
Diagnosis of Multi-Robot Coordination Failures
Using Distributed CSP Algorithms

Meir Kalech1 and Gal A. Kaminka 1 and Amnon Meisels2 and Yehuda Elmaliach1

Computer Science Departments
1Bar Ilan University, Israel {kalechm,galk,elmaley}@cs.biu.ac.il

2Ben Gurion University of the Negev, Israelam@cs.bgu.ac.il

Abstract. With increasing deployment of systems involving multi-
ple coordinating agents, there is a growing need for diagnosing co-
ordination failures in such systems. Previous work presented central-
ized methods for coordination failure diagnosis; however, these are
not always applicable, due to the significant computational and com-
munication requirements, and the brittleness of a single point of fail-
ure. In this paper we propose a distributed approach to model-based
coordination failure diagnosis. We model the coordination between
the agents as a constraint graph, and adapt several algorithms from
the distributed CSP area, to use as the basis for the diagnosis al-
gorithms. We evaluate the algorithms in extensive experiments with
simulated and real Sony Aibo robots and show that in general a trade-
off exists between the computational requirements of the algorithms,
and their diagnosis results. Surprisingly, in contrast to results in dis-
tributed CSPs, the asynchronous backtracking algorithm outperforms
stochastic local search in terms of both quality and runtime.

1 Introduction

With increasing deployment of systems involving multiple coordi-
nating agents or robots, there is growing need for diagnosing coordi-
nation failures. Coordination failures often lie at the boundaries be-
tween the agents and their environment, including other agents. For
instance, a robot may send a message that another robot, due to an
intermittent radio failure, did not receive. As a result, the two agents
come to disagree on an action to be taken.

Previous work in diagnosis of coordination failures has focused
on centralized methods for such diagnosis [5, 8, 1, 4]. Unfortunately,
centralized methods suffer from key limitations: First, they can be
computationally expensive in practice, in terms of communications
and run-time. Second, they rely on a single diagnoser, and thus risk
a single point of failure. Moreover, this assumes no communication
limitations, e.g., range. Finally, they do not not necessarily exploit
the different knowledge of different agents; e.g., an intended receiver
faces difficulty detecting that a message to it was lost, where the
sender may do it more readily. However, distributed methods that
have been proposed, e.g., [10] do not address coordination failures.

This work takes a first step towardsdistributedmodel-based diag-
nosis of coordination (inter-agent) failures. Following [4] we model
the coordination between the agents as a graph of concurrence and
mutual-exclusion constraints on agents’ actions. The basic idea of
the diagnosis process is to compare the current observed actions of
the agents to those that satisfy the coordination constraints. Devia-
tions which cause the constraints to be violated lead to suspecting

agents of being at fault. The diagnosis output includes the agents
that deviate from the expected coordination (i.e., a minimal set of
abnormalagents). Modeling the coordination as a constraint graph
brings to bear solution methods from distributed constraint satisfac-
tion (DisCSP) literature, as solutions to the constraint graph form the
basis for diagnoses.

We present four distributed model-based diagnosis algorithms to
compute the diagnosis, based on DisCSP algorithms. While the rea-
soning behind all is the same as outlined above, the algorithms differ
from each other with respect to their expected run-time (based on
DisCSP literature) and their completeness of the diagnoses (based
on whether they find all or a single DisCSP solution). Two of the
algorithms (based onsynchronous backtracking) are expensive, but
compute a complete set of minimal diagnoses . One algorithm, (asyn-
chronous backtracking) is expected to be computationally cheaper,
and guarantees computing a single diagnosis (though not necessarily
minimal). The last algorithm (distributed stochastic search) is a lo-
cal search algorithm that is not guaranteed to find a diagnosis, but is
known to be highly effective (and cheapest of the above) in solving
DisCSPs in practice [14, 15].

We evaluated the use of these algorithms in comprehensive exper-
iments with a team of physical and simulated Sony Aibo robots, ex-
periencing systematic coordination failures. We examined the com-
putational requirements of the algorithms (i.e., their run-time and
bandwidth usage), and the correctness of the diagnoses produced. We
find that in general, synchronous backtracking methods that compute
the entire space of minimal diagnoses are naturally more expensive
than others, though they produced better diagnosis results. However,
a surprising result is that, the local search algorithm (which typically
outperforms asynchronous backtracking methods in DisCSPs) shows
only mediocre results, both in terms of quality of the diagnosis, as
well as in terms of computational requirements.

2 Related Work

Pencoĺe et al. [9] and Lamperti and Zanella [5] use a fault-model ap-
proach, where the distributed system is modeled as a discrete event
system, and the faults are modeled in advance. The diagnoser infers
unobservable fault events by computing possible paths in the discrete
event system that match observable events. Horling et al. [3] and Mi-
calizio et al. [8] use causal models of failures and diagnoses to detect
and respond to multi-agent and single-agent failures. In contrast to
these, we compute the diagnosis in a distributed fashion, and use
model-based diagnosis with no fault models. In addition, a common

theme in all of these is that they require pre-enumeration of faulty in-
teractions among system entities. However, in multi-agent systems,
these are not necessarily known in advance since they depend on
the specific run-time conditions of the environment, and the actions
taken by the agents.

Ardissono et al. [1] divide the system to sub-systems where ev-
ery agent is responsible to its own sub-system. Instead of letting
the agents compute the global diagnosis by exchanging informa-
tion, the agents send only necessary information to a central diagnos-
tic service by request. Kalech and Kaminka [4] propose centralized
consistency-based and abductive diagnosis methods for diagnosis of
coordination faults. In contrast, the methods we report on here are all
distributed, and thus avoid the shortcomings of centralized methods.
Moreover, in contrast to [4], we present here empirical results, where
the previous work has only provided a theoretical analysis.

Roos et al. [10] presented model-based diagnosis methods for spa-
tially distributed, where a set ofn agents are responsible for diagnos-
ing n sub-systems, respectively. Every agent makes a local diagnosis
to its own sub-system and then all agents compute a global diagnosis.
In order to build a global diagnosis set, each agent should consider
the correctness of those inputs of its subsystem that are determined
by other agents. Unlike our work, they assume that there are no con-
flicts between the knowledge of the different agents, i.e., that no co-
ordination faults occur.

To date, only a few researchers use CSP methods to practically di-
agnose a system. Wotawa [12] makes use of the corresponding repre-
sentation of the environmental models as constraint satisfaction prob-
lems. He shows how this representation can be used directly to derive
explanations and diagnoses. To this goal, he models the system using
cause-effect model, such that different solutions to the CSP are actu-
ally different explanations of the system, and the diagnoses are de-
rived from them. Sachenbacher and Williams [11] extends this model
to cope with constraint optimization problems over lattices, and with
semiring-CSPs. Here again a satisfaction of constraints signifies an
explanation to a fault. In contrast, we use constraints to model the
ideal coordination relationships. Thus the diagnosis algorithm goal
is to diagnose the violated constraints. In addition, previous systems
are not distributed and the diagnosis is computed centrally, in con-
trast to our work.

3 The Social Diagnosis Problem

To present the distributed methods we develop in this paper, we first
begin by briefly describing the model-based coordination diagnosis
problem. We refer the reader to [4] for a detailed discussion and ex-
planation.

Let T be a group ofn agents, where each agent has a single ac-
tion variable (easily extended to more variables) with domaind—
the actions that can be selected by the agent (the actions are trans-
formed to a set of boolean variables by applying completeness and
mutual-exclusion formulas). The coordination between the agents is
defined by constraints on the values of the agents’ actions: A pair
〈Agent1 = V alue1, Agent2 = V alue2〉, represents a constraint
between the actionV alue1 of Agent1 and the actionV alue2 of
Agent2.

There are two kinds of constraints, which restrict the joint action
selected by agents:Concurrenceconstraints (CCRN) signify that the
agents must select their respective specific action values jointly, at
the same time.Mutual-exclusionconstraints (MUEX) signify that the
specific actions must never be selected jointly, at the same time (ex-
ample below). We defineCG to represent the set of the constraints

between the agents, andCG(Aix, Ajy) to denote the constraint re-
lating 〈Agenti = V aluex, Agentj = V aluey〉.

Given a set of constraintsCG and a teamT , we can define a multi-
agent system description as a set of implications from the normality
of the agents to the satisfaction of the coordination constraints.
Definition 1. A multi agent system description (MASD)is a set of
implications from the normality of agents in a teamT to CG. The
meaning of the predicateAB(.) is that the corresponding agent is
considered abnormal (failing).

MASD = {¬AB(Ai) ∧ ¬AB(Aj) ⇒ CG(ASix, ASjy)

|CG(ASix, ASjy) ∈ CG ∧Ai, Aj ∈ T}

Given a setS of the actions of the agents (set of boolean variables)
and a setCG of the constraints between them, and assuming that all
the agents did not fail (in terms of model-based diagnosis, are not
abnormal), the system is inconsistent if the constraints are violated.
Definition 2. Coordination Diagnosis Problem. Given
{T, MASD, S} whereT is a team of agents{A1...An}, MASD
is a multi agent system description defined overT , andS is the set
of the actions of the agents, then thecoordination diagnosis problem
(CDP) arises when

MASD ∪ {¬AB(Ai)|Ai ∈ T} ∪ S ` ⊥

This can imply a failure in the joint action selection, i.e., in coor-
dination. In that case, the goal of the social diagnosis process is to
find aminimal diagnosisset of abnormal agents that account for the
failure; i.e., agents whose action selection we can change to cause
the system to become consistent (in terms of CSP—that enable the
satisfaction of all constraints).1. We seek a set ofminimal diagnoses,
where no proper subset of any of them is also a diagnosis.

To illustrate, assume a group of robotic space explorers, whose
goal of is to slowly creep on a newly-discovered alien. To capture
the alien, they must approach it from all sides in alternating steps:
A bit from the left, then from the right, then again from the left, etc
(Figure 1). To do this in coordinated manner, the robots divide into
sub-teams of three that spread around the alien, each with a leader
(Ci) and two followers (Di), that move in formation using cameras
to maintain distances and angles. A mission commander (B) directs
the sub-team leaders, alternating commands for them to go and stop,
as needed.

The robots must coordinate all through their mission. The sub-
team leaders are coordinated with each other via the mission com-
manders’ commands; and each sub-team’s leader is coordinated with
its followers using vision. Once a coordination failure(s) is detected,
the mission must be suspended, in order to diagnose the failed robotic
soldiers and then reestablish collaboration. A coordination failure
could happen due to intermittent communication failures (between
the mission commander and sub-team leaders) or due to a vision fail-
ure (a sub-team leader and its followers).

Focusing on a case with a single team,T = {B, C1, D1, D2},
whereD1, D2 are followers,C1 sub-team leader, andB mission
commander, we define the domain of the agents to be the actions
go (g) or stop (s), d = {g, s}. The coordination constraints between
the agents are:

CCRN: 〈C1 = g, D1 = g〉, 〈C1 = g, D2 = g〉
MUEX: 〈B = s, C1 = g〉
1 Note that we focus here on the abductive version of social diagnosis.

B

ALIEN

C1

D1

D2

D3

D4 C2

D5

D6

C3

C4 D7

D8

D10

D9

C5

D12

D11

C6

Figure 1. Example: Robotic space explorers tackling an alien.

We can represent the constraints between the agents in a coordina-
tion graph (Figure 2), where the vertices represent the values of the
agents’ variables, and the edges represent the constraints (solid edges
mark concurrence constraints; dashed edges mark mutual exclusion).

B1

g

s

g

s
C1

s
D2

g

s

g
D1

Figure 2. Coordination graph for mission commanderB, sub-team leader
C1, and the two followers.

Assume followerD1 thinks, due to a vision failure, that the sub-
team leaderC1 stopped, selecting the actions, then the actual as-
signments are:S = {B = g, C1 = g, D1 = s, D2 = g}, i.e. the
constraint:〈C1 = g, D1 = g〉 is violated. By finding solutions to
the constraint graph, and comparing these toS, the agent can gener-
ate two minimal diagnoses:∆1 = {D1}, ∆2 = {B, C1, D2}. ∆1

corresponds to the possibility thatD1 is wrong in its belief,∆2 cor-
responds to the possibility that everyone else is wrong.

4 Distributed Social Diagnosis

We present a distributed approach, where the agents find the satisfac-
tion(s) and compute the diagnosis by exchanging information with
each other. As in the centralized approach, computing the diagnosis
is done by finding the satisfactions of the coordination graph, and
contrasting these with actual values. As far as we know, there is no
existing algorithm which finds a minimal satisfaction (in terms of
minimal diagnosis), where no proper subset of the changed values
could also satisfy the constraints. Thus the minimality goal is pre-
served only for some algorithms (see below).

In the next two subsections we propose four distributed algorithms
to find the satisfactions and compute the diagnosis. All the algorithms
use communication, therefore they work only in nonpermanent com-
munication breakdowns. In permanent communication breakdowns
neither distributed nor centralized approach will work. In the first
subsection we present two algorithms for computing the complete
set of minimal diagnoses, and in the following subsection we present
two algorithms for computing an incomplete diagnosis which is not

guaranteed to be minimal. As we shall see, these can offer an attrac-
tive alternative, despite their lack of guarantees.

4.1 Algorithms for Complete Minimal Diagnoses

In order to compute a complete set of minimal diagnoses, the agents
must compute the whole satisfaction space of the system. We use a
synchronous backtracking algorithm (SBT) to compute the satisfac-
tions [13]. This algorithm is based on a distributed depth-first search.
The agents are arranged in a static order. Every agent sends its possi-
ble values to its next agent. The receiving agent checks the compati-
bility of the former assignments with every value of its domain, sep-
arately. It returns backward anogood message upon inconsistency,
or the partial assignments to the next agent, upon consistency.

In a system where the constraints between the agents are static,
i.e. they do not change dynamically, the agents could compute all the
satisfactions in advance (offline). During run-time, every agent keeps
a copy of all solutions, using them to compute the diagnosis. We de-
note this methodSBTOFF. On the other hand, in systems where the
constraints can change dynamically, the agents must compute the sat-
isfactions, as well as the diagnosis, online. We denote thisSBTON.

During diagnosis, every agent reports to the other agents the in-
dexes of the satisfaction database in which that agent found an in-
consistency. Every agent collects this information from the others
and computes the diagnoses by dividing the agents according to the
reported indexes. So as to produce minimal diagnoses, if a diagnosis
set is a superset of another diagnosis, it is dropped.

In the previous example the values that satisfy the team variables
are:s1 = (g, g, g, g) ands2 = (s, s, s, s) (corresponding to the or-
der of the agents(B, C1, D1, D2)). Assume that followerD1 failed
due to a failure in its vision, which caused it to select the action stop
(s). The agents exchange the satisfaction indexes in which they found
an inconsistency.B sends index2 since its current value isg which
is not equal to its expected value in satisfactions2. In the same man-
ner,C1 sends index2, D1 sends index1 andD2 sends index2. Once
an agent accepts this information from all the others, it divides them
according to the indexes, to form two diagnoses:∆1 = {D1} and
∆2 = {B, C1, D2}.

In the same manner, we take care also of cases which the minimal
diagnosis is a subset of another diagnosis. For example, assume the
valuess3 = (g, s, s, s) also satisfies the team variables. Then the
indexes sent by the agents are as the following:

B : 2
C1 : 2, 3
D1 : 1
D2 : 2, 3

Dividing the agents according to the indexes produces the following
diagnoses:∆1 = {D1}, ∆2 = {B, C1, D2} and∆3 = {C1, D2}.
However,∆3 ⊆ ∆2 so ∆2 is not a minimal diagnosis. The final
minimal diagnosis sets are:∆1 = {D1} and∆3 = {C1, D2}.

The first stage, of building the satisfaction database, involves an
exponential number of messages and its computation is also expo-
nential in the number of agents. However, the diagnosis process it-
self entails only the exchanging of the indexes of the satisfactions in
which the agents found an inconsistency. The rest of the computation
is linear in the number of agents and polynomial in the size of the sat-
isfaction database. It only divides the group according to the indexes.
In systems where the constraints are static, these costs are mostly del-
egated to offline processes. However, where constraints change dy-

namically, the agents must compute all the satisfactions dynamically,
and these computational costs are incurred during runtime.

Indeed, distributed CSP literature recognizes the computational
costs of SBT, and offers cheaper alternatives [14]. These are exam-
ined below.

4.2 Non-Minimal Diagnosis

One alternative taken by many distributed CSP algorithms is to set-
tle for computing only one solution to a given CSP. However, for
diagnosis, this means that the results are not guaranteed to be min-
imal. Moreover, since only one of possibly many diagnoses would
be produced, the result may not even be correct. Once a satisfac-
tion is found, the agents compute the diagnosis by comparing their
current values to the expected values in the satisfaction. The deviant
agents are suspected as the abnormal agents.We examine two dis-
tributed CSP algorithms: Asynchronous backtracking and distributed
stochastic search.

4.2.1 Asynchronous Backtracking (ABT).

In ABT, the priority order of agents’ variables is fixed, and each agent
communicates its value assignment to neighboring agents viaok?
messages. Each agent maintains anagentview, the current value as-
signment of other agents. An agent changes its assignment if its cur-
rent value assignment is not consistent with the assignments of higher
priority agents. If there exists no value that is consistent with the
higher priority agents, the agent generates a new constraint (called a
nogood), and communicates thenogood to a higher priority agent,
thus the higher priority agent changes its value.

ABT is complete in terms of CSP. It always finds a solution if
one exists, and terminates if no solution exists, so we are guaran-
teed to find one diagnosis. However, still it has three drawbacks, first,
we cannot be sure in advance which agents will communicate with
each other, since an agent that detects anogood constraint with non-
neighboring agent adds communication channel to it. Second, in con-
trast to SBT, here at the end of the diagnosis process, each agent may
have only a portion of the diagnosis, related only to itsagentview.
Third, once a satisfaction is found, the agents do not continue to look
for it, but on the other hand, they do not know that the search was
completed. The next algorithm copes with some of these drawbacks.

4.2.2 Distributed Stochastic Search Algorithm (DSA).

In contrast to ABT, DSA is synchronous in that all processes proceed
in synchronized steps. The agents go through a sequence of steps un-
til a termination threshold is met (for example, limited number of
cycles). In each step, an agent sends its current variable value to its
neighboring agents, and concurrently receives the values from the
neighbors. It then decides stochastically, whether to keep its current
value or change to a new one. This is done based on a pre-defined
strategy that depends on the possibility to reduce violated constraints.
The most critical step of DSA is for an agent to decide the next value,
based on its current state and its perceived states of the neighboring
agents. The decision strategy we utilized is the following: If the agent
cannot find a new value to improve its current state (reduces viola-
tions), it will not change its current value; if there exists such a value
that improves its state, the agent may change to the new value with
probabilityp, or keep the current value unchanged with probability
1− p. This continues until a termination threshold is reached (i.e., a
certain number of cycles).

DSA is incomplete, so it may return no solution even when one
exists. However, it copes with some disadvantages of ABT. First we
know in advance the communication channels of every agent (neigh-
boring agents). Second, if an agent is diagnosed as abnormal, this
diagnosis is known to the abnormal agent and its neighboring agents.
Third, the termination threshold is known to all the agents.

5 Experiments and Discussion

This section evaluates the distributed diagnosis algorithms we pre-
sented, in terms of computation and communication. In addition, we
examine, for every algorithm, the trade-off between its computational
costs and its ability to produce correct diagnosis.

We created laboratory versions of the space exploration example
described previously. We evaluated every algorithm in different size
groups: 4 robots, 7 robots and 10 robots. In the experiments for 4
robots, the group consisted of a mission commander and a sub-team
consisting of one sub-team leader and two followers. The group of
7 robots consisted of a mission commander and two sub-teams, and
the group of 10 robots consisted of a mission commander and three
sub-teams.

In order to evaluate the algorithms on a representative and diverse
set of problems, a wide set of combination of potential failures was
selected. First, we generated all single-faults possible (1–7 in the list
below). Note that we assume all followers/leaders are the same, so
it does not matter which follower/leader has failed. Then we created
double-fault combinations (8–12), and a quadruple failure (13):

1. a follower thinks that the leader stops, although the leader contin-
ues to go.

2. a follower thinks that the leader started to go although it actually
did not.

3. a sub-team leader thinks that it got a message from the mission
commander to stop, although the message was not sent.

4. a sub-team leader thinks that it got a message from the mission
commander to go, but the message was not sent.

5. the mission commander sent a message to the sub-team leaders,
but only some of them received it.

6. a follower stops because of an individual technical problem (noth-
ing to do with coordination).

7. a leader stops because of an individual technical problem (nothing
to do with coordination).

8. failure 1 above, in two different followers.
9. failure 2 above, in two different followers.

10. failures 3 and 4 above (one in each sub-team).
11. failure 5 above for two sub-team leaders.
12. failures 2 and 6 above.
13. failure 2 above (twice, for two different followers), and failure 5

above (twice, for two different sub-team leaders).

Failures 6 and 7 reflect a local fault but not a coordination fault,
since the action values of the robots in the group remain the same.
In particular, although the robot stopped, it did not select the ”stop”
action; it believes that its current action is ”go”. For these failures,
we expect the diagnosis process to find that the agents’ values satisfy
the constraints and therefore the agents will continue to diagnose the
fault locally. This process is beyond the scope of this paper.

To evaluate the performance of the algorithms from a computa-
tional perspective, two independent measures of performance were
used. We measured communication load in terms the total num-
ber of messages sent [6]. We also measured runtime in terms non-

Figure 3. Sony Aibo robots capturing a mock alien.

concurrent constraint checks (cycles) [7]. Each of the test-case fail-
ures is different, and for all algorithms other than DSA, a single run
is sufficient to determine the results, since no randomization takes
place, and no noise is involved in the observations or deterministic
decisions of the algorithms. However, for DSA (which is a stochastic
algorithm), results may change between runs, even starting with the
same initial conditions. For DSA, we therefore run every experiment
30 times and takes the average. The termination threshold for DSA
was set to the number of robots in the team (below we will present
results using a lower—fixed—termination threshold).

Experiments with 4 robots were carried out on physical Sony Aibo
robots (Figure 3). These experiments were then repeated using the
Player/Stage software package [2] simulator, a popular and practical
development tool for robotics (Figure 4). We verified that the results
of the physical and simulated robots (group of 4) were identical, and
then continued the experiments in larger groups in simulation. Also,
experiments using the DSA were all carried out using the simulator
(because of the need for a significant number of repeated trials).

The results of the communication load and the runtime are pre-
sented in Figure 6 and Figure 5, respectively. Thex axis shows the
diagnosis algorithm and they axis presents the total number of mes-
sages sent (Figure 6) and the runtime (Figure 5). For each algorithm,
three bars are shown, one for each of the group sizes. Each bar rep-
resents the average results across the different failures.

As expected, computing all the satisfactions online (SBTON) is
expensive in terms of both communication as well as computation.
Obviously, computing the satisfactions offline (SBTOFF) and then
online the diagnosis, significantly improves the efficiency. SBTOFF
is even better than the local search algorithm, DSA, although it com-
putes a complete set of diagnoses and not a single one. The reason
for this is that in SBTOFF the agents communicate only the indexes
of the inconsistent satisfactions, and do not search online for CSP
solutions.

Surprisingly, ABT outperforms DSA. These results are surprising
in light of previous research that showed that the stochastic search
algorithm is more efficient than ABT [15]. This has to do with the
likely state of a multi-agent system after a coordination failure. In
a team that was in coordination and then failed, the selected actions

Figure 4. Screen shot of Stage simulator in action.

of most agents are likely going to be close to the satisfaction. This
enables ABT to find a satisfaction in only a few steps. On the other
hand, in DSA the search may proceed towards a different part of
the space; also, the termination threshold may cause DSA to con-
tinue running needlessly (see below for experiments with a reduced
threshold).

18

196

3

66

34
11

127

71

30

216

0
20
40
60
80

100
120
140
160
180
200
220

SBT_O
FF

SBT_O
N

ABT
DSA

#t
im

e
cy

cl
es

4 agents 7 agents 10 agents

all, minimal
complete

single
non-minimal

complete

single
non-minimal
non-complete

700 2620

Figure 5. Average number of cycles in different diagnosis methods.

In order to further evaluate the diagnosis algorithms we examine
also the correctness of the diagnoses they produce. SBTON and
SBT OFF produce a complete set of minimal diagnoses. However,
the other algorithms produce only a single diagnosis. This diagno-
sis is not guaranteed to be minimal and thus to correctly explain the
fault(s). In this sense, ABT is better than DSA, since it is complete
and so guaranteed to find a diagnosis if one exists (although its min-
imality is not guaranteed).

We examine three factors in diagnosis correctness (Table 1): (i) the
percentage of robots (out of the group) that failed to find a solution
to the DisCSP, even if some of their peers did (here the diagnosis
did not completely fail); (ii) the percentage of experiments in which
the group failed to compute a diagnosis; and (iii) the percentage of

12

66

6
27

42

13

102
90

20

190

0
20
40
60
80

100
120
140
160
180
200

SBT_O
FF

SBT_O
N

ABT
DSA

#m
es

sa
g

es

4 agents 7 agents 10 agents

256 723

all, minimal
complete

single
non-minimal

complete

single
non-minimal
non-complete

Figure 6. Average number of messages in different diagnosis methods.

experiments in which the computed diagnosis did not match the cor-
rect explanation of the failure(s). Obviously, ABT always succeeds to
compute a diagnosis, because it is complete, and therefore the num-
ber of failed robots and failures in computing the diagnosis is zero.
DSA is based on local search and is incomplete; some robots failed
to compute a diagnosis in 8% of cases, and all failed to compute even
a single diagnosis in 33%. Both of the algorithms generate diagnoses
that do not match the correct explanation (ABT: 28%, DSA: 46%),
since they compute only a single diagnosis and not a complete set of
all the diagnoses.

Diagnosis % failed % diagnosis % incorrect
robots failures diagnosis

ABT 0 0 28
DSA 8 33 46

Table 1. Diagnosis failures and correctness measures, for ABT and DSA.

The results of DSA are affected by the termination threshold,
which determines how long the stochastic search runs. To evaluate
the effect of this factor, we reran the above experiments for DSA
with a threshold of two cycles. Table 2 summarizes the results of the
number of messages and runtime. Comparing these results to the re-
sults presented in Figures 6 and 5, shows a significant improvement
especially in terms of runtime cycles. However, compared to running
with non-fixed threshold, diagnosis quality has deteriorated further:
23% robot failure cases, 49% diagnosis failure cases, and 56% of
diagnoses incorrect.

4 agents 7 agents 10 agents
messages 25 30 46

runtime 23 23 23

Table 2. DSA with a threshold of 2 cycles: Number of messages and
runtime in cycles. Each data point is an average of 30 trials.

One lesson—expected to some degree—is that there exists trade-
off between the effectiveness of the algorithms in terms of commu-
nication and computation and the correctness of the diagnosis that
the algorithms produce. Algorithms that produce only a single diag-
nosis cannot always provide the correct diagnosis (ABT: in 28% of
experiments, DSA: 46%).

However, there are two surprises. First, ABT outperforms DSA in
running time and communications, in contrast to results in distributed
CSP. We believe that this is a general result in the use of ABT for
coordination diagnosis, because when there are only few failures at
a time, ABT determines in a few steps a close solution to the CSP
(and based on it, a diagnosis), compared to the stochastic behavior
of DSA. Second, ABT outperforms DSA in terms of the diagnosis
results: ABT provides a guarantee to find a diagnosis (DSA does
not), and empirically returns the correct diagnosis much more often
than DSA.

6 Summary and Future Work

To counter limitations of centralized coordination diagnosis meth-
ods, we presented an empirical investigation of distributed diagnosis
algorithms, using distributed CSP algorithms as a basis. Two algo-
rithms compute all minimal diagnoses: SBTOFF (suitable for sys-
tems where the coordination is static), and SBTON (for dynamic co-
ordination). One algorithm guarantees a single diagnosis (ABT), and
one algorithm utilizes a local search approach and therefore does not
guarantee any solution (DSA).

We evaluated the algorithms with real and simulated robots, and
concluded that there is a trade-off between the effectiveness of the
algorithms in terms of communication and computation and the cor-
rectness of the diagnosis that the algorithms produce. However, The
ABT algorithm provides a surprise: It runs faster, communicates
less, and provides better diagnoses than the stochastic local search
algorithm—in contrast to lessons in the distributed CSP literature
[15]. However, ABT has three disadvantages: (i) The diagnosis is
known only to some of the agents; (ii) the agents do not know that
the diagnosis process is complete; and (iii) the diagnosis is not guar-
anteed to be minimal. We hope to address these difficulties in the
future.

REFERENCES
[1] Liliana Ardissono, Luca Console, Anna Goy, Giovanna Petrone, Clau-

dia Picardi, Marino Segnan, and Daniele Theseider Duprpé, ‘Coop-
erative model-based diagnosis of web services’, in16th International
Workshop on Principles of Diagnosis (DX 05), pp. 125–130, (2005).

[2] Brian P. Gerkey, Richard T. Vaughan, and Andrew Howard, ‘The
player/stage project: Tools for multi-robot and distributed sensor sys-
tems’, in Proceedings of the International Conference on Advanced
Robotics, pp. 317–323, Coimbra, Portugal, (Jul 2003).

[3] Bryan Horling, Brett Benyo, and Victor Lesser, ‘Using Self-Diagnosis
to Adapt Organizational Structures’,Proceedings of the 5th Interna-
tional Conference on Autonomous Agents, 529–536, (June 2001).

[4] Meir Kalech and Gal A. Kaminka, ‘Towards model-based diagnosis
of coordination failures’, inAmerican Association for Artificial Intelli-
gence (AAAI-05), (2005).

[5] Gianfranco Lamperti and Marina Zanella,Diagnosis of Active Systems,
Kluwer Academic Publishers, 2003.

[6] Nancy A. Lynch,Distributed Algorithms, Morgan Kaufmann, 1996.
[7] A. Meisels, E. Kaplansky, I. Razgon, and R. Zivan, ‘Comparing perfor-

mance of distributed constraints processing algorithms’, inProceedings
of Autonomous Agents and Multi Agent Systems (AAMAS-02), (2002).

[8] R. Micalizio, P. Torasso, and G. Torta, ‘On-line monitoring and diagno-
sis of multi-agent systems: a model based approach’,in Proceeding of
European Conference on Artificial Intelligence (ECAI 2004), 16, 848–
852, (2004).

[9] Y. Pencoĺe, M.O. Cordier, and L. Rozé, ‘Incremental decentralized di-
agnosis approach for the supervision of a telecommunication network’,
IEEE Conference on Decision and Control (CDC’02), 435–440, (De-
cember 2002).

[10] Nico Roos, Annette ten Teije, and Cees Witteveen, ‘A protocol for
multi-agent diagnosis with spatially distributed knowledge’, inPro-
ceedings of Autonomous Agents and Multi Agent Systems (AAMAS-03),
pp. 655–661, (July 2003).

[11] Martin Sachenbacher and Brian Williams, ‘Diagnosis as semiring-
based constraint optimization’, inECAI-2004, (2004).

[12] F. Wotawa,e-Environement: Progress and Challenge, volume 11 ofRe-
search on Computing Science, 334–347, Ḿexico, 2004.

[13] Makoto Yokoo, Edmund H. Durfee, Toru Ishida, and Kazuhiro
Kuwabara, ‘The distributed constraint satisfaction problem: Formaliza-
tion and algorithms’,IEEE Trans. Knowl. Data Eng., 10(5), 673–685,
(1998).

[14] Makoto Yokoo and Katsutoshi Hirayama, ‘Algorithms for distributed
constraint satisfaction: A review’,Autonomous Agents and Multi-Agent
Systems, 3(2), 185–207, (2000).

[15] Weixiong Zhang, Guandong Wang, Zhao Xing, and Lars Witten-
burg, ‘Distributed stochastic search and distributed breakout: proper-
ties, comparison and applications to constraint optimization problems
in sensor networks.’,Artificial Intelligence, 161(1-2), 55–87, (2005).

