h=3(∑
k
j=1 ph

j)

= ∑k
i=2 p1

i ci−∑k
i=2 p2

i ci + p1
1c1∑k

i=2 p2
i − p2

1c1∑k
i=2 p1

k

= ∑k
i=2 p1

i ci−∑k
i=2 p2

i ci + p1
1c1(1− p2

1)− p2
1c1(1− p1

1)

30

= ∑k
i=2 p1

i ci−∑k
i=2 p2

i ci + p1
1c1− p1

1c1p2
1p2

1c1+−p1
1c1p2

1

= ∑k
i=2 p1

i ci−∑k
i=2 p2

i ci + p1
1c1− p2

1c1

= ∑k
i=1 p1

i ci−∑k
i=1 p2

i ci

Therefore the distance between the expected costs of any tworobots, and the

distance between the expectedSoRare equal.

3.2.3 Minimal Expected Cost is Safe Selection

For one of the policies we introduced, it turns out that we do not need to consider

regret. We prove that by minimizing the expected cost, the expected social regret

function,SoR, is minimized as well, and thus we would not want to switch to a

different robot.

Theorem 2. Given a team of N robots{R1, . . . ,RN} each with a discrete probabil-

ity distribution over possible costs v1, . . . ,vk for a given task, if we choose a robot

Rc that minimizes the expected cost for the task, then the expected social regret

function SoR is minimized.

Proof. Let {R1, ...,RN−1 be a team ofN robots. We will assume, without loss of

generality thatR1 minimizes the executed cost of the task execution. Therefore in

particular,R1 minimizes the expected cost for all the possible couples of robots in

the environment, i.e., for any given pair of robots(R1,Ri) where 1≤ i ≤ N−1,

the selection ofR1 results in a minimal cost compared to the selection ofRi. We

will prove thatR1 minimizes the expectedSoRfor N robots.

Let RN be a robot that joins the task execution. IfR1’s expected cost is smaller

thanRN’s expected cost(EC(R1) < EC(RN)) (R1’s expected cost is minimized),

then according to Theorem 1,(ESoR(R1)−ESoR(RN) = (EC(R1)−EC(RN)< 0,

i.e., the expected social regret ofR1 is minimized.

If R1’s expected cost is bigger thanRN’s expected cost(EC(R1) > EC(RN))

(RN’s expected cost is minimized), then again according to Theorem 1,

(ESoR(R1)−ESoR(RN) = (EC(R1)−EC(RN) > 0, i.e., the expected social re-

gret ofRN is smaller than the expected social regret ofR1, and of any other robot

in the team.

31

Therefore, the theorem holds forN robots,N ≥ 2, i.e. if we choose a robot

Rc that minimizes the expected cost for the task, then the expected social regret

functionSoRis minimized.

Example, table 3.2 gives travel times distributions of two robots to a goal. As

it shows in the table, if we will choose robotR1 by minimizing its expected cost,

we will minimizes theESoRas well.

32

Chapter 4

Path Travel in Practice

We experimented with simulated and physical robots, to examine the travel time

distributions, and evaluate the use of social regret in practice. We use the results

to demonstrate in Section 4.1 that even under ideal conditions, robots do indeed

have variance in the time that it takes them to travel a given path, and that this

variance needs to be taken into account as described above. Using those variance

we examine and evaluate in Section 4.2 the decision-making policies we showed

earlier. Finally in Section 4.3 we show that the travel time distributions have

distinctive shapes, and in general fit the Generalized Extreme Value family of

distributions.

4.1 Experiments with Robots

We used our laboratory as the environment for the experiments. First, we used

a popular open-source laser-based SLAM package, GMapping [34], to allow the

robots to construct a map of the environment. The results of the exploration and

mapping process were used as the basis for the experiments; this is to make sure

that all path-planning and movements were carried out usinga map with realis-

tic quality. For path planning, we usedA∗ with a fixed 4-neighbor grid laid out

over the map. If the robot discovered an unknown obstacle on the way, it tried

to go around the obstacle until a timeout occurred, in this case a new path was

planned from the current location to the goal, given the new information about the

33

Figure 4.1: RV400 robot.

Figure 4.2: The mapped lab used in the robotics experiments.

discovered obstacle.

4.1.1 Physical Robot Experiments

We utilized the RV-400 differential-drive robots (see Figure 4.1) for experiments

in our lab. The RV-400 was equipped with a Hokuyu UTM-30LX laser, with

nominal range of 30m (though in practice effective range was slightly smaller).

The RV-400 robot has an approximate size 40× 40 (width, length), and so this

was used as the grid cell-size. We kept the environment static, with no obstacles

or other changes to the environment that are unknown to the robot.

34

Figure 4.2 shows the environment used for the experiments, as mapped by the

robot. We tested three paths: A short 6.4mpath (point 2 to point 3), with a narrow

pass; an 8m path (1 to 2), through open space; and a 14.6m path which combined

both (1 to 3). We measured the travel time in each of these paths 10 times.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

50 100 150 200 250 300 350

D
en

si
ty

Time

(a) 6.4m path. (b) 8m path.

(c) 14m path.

Figure 4.3: RV-400 Travel Time Distributions.

Figures 4.3(a), 4.3(b), and 4.3(c) show the distribution, in histogram form,

of travel time that were measured in these experiments, for the 6.4m, 8m, and

14m paths. For each of the settings, the planned path was identical, and the en-

vironment kept strictly static. The associated figure showsthe path traversal time

35

Figure 4.4: The mapped simulated environment.

(horizontal axis) versus its probability (vertical axis).Despite these ideal condi-

tions, the robot took varying amount of time getting to the target locations. This

variance is caused because of inaccuracies in the movement and sensing, which

lead to actual execution of the path to differ between runs. In addition, changes to

battery power also affect the robots linear and angular velocities. Indeed, Figure

4.3(b) does not include four data points that were removed from the data, because

in their associated runs the robot operated with a faulty battery, and was almost

twice as slow as in the other runs.

4.1.2 Simulation Experiments

We also conducted experiments in simulation, where we scaled up the number

and complexity of the paths. We utilized the Webots 3D physics-based robotics

simulator [54] to create the virtual world which the robots mapped and navigated

as part of the experiments (see Fig. 4.4 for the resulting map). Webots has high fi-

delity, and models realistic sensor and motion errors, as wedemonstrate below. In

the simulation experiments, we simulated three RV-400 robots and their Hokuyu

lasers. The openings between the rooms are doors which were open or close ac-

cording to the evaluated criteria. Minor obstacles (boxes to be bypassed) are not

shown. The doorway between the rooms is 1.2mwide.

The following configurations were used in the simulation experiments: From

every robot location, to targets locationA,B,C (9 combinations), and robotsR1,R3

36

to target locationD. we tested 4 obstacle settings: (i) static world (i.e., conforming

to the map); (ii) with an unknown obstacle (a box placed on theplanned path,

that can be avoided and bypassed); (iii) an unexpected closed door blocking the

original path (if the path was through an opening); and (iv) two unexpected closed

doors blocking the original path, then a re-planned path. Each of the configuration

(11 initial-target location pairs, 4 obstacle settings) was repeated 30 times. In all

the experiments the robot had a path to the last target.

A small subset of the results from the simulation experiments are shown in

Figures 4.5(a)–4.5(c) (the rest of the results are discussed later). These are the re-

sults for one robotR1, and for a single target pointA. Our intent is to demonstrate

the variance that exists even under idealized simulated conditions.

Figure 4.5(a) shows the distribution of traversal times ofR1 for arriving at

targetA in a static world. As seen in the figure, even for a static world, and even

under the relative noise-free world of simulation, there isvariance in traversal

time, due to motion and sensing uncertainties.

Of course, when choosing a robot for executing a task the world cannot typ-

ically be assumed to be static. These increase the variance in the actual travel

times. Figure 4.5(b) shows the wider distribution of traversal times when an ob-

stacle was added to the path of the robot, in 50% of 60 cases (the X axis scale is 80

to 350). This obstacle could be locally avoided (bypassed),and thus only a minor

change was required to the pre-planned path. Note, that all the distribution of the

static environment become a part of the first bin of the new distribution. Figure

4.5(c) shows the even wider distribution when we also take into account a door

that was closed in a third of 90 cases, and which blocked the original path. This

requires a new path to be planned and executed from the point where the closed

door was discovered, to the target location.

The results above are similar to the distributions collected for the other exper-

iment configurations, i.e., for other robots and other target locations. In all cases,

even for paths that involve very few heading changes, and no obstacles or narrow

passages, we see distributions that require reasoning about which robots to select,

given the decision-maker’s policy towards risk.

Figures 4.6-4.15 show the distributions collected for the other experiment con-

figurations. The figures describe the histogram as followed:A - static environ-

37

(a) Static environment. The X axis scale
is 80 to 100.

(b) Avoidable obstacle in 50% of trials.
The X axis scale is 80 to 350.

(c) Moving in a static environment, fac-
ing occasional avoidable obstacles, and
sometimes needing to re-plan a path.
The X axis scale is 80 to 1050.

(d) Moving in a static environment,
facing occasional avoidable obstacles,
sometimes needing to re-plan a path and
sometime needing to re-plan a path more
than once. The X axis scale is 80 to
1050.

Figure 4.5:R1 Travel Time Distributions to point A.

ment, B - Avoidable obstacle in 50% of trials, C - Moving in a static environment,

facing occasional avoidable obstacles, and sometimes needing to re-plan a path

and D - Moving in a static environment, facing occasional avoidable obstacles,

sometimes needing to re-plan a path and sometime needing to re-plan a path more

than once. The X and Y axis scales are indicated under the figures. Note, when

the robot located in the same room as the target, histograms of types C and D do

not exist.

38

(a) X: 99 to 120. Y: 0 to 0.44. (b) X: 99 to 1150. Y: 0 to 0.86.

(c) X: 99 to 2625. Y: 0 to 1. (d) X: 99-2625. Y: 0-0.83.

Figure 4.6:R1 Travel Time Distributions to point B.

39

(a) X: 85 to 487.5. Y: 0 to 1. (b) X: 85 to 487.5. Y: 0 to 0.68.

(c) X: 85 to 600. Y: 0 to 0.52. (d) X: 85 to 600. Y: 0 to 0.4.

Figure 4.7:R1 Travel Time Distributions to point C.

40

(a) X: 130 to 153. Y: 0 to 0.27. (b) X: 130 to 1127. Y: 0 to 0.66.

(c) X: 130 to 1127. Y: 0 to 0.59.

Figure 4.8:R1 Travel Time Distributions to point D.

41

(a) X: 86 to 111. Y: 0 to 0.32. (b) X: 86 to 265. Y: 0 to 0.7.

(c) X: 86 to 265. Y: 0 to 0.47. (d) X: 86 to 650. Y: 0 to 0.52.

Figure 4.9:R2 Travel Time Distributions to point A.

42

(a) X: 54 to 127. Y: 0 to 0.82. (b) X: 54 to 230. Y: 0 to 0.6.

(c) X: 54 to 230. Y: 0 to 0.4. (d) X: 54 to 386. Y: 0 to 0.38.

Figure 4.10:R2 Travel Time Distributions to point B.

(a) X: 75 to 121. Y: 0 to 0.54. (b) X: 75 to 207. Y: 0 to 0.55.

Figure 4.11:R2 Travel Time Distributions to point C.

43

(a) X: 111 to 145. Y: 0 to 0.45. (b) X: 111 to 197. Y: 0 to 0.4.

Figure 4.12:R3 Travel Time Distributions to point A.

(a) X: 63 to 145. Y: 0 to 0.36. (b) X: 63 to 156. Y: 0 to 0.31.

Figure 4.13:R3 Travel Time Distributions to point B.

44

(a) X: 197 to 345. Y: 0 to 0.4. (b) X: 184 to 345. Y: 0 to 0.36.

(c) X: 184 to 670. Y: 0 to 0.53. (d) X: 184 to 1220. Y: 0 to 0.7.

Figure 4.14:R3 Travel Time Distributions to point C.

45

(a) X: 100 to 180. Y: 0 to 0.44. (b) X: 100 to 800. Y: 0 to 0.68.

(c) X: 100 to 800. Y: 0 to 0.46. (d) X: 100 to 800. Y: 0 to 0.34.

Figure 4.15:R3 Travel Time Distributions to point D.

46

4.2 Selection Based on Experiment Data

We use the collected data to execute the decision-making policies described ear-

lier, in both the simulated and physical world. To do this, wediscretized the col-

lected data into bins of approximately 25 seconds, and chosethe robots according

to the different decision policies.

4.2.1 Simulation Experiments

Robots{R1,R2,R3} compete on reaching targetsA,B,C, and robots{R1,R3} on

targetD. Table 4.1 shows the chosen robot using each of the decision policies.

MinExpC MinExpMaxC MaxExpMinC
(risk-neutral) (risk-averse) (risk-seeking)

A R3 R3 R1

B R3 R3 R2

C R2 R2 R2

D R1 R3 R3

Table 4.1: Selected robots for targets, according to each policy.

We find that indeed, the selected robot is not always the closest one to the

target. For instance,R3 is closest to pointA. But when selecting a risk-seeking

policy,R1 is chosen. Likewise,R3 is closest to pointB, and yetR2 is selected when

a risk-seeking policy.R3 is also closer toD, yetR1 is selected in the risk-neutral

policy. Moreover,R3 is selected in the risk-averse and the risk-seeking policies

but not is the risk neutral policy (Figures 4.8 and 4.15). This is a direct result of

the uncertainty inherent in the robots’ movements.

We note that the selected robots for points {A, B, C} in the risk-averse

MinExpMaxC criteria were the same as the robots with the minimal expected cost.

This is because the robots were in the same rooms with the target locations, and

thus the closing and opening of doors–which would otherwisecreate large worst

case travel times (and therefore large expected maximal times)–did not affect the

ability of the robots to reach these targets.

47

Table 4.2 shows a case where an overruling of the selected robot is recom-

mended by theSwF function. When selecting which of the robots should reach

targetA through a risk-seeking policy, both robotsR1,R2 have a minimal cost of

88. However, robotR1 is chosen because its probability for this cost is a bit higher.

p88 ESoR
R1 0.438679 84.5507
R2 0.433333 49.2834
R3 0 29.0444

Table 4.2: The robots expected minimal cost, and expectedSoRfor the minimal
cost of 88, while competing on pointA.

But looking at theESoRof the robots, it is clear thatR2 has lower expected

regret thanR1. Plugging these values into theSwFfunction yields the following:

(ESoR(R1)−ESoR(R2)) = 84.5507−49.2834 (4.1)

= 35.2673 (4.2)

> 0 (4.3)

= 88−88 (4.4)

= min
C

(R2)−min
C

(R1) (4.5)

In this case,SwFreturns 1, and we should consider selectingR2 despite its slightly

higher expected minimal traversal time.

4.2.2 Physical Robot Experiments

We utilized the RV-400 data in similar experiments. Abstracting away from the

map, we used the distributions for traversal times of 6.4m, 8m and 14.6m paths,

for three robots:RV1 positioned 6.4m away from a target point,RV2 positioned

8maway from the same point, andRV3 which is positioned 14.6maway. Table 4.3

shows the chosen robot in each of the decision policies.

48

MinExpC MinExpMaxC MaxExpMinC
(risk-neutral) (risk-averse) (risk-seeking)

RV1 RV2 RV1

Table 4.3: Selected physical robot, according to each policy.

The results show that in the physical world as well, the closest robot is not

always the robot to choose. Due to the narrow pass in the 6.4m path, the worst

case travel time forRV1 was worse (though less likely) than the worst case ofRV2

(which traveled 8m through open space).

4.3 Parametric travel time distributions

The experiments conducted reveal repeating characteristics of the emerging dis-

tributions, in particular their sharp lower bound and long tail. This is a result of

having a clear lower bound on path traversal time (there’s a limit as to how quickly

a path can be traversed), and the increasingly rare (but still occurring) long arrival

times, due to getting stuck by unforeseen obstacles, decreasing battery levels, etc.

On such occasions, robots would re-plan their path several times on the way to

the goal, and would sometimes need to traverse long distances to bypass a closed

door.

We thus hypothesized that in fact known (parametrized) heavy-tailed contin-

uous distributions may fit the data, allowing for improved prediction. We be-

gan experimentally, by fitting familiar distributions to the data, and using the

Kolmogorov-Smirnov and Anderson-Darling fitness tests to determine the best-

fitting distributions.

The fitness results for the best three distributions are shown in Table 4.4. The

table shows the average matching functions, for all the paths that were followed,

for the top three matching functions that were found.

The three best-fitting functions were found to be the GeneralLog-Logistic

(also called the 3-parameter Log-Logistic distribution),the General Extreme

49

Gen. Log-Logistic Gen. Extreme Value Frechet(3P)
Kolmogorov-
Smirnov

0.132 0.135 0.136

Anderson-
Darling

1.051 1.512 0.69

Table 4.4: The average fitness of the top three matching distributions using
Kolmogorov-Smirnov & Anderson-Darling tests. The lower the number the better
the distribution fits.

Value, a limit distribution of the maximum of a sequence of independent ran-

dom variables which are identically distributed. and Frechet (3P), a special case

of the General Extreme Value distribution. The table shows that The General

Log-Logistic distribution has the best average fitness using Kolmogorov-Smirnov

test, and Frechet(3P) has the best average fitness using Anderson-Darling test.

Both of them, however, are strongly related (special cases) of the General Ex-

treme Value distribution. Figures 4.5(a), 4.5(b), 4.5(c) show a curve which is the

best-fit Log-Logistic continuous probability distribution fitting the simulation ex-

periments data. In addition, Figure 4.16 shows the travel times distribution of

robot R1, traveling to pointB in a static environment, 132 times. As seen is the

figure, as the number of experiments grow the log-logistic distribution is a good

fit.

We focused on the General Log-Logistic distribution. It hasthree parameters:

shape, scale and shift. The shift parameter was found to be almost perfectly lin-

early correlated with the minimal travel time of each one on the paths that were

traveled. Figure 4.17 shows the relation between the minimal execution time of all

the paths that were traveled, and the shift parameter of the General Log-Logistic

distribution that was fitted to the histogram of the path travel times. It is clear

from the figure that there exist a direct relation between thetwo.

Looking on the other parameters, we found that the shape parameter was quite

steady on values between 0.89304 to 3.3684 while its declaration is(−∞,∞). We

did not find a consistent value for the scale parameter.

50

Figure 4.16: Distribution ofR1’s travel times to pointB in a static environment,
over 132 path following experiments. The line shows the fitted log-logistic distri-
bution. The goodness of fit according to Kolmogorov-Smirnovtest is 0.0565.

Figure 4.17: Measured minimal travel time versus fitted shift.

51

Part II

Using Teamwork to Integrate

Redundant Multi-Robot Formation

Controllers for Robustness

52

Multi-robot formations are of increasing interest to robotics researchers (as

a canonical research problem), and to robot system builders(e.g.,for unmanned

convoys). Indeed, there exists vast literature on various techniques for maintaining

formations in a variety of settings, and for a variety of robots. However, little

attention has been given to the possibility of using multiple formation controllers,

all integrated together for greater formation robustness.In this part, we make

two contributions. First, we address a key challenge in integration, that of joint

distributed selection and execution of the correct controller, at the same time. We

demonstrate how to utilize a teamwork software engine to automate this joint

selection. Second, we describe one such integrated system,which uses several

different formation-maintenance controllers for greaterrobustness.

53

Chapter 5

Background: Formations and

Teamwork

There exists vast literature on various techniques for maintaining formations in a

variety of settings, and for a variety of robots. We cannot hope to cover it all. We

therefore provide a sample of important works from this areaof research.

In formation-maintenance tasks, the objective is to move a group of robots

on a desired path, while they maintain their relative position with respect to their

peers, according to a desired geometric shape. Various formation maintenance

methods have been investigated (e.g., [2, 13, 53, 51, 27, 3, 14, 56, 9, 39, 46, 23]).

We discuss the most popular methods below.

Many controllers assign each robot with a single or multipleneighboring

robots (targets) that it must monitor to maintain the given geometric shape while

moving. Desai et al. [14, 13] show, in theory, how a formationcan be maintained

if each robot monitors an angle and distance to another robot(separation-bearing

control), or distances to two other robots (separation-separation control). They

use an un-weighted directed graph, calledcontrol graph, to describe monitoring

from a global perspective. The graph is formed by the set of robots (vertices)

and the monitoring relationship (directional edges), froma robot to its target(s).

Desai et al. discuss how joint (synchronous) switching of the geometric shape

defining the formations (and the associated control graphs)can be used to tackle

terrain changes, but do not address how such joint synchronous switching can be

54

implemented in practice. Our paper focuses on a principled way for implementing

controllers in practice, such that synchronized switchingcan be executed robustly.

In Separation-Bearing Control(SBC), each robot maintains its distance (sep-

aration) and angle (bearing) to no more than one other robot,called a target. If

(i) the control graph is connected; (ii) there exists exactly one target with an out-

degree of zero (calledleader); and (iii) there exists a graph path from each robot

to the leader, then maintenance of the control graph leads, over time, to the robots

stably maintaining their relative positions in the formation [25, 14, 13].

Another important methods for formation maintenance in practice is

Separation-Separation Control(SSC). In SSC, each robot (but the leader) main-

tains its distance with respect to two different targets. If(i) the control graph is

connected; (ii) there exists exactly one target with an out-degree of zero (called

leader); and (iii) there exists a graph path from each robot to the leader, then once

again, maintenance of the control graph leads to the robots maintaining a stable

formation [25, 14, 13].

For a given geometric formation, combinatorically-large number of stable pos-

sible control graphs can exist [14, 13]; this scaleup is exacerbated when a variety

of sensors exists. Thus there is a need to efficiently generate good control graphs.

Kaminka et al. [46] discuss a general way for efficiently computing optimalSBC

controllers for a given formation, and a given set of robots and their sensors. This

is done by the robots using a version of Dijkstra’s algorithmto compute the op-

timal control graph from a compact hyper-graph representation of all possible

control graphs. Mourikis and Roumeliotis [55] discuss optimal sensor schedul-

ing policies for SBC formations, in which sensor use for localization within the

formation is optimally balanced between resource consumption (e.g., energy) and

localization accuracy.

Fierro et al. [25] analyzed the stability of SBC and SSC controllers, and pro-

posed using manually-constructed control targets to allowup to three robots to

switch between alternative SSC and SBC schemes, in essence, switching between

alternative control graphs controllers on-line without relying on communications.

Our work does use communications (at the teamwork software level), but allows

for any number of robots to participate, up to the bandwidth limitations.

Lemay et al. [51] and Michaud et al. [53] present a distributed method for

55

assigning robots to their positions in a formation. Each robot in a formation de-

termines a cost for assigning its teammates to positions in the given formation,

assuming it is the leader (which they refer to asconductor). Then the best (mini-

mal cost) assignment of roles to robots (including the leader) is made. This type

of negotiations over roles and position assignments is easily modeled and exe-

cuted in teamwork software, as we demonstrate in this paper.However, we did

not experiment with leader assignment, only with dynamic assignment of robots

to follower roles. Furthermore, the work by Lemay et al. and Michaud et al.

allows switching of the formation shapes, which we do not address in this paper.

In general, there are other control methods for formations.Maintaining forma-

tion while moving requires the robots to locate themselves according to reference

points. We discuss several different methods below.

Balch and Arkin [2] examine three techniques for formation maintenance.

Two of these (Leader-ReferencedandNeighbor-Referenced) techniques are es-

sentially SBC controllers, using static (fixed) control graphs. The third,Unit-

Center-Referenced, is fundamentally different. Here, the robots place themselves

according toX,Y coordinates defined by the formation. Balch and Arkin’s study

compares between the methods using teams of up to four physically homogeneous

robots, and attempts to draw conclusions as to their relative benefits. Our approach

builds such comparisons to allow switching between different types of control as

best fits the immediate needs of the robots.

Balch and Hybinette [3] use social potential fields which use attraction and

repulsion to position robots within their relative positions in a defined formation.

This technique is robust to obstacles in the path of the robots, an important chal-

lenge our approach does not yet take into account.

Fredslund and Matarić [27] describe an algorithm for generating SBC moni-

toring rules for robots in a given formation. The robots are assumed to have spe-

cific sensing capabilities, and the position of the leader isgiven. The monitoring

rules are supplemented by communications for robustness, thus fusing SBC and

communications-based control. Elmaliach and Kaminka [23]build on this to ex-

periment with different ways of integrating communications and SBC controllers

(switching between them and/or fusing their actions). However, neither inves-

tigation discusses integration of multiple controllers ingeneral, and both ignore

56

the requirement for a principled way for the robots to jointly select their control

scheme. In this paper, we describe how to use teamwork software to automate the

joint online selection of controllers by the robots.

Teamwork software (sometimes referred to as "teamwork engine") has been

been discussed in the multi-agent systems and multi-robot systems literature. Its

beginnings are in the use of formal logic to describe ideal collaboration between

agents [36, 12, 35]. These theoretical investigations havediscussed a number of

principles for collaboration between abstract agents, andin particular point out

the importance of team-members agreement on a goal to be reached, and a plan

by which to achieve it.

Theory inspired implementations of software frameworks that facilitate the

development of distributed multi-agent systems that collaborate towards a joint

goal, via an agreed-upon plan of execution [40, 64, 65]. Whilemany of these

systems have been applied in simulations and virtual environments (see, e.g., [58,

22], there have been a few that have been utilized with robots.

BITE (Bar Ilan Teamwork Engine) is a behavior-based distributed teamwork

control software, specifically targeting multi-robot teams [44, 45, 47]. While

BITE has been used with multi-robot formations [45], it has only been previ-

ously used with a single type of controller (SBC). CogniTAO [11]is a commer-

cial teamwork software development kit, which can be similarly used to develop

multi-robot applications. We use CogniTAO in this paper.

Goldberg et al. [32, 33] have explored a different basis for multi-robot archi-

tectures. Rather than taking a behavior-based approach, Goldberg et al. focus

on extending a 3-tier architecture with an impressive set ofcapabilities, including

task-sequencing and task-allocation, and distributed resource management. We

believe that the lessons in this paper regarding the use of synchronized task se-

quencing and joint selection of tasks can be used in their architecture (which has

not been applied to multi-robot formations).

There have been many other multi-robot investigations which focus on au-

tomating interactions between robots. However, they mostly focus on task alloca-

tion, rather than synchronization and joint selection of activities.

Among those, the ALLIANCE behavior-based architecture [57]focuses on ro-

bustness, by allowing robots to dynamically re-allocate themselves to tasks, based

57

on failures in themselves in their teammates. ALLIANCE offers robust dynamic

task allocation, but does not explicitly synchronize robots as they jointly take on

tasks.

Other systems have focused on using auctions and market-based task-

allocation methods in multi-robot systems. TraderBot [19] explored the use of

markets to allow robots to bid for tasks in spatial sensing domains. Goldberg et al.

[33] explore a distributed three-tier architecture, in which multiple robots interact

with each other at all three layers using market-based resource allocation. Gerkey

and Mataríc [29] discuss the use of such methods in contrast to others.

Farinelli et al. [24] explore novel methods for task allocation in robot teams.

Their token-passing method are suitable for teams of largerscale than those dis-

cussed in this paper. It should be possible to use this token-passing allocation

mechanism for use in large-scale formations.

Jung and Zelinsky [42] have explored the use of a distributedarchitecture,

which is behavior-based. However, the focus of this work is on cooperative spatial

planning, and no synchronized joint selection of controllers. Alur et al. [1] offer

a comprehensive framework for spatial coordination of multiple robots, and have

applied it to formation control, but only using a single typeof formation controller

at a time (in particular, SBC). They did not address joint synchronized switching

between alternative formation controllers.

58

Chapter 6

Teamwork Software for Joint

Formation Control

First, we briefly describe the principles of behavior-basedteamwork software.

Then, we describe a simple separation-bearing control (SBC) scheme, imple-

mented using such teamwork software.

We utilize a behavior selection mechanism, in which behaviors are proposed

and selected based on their preconditions matching the current world state (as

perceived by the sensors); once a behavior is selected, its execution is terminated

when its termination conditions are satisfied. We describe this process below

briefly, and refer the reader to [64, 44] for additional details.

A behavior-based teamwork controller is divided into two computational com-

ponents. The first component is aworld-modeling process, which is responsible

for processing sensor and communication data, and for sharing this information

(when needed) with other team-members. The second component is thecontrol

process, which runs the control process behavior-manager algorithm (selecting

and deselecting behaviors). These two components are described below. For the

purpose of clarity, however, we begin by describing the control process (Section

6.1) and only then describe the world-modeling process (Section 6.2).

59

6.1 Control Process

A task behavior graphspecifies the sequential and hierarchical relationships be-

tween task-oriented behaviors. Each behavior is a semi-independent module, re-

sponsible for a portion of the overall task.

Formally, a task behavior graph is an augmented connected graph tuple

〈B,S,V,b0〉, whereB is a set of task-achieving behaviors (as vertices),S andV

are sets of directed edges between behaviors (S∩V = /0), andb0 ∈ B is a behavior

in which execution begins. Each behavior inB may have preconditions which

enable its selection (the robot can select between enabled behaviors), and termi-

nation conditions that determine when its execution must bestopped.S is a set

of sequentialedges, which specify temporal order of execution of behaviors. A

sequential edge fromb1 to b2 specifies thatb1 must be executed before executing

b2. A path along sequential edges, i.e., a valid sequence of behaviors, is called

anexecution chain. V is a set of verticaltask-decompositionedges, which allow

a single higher-level behavior to be broken down into execution chains contain-

ing multiple lower-level behaviors. At any given moment, the robot executes a

complete path—root-to-leaf—through the behavior graph. Sequential edges may

form circles, but vertical edges cannot. Thus behaviors canbe repeated by choice,

but cannot be their own ancestors.

Behaviors whose execution is to be coordinated in some fashion (henceforth,

team behaviors) are tagged in advance by the designer. Each robot executes alocal

copy of the behavior graph [64, 57, 33, 44]. It is the responsibility of the team-

work architecture to automatically takes actions (typically, by communications)

to select and de-select these in different robots, when appropriate [64, 44]. Fig-

ure 6.1 shows an example of a simple behavior graph, constructed for multi-robot

formation maintenance tasks using SBC control.

The teamwork architecture selects and de-selects team-behaviors by using

communications to make sure that relevant details of the robots collabora-

tive world-model(Section 6.2) are synchronized, and by applying negotiation

procedures—decision-making protocols—to ensuring agents jointly select their

next behavior, and jointly terminate its execution once selected.

To allow a teamwork architecture to automate synchronization, we impose a

60

Figure 6.1: A Behavior graph for simple SBC control. Each robotruns its own
local copy of this graph. Node names appear at the top of each node above. Other
text refers to names of conditions and protocols utilized inthe different nodes,
and described in the paper. Arrows coming out of the tab marked ‘c‘ are task-
decomposition edges, while those coming out from the tab marked ‘n‘ are se-
quential ordering edges.

constraint on the semantics of multiple outgoing edges. Twooutgoing sequential

edges〈a,b〉,〈a,c〉 signify a choice point betweenalternativeexecution chains:

Either b or c must be selected by the robot once its execution ofa is finished.

When these execution chains are composed of team behaviors, the selection be-

tween alternatives must be coordinated—all (relevant) robots must select the same

execution chain (we discuss below complex cases in which only certain subteam

members must coordinate). Thus synchronization (see below) is triggered when

multiple execution chains are enabled, and the robots must coordinate their joint

selection.

To automate allocation, we impose a related semantic constraint on decompo-

sition edges. Two outgoing decomposition edges〈a,b〉,〈a,c〉 signify complemen-

tary execution chains: Both the execution chain beginning withb and the execu-

tion chain beginning withc must terminate fora to be considered complete (by

convention, vertical edges point only to the first behaviorsof execution chains).

Thus such multiple outgoing edges indicate that the children (subtasks) can be al-

located to different subteams. Therefore, similarly to thesynchronization points,

61

allocation services are triggered when multiple decomposition edges are enabled.

There is one final point in which synchronization is needed. Teamwork theory

states that when an agent privately believes that a joint goal has been achieved, or

should be abandoned, the agent must make this belief mutual with its teammates.

The communication of beliefs is handled by the collaborative world modeling pro-

cess (next section). Here, the implication is that robots must terminate their exe-

cution of team behaviors in a coordinated fashion. Thus whena team behavior’s

termination conditions are satisfied for a robot, BITE is triggered to coordinate

the termination of this behavior with the other robots.

To summarize, a teamwork architecture can easily determinesynchronization

and allocation points given the constraints above. A split in sequence edges lead-

ing to team behaviors signifies a synchronization point. A split in decomposition

edges leads to allocation, and synchronized termination istriggered when a team

behavior is de-selected. In all of these, the architecture must coordinate with the

other robots, through their own local instances of the system.

6.1.1 Principal Control Algorithm

Each of the robots executes Algorithm 3, using its own copy ofthe behavior graph.

The control loop executesa behavior stack—root behavior to leaf—where top

behaviors on the stack are executed simultaneously with their currently selected

children.

Execution begins by pushing the initial behavior of the graph on the execu-

tion stack (lines 1–2). Then the algorithm loops over four phases in order. (i) It

recursively expands the children of the behavior, allocating them to sub-teams if

necessary (lines 3a–3c). (ii) It then executes the behaviorstack in parallel, wait-

ing for the first behavior to announce termination (lines 4a–4c). All descendants

of a terminating behavior are popped off the stack (i.e., their execution is also

terminated—line 4b), and then (iii) a synchronized termination takes place (line

6). This can result in a newly-allocated behavior within thecurrent parent context,

in which case, it will be put on the stack for expansion (line 7). Otherwise, (iv)

this indicates that the robot should select between any enabled sequential transi-

tions from the terminated behavior (lines 8a–8e). This process normally results in

62

new behaviors put on the stack, and then a final goto (line 9) back to line 3 begins

again.

The recursive allocation of children behaviors to sub-teams in lines 3a–3c re-

lies on the call to theAllocate() procedure. It takes the current execution context

(i.e., current stack, available children), and then calls the appropriate allocation

protocol (defined by the architecture [64], or by the programmer [22, 44, 45]) to

make the allocation decision. The current execution stack is used to help guide

allocations, e.g., by conveying information about where inthe behavior graph the

allocation is taking place. Once a final allocation is determined, Allocate() re-

turns, for each robot, the child behavior for which it is responsible as part of the

split sub-team (or individually, if the sub-team is composed only of the individual

robot).

Synchronized termination (line 5–7) and selection (lines 8a–8e) similarly rely

on calls to the proceduresTerminate() andDecide(), respectively.Terminate() is

responsible for evoking the execution termination interaction behavior, which can

return a new child behavior for execution under the current parent. If it doesn’t,

then the next behavior in the execution chain must be selected byDecide(), which

calls a synchronization protocol. Since synchronized selection involves all mem-

bers of the current sub-teams selecting together, this behavior would normally

communicate with the members of the team. Note that in step 8bwe also han-

dle the case where no more behaviors are available in the execution chain. This

case signals a termination of an execution chain, which in turn signals termination

of the parent, thus the branching back to line 5. We omitted here the obviously

needed check on whether a parent actually exists—if not, then the end of the be-

havior graph has been reached, and execution halts.

6.2 Collaborative World Modeling

Recent behavior-based architectures, inspired from advances in cognitive archi-

tectures in AI, introduced the world-model as a separate computational process.

This process carries out both traditional sensor-filteringand processing, it also ex-

ecutes collaborative algorithms, which share informationwith other robots. We

focus on this aspect here.

63

Algorithm 3 CONTROL

Input: behavior graph〈B,S,V,b0〉

1. s0← b0 // initial behavior for execution

2. pushs0 onto a new behavior stackG.

3. whiles0 is non-atomic // has children

(a) A←{bi}, s.t.,〈s0,bi〉 is a decomposition edge

(b) if A has only one behaviorb, push(G,b).

(c) elseb←Allocate(G,s0,A), push(G,b).

(d) s0← b.

4. execute in parallel for all behaviorsbi onG: // Execution

(a) executebi until it terminates

(b) whilebi 6= top(G), pop(G)

(c) break parallel execution, goto 5.

5. b← pop(G) // Terminate joint execution

6. c←Terminate(G,b)

7. if c 6= NIL, push(G,c)

8. else: // Select next behavior in execution chain

(a) LetQ←{si}, s.t.〈b0,si〉 is a sequential edge

(b) if Q is empty, goto 5 // terminate parent

(c) if Q has one elements, push(G,s)

(d) elses←Decide(G,b0,Q)

(e) s0← s

9. If G not empty, goto 3.

64

While protocols may exchange information as needed (e.g., votes and vote

outcomes), there are more basic communication needs that underlie behavior ex-

ecution. To illustrate, consider the following example: Suppose a robot has deter-

mined that a running behavior is to be terminated (because its termination condi-

tion matches). A call is made to a synchronized-terminationprotocol. But as it

contacts the other robots, it refers to information that is known only to the robot

initiating the dialog. Obviously, the termination protocol can be fixed such that

it first transmits the missing information, and then argues for termination. But

rather than duplicate this functionality in all termination protocols, it makes sense

to allow this to happen—in a flexible manner—in the world-modeling process.

Indeed, the world-modeling process can execute distributed information-

sharing algorithms. The algorithms can be as simple as an algorithm that up-

dates all team-members with any change in perception; or it could be complex

and sophisticated, able to consider uncertainties in fusing information about the

world [63].

A naive approach broadcasts all changed information. For obvious reasons of

bandwidth usage, it is ruled out in favor of a more focused algorithm, which broad-

casts information about changes in the preconditions and termination conditions

of currently-executing behaviors of team-members. This agrees with theoreti-

cal notions of teamwork, which specify that team-members that privately come

to belief a proposition relevant to the team, must establishmutual belief in this

proposition [12]. Thus such information is only broadcasted to relevant team-

members (i.e., to team-members currently executing a behavior affected by the

new information). The algorithm appears below (Algorithm 4).

Algorithm 4 FUSEINFORMATIONWITHTEAMMATES

Input: behavior graph〈B,S,V,b0〉, set of robotst

1. for all behaviorsb on behavior stackG:

(a) if a termination conditionc of b is satisfied,
Inform(b, t,c)

(b) if a precondition p of a behaviorf , where〈b, f 〉 a sequence edge, is satisfied,
Inform(b, t, p)

65

In Algorithm 4, each robot determines whether new information affects its be-

havior stack (e.g., newly-satisfied conditions). These potentially affect the robot’s

teammates, and must therefore be communicated to them by theInform() proce-

dure, which refers to an appropriate protocol for communicating relevant infor-

mation to others.

For instance, suppose a team of robots is executing the formation task de-

scribed above (Figure 6.1). Suppose that the robots are executing theMoveSBC

behavior. One robot (the leader) is executing theGetJoysticbehavior, while the

other robots are executing theFollowerbehavior. Algorithm 4 is used to informed

all the robots in the sub-team that the pre-condition of executing the behavior to-

gether is satisfied. The two next behaviors of the followersTrackVisionOnceand

ExecuteSbcGraphare being executed in a chain as soon as the termination condi-

tion informed. Algorithm 3 guarantees that if one of the following robots behavior

ExecuteSbcGraphterminates, than the termination condition ofMoveSBCbehav-

ior will be satisfied as well. Algorithm 4 guarantees that if the robot discovers a

termination condition forMoveSBC, then it will inform the members of the sub-

team associated withGetJoysticandExecuteSbcGraph.

66

Chapter 7

Integrating Multiple Controllers

We now turn to discussing various controllers which we integrated together. Sec-

tion 7.1 describes the implementation of switching separation-bearing control

(SBC) [46]. Section 7.2 describes the implementation of communication-based

formation control [23]. Finally, Section 7.3 ties these twosophisticated controllers

together.

7.1 Robust Formations by Switching SBC Forma-

tions

Glick-Schecter et al. [46] have shown that for robustness, ateam of robots moving

in formation may want to switch its SBC control graph to allow robots to switch

their targets (i.e., which robots they monitor), when theirsensing of the other

robots fails or becomes too costly. For example, the triangle formation may be

maintained by either of the following control graphs (Figure 7.1).

The robots continuously monitor the cost of maintaining their target (corre-

sponding to the rate of sensing failures), and when either robot decides that this

cost has reached a given threshold, a new control graph should be utilized. In this

case, the robots are to jointly select a new control graph, asdescribed in [46].

This process is easily modeled in behavior-based teamwork (Figure 7.2). It

works as follows: all the robots start the behaviorPlnBlind together and thePln-

MovePtzToStartunder it.PlnMovePtzToStartinitializes all the robots cameras to

67

(a) (b)

Figure 7.1: Different control graphs for triangle formation.

a fixed starting point. By executing the behaviorPlnUpdateSBC, a scan of the

area in carried out, in order to find all the visible robots. Each time a robot is

located, the scanning robot sends the relative location of the robot to the other

robots. In this way a matrix of the visible robots is created.Each robot knows the

relative angle and distance to the other robots. The behavior terminates after the

camera scanned 180 degrees. Using the matrix the next behavior PlnRunDijkstra,

runs Glick-Shechters algorithm to build a graph of visible robots. After running

once the behavior terminates. Because the SBC graph need to be connected, if the

formation graph becomes disconnected thePlnBlindbehavior will be re-executed,

as evidences the sequential edge from itself back into itself.

7.2 Robust Formations by Communication-Based

Formation Control

A different approach for maintaining robust formation has been described by El-

maliach and Kaminka [23]. Here, the agents utilize communications and dead-

reckoning, rather than SBC, for formation control. The controller multiplexes and

fuses between open-loop and close-loop in order to prevent disconnection caused

by failures of the robots sensors and increase the number of discoverable obstacles

68

Figure 7.2: A Behavior graph for the switching controller.

in the environment.

This process is modeled in the following way (Figure 7.3). All the robots

are executing thePlnMoveSBCtogether. This behavior runs allocation protocol,

DapSelectFirst, which choses the robot with the lowest id to be the leader and

allocates it to thePlnGetJoysticbehavior, while allocating the other robots to ex-

ecute thePlnFollowerbehavior.PlnGetJoysticbehavior is responsible for getting

the drive commands from the user, while thePlnFollower starts the formation

tracking. The two next behaviors of the followersPlnrackVisionOnceandPlnEx-

ecuteSbcGraphare being executed in a chain as soon as the termination condition

is satisfied. But in contrast to the simple formation control,the PlnExecuteSbc-

Graphbehavior does not controls the tracking using vision, but two more parallel

behaviors run as well,PlnTrackVisionandPlnTrackComm.

TrackVision, is responsible for calculating distance and angle to the leading

robot by vision recognition, while theTrackCommexecuting track by commu-

nication between the robots and synchronization of the wheels tics. Thus, the

ExecuteSbcGraphfuses and multiplexes between the results of the two behavior.

69

Figure 7.3: A Behavior graph for communication-based controller.

70

7.3 Integrating Controllers

Using a teamwork architecture, we can easily tie the different controllers together,

to achieve enhanced robustness. We do this by constructing abehavior graph that

contains the others, with appropriate selection and termination conditions.

A complete behavior graph containing the two previously discussed con-

trollers is presented in Figure 7.4. Here, the execution starts by initialize the

graph totriangle formationand line formation. Execution begins with triangle

formation, and can (under specific conditions) switch to theline formation. Both

formations use one behavior–MoveSBC– which implements the SBC graph con-

troller presented above (Section 7.2).

This controller terminates as a result of a lost of at least one of the robots in

the graph. In this case the behavior will terminate and the next behavior will start

to execute.

The Blind behavior executes the second controller (section 7.1), in which a

new SBC graph is build. In this case all the robots stop in place, synchronize and

start the new controller together. As explained above, the controller ends when a

new SBC graph is created. If the new graph is founded to be a connected graph the

next chosen behavior will return to beMoveSBC, otherwise the allocation protocol

will start the controller again in order to look for a new connected graph.

71

Figure 7.4: The complete Behavior graph.

72

Chapter 8

Discussion and Evaluation

Evaluation of the use of a teamwork behavior-based architecture for formations

is challenging, as we are not interested in the evaluation ofthe component con-

trollers per-se, and not even in their combined strengths (as these are known).

Rather, the principal hypothesis underlying the use of the architecture is that it

facilitates deployment in some fashion. For instance, we may wish to argue that

the use of the architecture saves programming effort (by reusing code, or automat-

ing procedures that were previously manually built), or increases robustness. Of

course, there are also limits to the usefulness of using a teamwork architecture as

we have, and we discuss these as well.

8.1 It Works!

We fully implemented the behavior graphs and controller described above, us-

ing the CogniTAO commercial behavior-based teamwork architecture [11]. The

system was deployed with three Blue-Botics Shrimps III robots(shown in Fig-

ure 8.1), and also in the Stage simulator (shown in Figure 8.2). The robots uti-

lized IEEE 802.11g communications, as well as Sony PTZ cameras (EVI-D100P

model) and Hokuyo lidars (URG-04LX model). Each robot was controlled by a

VIA C7 CPU, utilizing 512MB ram.

A key component in the switching SBC formation controller is that the robots

need to uniquely identify each other. Relying on the robots’ cameras, we used

73

Figure 8.1: The Blue-Botics Shrimps III robot.

Figure 8.2: Three shrimps robots in Stage simulator.

74

Figure 8.3: Three shrimps robots in an indoor environment.

color segmentation in indoor settings (see Figures 8.3–8.4). In outdoor settings,

we utilized the ARToolKit package for specific pattern recognition, with each

robot having its own unique visual pattern (Figures 8.5–8.7).

8.2 Robustness

The use of teamwork architecture gives the ability to integrate different controller

in a simple way and increase the robustness of the formation.Each of the con-

troller described above was proposed to address a differentset of potential fail-

ures. Their combination, made possible by the use of the teamwork architecture,

provides robustness against a wide variety of failures.

The communication-based controller was designed to solve problems of short-

duration intermittent failures to visually recognize a target robot, by allowing a

follower robot to follow its target blindly. The target transmits information as to

its movements; the follower translates these into its own target coordinates, and

moves accordingly. We found such failures occur often in practice, especially

75

Figure 8.4: Three shrimps robots in an indoor environment.

Figure 8.5: Three shrimps robots in an outdoor environment.

76

Figure 8.6: Three shrimps robots in an outdoor environment.

Figure 8.7: Three shrimps robots in an outdoor environment.

77

when encountering a small vertical obstacle (when the target robot passed over

the top, or started climbining from the low point, it becomestemporarily invisible

to the followers, whose vertical heading is in an opposite direction).

On the other hand, the switching SBC controller was designed in order to solve

longer-duration sensing failures, e.g., caused by permanent loss of the identifica-

tion pattern, or relatively long visual loss when a target lead took a sharp turn.

In these cases the robots look for a new SBC control graph in order to keep the

formation structure.

By integrating these controller, we save each controllers robustness abilities

and make the system robust to all the problem described above. If a robot loses its

vision abilities temporarily, the use of the communication-based controller works

to maintain the formation for a short duration using communications from the lead

robot. If and when this fails, the switching SBC controller will start and a new

connected graph will be build in order to maintain the formation.

Moreover, the use of teamwork architecture increase the robustness by adding

new features to the system:

• In the case of a robot-death failure, the teamwork architecture enable the

user to remove the robot from the team and continue working with a smaller

team of robots.

• All robots start and stop together. A key built-in feature ofthe teamwork

architecture is that information privately available to any individual robot is

broadcast to its peers, automatically, if it causes a changein the behavior

(i.e., if it causes a condition to be satisfied). As a result, any robot that

needs to stop (e.g., because it loses its place in the formation) automatically

tells all others to stop. And likewise, when the leader starts moving, it

automatically tells the others to move; they don’t wait for perception of its

movement. As a result, the caterpillar effect often observable in convoys

and other formations is gone.

• Because of the above, follower robots are no longer ignored. In typical for-

mation maintenance, the formation is susepctible to robot-death and robot

kidnapping in the followers. In particular, because the robots are coordinat-

ing, but are not collaborating, no target robot is responsible for the success

78

of its followers. If a follower robot falls behind, or is stopped in place, the

target robot does not stop. However, when using the teamworkarchitecture,

as long as the follower robot is able to communicate, it will automatically

let the others know if it fails, and as a result they will stop and wait for it.

Potentially, specific behaviors could be run to handle thesespecial cases.

8.3 Using a Teamwork Architecture Cuts Develop-

ment Efforts

The overall size of the binary code just under 1MB. There are approximately

11,000 lines of code in the project, excluding the teamwork architecture code to

which we have no access. Given the source code, we can estimate using standard

software engineering models the effort involved in producing it, and contrast it

with the actual development time to validate the model. In addition, we can also

estimate the size (in lines of code) of modules that we would have needed to

develop, had we not had made use of the architecture. By contrasting these two

totals, we can estimate the savings in development efforts due to the use of the

teamwork architecture.

We begin by using standard software engineering tools to investigate exist-

ing source code. We use the Wheeler’s SLOCCount software [67] tocount

lines of code, and generate estimates foreffort, schedule, andexpected number

of programmers. The software makes these estimates using the basic CoCoMo

model [7], well known in the software engineering community.

When we use SLOCCount on the source code tree, it predicts a 31.90person-

month effort (2.66 person-years), which is actually fairlyaccurate. The code was

developed over two years. The team working on the code included:

• Two programmers working at 60% for a year. One continued to the second

year of work; the other only worked for three months in the second year.

• Two MSc students who contributed work a few months out of the year (ap-

proximately 2 months working on the devices)

79

Module LOC With CogniTAO LOC Without CogniTAO (est.)
Devices and Robot Interfaces 5681 5681
BDI Architecture 0 6714
Behaviors 2958 3268
Conditions 1063 1063
Variables 927 1007
Protocols 330 647
Total 10959 18380

• Two PhD students who contributed work. One managed the project and

worked also on key portions of the code (about 3 months, distributed over

the two years of work). The other worked for no more than a month of the

project (worked on getting the outdoor vision system to work).

We thus feel comfortable using the predictions of the SLOCCount system in esti-

mating effort.

There are number of essential components in the system (Table 8.3, leftmost

column): Devices and Robot Interfacesrefer to code written to tie the control

code, through the player/stage API and the shrimps robot API, to the actual hard-

ware (including motors, sensors, color segmentation, the main() function and var-

ious utility code, etc.). This code would have had to be written, regardless of

what type of architecture is used (and even if no specific architecture is used).

The next two modules are specific to behavior-based or BDI architectures (even if

not supporting teamwork).Behaviors(first data row) correspond to nodes in the

behavior graph described in Figure 7.4.Conditionsrefer to the preconditions and

terminations conditions (e.g., a condition that checks whether a robot has not seen

its target in the last 30 frames). TheVariablesmodules mixes both teamwork and

individual code. It contains code to initialize and update variable values in mem-

ory. Protocolsrefer to the synchronization and allocation procedures, typically

utilizing communications, to coordinate the robots. The protocols utilize existing

mechanisms in the architecture (e.g., distributed shared memory, message pass-

ing) and need only be specialized to the task.

There are two data columns in Table 8.3. The first, markedLOC With Cogni-

TAO, lists the lines of code in each of the main software components. The second,

80

markedLOC Without CogniTAO (est.), lists theestimatednumber of lines of code

in each of these components, had we not used CogniTAO. By contrasting these

two, we can learn about the relative contribution that the use of CogniTAO brings

to the system. To estimate the number of code lines without CogniTAO, we fol-

lowed the following procedure (utilized in [64] for similarpurposes). While the

estimated numbers should not be considered accurate, they do reflect qualitatively

the effort spent, and can be used to draw useful lessons.

First, we needed to estimate the number of lines of code for a BDI or behavior-

based architecture, that does not have built-in teamwork. We used the SLOCCount

software on the UMPRS system [50], a BDI system developed at theUniversity

of Michigan and available in open-source form. UMPRS was chosen because it is

considered mature, and is a prototypical BDI system. UMPRS consists of about

6.7 thousands lines of code. This is a very conservative estimate for the number

of lines of code that would be needed to build a BDI system for the use of the

formation maintenance application, as there are certain features that we utilize in

the system (such as maintenance behaviors [47]) which are not present in UMPRS.

Next, we turned to estimating the work involved in modifyingthe individual

BDI code so that it supported the necessary teamwork logic. Suppose we started

with an individual BDI system that had all the necessary individual controller

pieces (i.e., each of the robot could execute its role in any of the different types of

formation-maintenance schemes). What effort would be involved in making sure

the teamwork logic was in place? This would include code to synchronize shared

variables (e.g., for conditions), make joint allocation decisions via protocols, send

messages back and forth, synchronize the beginning and ending of behavior exe-

cution, etc.

We use the behavior graph described in Figure 7.4 as the basisfor the estimate.

In different nodes in the behavior graph as it exists, the programmer relied on the

teamwork architecture to carry out specific teamwork-related services, such as

synchronizing the selection of new behaviors, making allocation decisions, syn-

chronizing the termination of executing behaviors, sharing the values of variables,

etc. Indeed, most of this is completely invisible to the programmer. For example,

during the move in formation, in case of a failure of one of therobots, the team-

work architecture automatically stop the behavior and inform on the failure to all

81

other robots. Although the leader is allocated to a different sub-team, it is being

informed on the failure and stops its execution.

We estimated the number of code lines it would have taken to duplicate this ca-

pability in each instanceby 80 source code lines, based on example code we wrote

for sending and acknowledging a message (both server and client side, socket ex-

ceptions, etc.). We include in this code necessary for transmitting variables, which

includes also serialization of the variables internal structures, etc. An additional

piece of needed code would have handled the sharing of variables across threads,

and at least basic thread synchronization and management. We conservatively

estimate this at 135 source lines, using a prepared code which runs two parallel

threads. This number does not include the memory managementand the mutexes

needed for synchronization. The shared memory management was estimated as

40 lines of code using the same method.

We now use these estimates to get a sense of the number of linesof code it

would have taken to replicate the system without the use of CogniTAO. We con-

servatively assume that the programmer would have added thecommunications

code once for each protocol (each is a separate set of files), and once for all seri-

alized variables. A less conservative estimate assumes theaddition of those lines

of code at each instance of the protocol and for each variable. This estimate gives

less credit to the programmers (and/or the software engineering process) in terms

of the expected reuse, and this in fact was the estimate used by others [64]. Nev-

ertheless, we use the more conservative estimate.

Contrasting the two columns reveals interesting insights. First, a very sizeable

portion of the source code is devoted to interfacing with therobot hardware, sen-

sors, and actuators. In the version using CogniTAO, this accounts for about 50%

of the code, and another 50% (approximate 5000 lines of code)are used to build

the actual controllers. In the non-CogniTAO version, about 13,000 lines of code

are used to build the application.

Ignoring the interfaces component in both cases, we see thatthe CogniTAO

version uses only about 42% of the source code lines of the non-TAO version, i.e.,

it offers almost 60% savings in development efforts. About half of these are in the

individual BDI architecture, and the rest in the teamwork services.

82

8.4 What Does Not Work (at least not easily)?

Due to the communication protocol of the teamwork architecture needed for the

team synchronization, in case of communication suffers, the use of the architec-

ture is going to go bad. This is in some sense limiting for formations, because one

can certainly build formations that don’t use communications, but we cannot do it

with a teamwork architecture.

Without the communication, formation would not be as robustas with. There

would be no ability to inform the other team members on case offailure, or to in-

crease the robustness with the communication controller which improve the track-

ing and handle vision failure and robustness to obstacles.

Moreover, the switch controller would not be able to chose a new SBC graph,

because it would not have the ability to build a new full graphfor the Dijkstra

algorithm or insure that the graph is connected.

83

Chapter 9

Conclusions

In Part I of this thesis, we developed techniques that allow robot selection that

maintains bounds and guarantees as to travel times, even under uncertainty. We

showed that even under the term of static environment, it takes the robots varying

amount of time getting to a target location. Due to this variance, choosing a robot

to perform a task cannot be done based on greedy selection (shortest path).

Thus, we introduced a decision making technique, inspired by economic deci-

sion theory, to distinguished between different policies based on risk. The exper-

iments in simulated and physical robots demonstrated that different robots were

chosen according to the different policies because of time travel variance: And in-

deed sometimes the closest robot is not the one to be selected, given the decision-

making policy. Furthermore, we have shown that under some conditions, choosing

the robot according to the selection policies will not always give a reasonable se-

lection in practice. We defined the social regret functionSoRwhich measure the

cost of choosing specific robot over all other robot, and allow us to evaluate the

gain from switching the chosen robot to a robot that will preform better. In our

future work we plan to expand this techniques for allocatingteams ofN robots to

K tasks.

While examining the experiments’ data, we found that the datadistributions

had a good fit to the family of General Extreme Value distributions, and specif-

ically to the General Log-Logistic distribution. We plan toexplore this fit and

learn to predict the parameters of the distributions for future real world paths and

84

obstacles.

In the second part of the thesis, we showed the use and contribution of a team-

work architecture. First, we described the principles of behavior-based teamwork

software and the use of collaborative algorithms, which allows to share informa-

tion with other robots. Then, we presented an implementation of a robust forma-

tion control using integration of different controllers over the teamwork architec-

ture described.

We showed that the use of this architecture increases the reuse of code and

gives the developer the ability to work only on the formationalgorithms and re-

duce the need to handle the team communication and synchronization.

But while saving programming efforts, the teamwork architecture rely on a

perfect communication. Any limitation of the communication will reduce the

robustness of the formation and will limit the use of some controllers.

85

Bibliography

[1] R. Alur, A. Das, J. Esposito, R. Fierro, G. Grudic, Y. Hur, R. V. Kumar,

I. Lee, J. Ostrowski, G. J. Pappas, B. Southall, J. Spletzer, ,and C. J. Taylor.

A framework and architecture for multirobot coordination.International

Journal of Robotics Research, 21(10–11):977–995, 2002.

[2] T. Balch and R. Arkin. Behavior-based formation control formulti-robot

teams. IEEE Transactions on Robotics and Automation, 14(6):926–939,

1998.

[3] T. Balch and M. Hybinette. Social potentials for scalablemultirobot for-

mations. InProceedings of IEEE International Conference on robotics and

automation (ICRA-00), 2000.

[4] D. E. Bell. Regret in decision making under uncertainty.Operations Re-

search, 30(5):961–981, 1982.

[5] C. Bererton, G. Gordon, S. Thrun, and P. Khosla. Auction mechanism de-

sign for multi-robot. InIn Proc. 17th Annual Conf. on Neural Information

Processing Systems (NIPS 03. MIT Press, 2003.

[6] J. Bobrow. Optimal robot path planning using the minimum-time criterion.

IEEE Journal of Robotics and Automation, 4(4):443–450, 1988.

[7] B. W. Boehm.Software Engineering Economics. Prentice Hall PTR, Upper

Saddle River, NJ, USA, 1st edition, 1981.

[8] S. Botelho and R. Alami. M+: a scheme for multi-robot cooperation through

negotiated task allocation and achievement. InICRA-99, volume 2, pages

1234–1239, 1999.

86

[9] S. Carpin and L. Parker. Cooperative leader following in a distributed multi-

robot system. InProceedings of the IEEE International Conference on

Robotics and Automation, 2002.

[10] A. Chaudhry. Path generation using matrix representations of previous robot

state data. In2006 45th IEEE Conference on Decision and Control, pages

6790–6795, 2006.

[11] L. CogniTeam. CogniTAO (Think As One). Think As One.

[12] P. R. Cohen and H. J. Levesque. Teamwork.Nous, 35, 1991.

[13] J. P. Desai. A graph theoretic approach for modeling mobile robot team

formations.Journal of Robotic Systems, 19(11):511–525, 2002.

[14] J. P. Desai, J. P. Ostrowski, and V. Kumar. Modeling and control of forma-

tions of nonholonomic mobile robots.IEEE Transactions on Robotics and

Automation, 17(6):905–908, 2001.

[15] M. Dias, R. Zlot, N. Kalra, and A. Stentz. Market-based multirobot coordi-

nation: A survey and analysis.Proceedings of the IEEE, 94(7):1257–1270,

2006.

[16] M. B. Dias. TraderBots: A New Paradigm for Robust and Efficient Multi-

robot Coordination in Dynamic Environments. PhD thesis, Robotics Insti-

tute, Carnegie Mellon University, 2004.

[17] M. B. Dias and A. Stentz. A free market architecture for distributed con-

trol of a multirobot system. In6th International Conference on Intelligent

Autonomous Systems (IAS-6), pages 115–122, 2000.

[18] M. B. Dias and A. Stentz. Traderbots: A market-based approach for re-

source, role, and task allocation in multirobot coordination. Technical Re-

port CMU-RI TR-03-19, Robotics Institute, Pittsburgh, PA, 2003.

[19] M. B. Dias and A. T. Stentz. A free market architecture fordistributed con-

trol of a multirobot system. In6th International Conference on Intelligent

Autonomous Systems (IAS-6), pages 115–122, 2000.

87

[20] M. B. Dias, M. B. Zinck, R. M. Zlot, and A. Stentz. Robust multirobot

coordination in dynamic environments. InICRA-04, volume 4, pages 3435–

3442, 2004.

[21] M. B. Dias, R. M. Zlot, M. B. Zinck, J. P. Gonzalez, and A. Stentz. A versa-

tile implementation of the traderbots approach for multirobot coordination.

In IAS-8, 2004.

[22] T. D.Vu, J. Go, G. A. Kaminka, M. M. Veloso, and B. Browning.MONAD:

A flexible architecture for multi-agent control. InProceedings of the Sec-

ond International Joint Conference on Autonomous Agents andMulti-Agent

Systems (AAMAS-03), 2003.

[23] Y. Elmaliach and G. A. Kaminka. Robust multi-robot formations under hu-

man supervision and control.Journal of Physical Agents, 2(1):31–52, 2008.

[24] A. Farinelli, L. Iocchi, D. Nardi, and V. A. Ziparo. Assignment of dynami-

cally perceived tasks by token passing in multi-robot systems. Proceedings

of the IEEE, 2006. Special issue on Multi-Robot Systems.

[25] R. Fierro, A. K. Das, V. Kumar, and J. P. Ostrowski. Hybridcontrol of

formations of robots. InProceedings of IEEE International Conference on

Robotics and Automation (ICRA-01), 2001.

[26] D. Foster and R. Vohra. Regret in the on-line decision problem. Games and

Economic Behavior, 29(1–2):7–35, 1999.

[27] J. Fredslund and M. J. Mataric. A general algorithm for robot formations

using local sensing and minimal communications.IEEE Transactions on

Robotics and Automation, 18(5):837–846, 2002.

[28] B. P. Gerkey and M. M. J. A formal analysis and taxonomy of task allocation

in multi-robot systems.The International Journal of Robotics Research,

23(9):939–954, 2004.

[29] B. P. Gerkey and M. Matarić. A formal analysis and taxonomy of task allo-

cation in multi-robot systems.International Journal of Robotics Research,

23(9):939–954, 2004.

88

[30] B. P. Gerkey and M. J. Mataric. Sold!: Auction methods formulti-robot

coordination.TROA, 2001. Special Issue on Multi-robot Systems.

[31] B. P. Gerkey and M. J. Mataric. A market-based formulation of sensoe-

actuator network coordination. InAAAI Spring Symposium on Intelligent

Embedded and Distributed Systems, pages 21–26, 2002.

[32] D. Goldberg, V. Cicirello, M. B. Dias, R. Simmons, S. Smith,and A. T.

Stentz. A distributed layered architecture for mobile robot coordination:

Application to space exploration. InProceedings of the 3rd International

NASA Workshop on Planning and Scheduling for Space, 2002.

[33] D. Goldberg, V. Cicirello, M. B. Dias, R. Simmons, S. Smith,and A. T.

Stentz. Market-based multi-robot planning in a distributed layered archi-

tecture. InMulti-Robot Systems: From Swarms to Intelligent Automata:

Proceedings from the 2003 International Workshop on Multi-Robot Systems,

volume 2, pages 27–38. Kluwer Academic Publishers, 2003.

[34] G. Grisettiyz, C. Stachniss, and W. Burgard. Improving grid-based SLAM

with Rao-Blackwellized particle filters by adaptive proposals and selective

resampling. InICRA-05, pages 2432–2437, 2005.

[35] B. J. Grosz and S. Kraus. Collaborative plans for complex group actions.

Artificial Intelligence, 86:269–358, 1996.

[36] B. J. Grosz and C. L. Sidner. Plans for discourse. In P. R. Cohen, J. Morgan,

and M. Pollack, editors,Intentions in Communication, pages 417–445. MIT

Press, Cambridge, MA, 1990.

[37] K. Z. Haigh and M. M. Veloso. Planning, execution and learning in a robotic

agent. InProceedings of the International Conference on Artificial Intelli-

gence Planning Systems, pages 120–127. AAAI Press, 1998.

[38] K. Heero, J. Willemson, A. Aabloo, and M. Kruusmaa. Robots find a better

way: A learning method for mobile robot navigation in partially unknown

environments, 2004.

89

[39] G. Inalhan, F. Busse, and J. How. Precise formation flyingcontrol of multiple

spacecraft using carrier-phase differential GPS. InProceedings of AAS/AIAA

Space Flight Mechanics, 2000.

[40] N. R. Jennings. Controlling cooperative problem solvingin industrial multi-

agent systems using joint intentions.Artificial Intelligence, 75(2):195–240,

1995.

[41] E. G. Jones, B. Browning, M. B. Dias, B. Argall, M. Veloso, andA. Stentz.

Dynamically formed heterogeneous robot teams performing tightly-coupled

tasks. InICRA-06, 2006.

[42] D. Jung and A. Zelinsky. An architecture for distributed cooperative plan-

ning in a behaviour-based multi-robot system.Robotics and Autonomous

Systems (RA&S), 26:149–174, 1999.

[43] N. Kalra, D. Ferguson, and A. Stentz. Hoplites: A market-based framework

for planned tight coordination in multirobot teams. InICRA-05, pages 1170–

1177, 2005.

[44] G. A. Kaminka and I. Frenkel. Flexible teamwork in behavior-based robots.

In Proceedings of the Twentieth National Conference on ArtificialIntelli-

gence (AAAI-05), 2005.

[45] G. A. Kaminka and I. Frenkel. Integration of coordination mechanisms in

the BITE multi-robot architecture. InICRA-07, 2007.

[46] G. A. Kaminka, R. Schechter-Glick, and V. Sadov. Using sensor morphology

for multi-robot formations.IEEE Transactions on Robotics, pages 271–282,

2008.

[47] G. A. Kaminka, A. Yakir, D. Erusalimchik, and N. Cohen-Nov. Towards

collaborative task and team maintenance. InProceedings of the Sixth Inter-

national Joint Conference on Autonomous Agents and Multi-Agent Systems

(AAMAS-07), 2007.

90

[48] S. Koenig, X. Zheng, C. Tovey, R. Borie, P. Kilby, V. Markakis, and P. Ke-

skinocak. Agent coordination with regret clearing. InAAAI-08, pages 101–

107, 2008.

[49] S. Kraus. Negotiation and cooperation in multi-agent environments.Artifi-

cial Intelligence, 94(1–2):79–97, 1997. Economic Principles of Multi-Agent

Systems.

[50] J. Lee, M. J. Huber, P. G. Kenny, and E. H. Durfee. UM-PRS: An imple-

mentation of the procedural reasoning system for multirobot applications.

In Proceedings of the Conference on Intelligent Robotics in Field, Factory,

Service, and Space (CIRFFSS-94), pages 842–849, 1994.

[51] M. Lemay, F. Michaud, D. Létourneau, and J.-M. Valin. Autonomous ini-

tialization of robot formations. InProceedings of IEEE International Con-

ference on Robotics and Automation (ICRA-04), 2004.

[52] G. Loomes and R. Sugden. Regret theory: An alternative theory of rational

choice under uncertainty.The Economic Journal, 92(368):805–824, 1982.

[53] F. Michaud, D. Létourneau, M. Gilbert, and J.-M. Valin.Dynamic robot for-

mations using directional visual perception. InProceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2002.

[54] O. Michel. WebotsTM : Professional mobile robot simulation.CoRR,

abs/cs/0412052, 2004.

[55] A. I. Mourikis and S. I. Roumeliotis. Optimal sensor scheduling for resource

constrained localization of mobile robot formations.IEEE Transactions on

Robotics, 22(5):917–931, October 2006.

[56] D. J. Naffin and G. S. Sukhatme. Negotiated formations. In Proceedings of

the Eighth Conference on Intelligent Autonomous Systems (IAS-8), 2004.

[57] L. E. Parker. ALLIANCE: An architecture for fault tolerant multirobot co-

operation.IEEE Transactions on Robotics and Automation, 14(2):220–240,

1998.

91

[58] P. Scerri, L. Johnson, D. Pynadath, P. Rosenbloom, M. Si,N. Schurr, and

M. Tambe. A prototype infrastructure for distributed robot-agent-person

teams. InProceedings of the Second International Joint Conference onAu-

tonomous Agents and Multi-Agent Systems (AAMAS-03), 2003.

[59] O. Shehory and S. Kraus. Methods for task allocation viaagent coalition

formation.Artificial Intelligence, 101(1-2):165–200, 1998.

[60] W. Sheng, Q. Yang, J. Tan, and N. Xi. Distributed multi-robot coordination

in area exploration.RAS, 54(12):945–955, 2006.

[61] R. Simmons, D. Apfelbaum, W. Burgard, M. Fox, D. an Moors, S. Thrun,

and H. Younes. Coordination for multi-robot exploration andmapping. In

AAAI-00, 2000.

[62] B. Sofman, E. Lin, J. A. Bagnell, J. Cole, N. Vandapel, and A.Stentz. Im-

proving robot navigation through self-supervised online learning.Journal of

Field Robotics, 23(11-12):1059–1075, 2006.

[63] A. W. Stroupe, M. C. Martin, and T. R. Balch. Distributed sensor fusion for

object position estimate by multi-robot systems. InProceedings of IEEE

International Conference on Robotics and Automation (ICRA-01), pages

1092–1098. IEEE Press, 2001.

[64] M. Tambe. Towards flexible teamwork.Journal of Artificial Intelligence

Research, 7:83–124, 1997.

[65] M. Tambe, D. V. Pynadath, N. Chauvat, A. Das, and G. A. Kaminka. Adap-

tive agent integration architectures for heterogeneous team members. In

Proceedings of the Fourth International Conference on Multiagent Systems

(ICMAS-00), pages 301–308, Boston, MA, 2000.

[66] S. Thrun, M. Beetz, M. Bennewitz, W. Burgard, A. B. Cremers, F.Dellaert,

D. Fox, D. Hahnel, C. Rosenberg, N. Roy, et al. Probabilistic algorithms and

the interactive museum tour-guide robot Minerva.The International Journal

of Robotics Research, 19(11):972—999, 2000.

92

[67] D. A. Wheeler. Sloccount.

[68] R. M. Zlot, A. Stentz, M. B. Dias, and S. Thayer. Multi-robot exploration

controlled by a market economy. InICRA-02, volume 3, pages 3016–3023,

2002.

93

