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Abstract—There is considerable interest in real-world
formation-maintenance tasks, where robots move together while
maintaining a geometric shape. This interest is motivated by
promise of robustly and efficiently moving multiple robots along
a path, guided by a human operator. This paper presents a
comprehensive set of techniques that fulfill this promise: (i)
a novel method for fusing open- and closed- loop controllers,
for robust formation-maintenance; (ii) an ecological display,
allowing a human operator to monitor and guide robots, while
improving their performance and reducing the failure rate; and
(iii) a set of methods for interacting with the formation in the
case of a disconnect in the formation. We evaluate each of
these contributions in extensive experiments, including 25 human
operators. We show significant improvements in performance (in
terms of movement time), robustness (both in number of failures,
as well as failure rate), and consistency between operators.

I. I NTRODUCTION

T HERE is considerable commercial interest in formation-
maintenance tasks, where a team of robots move together

while maintaining a geometric shape. This interest is motivated
by promise of robustly and efficiently moving multiple robots
along a path chosen for them by a human operator. Examples
of such applications include cooperative object carrying [40],
scouting [5], platooning and efficient convoys [7], groups
of unmanned aerial vehicles [38], and spacecraft formation
flying [1]. Realizing the potential of formation maintenance in
real-world multi-robot applications requires addressingseveral
open challenges.

First, many real-world applications require a human opera-
tor to monitor the state of the robots [14]. Previous approaches
to monitoring multiple robots use individual robot displays that
are independent of each other. For instance, the operator may
monitor all robots in parallel, via a split display showing each
robot’s individual state; or the operator may switch between
such displays [2], [14], [41]. However, independent individual
displays lead to difficulties in monitoringcoordinated tasks,
requiring tight, continuous coordination between the robots.
The problem is that the operator needs to infer the state of the
formation based on individual displays, and (as we show) this
decreases significantly from the operator’s abilities, reducing
the team’s performance and robustness.

Second, formation maintenance requires a robot to know
of the location of at least one other robot—called atarget1.
There are many methods that rely onclosed-loop controlto
maintain the formation by tracking the target(s); these rely
on the robots’ sensors (typically, vision and range sensors) to
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1Typically, additional conditions must hold as well.

supply continuous, uninterrupted, feedback about the target’s
location [5], [6], [9], [10], [13], [15]. However, this feedback
is easily interrupted in the presence of obstacles, and when
traversing rough terrains. While it can be possible to then
re-link the formation [20], persistent interruptions slowthe
group’s progress, and add to the load on the operator.

Finally, if and when an interruption occurs, and the for-
mation becomes disconnected, the human operator must be
able to effectively interact with the robots when needed (for
example, when the formation becomes disconnected). Robots
that require the operator’s assistance initiate (or are issued)
call-requests, which are queued for the operator. Traditionally,
the operator switches control between robots, and uses single-
robot teleoperation with individual robots to resolve the call
requests in some (prioritized) sequence (e.g., [2], [12], [14],
[28], [34], [37]). This method works well in settings where
the task of each robot is independent of its peers, and thus the
resolution of a call request is independent of others. However,
in multi-robot formations, the robots are tightly-coordinated,
and individual call-request handling means that all robots
remain idle, while the operator tends to any single operator.
This, despite the additional information that the otherwise
idle robots may be able to offer the operator, based on their
knowledge of the formation (which allows them to estimate
the position of any robot).

This paper presents a comprehensive set of techniques for
addressing the challenges above, including: (i) an ecological
display, allowing a human operator to monitor and guide
robots, while improving their performance and reducing the
failure rate; (ii) a set of methods for interacting with the
formation in the case of a disconnect, where a robot can no
longer proceed; and (iii) a novel method for fusing open- and
closed- loop controllers, for robust formation-maintenance that
minimizes disconnects.

The paper is organized in three parts:
• First, we discuss tools for single-operator monitoring and

guidance of multi-robot formations (Section III). This
part explores a novel ecological display allowing a single
operator to control multiple robots in formation. We
report on extensive experiments with 25 human subjects.
The results show that the use of the ecological display
(i) reduces the number of failures and task completion
time in these tasks; (ii) reduces the number of failures
per second; and (iii) reduces the variance in control-
ling robots, thus leading to more consistent performance
across operators.

• The next part (Section IV) explore ways tomultiplex
and/orfuseclosed-loop and open-loop formation control,
to limit the number of disconnects that occur in forma-
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tions. The idea is to utilize communications to overcome
sensor failures, and thus limit the number of interruptions
that require human assistance. Experiments show that the
techniques are able to significantly reduce the number of
undetected obstacles, and thus increase the robustness of
the formation to obstacles, even with limited sensing.

• In the final part of the paper (Section V) we report
on first steps towards allowing coordinating robots, in a
formation task, to use their knowledge of the coordination
to autonomously assist the operator in resolving call
requests involving a disconnected robot. Experiments
with up to 25 human operators show that this call-request
resolution method leads to shorter failure-recovery times.

Before presenting these three parts, we discuss relevant rel-
evant literature and motivation for our work (Section II).
Section VI concludes.

II. BACKGROUND AND MOTIVATION

This paper touches on a vast body of literature, as multi-
robot formations is a well known canonical task, that has been
investigated for many years. We therefore focus our review
on the most closely related investigations. We first briefly
discuss multi-robot formations, specifically in the context of
obstacles that interfere with the formation (Section II-A). We
then discuss investigations of human operation and monitoring
of multiple robots (Section II-B).

A. Robust Formations

Balch and Arkin [5] examine three fundamental techniques
for formation maintenance, in experiments with up to four (4)
homogeneous robots:

1) Unit-center-referencedis a technique where the robots
place themselves according toX,Y coordinates, relative
to their peers in the formation, and subject to the
geometric shape to be maintained. This technique relies
on the ability of robots to sense the locations of all
others.

2) To address this requirement, theleader-referencedtech-
nique instead allows robots to position themselves rel-
ative to the position of only a single robot, which acts
as a leader. However, all robots must orient themselves
with respect to the same leader.

3) Finally, the neighbor-referencetechnique relaxes this
requirement further. Here, each robot positions and ori-
ents itself with respecting to a single robot—called the
target—but different robots can choose different targets.

It was shown that the last two categories in Balch and
Arkin’s work (Leader-Referencedand Neighbor-Referenced)
are both related to a general method for formation main-
tenance, calledSeparation-Bearing Control(SBC) [9], [10],
[13], [15]. In SBC, a single robot is chosen as the leader
of the formation. Each robot (but the leader) must main-
tain connectivity—a given distance (separation) and angle
(bearing)—with respect to an assigned target. There must be
a path of such connected robots from every robot in the team
to the leader. It was shown that SBC controllers are sufficient
to maintain stable formations.

SBC is arguably the most practical formation-maintenance
technique today for real-world settings. This is likely due
to its simple requirements of sensing (monitoring) only one
other robot, and to the wealth of opportunities it presents for
optimizing sensor usage [20], [27] and robot role assignment
[24], [26].

There have been several works addressing the robustness of
SBC-based formations. Fredslund and Matarić [15] describe an
algorithm for generating SBC monitoring rules for robots ina
given formation. The robots are assumed to have supporting
sensing capabilities, and the position of the leader is given.
The monitoring rules are supplemented by communications
for robustness against robot death.

Kaminka et al. [20] describe an algorithm that generates
SBC monitoring rules based on the sensor configuration of the
robots, and dynamically adjusts these rules to overcome sensor
failures. They show that this leads to significantly improved
robustness, as long as alternatives exist to prevent a robot
from becoming completely disconnected. Their approach is
susceptible to latencies of the communication protocol used
to switch between different monitoring rules.

Our approach relies on fusing SBC control with open-loop,
communication-based control of the formation, which relies
on the localization of the robots and their ability to accurately
estimate their own movements. In this, we complement the
techniques outlined above, rather than compete with them.

Most previous work on formation maintenance in the pres-
ence of obstacles has assumed that obstacles are detectable
in some unspecified fashion. Using the techniques presented
below, robots can use their sensors to detect obstacles, to a
greater extent than they do when they have to utilize their
sensors to maintain the formation. In this, we facilitate the use
of techniques which rely the use of obstacle-detection sensors,
and that are difficult to use in sensor-impoverished robots that
utilize their robots for formation maintenance.

For example, Chen and Li [8] propose a technique where
obstacles are recognized by the leader robot, which builds
a path for the formation to avoid the obstacles. Thus the
leader is responsible for detecting any obstacles. Our approach
complements this technique, by allowing other robots to also
detect obstacles.

Similarly, Ogren and Leonard [30] describe an approach
for allowing a group of robots moving in formation to avoid
known obstacles. They show how to calculate a path for each
robots that best maintains the formation while avoiding obsta-
cles. Our work is complementary: The multiplexing technique
we present is focused on detection of unknown obstacles; but
we do not provide a method for calculating obstacle-avoiding
paths.

Balch and Hybinette [6] use social potential fields which use
attraction and repulsion to position robots within their relative
positions in a defined formation. This technique is robust
to obstacles in the path of the robots, in the sense that the
geometric shape maintained by the formation is dynamically
stretched to account for obstacles. However, the techniques
assumes that robots know of the positions of obstacles. The
technique we present in this paper frees up the robots’ sensors
for this purpose.
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B. Operator Interaction and Monitoring of Formations

The literature on human-robot interaction is vast, but most
investigations address a single operator controlling a single
robot. Below, we focus on closely related works, which utilize
an ecological approach to monitoring the state of robots, as
well as methods for interacting (e.g., commanding) the robots.
We refer the reader to a comprehensive survey by Goodrich
and Schultz [17] for additional related investigations.

Traditionally, human-robot interaction addressed interaction
with a single robot. Nevertheless, important lessons can be
learned from single-robot displays.

Ricks et al. [31] and Nielsen et al. [29] discuss the eco-
logical approach to displaying information in single-robot
navigation tasks. This approach focuses on explicit display of
the key constraints of the task [39]. We argue that therelation
tool we present is indeed such a display for tightly-coordinated
tasks, in that it explicitly displays the state of coordination of
the robots.

Other ecological displays in single-robot interaction support
this approach. Johanson et al. [18] propose a discrete geodesic
dome called a Sensory EgoSphere (SES). The SES is a "two
dimensional data structure centered on the robot’s coordinate
frame" that provides the operator with a pointer to an objects
on a map and the robot’s sensor state. The relation tool
similarly centers the display on the lead robot in the formation,
and shows all other robots’ in relation to it.

Yanko et al. at [41] describe techniques for making human
operators aware of pertinent information regarding the robot
and its environment. They tested this technique in a rescue-
robot competition. Based on their study, they recommend
providing user interfaces that support multiple robots in a
single display, minimizing the use of multiple windows. The
ecological coordination-monitoring display fills these require-
ments by giving the operator a single view of the controlled
robots and their coordination state.

Possibly as a result, the bulk of existing work on controlling
multiple robots puts the operator in a centralized role in
attending to robots, and does not often distinguish between
different task types on the basis of the coordination involved.

Indeed, many existing approaches implicitly assume that
the sub-tasks assigned to different robots are independent
of each other (e.g., exploring different sub-areas). In such
settings, a centralized control scheme does not interfere with
task execution, and the monitoring of each robot can be done
individually, i.e., by reverting back to a single-operator/single-
robot paradigm.

Adams et al. [2] investigated the use of a three-dimensional
GUI that has selectable operation modes to switch control
between robots, teleoperate a robot, create a navigation plan
for the robot, or replay the last few minutes of the robot’s
task execution (for diagnosis of failures). Our work contrasts
sharply with this approach, as we focus on a display that
abstracts away the details of the robots’ local surroundings,
focusing instead on displaying their relative state, not their
absolute state with respect to their environment.

Keskinpala et al. at [22], [23] developed a system for
controlling a robot from a PDA (Personal Digital Assistant).
PDA platforms are small, light-weight and mobile interaction

devices, but their size and limited resources pose significant
challenges the user-interface design. The system Keskinpala
et al. present includes three screens: vision-only, sensor-only
and vision with sensory overlay. These methods stem from the
requirement to provide the minimally necessary data to the
operator needs, because of lack of space in the PDA’s display.
In our work we suffer from a similar problem, because we
monitor multiple robots, and duplicating the displays for each
quickly exhausts the available screen resources.

An exception to the single-operator/single-robot paradigm,
Skubic et al. [34] reports on an investigation of a sketch-based
interface for controlling one or more robots through a known
map, on which sketches are drawn grouping robots together
for group movement. Waypoints are then plotted and the
robots navigate to the waypoints. This display does not keep
track of coordinated movement. Instead, it shows where each
individual robot is located, with respect to a global coordinate
system, in contrast to our method, which displays information
about the relative position of robots. However, similarly to our
approach, all robots are commanded together.

Indeed, monitoring the status of robots and their tasks is
only one component of the interaction of a human operator
with a team of robots. An additional important component
is the ability of the operator to issue commands to the
robots, or interact with them when their require assistance.
Fields [12] discusses unplanned interactions between a human
and multiple robots in battlefield settings, where otherwise-
autonomous robots sendcall requeststo the human operator
to ask for assistance. These call requests are queued, and the
operator resolves the problems one by one.

Fong et al. [14] propose acollaborative controlsystem that
allows robots to individually initiate and engage in dialog
with the human operator, one robot at a time. This approach
requires significant autonomy by the robots, and assumes that
their monitoring need not be continuous. The call requests are
queued based on priority, and resolved serially.

Myers and Morely [28] discusses an architecture called
TIGER that uses a coordinating agent that mediates between
the operator and autonomous software agents. This agent
centralizes the information from all agents, and can present
it to the operator (or provide it to other agents). The agent
is also responsible for translating operators instructions to the
team. This approach thus assumes that call requests may be
resolved autonomously by the robots, given appropriate high-
level commands to the team. In contrast to this approach, we
believe (as others do [12], [14]) that often, the operator must
directly interact with a failing robot or its teammates to resolve
a call request. We thus allow the operator to directly interact
with any single robot, while others assist.

Rybski et al. [32] describes an architecture for allowing
one operator to control multiple (miniature) robots. The main
idea is to increase robot autonomy and allow the operator
to interrupt the robot behavior with high-level commands.
In addition, they supply an interface that supports mission
design, and mission execution, where the operator can view
mission status and teleoperate the robots. Our interface is
fundamentally different from this interface in that we show
a state view of all the robots, rather than only an individual
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robot’s.
ACTRESS (Actor-based Robots and Equipment Synthesis

System) [4], [35], [42] is an architecture including an interface
for monitoring and controlling multiple robots. The operator
may issue commands that affect groups or individual robots;
information is presented to the operator based on both explicit
requests (from the operator to individual robots), as well as
based on gathering of information exchanged by the robots.
However, ACTRESS does not focus on visual presentation of
the coordination, in contrast to our work. Moreover, ACTRESS
does not utilize collaboration between the operator and robots
in resolving call requests. The operator may issue commands
to robots that assist in such resolution, but the robots are
otherwise idle.

In contrast to the above centralized approaches, we believe
that in tight-coordination settings, resolving call-requests is in
the interest of all robots currently coordinating with the robot
requiring assistance—and thus they should actively collaborate
with the operator to resolve the call request. Other work
has also examined distributed paradigms for human/robot
interaction.

Tews et al. [37] describe a scalable client/server architecture
that allows multiple robots and humans to queue call requests
(service requests) for one another. Scerri et al. [33] describe
an architecture facilitating teamwork of humans, agents and
robots, by providing each member of the team with a proxy
and have the proxies act together as a team. Our work differs
from both of these investigations in that we do not attempt to
put humans and robots on equal ground. Instead, the human
initiates an controls the call-request resolution. However, once
initiated, the task is carried out by all members of the robotic
team and the operator.

Ali [3] compares different classes of human-robot team in-
teraction (Direct manual control, supervisor control, individual
andgroup control). The parameters measured are effectiveness
(in term of task completion and speed of completion), safety
(both for the robots and their environment), and ease of use.
While we similarly evaluate different interaction methods,we
focus only on the case of one operator and multiple robots.
However, within those, we distinguish several different types.
Moreover, we provide new distributed resolution types.

III. A S OCIALLY-ATTENTIVE ECOLOGICAL DISPLAY

We first introduce the ecological display approach for
human operator monitoring of formations, which focuses on
explicitly displaying the state of coordination the team (Sec-
tion III-A). We then describe the display in detail (Section
III-B). We empirically evaluated this approach in extensive
systematic experiments with up to 25 human operators. The
results show (Section III-C) that the use of the ecological
display (i) reduces the number of failures and task completion
time in these tasks; (ii) reduces the number of failures per
second; and (iii) reduces the variance in controlling robots,
thus leading to more consistent performance across operators.
To our best knowledge, this is one of the largest studies done
with human operators controlling multiple robots.

A. Monitoring the State of Coordination

A key component in real-world applications of multi-
robot formation maintenance tasks is allowing the operator
to monitor the progress of the team, and the status of the
robots. Previous approaches to monitoring multiple robotsuse
individual robot displays that are independent of each other,
as discussed above. For instance, the operator may monitor
all robots in parallel, via a split display showing each robot’s
individual state; or the operator may switch between such
displays [2], [14], [41].

However, independent individual displays lead to difficulties
in monitoring coordinated tasks, requiring tight, continuous
coordination between the robots; i.e., where robots are highly
inter-dependent. Here, the operator must monitor the stateof
coordination—the relative state of robots—in addition to the
state of each robot. Such monitoring is calledsocially-attentive
because it focuses on inter-agent relations [21].

Formation-maintenance is an example of such a task, re-
quiring tight continuous coordination between robots. Such a
task can be executed by a single operator, by guiding or tele-
operating the lead robot, and allowing the others to maintain
the formation autonomously. To maintain the formation, the
operator must monitor the formation itself—slowing down or
speeding up the lead as necessary—in addition to monitoring
the movement of the team towards its goal. Such monitoring
can be done, in principle, by showing the camera view of each
robot. However, it might be much easier to do if the operator
has a bird’s eye view of the formation, showing therelative
positions of robots. Unfortunately, a bird’s eye view is not
always possible, e.g., for lack of a global-view camera.

To address this challenge, we develop a socially-attentive
ecological displaycomponent—calledrelation tool—that ex-
plicitly displays the state of coordination in a team, com-
plementing individual display. Ecological interface design
emphasizes visual cues that focus on the key constraints in
the user’s task [39]. For coordinated tasks, these include the
coordination constraints in the team [21]. The relation tool
allows the operator to visualize the robots’ state with respect
to each other, and thus visually identify coordination failures.
Since the relative state of robots may not be known directly,
the relation tool fuses sensor readings from multiple robots,
and reconstructs from these the state of coordination between
them. In doing this, it must overcome the uncertainty and noise
inherent in robot sensor data.

The graphicalsocially-attentivedisplay complements exist-
ing displays. It allows the operator to visualize the robots’
coordination—their state with respect to each other—and thus
visually identify coordination failures before they become
catastrophic. By showing the operator an explicit visualization
of the coordination state of the team, her cognitive load would
be reduced, and her performance would increase.

B. The Relation Tool

Ecological interface design emphasizes explicit visualiza-
tion of key constraints in the user’s task [39]. Socially-attentive
monitoring emphasizes that in coordinated tasks, these include
the relative state of robots [21]. To show these constraints,
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we developed therelation tool, a 2D display that shows
the relative state of robots by drawing a geometric shape
corresponding to their state. Colored dots denote different
robots. The positions of the dots denote their states, and thus
the shape they make up—their relative positioning—denotes
their relative states. In principle, every application requires its
own method of projecting robot state onto a 2D plane, and a
target shape that defines normative coordination.

The key is that the operator should be able to see, at
a glance, whether the shape being maintained corresponds
to correct coordinated execution. When the shape deviates
from ideal, the operator can easily identify coordination faults
within the monitored team, with little or no need for infer-
ring this information from the other displays. This eases the
cognitive load on the operator in coordinated tasks.

We investigate the use of the relation tool concretely in
two popular formation maintenance tasks (triangle and line).
We created human-controlled versions of these tasks, and
implemented them using the Tekkotsu software [36] for Sony
AIBO robots. Each robot has an on-board video camera and
a infra-red distance sensor pointing at the direction of the
camera. They transmit their video and sensor readings to the
operator’s station for monitoring. The operator uses the mouse
as a joystick, moving the controlled robot in the direction and
speed chosen.

We begin by examining the line formation task, which we
refer to here ascooperative pushing, as it has two AIBO
robots jointly push a light-weight bar across the floor (Fig-
ure 1). One robot is teleoperated, while the other pushes
the bar while maintaining a straight line with the human-
controlled robot. The bar is color-marked, such that a robot
can identify its position with respect to the bar. If the mark
moves too much to the side, this would indicate a drift, i.e.,
the robot is either lagging behind or is pushing too quickly
ahead. Here, we follow traditional sensor-based formation-
maintenance techniques; the robots do not communicate with
each other. Section IV examines the use of communications
to maintain formations.

Fig. 1. Cooperative pushing (line formation) by AIBO robots.

The coordination between the robots involves a single
dimension—the robots are to maintain equal velocities. One

possible visualization of this relationship consists of a hori-
zontal line that connects two dots, representing the robot.The
horizontal position of the dots remains fixed, while the Y axis
denotes the angle of the color mark within their view.

Figures 2 and 3 show the interfaces when executing this
task. Figure 2 shows the split-camera view from the individual
robots, as presented to the operator, in a successful case
(Figure 2-a), and in a failure case, where the box drifts to
one side (Figure 2-b). Figure 3 shows the respective relation
tool displays in both cases: The successful push (Figure 3-
a) and the failing push (Figure 3-b). As can be seen, it can
be difficult to differentiate the split-view displays in cases of
success and failure (Fig. 2). However, by showing the relative
velocities of the two robots (Figure 3) the failing push is easily
detected.

(a) Successful push.

(b) Failing push (robots push right).

Fig. 2. Cooperative pushing (line formation): Split camera view.

(a) Successful push. (b) Failing push (robots push
right).

Fig. 3. Cooperative pushing (line formation): Relation tooldisplay.

Of course, providing a visualization of the relative states
of robots is trivially done when a global world-view camera
exists, or perfect global localization data is available. However,
this is not often the case in real-world applications.

Thus a key challenge in developing the relation tool lies in
integrating the information needed for the visualization,from
the robots themselves. The approach we take analyzes the
robots’ own sensor readings (including camera positioning,
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infra-red range sensor readings, detected objects) to recon-
struct the position of the robot with respect to others, from
its own perspective. As a side-effect, we expose the relation
tool display to the uncertainty and noise inherent in robot
perception. This must be countered by noise-filtering processes
within the display. In our case, a moving average filter was
used on the distance and angle data to create a stable display.

The relation tool may be used to draw the attention of
the operator to specific robots that are responsible for any
mis-coordination. We use the formation task to demonstrate.
Here, the objective is to navigate a triangular formation
(three robots), through a short obstacle course. To allow a
human operator to control the formation, the lead (front) robot
teleoperated by the operator, while the two follower robots
maintain fixed angles and distances to this robot using their
sensors. Again, the robots do not utilize any communications
for maintaining the formation.

Figures 5 and 4 show this task in action. Figure 4 shows an
example of perfect formation, while Figure 5 shows a failed
formation situation. In both figures, sub-figure (a) shows the
actual position of the robots on the ground; (b) shows the
split-camera view from each of the individual robots; and (c)
shows a screen snapshot of the relation tool.

(a) Ground truth.

(b) Split-camera view. (c) Relation tool.

Fig. 4. Successful Triangle Formation.

The figures contrast the information presented to the opera-
tor with the relation tool and using existing approaches. Unlike
the cooperative pushing task, the split-camera view (sub-figure
(b) in Figures 5 and 4) does indeed provide indication of
whether the formation is maintained. However, it is difficult to
see from the split camera view to what degree the formation
is maintained (i.e., the magnitude of the failure), and which

robots are responsible for it (i.e., the location of the failure).
In contrast, the relation tool makes it easy, at a glance, to

see not only whether the formation is maintained, but also
the magnitude and location of any failures. We chose polar
coordinates to describe the formation. The X axis denotes
the angle to the leader, while the Y axis denotes the distance
to the leader. The position of the leader is always fixed. We
connected the points (that represent the robots) with linesto
create a shape easily recognizable by the operator.

The choice of the polar coordinates separates distance and
angle for the operator. By glancing at the shape, one can fairly
quickly determine whether the formation is breaking because
a robot is lagging behind (distance too great), or its angle with
respect to the leader is too sharp (e.g., because of a sharp turn).

(a) Ground truth.

(b) Split-camera view. (c) Relation tool view.

Fig. 5. Failing Triangle Formation.

Indeed, to further assist the operator in localizing coordi-
nation problems, the display uses additional mechanisms to
draw the attention of the operator where its most needed.
One such fault-feedback mechanism uses the size of the dots,
representing robot positions, to draw the operator’s attention to
failing robots. We use three sizes: regular, medium, and large.
Regular size is used when the associated robot lies fulfills
the constraints of the formation. Medium size is used when
the robot begins to report intermittent failures in following the
lead, as these are indicative of an impending formation failure.
The large size is used when the formation is essentially broken,
e.g., when the robot in question completely lost track of the
lead robot, and is unable to proceed.

Another fault-feedback mechanism is the dashed line drawn
across the bottom of the display. This line signifies the
maximum distance sensed by the robots’ sensors, and thus the
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position in which they are likely to lose track of the leader.
The operator may use this line to estimate how far it can let
the robots stray away from the leader, while not getting into
catastrophic failures.

C. Experimental Evaluation of the Relation Tool

We evaluate the effectiveness of the relation tool in the
triangle formation maintenance and the cooperative pushing
(line formation) tasks. Our goal is to explore the generality of
the method. In the triangle formation, the operator leads the
robots in a triangular formation towards a target destination,
while avoiding obstacles. If the operator causes the lead robot
to turn too sharply, or move too quickly, the formation may
break, as the SBC controller in the follower robots will lose
sight of the leader. However, the operator seeks to minimize
the time it takes to reach the destination. In the line formation
(box pushing), the operator controls the velocity of one of the
robots, while the other is pushing autonomously. The operator
must be careful not to push too quickly for the other robot,
nor to lag behind.

We believe that the relation tool should be used to com-
plement, rather than replace, existing display (which focus
on individual robot state). We thus conducted experiments
contrasting different combinations (see below) of the socially-
attentive display with individual robot display. We ran multiple
experiments with novice operators, age 20–30.

19 operators were tested in the pushing task (18 males/one
female, 18 students—including the female—of which 15 are in
computer science). 25 operators were tested in the formation
task (23 male/two female, 22 students–including the two
females—of which 19 are in computer science). The students
in both groups were either graduate students or undergraduates
in their final year. None had previous experience controlling
multiple robots of any kind.

Each operator tried all combinations available in the task
she operated (a within-subjects design). However, to avoid
ordering effects, the order in which each operator tried each
combination was randomized (in both sets of experiments).
In no setting were the operators able to see the robots while
operating them. In all cases, operators were given an approx-
imate 25-minute training session in operating a single and
multiple robots (including the formation and pushing tasks),
until they reported they felt comfortable controlling the robots.
Overall, the results below represent almost 100 hours of human
operation.

1) Cooperative Pushing (Line Formation) Experiments:
The first experiment examined the use of the relation tool in
the cooperative pushing task. We contrasted three interfaces:
a split-camera view only (representing existing approaches), a
combination split-camera and relation tool, and the relation-
tool alone. We remind the reader that all 19 human operators
were tested on all three interfaces, randomizing the order of
their introduction to the different interfaces to prevent biasing
the results due to human learning. Their performance was
measured as the average absolute angle deviation from the
imaginary horizontal line connecting the robots when they
maintain ideal relative velocity. This angle was sampled at
20Hz during task execution.

Figure 6 shows the results of this experiment—the average
absolute angle error—averaged across all operators. Clearly,
both combinations that use the relation tool are significantly
superior to the interface relying on camera alone. Moreover,
the surprising result here is that the relation tool by itself is
sufficient (in fact, even slightly better than its combination
with the split view). This is due to this task being essentially
a pure-coordination task: The operator does not need to worry
about where the pushed object is going, as long as the relative
velocity of the robots is 0 (i.e., their velocities are equal).
Thus even a socially-attentive display by itself is sufficient. On
the other hand, the non-social split-camera view (by itself), is
difficult to use for coordination. A one-tailed t-test (assuming
unequal variance) shows that the difference between using the
tool by itself, and using the split-camera view, is statistically
significant (we use a 0.05 significance level). The probability
of the null hypothesis isp < 0.014 when looking at the
difference in the number of failures.
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Fig. 6. Line formation: Total number of failures.

We also examine the angle error results with versus task
completion time. Figure 7 shows these results as average
absolute angle error versus time to complete a 180cm walk.
The Y axis is the average angle error and the X axis is the
time to complete the task. The fastest time for completing the
180cm walk was by the method that does not use our socially-
attentive display (thesplit view). However, we can see that this
method also had the maximum average angle error. We believe
that this is the result of the operator, having no idea of the
relative state of the two robots, just pushed the teleoperated
robot as quickly as possible, finishing the course as quickly
as possible (but poorly).

These results should only be interpreted qualitatively. The
exact distance traveled by robots in each trial is technically
difficult to measure precisely (as the robots’ own odometry is
inherently inaccurate). We thus allowed the operator to always
proceed for the estimated distance (180cm), and measured the
time it took. Because of the distance is estimated in this trial,
the timing may not be accurate.

Finally, we examine the the standard deviation of the
distribution of number of failures in these experiments. Lower
standard deviation indicates more consistent performanceof
the different subjects, i.e., less differences between theresults
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Fig. 7. Line formation: Failures vs. task completion time.

Interface Std. Deviation
Split-view 7.11
Split+Tool 0.93
Tool alone 0.79

TABLE I
L INE FORMATION: STANDARD DEVIATION OF THE NUMBER OF FAILURES.

of different operators. This, in turn, typically indicatesmore
intuitive and more generally-applicable interfaces. The stan-
dard deviation results appear in Table I. They indicate that
interfaces using the relation tool unequivocally lead to more
consistent performance among operators.

2) Coordinated Movement Evaluation:In the triangle for-
mation task, we compare three interfaces. The first presented
the operator with the split-view video streams from all robots
(e.g., Figure 4-c). The second combined the this split-view
with the socially-attentive display previously described. The
final interface consisted of a single camera (the lead robot’s)
and the socially-attentive display. Each of the interfaceswas
tried with three different obstacle courses, varying in difficulty
(a total of 9 different configurations). Thesimple course
consisted of an open space with no obstacles at all (Figure
8-a). Themediumcourse consisted of a single obstacle that
had to be by-passed (Figure 8-b). In thedifficult course, the
operator was to lead the robots between the two obstacles
(Figure 8-c). To verify the relative difficulty of the path, we
sampled 7 of the experiments for the number of times a robot
hit an obstacle: The simple course had no such hits (as there
are no obstacles). The medium course had only a single hit in
all experiments. The difficult course had 2–3 hits per method.

Again, all 25 operators tried all nine different settings, in
randomized order (to prevent learning effects). For each ofthe
trials, we recorded the number of non-catastrophic formation
failures, and time to complete the task. Non-catastrophic
formation failures were measured as the number of times a
follower robot has temporarily lost track of the lead. Theseare
indicative of the quality of the operator’s control. Too many of
them result in permanent tracking failures, which lead to total
breakdown of the formation. When such failures occurred, the
operator would have to teleoperate the straying robot untilthe
formation was re-established.

Figures 9,10,11 show the results of these experiments in
terms of the average number of non-catastrophic failures
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Fig. 8. Triangle formation obstacle courses.

per operator, versus the average task completion time. The
horizontal axis shows the time (in milliseconds). The range
of the horizontal axis in these figures is fixed at 12 seconds,
though the offset is different, as the more difficult courses
took longer. The vertical axis shows the average number of
non-catastrophic failures that took place during each trial.

The results show that in all course difficulty settings—
simple, medium and difficult—the use of the relation tool is
preferable to using only individual displays. This lends support
to the hypothesis that socially-attentive ecological displays
(explicitly displaying coordination state) can significantly im-
prove monitoring of robots in coordinated tasks.

In particular, both course completion time and the number
of failures during execution were generally reduced using the
socially-attentive display. In the simple- and medium-difficulty
courses, the best monitoring approach was single camera and
the socially-attentive display. It was significantly better than
the split camera interface, at a 0.05 significance level. In the
easy course, a one-tailed t-test (assuming unequal variances—
see below) shows a significant difference these method, both
in the number of failures (the probability of the null hypothesis
being p < 0.011), and in the time (p < 0.015). Similarly, in
the medium course, there are significant differences between
these two methods, both in the number of failures (p < 0.04)
and in task completion time (p < 0.02).

However, in the difficult course the best monitoring ap-
proach used both the split-view and the relation tool, in spite
of the additional information displayed to the operators. The
difference between this approach and the split view interface
was not significant in time (p = 0.48), but was significantly
different in the number of failures (p < 0.014). The difference
in the number of failures between the split view interface and
the interface using single camera and relation tool was only
moderate (p ≈ 0.15). We believe that this is due to the operator
using the split-camera view to look at obstacles that have
been bypassed by the lead (see [29], [31] for an ecological
interface approach to this problem). Such obstacles were not
much of a problem in the other, easier, courses. We leave
further investigation of this to future work.

While the results show significant improvements in task
completion time and number of failures, a question may be
raised as to whether a socially-attentive ecological display
qualitatively changes the way the operator interacts with the
team. For instance, the experiment results above could alsobe
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Fig. 10. Triangle formation failures inmediumcourse.

indicative of the team going slower or faster, but maintaining
the same number of failures per second—thus indicating that
the drop in failures is due to the team moving faster, rather
than to a qualitative change in operator control.

Additional results show that rather, the use of the relation
tool leads to qualitative differences in the the way the operator
controls the robot team. Figure 12 shows the average number
of failures per second, in the different courses. Clearly, the
easy course is indeed easier than the medium-difficulty course,
which is easier than the difficult course. However, what we see
in the results is that the use of the socially-attentive display
leads to a significant reduction not just in the time and total
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Fig. 11. Triangle formation failures indifficult course.

number of failures (as evident from the previous figures), but
also reduces thefailure rate.
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Fig. 12. Triangle formation failures per millisecond.

Additional evidence for this qualitative improvement in
operator control is found when we examine the standard
deviation values for the number of failures and task completion
times of different operators. Table II displays the standard
deviation of the number of failures, for the different courses.
Table III displays the standard deviation values of the task
completion time, for the different courses.

These results show that operators are more consistent in
their performance when using the relation-tool, than when
using the split view by itself. The standard deviation values
for the methods using the relation tool are generally much
smaller than for the split camera display. This indicates more
consistent values, i.e., less variance between operators in terms
of ability to control the robots. In the difficult path, the
single camera view with the relation tool has a large standard
deviation (though smaller than the one for the split camera
view by itself, when looking at the number of failures), but the
relation tool with the split camera view has smaller standard
deviation.

Course Split View Split View and Single View and
Relation Tool Relation Tool

Easy 319.45 32.65 6.59
Medium 141.85 51.30 50.56
Difficult 144.97 66.93 138.65

TABLE II
TRIANGLE FORMATION: STANDARD DEVIATION IN NUMBER OF FAILURES.

Course Split View Split View and Single View and
Relation Tool Relation Tool
(tool+split) (one view)

Easy 25.53 12.01 9.17
Medium 22.37 14.68 10.68
Difficult 15.88 13.58 19.22

TABLE III
TRIANGLE FORMATION: STANDARD DEVIATION IN TASK COMPLETION

TIMES (MEASURED IN SECONDS).
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D. Monitoring Formations: Summary

This section took a step towards allowing a single human
operator to effectively monitor a team of robots that are tightly
coordinated. The experiments we have conducted show that
existing techniques do not adequately address this challenge.
Their inability to explicitly display the coordination state of
the team cognitively burdens the operator and reduces from
her effectiveness at controlling the robots.

The socially-attentiverelation tool display is an ecological
interface display addressing this challenge. It has three prin-
cipal advantages over previous work:

• First, it significantly reduces the amount of inference
needed by the operator to infer the relative state of
robots—and thus the state of coordination between them.

• Second, its dimensions can be used to directly provide
the operator with information about failures, e.g., as in
the formation case.

• Third, it can easily complement other types of displays
useful for the task, such those that show the heading or
distance left to the destination, power, etc.

The experiments on real robots show that the relation tool
significantly reduces the total number of failures, and task
completion time in two tight-coordination tasks. Furthermore,
we have shown that the use of the relation tool leads to
qualitative change in the capabilities of the operator: Not
only do failures and completion time decrease, but the failure
rate (failures per second) improves significantly as well. In
addition, methods utilizing the relation tool lead to more
consistent operator performance.

IV. M AINTAINING ROBUST FORMATIONS

The operator of a formation is inherently limited by the
capabilities of the robots to sense their surroundings, and
provide information about potential failures. A challengearises
when robots do not have sufficient sensors to both track their
peers and their environment at the same time. This could be,
for example, if the limited sensors are kept busy providing
input to the closed-loop controller that is used to maintainthe
formation. This section addresses this challenge.

We first introduce differentiate sensor-based closed-loop
formation maintenance from communication-based open-loop
formation maintenance (Section IV-A). We then (Section IV-B)
discuss the two key methods used to combine open- and
closed-loop maintenance (multiplexingandfusingcontrollers).
Finally, we report on experiments evaluating the different
methods (Section IV-C).

A. Open-Loop and Closed-Loop Formation Maintenance

In the sensor-basedformation-maintenance algorithm, each
follower but the leader is to maintain a specific distance
and angle to another robot (called theanchor). This is
called Separation-Bearing formation-maintenance control, and
is proven to be stable [13]. A problem arises when the robot’s
sensors are limited and the robot also needs to detect obstacles:
If the follower does not scan for obstacles, it may fail to
discover them. And if it scans for obstacles, it may lose sight
of its anchor, and thus lose its place in the formation.

For instance, on the Sony AIBO ERS robots, the sensors
used for formation maintenance are on a single pan-tilt com-
ponent (the head). The robot cannot follow a leader (at some
fixed angle) and simultaneously scan for obstacles.

One obvious alternative is to utilize open-loop control
in formation maintenance, to free up robots’ sensors for
other uses such as obstacle avoidance. While operating in
communication-basedopen-loop control, the leader of the for-
mation broadcasts its movement vector (velocity and heading
changes). Based on this communication, and their predefined
ideal positions in the formation, all other robots calculate
their own relative movements, without relying on sensors.
However, this relies on odometry reading in both the leader
and the follower. In principle, translating the movements of
the leader into each follower’s actions, via communications, is
sufficient. In practice, accumulating odometry errors prohibit
this technique from being used exclusively.

This is indeed an open-loop controller for the formation:
Messages cannot in practice be sent continuously, and thus a
projection is made as to the anticipated position of the leader
(and by implication, the follower), usingaffine transformations
[43]. Once the anticipated position is known, the follower can
set it as a goal position, and use simple motion planning to
generate a movement vector of its own. This movement vector
is maintained until a new broadcast from the leader initiates
this calculation once again.

The translation of target position to movement vector has
two factors. The first is handled by the affine transformation.
The second requires additional corrective actions by the fol-
lower robots. We describe these factors below.

The first factor is the effect of the leader’s heading on
the path chosen by its follower. Figure 13-b,c show cases
where the position of the leader is identical, but its heading is
different. As a result, the target location for the follower, and
the path to it (both indicated by the arrow in the figures) are
radically different. This also implies that the affine transfor-
mations are sensitive to errors in their inputs, as even small
deviations in the heading may result in large difference in the
computed movement vectors.

The second factor in correctly computing the movement
vector is tied to the difference in the body orientations of the
leader and follower robots, after the latter reach their target
positions. Ideally, the orientation of the leader and followers
should be equal at that point. However, depending on the path
taken by the follower, the orientation of its body might be
different from that of the leader (see Figure 14).

To maintain the orientation error in the followers as small as
possible, we recommend explicitly tracking the differencein
orientation between the leader and the follower, and correcting
it in each time step. However, this approach can result in jerky
movement on the part of the robots, when they attempt to
correct a large error within a single time-step. To address this,
the controller should limit itself to corrections that are only of
a limited range, and instead apply them over multiple time-
steps, if necessary.

The advantage of the communication-based controller is
that it can free up some of the robot’s sensors. Instead, the
follower robot maintains the formation only by communica-
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(a) Ideal positions of the
robots.

(b) Leader changed heading. (c) Leader did not change
heading.

Fig. 13. A triangle formation of three Sony AIBO robots. Figure (a) shows
the ideal poses of the robots. Figures (b) and (c) illustratethe sensitivity to
heading; the leader is in the samex, y location in both figures, but its heading
is different, implying a radically different target position for the right follower
robot.

(a) Follower orientation main-
tained at end of path.

(b) Follower orientation not
maintained at end of path.

Fig. 14. In (a) and (b) thex, y location of the follower is the same, as the
target position. However, the path taken by the right follower to the target
greatly affects the final orientation of its body with respect to that of the
leader.

tion. The disadvantage of this technique is that it requires
perfect odometry, a requirement that cannot be fulfilled in
realistic settings. If the anticipated position of the leader and
the follower are computed based on imperfect, noisy odometry,
the errors quickly accumulate. Moreover, as we have seen,
slight differences in values of the heading can imply radically
different movement vectors.

B. Combining Controllers

To allow limited-sensor robots to maintain formation while
still recognizing obstacles, we propose to combine the two
controllers described above, in settings where the robots’
sensors are limited, but communication between robots is
possible. In such settings we propose to combine two forma-
tion controllers types: A closed-loop formation-maintenance
algorithm using sensors, and an open-loop algorithm using
internal navigation (odometry) and communications.

We compare between two combination approaches:mul-
tiplexing the controllers (using one at a time), andfusing
them (using both in parallel). The idea in combining the

controllers is to offset their disadvantages, and gain fromtheir
complementary advantages.

Themultiplexingtechnique works as follows. Each follower
robot relies on the sensor-based algorithm until it arrives
to its predefining position in the formation. We therefore
explore ways tomultiplex and/or fuseclosed-loop and open-
loop formation control. Multiplexing is done in time, giving
the alternative methods different periods of time in which they
control each robot. Switching between the different methods
utilized the following principle: Each robot relies on visual
tracking (closed-loop control) until it is within tolerance levels
of its position in the formation. When this occurs, the robot
switches tocommunication-basedopen-loop control, and uses
its sensors to scan for obstacles, while communicating withthe
leader. To verify its position and inhibit accumulating errors,
the robot switches back to visual tracking after a fixed period
of time. We also explore combining controllers by fusion, by
merging the output commands of each open-loop and close-
loop controllers.on (within some tolerance radius, to allow for
uncertainty in sensing). When this occurs, the robot switches
to the communication-based formation-maintenance behavior.
Now, the robot’s sensors are free and the robot can search for
obstacles. The follower robot moves in this mode for a fixed
period of time (which we vary in the experiments, see Section
IV-C). It then switches back to the sensor-based algorithm,
and the cycle repeats.

In the fusing technique, the robots multiplex between the
open- and closed- loop controllers (otherwise, they cannot
hope to detect obstacles). However, during the time when both
sensor-based and communication-based controllers are active,
the output commands of the controllers are fused: The average
of the two controllers is taken as the output.

There are competing goals in using the open-loop controller,
with both combination techniques. On one hand, the more the
robots rely on open-loop control, the more they can scan for
obstacles, and provide improved performance. On the other
hand, the longer they remain in open-loop control, the more
errors in position are accumulated (in relative positions of the
robots, with respect to their teammates), and thus the formation
degrades.

Thus the timeout period, which limits the amount of time
robots remain under communication-based open-loop control
must be determined. We take an empirical approach to de-
termining this value. We note that it might be possible to
set theoretical bounds on this value, depending on expected
obstacle density. We leave this direction of research to future
work.

C. Combined-Control Experiments

To evaluate the contribution of these approaches, we com-
pare themultiplexing and fusing methods with their closed-
loop and open-loop components, by themselves. The ex-
periments are carried out using physical (Sony AIBO) and
simulated robots.

We carried out two separate repeated-trials experiments. The
evaluation has two facets. First, in Section IV-C1, we evaluate
the impact of the combination techniques on the ability of
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sensor-limited AIBO robots to detect obstacles, the motivation
for the techniques. Second, in Section IV-C2, we evaluate
the hypothesized costs of combination, i.e., the hypothesized
decrease in precision.

1) Detecting Obstacles:This section report on experiments
carried out with physical Sony AIBO robots moving in forma-
tion. The goal of the experiment is to evaluate to what degree
does controller combinations (e.g., multiplexing) allow robots
to detect obstacles that may be otherwise be undetectable.

Here, three Sony AIBO ERS-7 robots were arranged in a
triangular formation (Fig. 13-a). While operating in sensor-
based separation-bearing control mode, the two followers in
the rear monitor the leader using their head-mounted camera
and infra-red range sensors. The robots utilize the color patch
on the rear of the leader for identification, and maintain
the distance and angle to it [20]. Otherwise (when using
communications) they scan for obstacles and maintain the
formation by communication.

The leader actively scans for obstacles. On detection, it
finds a path around them that considers its own physical body,
rather than the entire team (as proposed in [8]). Such a path
cannot be considered safe for the followers, and indeed we
intentionally place obstacles such that such a path would put
them in the way of the followers. This is done so as to examine
the followers’ ability to detect obstacles.

We use three different obstacle courses for this experiment
(see Fig. 15). In theRight obstacle course the robots walk in
a straight line; the right follower robot needs to recognizethe
obstacle blocking its path. TheLeft obstacle course poses the
same challenge to the left follower. Finally, in theDiagonal
course the right follower needs to recognize the right obstacle
and the left follower needs to recognize the left obstacle (the
leader will try to pass between the obstacles).

In each of the obstacle courses, the formation was run
five times, in both the visual sensing control mode, and the
multiplexingmode, for a total of 30 runs (10 in each course).
We did not experiment with the open-loop control in these
experiments; as it essentially frees up all the robots sensors
to focus only on the task of detecting obstacles, it serves
as a theoretical upper limit. We therefore assumed that with
pure communication-based control, all obstacles are detected.
We note also that there are no separate results for the fusion
method, because it is identical to the multiplexing method in
terms of time available for detecting obstacles (since thenonly
one controller is generating output). The distinction between
them is explored in Section IV-C2.

Fig. 16 shows the result of the comparison between the
multiplexing technique and the sensor-based formation main-
tenance. TheX axis shows the obstacle course. TheY axis
shows the fraction of the undetected obstacles over all trials,
thus a lower value indicates improved performance. We can
see that the multiplexing technique performs better than the
sensor-based algorithm used earlier, though statistical testing
shows that the difference is only moderately significant (one-
tailed t-test,p = 0.07).

A one-tailed t-test significance test of the experiments
with the robots (above) showed that multiplexing was only
moderately significantly better (p = 0.07). We believe this is
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Fig. 16. Fraction of undetected obstacles over multiple runsof each
technique, in different obstacle courses.

due to the relatively small number of experiments. We thus ran
additional experiments withsimulatedAIBO robots, using the
player/stage environment [16], where many more trials could
be run. Figure 17 describes the obstacle course used in the
simulated environment. Each of the techniques (multiplexing,
sensor-based) was run 25 times.
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Fig. 17. Obstacle course in the simulation experiments. The leader robot
moves in straight line, but its followers must detect the obstacles on its left
and right.

Figure 18 shows the fraction of unrecognized obstacles (Y

axis) in this experiment, for each of the techniques, over 25
runs. TheY axis shows the fraction. We again see that the
multiplexing approach significantly decreases the fraction of
undetected obstacles. The results are significant at a levelof
p = 0.00000000164 (one-tailed t-test).
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Fig. 18. Fraction of undetected obstacles over 25 runs for each technique.

Thus both in simulation and in experiments in the real
world, we see that the multiplexing approach decreases the
number of undetected obstacles, though it does not perform
as the theoretical best (i.e., with perfect open-loop control
and perfect knowledge of obstacles). This happens because
the multiplexing technique, while giving more opportunity
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Fig. 15. Three obstacle courses used in experiments with the AIBO robots.

to the followers to detect obstacles, occasionally switches
back to sensor-based closed-loop control, for correcting the
accumulating odometry errors. In such cases, the follower
robots cannot use its sensors to detect obstacles.

2) Formation Precision: An hypothesis underlying the
combination approach is that the gains it offers (as the previous
section demonstrates) will come at a price of decreased
precision. The reliance on open-loop control, even if only
for limited periods of time, should in principle cause some
degradation in the ability of robots to position themselvesin
the formation. It might therefore be hypothesized that selecting
fusion as the combination method may lead to improved
results.

This section examines this hypothesis. We compare the
quality of the formation maintenance with different formation
techniques, under varying conditions of noise in movement.
The quality of the formation maintenance is measured as
the average absolute deviation of the follower robots from
their ideal location in the formation. Our expectation is that
combination would fare worse than its constituent techniques,
especially with increased noise.

We compare the multiplexing and fusing combination tech-
niques, presented earlier, to the their two constituent tech-
niques: Open-loop formation control (communication-based
maintenance), and closed-loop formation control (visual for-
mation maintenance). For the combination technique, we use
a timeout of 8 seconds for the period in which the robot scans
for obstacles, relying only on open-loop control. The timeout
was determined empirically, but experimenting with different
timeout values.

Precise positioning in formations is relatively easy when the
formation moves in a straight line. It becomes more difficultto
achieve in realistic settings, when formation (and robots)have
to turn. We thus examine the precision resulting from each
formation control technique, when the angle of the leader’s
turn is varied. In the following experiments, the leader robot
moves in a straight line for20 seconds and then turns in place
and proceeds. We control the leader’s turn angle (0, 15, 30, 90

degrees), and measure the resulting position errors in the
followers once the turn is complete.

Given that we wanted to control the amount of uncertainty
in the movements of the robots, we chose to run these

experiments in simulation. We used a Gaussian to model the
noise in the movements of the robots, at several qualitative
levels of 0%, 20% and 40%. The percentages signify the the
uncertainty in terms of standard deviation, i.e., a level of20%

Gaussian noise means that the standard deviation of target
valueX will be 20% of X.

Figures 19, 20 and 21 show the results of these experiments,
for noise levels0%, 20% and 40%, respectively. In these
figures, theX axis shows the sharpness of the leader’s turn in
degrees. TheY axis represents the average absolute deviation
(error) of the follower robots from their ideal position in the
formation. The line markedvisual shows the results of the
closed-loop sensor-based visual maintenance. The line marked
communicationcorresponds to the open-loop communication-
based maintenance. The lines markedmultiplexingand fusing
correspond to the multiplexing and fusing (the combination
approaches). Each one of the points is an average over 40
data points (20 runs, two follower robots).

200

300

400

500

600

700

800

0 10 20 30 40 50 60 70 80 90

turn angle(degree)

d
is

ta
n

ce
(m

m
)

visual multiplexing communication fusion

Fig. 19. Deviation from the ideal position in formation vs. the turn angle,
with no uncertainty in movement/odometry.
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Fig. 20. Deviation from the ideal position in formation vs. the turn angle,
with uncertainty levels set at 20%.
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Fig. 21. Deviation from the ideal position in formation vs. the turn angle,
with uncertainty levels set at 40%.

The results in Figure 19 show that the worst results are
achieved by the visual formation maintenance (closed-loop
control, by itself), and by the fusing technique. As the sharp-
ness of the turn increases, use of these techniques lead to
increasing errors in the positioning of the follower robots. In
contrast, the multiplexing and communication-based mainte-
nance are quite similar in most cases and they have the best
results. This happens since in a world where there are fewer
odometry errors, a technique that is based on mathematical
calculations can calculate the exact location where the follower
robot should be and with accurate odometry (i.e. lack of
noises) can lead the follower robot to its ideal position in
the formation.

However, as odometry noise levels increase, we can see
that visual formation maintenance achieves good performance,
except for the sharpest (90-degree) turn. Similarly, the fusing
technique improves as well, and achieves good performances
even in sharp turns. Indeed, the gap between visual mainte-
nance and communication-based maintenance increases (see
Figures 20, 21).

Thus one conclusion of these experiments is that the two
constituent controllers work well, but not for the same settings.
In sharp turns, open-loop control is best (even at higher noise
settings). But for robustness to noise, closed-loop control is
preferable.

We remind the reader that our hypothesis was that the com-
bination variants would result in decreased precision compared
to their constituents. The intuition was that as the combination
methods gain the ability to detect obstacles, they sacrifice
precision.

The results show that instead, the multiplexing technique
emerges as a good controller when the odometry noise level
decreases, and is robust in sharp turns as well (a benefit
compared to the communication-based controller). It is indeed
never the best performer, but it is also never the worst. In
fact, this technique seems to be robust both to the noise
settings (like its visual maintenance constituent) and to the
turn angle sharpness (like the communication-based mainte-
nance constituent). These results thus provide evidence that
for robustness, multiplexing controllers (alternating between
them) may be a good strategy.

We additionally see that the fusing technique performs well
and is robust when the odometry noise level increases. Thus
if the robots can recognize its odometry noise level in the
environment, it can switch from fusing to multiplexing, and

vice versa (depending the noise) and behave ideally. This
second level of multiplexing, however, is beyond the scope
of this paper.

D. Robust Formations: Conclusions

We introduce here a combination approach (involving either
multiplexing or fusing of controllers) to formation mainte-
nance. The approach combines two different formation main-
tenance controllers: One open-loop and one closed-loop. Our
technique helps to maintain a formation and detect obstacles
when the robots’ sensors are limited, and therefore cannot
easily detect obstacles and track their peers at the same time.
In experiments with real and simulated Sony AIBO robots,
we have found that the combination approach decreases the
number of undetected obstacles (compared to the closed-loop
visual formation maintenance controller), and maintains the
precision of the formation more robustly then either of its
constituent controllers by itself. We also conclude that the level
of odometry errors influences the best performer between the
multiplexing and fusing methods. In particular, we find that
the multiplexing technique is better when the odometry error
decreases, and that the fusing is preferable otherwise. Thus, we
propose to switch between those two methods when the robots
knows their odometry error level (e.g., use multiplexing inflat
surfaces, and fusing in rocky terrains. Both techniques allow
the robots to use their sensors to detect obstacles, something
not possible with their constituent methods.

V. I NTERACTING WITH A DISCONNECTEDFORMATION

Despite all improvements to the operator interface (Section
III) and the formation maintenance method (Section IV),
in real-world applications there will be times in which a
robot fails to keep track of its teammates, and will become
stuck in place, while its peers continue. Such cases require
resolution by the operator. The interaction of a single human
operator with multiple robots poses significant challenges.
Quite literally, an operator has only two hands with which
it needs to interact with possibly more than a two robots.

Section V-A introduces the challenges involved. Section V-B
presents the distributed call-request approach, which utilizes
the organizational knowledge of the robots to resolve call-
requests in tightly-coordinated tasks. Section V-C presents
the results of extensive experiments evaluating this and other
approaches.

A. Call-Requests: Introduction

Robots that require the operator’s assistance initiate or
are issuedcall-requests, which are queued for the operator.
Traditionally, the operator switches control between robots,
and uses single-robot teleoperation with individual robots to
resolve the call requests in some (prioritized) sequence (e.g.,
[2], [14]). This method works well in settings where the taskof
each robot is independent of its peers, and thus the resolution
of a call request is independent of others. Here, the operator
is used as acentralizedresource by the robots.
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Unfortunately, centralized methods face difficulties inco-
ordinated tasks—tasks that require tight, continuous, coordi-
nation between the robots, i.e., robot teams where robots are
highly inter-dependent. First, due to the coordinated nature of
the task, robots depend on each other’s execution of sub-tasks;
thus a single point of failure (e.g., a stuck robot) will quickly
lead to multiple call requests. Second, when the operator
switches control to a robot, the other robots must wait for
the resolution of the call-request, because their own decision-
making depends on the results of the operator’s intervention.
As a result, robots wait idly while the call request is resolved.
While monitoring and diagnosis techniques can help localize
call-requests to the relevant robot [11], [19], minimizingthe
duration of call-request resolution remains a key challenge.

Operating a team of coordinated robots raises the opportu-
nity for novel resolution methods, in which the responsibility
for the resolution of the call request isdistributed. Rather than
having the operator centrally take all actions to resolve a fail-
ure, the otherwise-idle robot teammates can offer assistance,
e.g., in providing useful information or in carrying out sub-
tasks associated with the resolution process.

For example, in a formation-maintenance task, suppose one
of the robots gets stuck, and is unable to move. A call request
is issued to the operator, which must identify the failure and
attempt to resolve it in some fashion. Previous approaches
would have the operator attempt to teleoperate the robot in an
attempt to dislodge it, while the other robots are idle [2], [14].

However, the operator could take advantage of the other
robots to resolve the failure. First, the other robots could
be used to provide video imagery of the stuck robot from
various angles. Second, the robots may assist the operator to
determine the location of the robots—since they can calculate
its expected position with respect to their own position—based
on its position within the formation.

This section reports on first steps towards allowing coordi-
nating robots, in a spatial task, to use their knowledge of the
coordination to autonomously assist the operator. We examine
several variations of a distributed control methodology in
which functioning members of the team, rather than switching
to an idle mode of operation, actively seek to assist the
operator in determining the failure. The key idea is that
the responsibility for resolving the call-request is distributed
among the team-membersin addition to the operator.

Moreover, a distributed call-resolution necessarily requires
the operator to switch from one robot to the nextwhile
they are moving. For instance, if the operator is moving one
robot, while another requires control, switching time becomes
important. Thus the control software on every robot must
support quick suspension and resumption of operations, so
that switching occurs as quickly as possible. We propose a
simple method to enable such quick control-switching.

B. Distributed Call-Request Resolution in a Coordination
Task

As previously discussed, centralized resolution of call re-
quests, by the operator, may work well when robots’ tasks
are independent of each other. However, in coordinated tasks,

many robots may have to stop their task execution until a call
request is resolved, because their own task execution depends
on that of the robot that requires the resolution. In such cases,
it is critical to minimize the time it takes to resolve a call
request.

We thus focus on a distributed control approach, whereby
the robots who depend on the resolution of the call-request
take active steps to resolve it, in collaboration with the op-
erator. This approach takes advantage of the robot teamwork,
by turning the resolution of the call-request into a distributed
collaborative task for all involved. Moreover, the active robots
(that do not require assistance) are involved in a coordinated
effort with the robot requiring assistance, and thus may be in
a better position to assist it.

The key idea behind this approach is that call-request res-
olution is best viewed as an instance of cooperative problem-
solving. During task execution, robots collaborate to achieve
the operator goal. If task execution is halted due to a failure,
a new collaboration problem instance is generated (resolving
the call-request), which should then be addressed by the team-
members that are affected by the failure, since they have
knowledge which they can bring to bear on the problem.

Concretely, we investigate distributed resolution in repairing
broken formations of Sony AIBO 4-legged robots. Formation-
maintenance tasks require tight, continuous coordinationbe-
tween robots [20]. When a robot fails and is unable to move,
the formation cannot proceed until the failure is resolved
in some fashion: Either the robot becomes unstuck, or it is
declared dead and the formation proceeds without it. A stuck
robot often cannot report on why it is stuck, due to sensory
range limitations. For instance, in the AIBO robots, the camera
(mounted in the head) cannot pan and tilt to cover the rear
legs. Thus if one of them is caught by something, the robots
own sensors cannot identify it. The robot must then issue a
call-request for assistance. The operator, in turn, must use one
of the other robots to locate the stuck robot and get video
imagery of its state. This act of locating the other robot and
getting sufficiently close to it is a key factor in the resolution
of the call request in this case.

We construct two variations of distributed call-request res-
olution. In the first (semi-distributed), the robots assist the
operator by autonomously beginning to search for the failing
robot as soon as the call request is received. The operator
views a split-screen view of their video imagery, and as soon
as it identifies the stuck robot in one of the displays, can switch
control to the robot associated with the display. Once a robot
is taken over by the operator, the others become idle. The
operator may still switch control to these other robots, but
they no longer work in an autonomous fashion.

The fully-distributed scheme exploits all robots through
the call resolution process. The operator may teleoperate
any robot at any time, and may switch between controlled
robots as needed. When not operator-controlled, the robots
first head towards the expected position of their stuck peer.
This position is estimated based on their knowledge of the
formation (organizational knowledge), under the assumption
that the robot became stuck in its previous location within the
formation. If they fail to find it there, they begin a spiral search



16 JOURNAL OF PHYSICAL AGENTS, VOL. 2, NO. 2, MARCH 2008

pattern. The robots that maintain the formation have improved
chances to localize themselves (and their stuck peer) with
respect to the formation, than an operator which takes control
of a robot in the formation, without the situational awareness
of the robots. On the other hand, the operator has superior
inference and vision, and may be able to better identify the
stuck robot in the video imagery.

The distributed approach requires the operator to be able
to switch control between robots, and for the robots to be
active when the switch occurs. Traditionally, when the operator
wants to switch control from robot one robot to the next, she
would need to turn on (manually) the first robot’s autonomous
behavior (for working simultaneously, to achieve the common
goal). Then she would need to turn off (manually) the second
robot’s autonomous controller, and take control of the robot.

When robots do not operate in parallel to the operator, as
in previous methods, the effects of switching time on perfor-
mance is negligible. But when using distributed resolution,
switching becomes critical, as the robots that is taken control
of is continuing to move and turn even while the operator is
switching control over it. Any delay here may cause the robot
to move away from where the operator intended to go, thus
causing cascading failures.

To allow quick suspension and resumption of autonomous
control, each robot maintains a suspend flag which causes the
motors to ignore (temporarily, if the flag is on) the controller’s
commands. When an operator uses the interface to take over
control of a robotA, giving up control of robotB, A’s
associated suspend flag is turned on, andB’s flag is turned
off, giving B’s autonomous controller access to the motors
again.

C. Experimental Evaluation of Call-Request Resolution Meth-
ods

We empirically evaluated the methods discussed in this
paper in extensive experiments, with up to 25 human op-
erators. The first set of experiments focused on comparing
the distributed resolution methods presented, with alternative,
traditional, methods. We simulated failure cases in a triangular
formation (three robots). In each case, we disable one of the
robots to simulate a catastrophic failure, not letting it move
or communicate. Different call-resolution methods were then
used to begin the search process. The search stops when
any robot is within a predetermined distance of its failing
teammate.

A potential advantage of the distributed and autonomous
schemes is that they can utilize the robots’ own knowledge
of the coordination to locate the stuck robot. In particular,
because the robots have moved in formation prior to the call-
request, they may have an easier time guessing their peer’s
location than the operator (who needs to orient herself in space
via the teleoperated camera).

We therefore examine three scenarios, in which we varied
the accuracy of this knowledge. In all failures cases, the right
follower robot was disabled, and color marked to allow its
detection by the other robots (calledactive robots) and the
operator. We varied the position of the disabled robot (Figure

22): Theeasysetup placed the disabled robot at approximately
where it would be had it just stopped in its tracks prior to
the team getting notification of the call request, i.e., a bit
farther behind its location within the formation (Figure 22-a).
The mediumsetup placed the robot behind the left follower
robot (22-b). Thedifficult setup placed the robot to the left of
the left follower robot, and behind it, i.e., completely outof
place compared to the formation (22-c). The locations progress
from a location easily predictable by the robots, to a location
unpredictable to them.

(a) Easy. (b) Medium. (c) Difficult.

Fig. 22. AIBO robots in initial places for the three experimental setups.

We contrast the distributed and semi-distributed call-
resolution methods with two traditional resolution schemes.
The first, teleoperatedscheme corresponds to the centralized
control used in previous approaches (e.g., [2], [14]). In this
scheme, the operator would switch control from one active
robot to the next, as deemed necessary, and manually tele-
operated controlled robots (one at a time) until the disabled
robot was found. When one robot is controlled, the others
remain idle. Another previously-investigated approach isthe
fully autonomousscheme, that lets the active robots (but
not the operator) search for the failing robot. This scheme
corresponds roughly to the method described in [28], where
the robots receive general instructions (here, "search!")by the
operator, but are left to translate and follow these commands
autonomously, without direct manipulation.

We studied 25 human operators with each of the failure
scenarios, each with all methods (22 male, 2 female; 22
of these—including the two females—were graduate or un-
dergraduate students). All operators were novices; none had
previous experience controlling multiple robots. The ordering
of the scenarios was randomized between operators to prevent
ordering effects.

We distinguished two phases: The first phase of the res-
olution involved recognition of the disabled failure from any
distance. The second phase involved its localization by another
robot reaching within 35 centimeters of it. Each scenario began
with the simulated disabling of the robot (and issuing of the
call request), and ended with its localization by at least one
robot—teleoperated or autonomous.

For each of the failure scenarios and for each method, we
measure the duration of the two phases. This is an objective
performance measure because the initial locations of the robots
are fixed, the searching speed is constant for non-teleoperated
robots, and the termination condition for the search are fixed
(robots within specific distance of the failing robot). Thus
other than the typical robot sensor uncertainty, performance
variance is introduced solely by operator intervention. The
first measured duration is that of the time that it took the
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operator to recognize the disabled robot in any one of the
cameras (the operator uses the split-view interface in thistask),
i.e., the duration of the first phase. In all but the teleoperated
scheme, the operator is completely passive during this interval.
We then measure the time that it takes for an active robot—
autonomous or teleoperated—to reach the disabled robot, i.e.,
the duration of the second phase. Since the motivation behind
the distributed control scheme is to reduce the time spent
awaiting resolution, we prefer shorter overall durations.

We begin by examining the bottom line—the total time it
takes to identify the location of the disabled robot. Figure
23 shows the average total duration for the 25 operators. The
vertical axis measures the time in seconds, while the horizontal
axis shows the three experiment setups. In each, four bars
are shown corresponding to the different resolution schemes
(left-to-right: Autonomous, semi-distributed, distributed, and
teleoperated).
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Fig. 23. Total Time to Resolution (in seconds).

The results show that in alleasy, medium and difficult
locations, the distributed approach is preferable to the both
centralized teleoperation approaches, and the fully autonomous
approach. Full distributed search does better than the semi-
distributed approach in all locations, and better or same than
the autonomous approach or same. Overall, the distributed
collaboration between the operator and active robots in the
distributed approach proves to be a powerful technique for
significantly reducing the time to complete the task of locating
the disabled robot.

The results have been tested using a one-tailed t-test assum-
ing unequal variances. In the easy setup, the distributed scheme
is not significantly different than the autonomous scheme,
and only moderately different (p < 0.12) than the semi-
distributed and teleoperated schemes. However, as we move
to the medium and difficult setups, the situation changes. The
total time for the distributed scheme is significantly lowerthan
the total time for the autonomous scheme in the latter setups
(p < 0.00004 and p < 10−12, resp.). The distributed scheme
does better than the teleoperated scheme in the difficult setup
(p < 0.02), and is moderately better in the medium setup
(p < 0.13).

The figure also carries other lessons. First, the ability of
the robots to use organizational knowledge of the formation
can be very useful in reducing the resolution time, and thus

in assisting the operator. When the stuck robot was located
approximately where it was predicted to be in terms of its
position in the formations, the robots were able to quickly
locate it, in fact beating the operator in terms of total time
(see more on this below). However, the distributed scheme was
superior even in these cases, because even in where the robots
were not as successful, the operator (working in collaboration
with the robots) was able to compensate. This is particularly
evident as the difficulty of the different setups increased,and
the location of the stuck robot was unpredictable to the robots.

To better understand these results, we should consider
separately the results for the first phase of the search (when
an remote identification of the stuck robot was made by the
operator), from the second phase, in which an active robot
was to approach the stuck robot to localize it. Figure 24
shows the results of the different control schemes for the
first phase, averaged across operators. The figure measures the
average time (in seconds) it took the operator to recognize the
disabled robot from afar, in the split-view camera display.In
the autonomous approach, the operator did not intervene in the
operation of the robots, only indicated that the stuck robotwas
recognized. In the teleoperated scheme, the operator manually
turned a robot around until a heading to the remote robot was
recognized.
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Fig. 24. Phase 1Time until initial (remote) identification (in seconds).

Clearly, all approaches in which robots attempt to orient
themselves towards the predicted location of the disabled are
superior to a teleoperated (centralized) approach. Note that
in all approaches, the operator recognizes the robot from
afar. The active robots do not necessarily recognize the other
robot from afar, and as we will see below, may end up
searching for it in the wrong location. This significantly shorter
initial recognition is a beneficial side-effect of the distributed
approaches. However, the initial benefits of the robots to orient
themselves towards the stuck robot is lost in more difficult
settings.

Figure 24 also shows an important property of the use-
fulness of human operators: Human ability to recognize the
robot from afar is virtually identical in all three difficulty
settings. Thus humans bring to bear consistent robust (if slow)
capabilities. These can be useful in real applications, where
the stuck robot may be partially hidden behind obstacles or
otherwise not visible at all to the robots.
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An examination of the second phase of the search (once an
approximate heading towards the stuck robot is determined)
is also telling with respect to this issue. Figure 25 shows the
results for this phase, where the task is to arrive within the
proximity of the disabled robot. Despite its poor performance
in phase 1, the teleoperated approach does quite well in
phase 2. This is easily explained—here the disabled robot
is already recognized, and the teleoperated approach simply
allows the operator to now drive the teleoperated robot as
quickly as possible, outrunning automatic approaches that
move in constant (and typically conservative) speed. Thus
again, the operator brings to bear capabilities that cannotbe
duplicated by the robots.
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Fig. 25. Phase 2From initial identification to localization of the stuck robot
(in seconds).

However, the best performances was by the distributed
approach, because it essentially turns this phase into a race
between a teleoperated robot and an autonomous robot, as
to who gets to the disabled robot first. Moreover, unlike the
semi-distributed approach, where there’s an overhead of a
few seconds while the operator takes over control (see the
results for the easy/medium location), here the transitionfrom
phase 1 to phase 2 is fairly smooth, because one active robot
continues to search even while the operator is taking over
control of the other. Thus there is here a composition between
the Autonomousapproach and theTeleoperatedapproach.

Indeed, contrasting the results of theAutonomousand
Distributed approaches is telling. As we move from the easy
location to medium to difficult, the gap between the methods
is grows in favor to theDistributedapproach. That happens as
a result of the inability of theAutonomousapproach, to locate
the stuck robot in unpredictable places. The collaboration
between the human operator and the robot team is superior
to either, alone.

An final lesson is revealed by examination of the standard
deviation of the results for total task-completion time. Table
IV shows the standard deviation for the different approaches,
in the three experiment setups. Each row corresponds to a
different method, and each column to different setup. We can
see that in the easy setup, the autonomous, semi-distributed,
and distributed schemes all have essentially the same stan-
dard deviation, indicating similar performance. However,the
standard deviation for the autonomous scheme in the medium
setup is much higher than for the other approaches. In the

Easy Medium Difficult

Autonomous 11.21 34.64 23.82
Semi-Dist. 11.30 5.07 7.78
Distributed 11.29 5.16 7.90

Teleoperated 7.68 5.96 15.87

TABLE IV
STANDARD DEVIATION OF CALL -RESOLUTION TIMES(IN SECONDS).

hard setup, both the autonomous and teleoperated approaches
have greater standard deviation in performance than the two
distributed schemes. This shows an additional benefit of the
distributed methods: A more consistent performance of oper-
ators in the distributed and semi-distributed cases.

We now turn to empirically evaluate the importance of the
switching latency in the distributed resolution methods. We
remind the reader that we proposed a simple mechanism (the
suspend/resume flag) that enables quick switching. Otherwise,
the operator would need to manually perform several prepara-
tory actions (like, manually turning off a controller) in order
to teleoperate a robot.

To test the effects of the control-switch methods, we added
two control schemes:SwitchSemiandSwitchDistributed. This
two control schemes are similar to thesemi-distributedand
distributedcontrol schemes correspondingly except the trans-
fer from the part of identifies the stuck robot in one of
the displays to teleoperate one robot. If the operator in the
SwitchSemi-distributedandswitchDistributedapproaches want
to teleoperate a robot she needs to turn off it search behavior
manually. While in thesemi-distributedand distributed ap-
proaches its automatically happens and the search behavior
is paused. Thesemi-distributedand distributed is use our
quick-pause technique and theSwitchSemi-distributedand
switchDistributeduse the old manually technique.

We tested 21 human operators with each of the three failure
scenarios (as described in the previous section), and compare
there results with 9 operators using the manual-switching
techniques. The results are shown in figure 26 (left-to-right:
SwitchSemi-distributed, switch-distributed, semi-distributed
and distributed). The figure shows the total time to complete
the action (First and second phase). We compare each method
to its corresponding method (i.e. the manualSwitchSemiwith
the quickSemi-Distributed, the manualSwitchDistributedwith
the quickDistributed).

We can clearly see that the manual switching methods are
far worse than the quick-switching methods. We also see
that this effect is of more importance with the more difficult
failure cases. This supports our hypothesis that fast operator
control-switching is critical to the distributed approaches.
Indeed, when we compare the total resolution times of the
distributed methods, using the manual switching method, to
the autonomous and teleoperated approaches, we find that the
advantage of the distributed methods disappears in many cases.

A closer look at the results shows that the differences
become apparent in the second phase (Figure 27). The problem
arises during the control switching from the first to the second
phase. The switching here includes two main steps. First,
the time it takes to switch from autonomous behavior to
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Fig. 26. Total time to resolution, with different switching methods.

teleoperated control must be considered. A secondary issue
arises due to this time loss. As the robots act autonomously
until the operator assumes control, robots can often take a
number of steps after their initial recognition. This results
in the robots moving away from the location of their first
recognition. We refer to this cascading failure as asecondary
failure.
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Fig. 27. A comparison of phase-2 durations for different switching methods.

We hypothesize that these secondary failures exist, i.e., that
even if the switching duration itself constituted fixed latency,
then the effects of this latency would cause additional failures,
and thus would vary the actual latency observed. In order to
support this claim, we studied the ratio between thedistributed
andSwitchDistributedtechniques.

Table V shows the difference and ratio between thedis-
tributed and SwitchDistributedmethods at easy, medium and
hard courses. The results of this table attempt to isolate the
delay due to the switching control between thedistributed
and SwitchDistributedmethods. The tables demonstrates that
the difference and ratio between these methods varies. Under
the assumption that normal switching behaviors require a
fixed amount of time, this result implies that another factor
exists that accounts for this variable length. We believe that
this factor is the secondary failures caused by the switching
latency.

In particular, we believe these secondary failures resulted
from the robot’s movement from the moment the operator
recognized the stuck robot in its video stream, and until the

Easy Medium hard

difference 3.905 2.84 9.015
ratio 1.21 1.15 1.39

TABLE V
DIFFERENCE AND RATIO BETWEENdistributedAND SwitchDistributed

METHODS.

operator was able to control the robot.
The results have been tested using a one-tailed t-test as-

suming unequal variances. The SwitchDistributed scheme was
not statistically significantly different for all courses (easy:
ρ < 0.2, medium: ρ < 0.3, hard: ρ < 0.12) in respect
to the distributed. The SwitchSemi scheme is statistically
significantly different than the distributed in all courses(easy:
ρ < 0.012, medium:ρ < 0.006, hard:ρ < 0.05).

D. Interacting with a Formation: Summary

This paper explores novel first steps towards distributed call-
request resolution schemes, in which the operator and robots
collaborate to resolve failures. This scheme is particularly
suited to situations where robots are tightly coordinated,and
thus are able to use their knowledge of the coordination to
effectively assist the operator. The technique builds on a key
idea, that the resolution of failures in cooperative tasks should
be viewed as a cooperative task in itself. Previous techniques
(teleoperation of one robot at a time, autonomous operation
of the robots) were meant for tasks that do not require tight
coordination between the robots.

We empirically evaluate the distributed resolution methods
(and contrast them with previous approaches) in extensive
experiments with up to 25 human operators, operating a team
of 3 Sony AIBO robots that are moving in formation. The
experiments evaluate several concrete call-request scenarios,
in which a stuck robot must be located by the operator. The
results show that distributed call-request resolution leads to
shorter failure-recovery times. Moreover, the results show that
a key factor in the success of the distributed method lies in the
robots’ use of organizational knowledge (i.e., their knowledge
of the coordination). However, even in cases where this orga-
nizational knowledge fails, the operator is able to compensate.
Thus the use of our distributed approach is always better than
either the operator or the robots resolving the call requestby
themselves. We also report on the empirical results of using
quick-switch methods (automatic suspension of autonomous
activities by a robot, upon the operator switching control to
it). A final promising result is that the distributed methods
lead to improved operator consistency, reducing the variance
in performance between operators.

VI. SUMMARY

This paper tackles key challenges in making formation-
maintenance a reality in real-world applications of multi-robot
teams. It provides a comprehensive set of techniques that
address robustness concerns, both from the perspective of a
human operator of the formation, as well as from the point
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of view of maintaining greater autonomy by the robot team.
Specifically, three sets of techniques are presented:

1) First, the paper presented a novel ecological coordina-
tion display, which we show improves the performance
of human operators guiding a formation through obstacle
courses. Performance improves in the time it takes to
navigate the chosen path, the number of failures and
the failure rate, and the consistency of the operator’s
success.

2) Then, the paper presented an approach for combin-
ing sensor-based closed-loop formation-maintenance,
and communication-based open-loop formation mainte-
nance, by either fusion or multiplexing in time. The
experiments show that this allows robots to better utilize
their sensors for detecting and avoiding obstacles, while
still maintaining their positions in the formation.

3) Finally, the paper presented a novel distributed call-
request approach to handling call-requests (operator in-
tervention requests) in tightly-coordinated tasks. The key
to this approach is that robots actively collaborate with
the operator to resolve conflicts, in particular utilizing
their knowledge of the coordination to assist the operator
in locating robots that require assistance.

Extensive experiments using real and simulated robots,
with up to 25 human operators, show significant improve-
ments over existing methods, in all three contribution ar-
eas. The techniques clearly provide a path towards real-
world applications of multi-robot formations. Videos show-
ing actual runs in which these techniques were used,
as well as videos of related techniques, are available at
http://www.cs.biu.ac.il/∼maverick/Movies/ [25].

ACKNOWLEDGMENTS

We thank Avi Rosenfeld for useful comments, and Ruti
Glick for help in organizing the experiments. Special thanks
to K. Ushi. This work was supported in part by ISF Grant
#1357/07.

REFERENCES

[1] J. Adams, A. Robertson, K. Zimmerman, and J. How. Technologies
for spacecraft formation flying. InProceedings of ION-GPS-96, pages
1321–1330, 1996.

[2] J. A. Adams. Human Management of a Hierarchical System for
the Control of Multiple Mobile Robots. PhD thesis, University of
Pennsylvania, 1995.

[3] K. S. Ali. Multiagent Telerobotics: Matching systems to tasks. PhD
thesis, Georgia Institute of Technology, 1999.

[4] H. Asama, A. Matsumoto, and Y. Ishida. Design of an autonomous
and distributed robot system: ACTRESS. InProceedings. of the 1989
IEEE/RSJ International workshop on intelligent robots andsystem,
pages 283–290, 1989.

[5] T. Balch and R. Arkin. Behavior-based formation control for multi-robot
teams.IEEE Transactions on Robotics and Automation, 14(6):926–939,
1998.

[6] T. Balch and M. Hybinette. Social potentials for scalable multirobot
formations. In Proceedings of IEEE International Conference on
robotics and automation (ICRA-00), 2000.

[7] A. Broggi, M. Bertozzi, A. Fascioli, C. G. L. Bianco, and A. Piazzi.
Visual perception of obstacles and vehicles for platooning. IEEE
Transactions on Intelligent Transportation Systems, 1(3):164–176, 2000.

[8] X. Chen and Y. Li. Smooth formation navigation of multiple mobile
robots for avoiding moving obstacles.International Journal of Control,
Automation, and Systems, 4(4):466–479, August 2006.

[9] J. P. Desai. A graph theoretic approach for modeling mobilerobot team
formations.Journal of Robotic Systems, 19(11):511–525, 2002.

[10] J. P. Desai, J. P. Ostrowski, and V. Kumar. Modeling and control
of formations of nonholonomic mobile robots.IEEE Transactions on
Robotics and Automation, 17(6):905–908, 2001.

[11] R. J. Doyle. Determining the loci of anomalies using minimalcausal
models. In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI-95), pages 1821–1827, Montreal, Quebec,
Canada, 1995.

[12] M. Fields. Modeling the human/robot interaction in OneSAF. In
Proceedings of the 23rd Army Science Conference, 2002. (Poster).

[13] R. Fierro, A. K. Das, V. Kumar, and J. P. Ostrowski. Hybridcontrol of
formations of robots.IEEE International Conference on Robotics and
Automation, 2001.

[14] T. Fong, C. Thorpe, and C. Baur. Multi-robot remote driving with
collaborative control. IEEE Transactions on Industrial Electronics,
50(4):699–704, August 2003.

[15] J. Fredslund and M. J. Mataric. A general algorithm for robot formations
using local sensing and minimal communications.IEEE Transactions
on Robotics and Automation, 18(5):837–846, 2002.

[16] B. P. Gerkey, R. T. Vaughan, and A. Howard. The player/stage project:
Tools for multi-robot and distributed sensor systems. InProceedings
of the International Conference on Advanced Robotics, pages 317–323,
Coimbra, Portugal, Jul 2003.

[17] M. A. Goodrich and A. C. Schultz. Human-robot interaction: A survey.
Foundations and Trends in Human-Computer Interaction, 1(3):203–275,
2007.

[18] C. A. Johnson, J. A. Adams, and K. Kawamura. Evaluation of an
enhanced human-robot interface,. InProceedings of the 2003 IEEE In-
ternational Conference on Systems, Man, and Cybernetics, Washington,
DC, 2003.

[19] M. Kalech, G. A. Kaminka, A. Meisels, and Y. Elmaliach. Diagnosis
of multi-robot coordination failures using distributed CSPalgorithms.
In Proceedings of the Twenty-First National Conference on Artificial
Intelligence (AAAI-06), 2006.

[20] G. A. Kaminka, R. Glick, and V. Sadov. Using sensor morphology
for multi-robot formations.IEEE Transactions on Robotics, 2008. To
appear.

[21] G. A. Kaminka and M. Tambe. Robust multi-agent teams via socially-
attentive monitoring.Journal of Artificial Intelligence Research, 12:105–
147, 2000.

[22] H. K. Keskinpala and J. A. Adams. Usability analysis of a PDA-based
interface for a mobile robot,.Human-Computer Interaction, 2004.

[23] H. K. Keskinpala, J. A. Adams, and K. Kawamura. PDA-based human-
robotic interface. InProceedings of the 2003 IEEE International
Conference on Systems, Man, and Cybernetics, Washington, DC, 2003.

[24] M. Lemay, F. Michaud, D. Létourneau, and J.-M. Valin. Autonomous
initialization of robot formations. IEEE International Conference on
Robotics and Automation, pages 3018–3023, 2004.

[25] The MAVERICK Group movies page, Computer Science department,
Bar Ilan University. http://www.cs.biu.ac.il/∼maverick/Movies/, Last
checked: Feb 24, 2008.

[26] F. Michaud, D. Létourneau, M. Gilbert, and J.-M. Valin.Dynamic robot
formations using directional visual perception.IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2002.

[27] A. I. Mourikis and S. I. Roumeliotis. Optimal sensor scheduling for
resource constrained localization of mobile robot formations. IEEE
Transactions on Robotics, 22(5):917–931, October 2006.

[28] K. L. Myers and D. N. Morely. Human directability of agents.
In Proceedings of the First International Conference on Knowledge
Capture, K-CAP 2001, Canada, 2001.

[29] C. W. Nielsen, M. A. Goodrich, and R. W. Ricks. Ecological interfaces
for improving mobile robot teleoperation. IEEE Transactions on
Robotics and Automation, 23(5):927–941, 2007.

[30] P. Ogren and N. E. Leonard. Obstacle avoidance in formation. In
Proceedings. of the IEEE Int. Conference. on Robotics and Automation
(ICRA), Taipei, Taiwan, 2003.

[31] R. W. Ricks, C. W. Nielsen, and M. A. Goodrich. Ecological displays for
robot interaction: A new perspective. InProceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS-04),
2004.

[32] P. E. Rybski, I. Burt, T. Dahlin, M. Gini, D. F. Hougen, D.G. Krantz,
F. Nageotte, N. Papanikolopoulos, and S. A. Stoeter. Systemarchitecture
for versatile autonomous and teleoperated control of multiple miniature
robots. InProceedings of the IEEE International Conference on Robotics
and Automation, May 2001.



ELMALIACH AND KAMINKA: MULTI-ROBOT FORMATION MAINTENANCE 21

[33] P. Scerri, L. Johnson, D. Pynadath, P. Rosenbloom, M. Si,N. Schurr,
and M. Tambe. A prototype infrastructure for distributed robot, agent,
person teams. InAAMAS-03, 2003.

[34] M. Skubic, D. Anderson, S. Blisard, D. Perzanowski, andA. Schultz.
Using a qualitative sketch to control a team of robots. InProceedings of
IEEE International Conference on Robotics and Automation (ICRA-06),
2006.

[35] T. Suzuki, K. Yokota, H. Asama, H. Kaetsu, and I. Endo. Cooperation
between the human operator and the multi-agent robotic system:Eval-
uation of agent monitoring methods for the human interface system.
In Proceedings. of the 1995 IEEE/RSJ International conference on
intelligent robots and systems, pages 206–211, 1995.

[36] The Tekkotsu Homepage. www.tekkotsu.org, 2002.
[37] A. D. Tews, M. J. Mataric, and G. S. Sukhatme. A scalable approach

to human-robot interaction. InICRA-03, 2003.
[38] S. Venkataramanan and A. Dogan. Nonlinear control for reconfiguration

of UAV formation. In Proceedings of the AIAA Guidance, Navigation,

and Control Conference, 2003.
[39] K. A. Vicente. Ecological interface design: progress and challenges.

Human Factors, 44(1):62–78, 2002.
[40] Z. Wang, Y. Hirata, and K. Kosuge. Control a rigid cagingformation

for cooperative object transportation by multiple mobile robots. InPro-
ceedings of IEEE International Conference on Robotics and Automation
(ICRA-04), pages 1580–1585, 2004.

[41] H. A. Yanco, J. L. Drury, and J. Scholtz. Beyond usability evaluation:
Analysis of human-robot interaction at a major robotics competition.
Journal of Human-Computer Interaction, 19(1 and 2):117 – 149, 2004.

[42] K. Yokota, T. Suzuki, H. Asama, A. Masumoto, and I. Endo. A human
interface system for the multi-agent robotic system. InProceedings of
IEEE International Conference on Robotics and Automation (ICRA-94),
pages 1039–1044, 1994.

[43] D. Zwillinger, editor.CRC Standard Mathematical Tables and Formulae,
chapter 4.3, pages 312–314. CRC press, 30th edition, 1995.


