Removing Biases in Unsupervised Learning of
Sequential Patterns

Yoav Horman and Gal A. Kaminka
The MAVERICK Group
Department of Computer Science
Bar-llan University, Israel
{hormany,galk}@cs.biu.ac.il

February 12, 2008

Abstract

Unsupervised sequence learning is important to many applications. Wetear
is presented with unlabeled sequential data, and must discover sefpatiéens
that characterize the data. Popular approaches to such learning ifeheeften
combine) frequency-based approaches and statistical analysigveliouhe qual-
ity of results is often far from satisfactory. Though most previous itlgasons
seek to address method-specific limitations, we instead focus on gémethbd-
neutral) limitations in current approaches. This paper takes two key tstwpsds
addressing such general quality-reducing flaws. First, we carmgroatdepth em-
pirical comparison and analysis of popular sequence learning meithtetsns of
the quality of information produced, for several synthetic and real-world d&ase
under controlled settings of noise. We find that both frequency-bamskstatistics-
based approaches (i) suffer from common statistical biases bagbd tangth of
the sequences considered; (i) are unable to correctly generalizetteenpalis-
covered, thus flooding the results with multiple instances (with slight varigtions
of the same pattern. We additionally show empirically that the relative quality of
different approaches changes based on the noise present in th8tdéttical ap-
proaches do better at high levels of noise, while frequency-basedages do
better at low levels of noise. As our second contribution, we develop mistioo
countering these common deficiencies. We show how to normalize ranking
candidate patterns such that the relative ranking of different-lengthipattan be
compared. We additionally show the use of clustering, based on sexjsiemitar-
ity, to group together instances of the same general pattern, and dheosmst
general pattern that covers all of these. The results show significanbwements
in the quality of resultén all methodsand across all noise settings.

Keywords: Sequence learning, sequential patterns, sequence mining

*This research was supported in part by BSF grant #2002401.

1 Introduction

Automated sequence learning is an important task in whicata léarning system is
presented with unlabeled sequential data, and must dissegriential patterns that
characterize the data [3]. Applications include user miaddW], anomaly detection
[13], and system execution analysis [10, 11, 23].

Two popular approaches to this task are frequency-basgib6r) methods (e.g.,
[3,22]), and statistical dependence methods (e.g., [T0kse methods have been stud-
ied separately and in combination, often with the intenhefihvestigation on scalabil-
ity and removal of spurious results. Yet the quality of sediatpattern learning results
is still often far from satisfactory [11,18]. Much of recditérature is therefore devoted
to examining method-specific flaws of various statistica ftaquency-based methods
(e.g., [1]). For instance, [5] discusses different flawsaviesal statistical methods often
used in combination with support-based learning techisique

In contrast, we seek to determine general (method-new@ales for the poor re-
sults of existing methods. In an effort to better understifwedissues, we empirically
compare the results produced by popular support-basedtatigtisal sequential pat-
tern learning methods on several synthetic and real-watd dets. The comparison
uncovers severgeneraldeficiencies irall the methods we tested.

First, the results show that all tested methods are biasedeiierring sequences
based on their length, often preferring shorter sequerccesore meaningful longer
sequential patterns. Second, we find that all approachesnatge to correctly gen-
eralize the patterns discovered, thus flooding the resuttsmultiple instances (with
slight variations) of the same pattern. Finally, the ressltow that the relative quality
of different approaches changes based on the noise presit data: Statistical ap-
proaches do better at high levels of noise, while frequdrased approaches do better
at low levels of noise.

We present methods for addressing all of these deficienéigst, we present a
length normalizatiormethod that leads to significant improvementsaihsequence
learning methods tested (up to 42% improvement in accuratfg)then show how to
use clustering to group together similar sequences. We shatpreviously distin-
guished sub-patterns are now correctly identified as iestnf the same general pat-
tern, leading taadditional significant accuracy improvements. The experiments show
that the techniques are generic, in that they significamtigrove all of the methods
initially tested. All experiments are carried out in tendludusands of repeated trials,
on both synthetic and real-world data.

This paper is organized as follows. First, Section 2 presatrief overview of the
sequential pattern learning problem, and previous worlchvhas focused on method-
specific limitations of various support-based and staitilata analysis approaches.
Then (Section 3), we present the results from our empirioadstigation of popular
methods using synthetic and real-world datasets. The gsiocis we draw from these
results as to general biases in existing learning appreaale presented in Section
4, and this section also presents techniques for addredsisg biases, regardless of
the approach used. Section 5 presents the results of exg@swith the techniques
we develop, and demonstrates the significant improvemehis\eed. Section 6 con-
cludes.

2 Background and Related Work

In unsupervised learning of sequential patterns, the iegreystem is given exam-
ple streams, each a sequence as, ..., «,, Of some atomievents(e.g., observed
actions). The system must extragiquential patterns-sequences of events—which
characterize the example streams, with as little assistascpossible. Of course,
not every pattern is characteristic of the streams, as sdntteeqgatterns reflect no
more than a random co-occurrence of events. Thus it is irapbtb only extract
patterns that are composed of correlated events and thedlresluable information
about the dataset. Different methods for sequence leadiffeg in their scalability
(e.g., [16, 20, 22, 24]), in their goal settings (e.g., pateallowing for arbitrary sepa-
ration between events [3] or only for closely-occurringrggeg14]), and in how they
characterize such patterns (i.e., in how they determirteatpattern is interesting). Our
study in this paper focuses on determining limitations #natgeneral, in that many dif-
ferent characterizations of interesting patterns suffemfthem. We thus ignore here
the issue of differences between methods based on sclaibvent separation.

2.1 Frequency based methods

Perhaps the most common characterization of patterns isdbas their relative
frequency—calledupport—within the database [3]. The algorithm first finds all fre-
quent sequences of size 1, i.e. all attributes whose sugpogeds a user-defined
threshold calledanin_support Since the subsequences of each frequent 2-sequence are
in fact frequent 1-sequences, the algorithm generates aflisandidate 2-sequences
by concatenating all frequent 1-sequences to one anothker counts all candidates
by iterating the entire dataset, and maintains a list ofufes 2-sequences. The algo-
rithm then generates a list of candidate 3-sequences bassghtbinations of frequent
2-sequences, and the process repeats until no more frepagetns are discovered.
The main advantage of frequency-based techniques is thehf@cmany sequences
that appear in the dataset are not counted at all. This isatieetlosureproperty of
the frequency measure, i.e. the fact that each subsequéadesquent pattern is also
frequent. Consequently, frequency-based techniquegareriate for analyzing and
learning from large datasets, such as transactional degalodiretail organizations [22].

However, frequent sequential patterns are not necessagningful. For instance,
if an eventa is frequent, and an eventis frequent, then the eveni, ba are often
frequent as well, simply due to random chance which places thext to each other
(random co-occurrence). To battle such spurious frequatteqms generated by the
first-tier support-based algorithm, many investigationsppse a number of second-
tier methods, to further filter the results generated by tisetier.

A common second-tier techniquezenfidence-measures the likelihood of a se-
quence’s suffix given its prefix, i.e., the predictive powethe prefix with respect to
the suffix. For a sequengecomposed of a prefix,., the confidence ap is given by
conf(p) = Jf::qq((p’f). The Support/Confidence framework ([2]) detects all seqasn
whose frequency exceeds a user defiméd_supportand confidence exceeds a user
definedmin_confidence

The Support/Confidence approach suffers from several fapémiitations. First,

] | COFFEE | ~COFFEE || \

TEA 20 5 25
—-TEA 70 5 75
] I 90 \ 10 || 100 |

Table 1: Correlation between purchases of tea and coffee.

significant patterns are not necessarily very frequent.uBied the minimal support
threshold might help, but this also introduces many un@sing patterns and affects
the performance of the learning process [1]. A second prok{l¢l, 12, 23]) is the
flooding of results, i.e. the large number of patterns retdrhy the algorithm. The
problem is emphasized as the data set becomes more dengendjway to address
the flooding challenge is to rely on external knowledge teffiltrelevant patterns. This
knowledge can either be explicitly provided by a domain e 2]) or inferred from
the domain, e.g. when sequences are labeled ([23]). Theg@®ss, however, require
knowledge outside of the original unlabeled data.

The third problem is the spuriousness of the results [1,]5 Si8/erstein et. al [18]
demonstrate the problem with the following example. Comsaldatabase containing
information about goods that have been bought together stpmers. In particular,
consider a candidate association rule that associatebgses of tea and coffee. The
relevant data is shown in Table 1. For instance, the tablesiimw 1, marked TEA)
that out of 25 customers that bought tea, 20 also boughtesofifbile 5 did not. Also
(column 2, marked-COFFEE), out of 10 customers thaitl notbuy coffee, 5 bought
tea (row 1), and five did not.

The strength of the rule TEA— COFFEE can be calculated by the Sup-
port/Confidence approach using the contingency table €Talpl The support for
this rule is 20%, which is quite high, and its confidence is 8@%rtainly a high
value, as 20 out of 25 tea buyers have also purchased coffeeseGuently, the rule
TEA — COFFEE is expected to be part of the results set. Note, howthat the
apriori probability of a customer to purchase coffee is 90#&&arQgin of first column).
In other words, a customer that buys tetesss likelyto buy coffee than a customer we
don’t know anything about. Moreover, a customer who dodamttea is much more
likely to purchase coffee. This means there is in facegativecorrelation between
tea and coffee, although the rule TEA COFFEE would have been discovered by the
Support/Confidence framework. This results from the faat the Support/Confidence
framework does not consider the null hypothesis, i.e. tla@ch to encounter the pat-
tern under the assumption of independence.

2.2 Statistical and Probability Approaches

In direct response to the specific deficiencies of suppartidence techniques, alter-
native statistical and probability-based analysis methale been proposed, typically
to replace the confidence measure. [21] surveys a large mushkach measures and
demonstrates that they can provide conflicting information

Interestis a measure that attempts to contrast predictive powerthétiprobabilis-
tic independence assumption [5, 18, 21]. 4B be an sequence, where bothand
B reflect patterns containing one or more events. Then theessiteneasure ofi B is
wiﬁszm, Interest values above 1 indicate positive dependencédg wWidse below
1 indicate negative dependence. Thus in contrast to comigémerest considers the
assumption of independence #fand B, and might therefore provide better results as
a second-tier technigue (on top of support).

However, previous work has recognized limitations spetifioterest [18]. In par-
ticular, since interest does not consider the frequencyt ahd B, its absolute value
may be misleading. For instance, long patterns, which asd&pected to appear to-
gether under the assumption of independence, almost alwegive very high values
of interest despite the fact that their frequency is typycaery low and they might
therefore be insignificant. Indeed, [18] suggests thatésteshould only be used to
compare different associations between set of events thatleeady considered cor-
related, and not for comparing different patterns. Anotlessible problem is that in-
terest is completely symmetric, which makes its use in secgiearning applications
(whereA — B andB — A are different) problematic.

To address these difficultiespnvictionhas been proposed in [5]. It is defined as
%, with the underlying intuition thatt — B is in fact-(AA-B), and thus
we can measure how far A =B deviates from independence, and then invert the ratio
to handle the negation. Unlike interest, conviction is asyatric and is therefore more
appropriate for measuring sequences. However, convistitirsuffers from similar
flaws as interest in other ways. For instance, like confidecmaviction does not take
frequency into account. Thus, two eventsand B that have occurred only once and
happened to appear together are given the maximal conviddi® ofoc. Also, like
interest, conviction favors longer sequences, which a® éxpected to appear under
the assumption of independence (this is indeed mentiongs],imhich claims many
rules were very long and too complicated to be interesting).

A different approach is presented in [1]. The authors preaemeasure called
collective strengthwhich is defined as follows. For each item-dein the data set
the violation rate of the item, denoted!), is the fraction of transactions that contain
some, but not all, of the attributes of I. The collective st of an itenV is defined as
cI) = % whereF reflects expectation under the assumption of indepen-
dence. Note that thé collective strength increases as tieuof "violating” transac-
tions decreases, and as the number of "supportive" traosaaxceeds expectations.
The value of C(l) under the assumption of independence isd.jtaexceeds this value
in case of an interesting pattern. However, this measuralsanbe quite misleading,
as mentioned in [7], in that strong statistical correlagibetween relatively infrequent
attributes yield collective strength values that only nirzaitly exceed 1, the value of
C(I) under the assumption of independence. For instance, asgatiiibutesA, B,

C and D each appear in 5% of the itemsets, they are all expected waappgether
in less tharD.0006% of the itemsets((.05%) and are expected not to appear at all in
~ 0.81% of the itemsets. If all attributes appear togethet % of the itemsets, which
is &~ 1666 times more than what is expected under the assumption opémdkence,
and all do not appear at all (n82% of the itemsets (which matches expectations), the

collective strength o BC' D is =~ 1.11, only slightly above the independence value.

Moreover, the definition of a strongly collective item-setjuires not only a high
collective strength rank, but also demands all sub-itesngebe strongly collective.
This definition makes sure the suggested measure mainter@dsure property, and
makes it appropriate for large-scale data mining purpobiesvever, this also means
that strongly-collective itemsets contain items whichateorrelated to one another.
This property is not guaranteed in all data mining domainst ifstance, one may
want to discover whether a certain combination of age, gesual origin increases the
chance of getting a certain disease. A rule suchlgs > 80, Male, European —
Alzheimer Disease may, of course, be interesting, although there is no cdiogla
between the attributes reflecting age, gender and origioh tleerefore it will not be
considered strongly collective.

Silverstein et. al [18] offer an extensive discussion of itlative weaknesses and
strengths of different statistical approaches, and sugtgrning association rules that
are judged significant using a chi-squared statistical temt eachk-item-set (a set of
k attributes within a customer basket), the authors run aghared statistical test, us-
ing a k-dimensional contingency table, where each cell reflectsnabination of the
k attributes involved. For instance, for the pattet®C' the authors suggest count-
ing ABC, AB-C, A-BC, A-B-C, -ABC, -AB-C, ~A-BC and—-A-B-C.
The authors claim that chi-square test is upward closed.tHarovords, for each 3
attributesA, B andC chi — square(ABC) >= chi — square(AB). Based on this
property the suggested algorithm stops mining patterrisatready contain significant
subsequences, assuming oniynimally dependenassociation rules are interesting.
However, later work [7] has shown that although raw chi-squalues are indeed
increasing when expanding a rule by additional attributies,statistical significance
(p-value) does not necessarily increase. This invalidaegsoncept of minimally de-
pendent association rules.

A similar technique uses a G-test [19] for detecting stiaadliy significant patterns
[10,15]. To calculate the rank of a given patterra2 x 2 contingency table is built
for its prefix p,. and suffixay, (Table 2). In the top rowp; is the number of times that
we saw the patterp (p, followed by «y;), and is simplyfreq(p). no is the number
of times we saw a different suffix to the same prefix, €., ., freq(prc;). Inthe
second rowps is the number of patterns in whieh, followed a different prefix than
Dy (me#prfreq(pmak)). ny is the number of patterns in which a different prefix was
followed by a different suffixX_, ., >, .., frea(pma;)). The table margins are
the sums of their respective rows or columns. A G-test is tharon the contingency
table to calculate the dependencewgfonp, as follows:G = 2> n; x log g— where
E'is the expected frequency under the assumption of indepeade

The advantage of dependency detection methods (herejmatiekedDD) such as
chi-square or G-test over other statistical measures suichexest, conviction and col-
lective strength is that they consider both frequency apédare from independence.
Another advantage of these tests is that while they do nattaiai the closure prop-
erty, it is still possible to compute an upper bound for thainks. Such an upper bound
evaluation was used in [15] as a pruning technique for s@agdhe best correlations
between multiple streams of data. DD methods have beeradtiin several data anal-
ysis applications, including analysis of execution trafd€j, time-series analysis [6],

L[o | o [|
Dr n1 n2 freq(pr)
—pr ns n4 me Dy freq(pm)

[[frealon) | oz, freale) | |

Table 2: A statistical contingency table for sequentiatgratp, composed of a prefix
Py = Q1,Qa,...,0_1 and suffixay.

and RoboCup soccer coaching [11]. However, DD methods hatéeen shown to
scale to large databases, and (as we show below) also suffieiaflength-based bias.

2.3 Summary

The problem of the poor quality of the results generated histiexy methods is well
known in the literature, as the discussion above demomstrétowever, investigations
have often tended to point out specific limitations of pregiavork. Thus work on
interest is largely motivated by limitations of confidene@d work on conviction is
motivated by limitations of interest, etc.

This paper focuses instead on addressing general limitatibhose that are com-
mon to many or all approaches. The next section begins witmapirical investigation
of two representative approaches, and draws conclusidnssash general limitations.

3 Sequential pattern learningtechniques. Initial exper-
iments

Our research begins with a comparison of several sequent@grtechniques, fo-
cusing on the quality of their results. Our main interestoicontrast the results of
support-based and statistical techniques, and their gatibns, to find out whether
one of these approaches outperforms the other significantlyunder which condi-
tions. Section 3.1 describes the experiments we performeslyothetic data. Our
experiments using real-world data are described in sedti®n

3.1 Synthetic Data Experiments

We conducted extensive experiments using synthetic dataparing Support, Confi-
dence, Support/Confidence and dependency-detectiona§rigst (DD). In each run,
these techniques were to discover five different re-oaegtrue segmentauniformly
distributed within a file of 5000 streams. We refer to the patage of the streams
that contain true segments pattern rate thus low pattern rates indicate high levels
of noise. The example streams might include additionalsendvents before, after,
or within a segment. We controlledtra-pattern noise rateThe probability of having
noise inserted within a pattern. However, in the followiegts no noise was inserted
(we evaluate the effects of intra-pattern noise in Sectjon 5

100

-2 DD

80
- Sup/ Conf
Optimal

-=-Sup/ Conf

Accuracy (%)

Support

—— Confidence

Pattern Rate (%)

Figure 1: Accuracy of unsupervised sequence learning rdstho

In each experiment, each technique reported its best 10esggrandidates, and
those were compared to the five true segments. The resuksmesaisured as the per-
centage of true segments that were correctly detecteddtladl of the technique, here-
inafter denotedccuracy. The Support/Confidence technique requires setting mianua
thresholds. To allow this method to compete, we set its tiolels such that no true pat-
tern would be pruned prematurely. We refer to this technaegi&Support/Confidence
Optimal”. We have also tested a more realistic version ofaligerithm, using fixed
minimal confidence of 20% (“Support/Confidence”). While thgpfort/Confidence
method is meant to return all segments satisfying the tlotdshwith no ordering, we
approximated ranking of resulting segments by their supjadter thresholding).

We varied several key parameters in order to verify the steiscy of the results.
For three different values of alphabet size, dendg®, 10 and 26) and three ranges
of true-pattern sizes (2—-3, 3-5 and 4-7) we have generatadséss of sequences
with incrementing values of pattern rate. For each pattate we have conducted
50 different tests. Overall, we ran a total of 4500 testsha#sing different 5000
sequences and different sets of 5 true patterns.

The results are depicted in Figure 1. The X-axis measurepdttern rate from
0.2% to 100%. The Y-axis measures the average accuracy dfffaeent techniques
over the various combinations @fand pattern size. Each point in the figure reflects the
average ofi50different tests. The “Optimal Support/Confidence” teclueigs denoted
"Sup/Conf Optimal", where the standard method, using a finégtmal confidence
value, is denoted "Sup/Conf". The dependency-detectidensted “DD”.

The figure shows that dependency-detectio®) outperforms all other methods
for low and medium values of pattern rate. However, the testiloss over and

Support/Confidence optimal outperforms DD at high pattates. This unexpected
degradation in DD results at increasing pattern rates isesgddd in Section 4.1. The
manually-set Support/Confidence, as well as the simplestgrhnique, provide rel-
atively poor results. Finally, confidence essentiallys&ilr most pattern rate values.
Figure 2 shows the results for the same experiment, focusingattern rates up to
5%. As can be clearly seen, DD quickly achieves relativaghlgiccuracy, at least twice
as accurate as the next best technique, Support/Confidptigeab A paired one-tailed
t-test comparing DD and Support/Confidence optimal forguatrates of up to 5%
shows that the difference is significant at the 0.01 signifiedevel f < 1 x 10719).

100
- DD
80

= = Sup/ Conf
S Optimal
9) -=- Sup/ Conf
S
o
< Support

—— Confidence

Pattern Rate (%)

Figure 2: Accuracy at low pattern rates (high noise).

We evaluated the effect of alphabet siZeon the accuracy of the different algo-
rithms. Figures 3 and 4 show the accuracy we measured fowthdifferent alphabet
sizes 5 and 26 respectively, corresponding to the teststéeln Figure 2. The alpha-
bet size is concatenated to the name of each technique;[@Rr26" corresponds to
the results of the DD technique for an alphabet of size 26. Higares clearly show
that all methods have achieved better results when a lafpgkalzet was used. The
reason for this is that as the size of the alphabet grows Haeae of the noise to form
significant patterns in terms of the tested techniques dsese

More importantly, the advantage of DD over the other techesqin high noise
settings becomes even more significant for the smaller bithi@sts. Fofl' = 5
DD's results are 25 times more accurate than the secondemdstitjue for pattern rate
of 0.5%, and more than 6 times more accurate for pattern betizgeen 1% and 5%.
Similar results were achieved in experiments where thedSizeie patterns was varied.

60

- DD-5

’\5\40

S ~A— Sup/ Conf Opt-5
)

s

>

S =5~ Sup/ Conf-5
<20 up

Support-5

Pattern Rate (%)

Figure 3: Accuracy for alphabet siZe=5.

3.2 Real World Experiments

We conducted real-world experiments on UNIX command lirpusaces. We utilized
9 data sets of UNIX command line histories, collected forféedént users at Purdue
university over the course of 2 years [8]. In this case, weatdknow in advance what
true patterns were included in the data, thus quantitatreéuation of accuracy is not
possible. However, we hoped to qualitatively contrast #htepn candidates generated
by the different methods. The data has been stripped outeohéimes, user names
etc., so only command names and flags remained. The arguofezdsh command
were replaced by a token that reflects their number. Fornostds -la /private/docs”
was replaced by "Is -la <1>" and "cat foo.txt bar.txt zorch® somewhere" was re-
placed by "cat <3> > <1>", We applied a minimal confidenceshodd of 0.25 for the
Support/Confidence technique, and used G-test for DD.

The results imply once again that DD is superior to the otasted methods, but
its advantage in this case is less obvious. For simplicitfoages on the results of one
user. We begin with the first 10 patterns discovered by Suffpenfidence, depicted
in Table 3. For each sequence the table shows its frequeidcyaariidence, as well as
its position within the DD results list.

The results depicted in Table 3 consist of very short seqesneflecting the most
common Unix commands, suchascd, vi andmore. The only interesting result is "f
<1>", because we are not familiar with the Unix command "f* {§ probably an alias
that our specific user has configured for one of the commomn abreimands).

This tells us something about the nature of frequency-bassdlts, which can
be useful for learning the most basic sequential behavia w$er, but might fail in

10

60

- DD-26

40
> —A—Sup/ Conf Opt-26
>
§ =a S\
3
3] =S~ Sup/ Conf-26
<20 P
Support-26
0 \Z
0 1 2 3 4 5

Pattern Rate (%)

Figure 4: Accuracy for alphabet siZ&=26.

detecting more complex / interesting phenomena. For soewbn is not familiar with
Unix (like we are not with the command "f") the results can leeywuseful, because
they point at the most common features in a new domain. Howéwe someone
who is looking for more novel information, the results midig disappointing. A
Similar point was made in [5] with respect to highly ranked\iotion-based rules that
were extracted from Census data and included examples su¢iveryear olds don’t
work”, "unemployed residents don’t gain income from workida'men don’t give
birth". Given an adult's perspective, such rules are naregting. But to someone
(say, a theoretical alien), these results may in fact beestiag.

Interestingly, Table 3 also shows that the most frequentiesgees in the dataset
have also received high DD ranks. In fact, 7 out of the 8 mesiient sequences were
included in the top 8 results of DD. This seems surprisingabse rules such as "cd
<1>"and "vi <1>" do not seem to be statistically significarg the existence of a single
argument does not seem highly correlated with the commeadhdswvs.

The reason for this behavior is that DD, like many other méshave tested, is
biased towards frequent sequences, which yield high-cemdigl rules. Given two sta-
tistically significant patterns with the same underlyintatiens betweem;, no, ns
andny in the contingency tables, the more frequent pattern wsib akceive a higher
score by statistical tests such as G or Chi-Square. In ood@nderstand this better, let
us examine the contingency table of the sequence "cd <18ld®. Out of the 987
appearances of "cd" it was followed by a single argument B84 84% of the cases).
Among all other 14145 2-sequences, only 343@%) were followed by the single ar-
gument indicator "<1>". The fact that "cd" is a relativelg@uent command also helps

11

Sequence | Frequency| Confidence| SC position| DD position
<1>;Is 1088 0.25 1 7
cd <1> 832 0.84 2 3
vi <1> 774 0.99 3 1
more <1> 669 0.83 4 6
cd<1>;ls 607 0.73 5 2
<1>;vi<1> 464 0.99 6 4
Is; cd 430 0.25 7 13
f<l> 404 0.98 8 8
Is; cd <1> 364 0.85 9 18
<1>;lIs; cd 309 0.28 10 20

Table 3: User sequences with highest support

| | <>] ~<1>] |

cd 832 155 987
—cd || 3450 | 10695 || 14145

| [4282 10850 [| 15132]

Table 4: Contingency table for "cd <1>"

rejecting the null hypothesis and establishing the stedistorrelation between "cd"
and "<1>". For instance, if "cd" had appeared only 10 timesl was followed by
a single argument in 9 of the cases (maintaining a similao tatour database, and
leaving all other sequences unchanged) the G rank of "cd wbwld have beer: 20,
comparing tox 1450, the original rank of "cd <1>".

By now we have covered the 10 most frequent sequences in tagadalLooking
further down the result list reveals the advantage of DD terSupport/Confidence
approach. Table 5 depicts the 10 next candidates of Suonfidence, where table
6 shows the 10 next candidates of DD, starting from candifigtehich was skipped
before due to its relatively low frequency) and skippingestfrequent candidates we
have already covered. For each sequence we indicate itsopogiithin both Sup-
port/Confidence and DD result lists, or '~ when it is not indéd in the top 20 se-
quences of the relevant technique.

The sequences in Table 5 are not of much interest. Most oEitpgences represent
different combinations of frequent commands suchsasd andmore. Note that most
of these irrelevant sequences are not detected by DD, dehpit high frequency and
confidence values. The only news we learn from Table 5 are emofrequent one-
argument shell commands +m andgce, one of which is also discovered by DD.

Table 6 on the other hand, contains a lot of interesting médion. The first
command—"q -v"—received a very high rank by DD, although itakatively infre-
guent. Once again, we are not familiar with the Unix commagidahd thanks to DD
we learn not only about its existence, but also about itstation with the flag "-v" (we

12

Sequence Frequency| Confidence| SC position| DD position
rm<1> 297 0.92 11 19
Is; cd <1>; s 287 0.79 12 9
<1>;ls; cd <1> 261 0.84 13 -
Is; more <1> 235 1.00 14 -
cd <1>;Is; cd 219 0.36 15 -
gcc <1> 212 0.99 16 -
<1>;ls;cd <1>;Is 201 0.77 17 17
<1>; more <1> 196 0.99 18 -
cd <1>;ls; cd <1> 189 0.86 19 -
<1>;cd<1> 189 0.84 20 -

Table 5: Support/Confidence: 10 next user sequences.

Sequence Frequency| Confidence| SC position| DD position
q-v 99 0.94 - 5
Is; cd <1>; s 287 0.79 12 9
mv <2> 125 0.93 - 10
g++ -g 94 0.47 - 11
| more 136 0.98 - 12
gcc <1>; a.out 144 0.68 - 14
Is -al 160 0.09 - 15
<1>; gcc <1>; a.out 125 0.68 - 16
<1>;ls;cd <1>;ls 201 0.77 17 17
Is; cd <1> 364 0.85 9 18

Table 6: DD: 10 next user sequences.

13

assume this is an alias for the "quota" command). In the 1dsitipn we learn about
another relatively infrequent command, "g++", which isdisesequence with the flag
"-g". The 12th sequence discovers the non-trivial coriaalbetween the pipe symbol
and the shell command "more". The 14th sequence discovergeammore interesting
sequential behavior — the correlation between compilaflgoc <1>") and execution
("a.out"). The 15th sequence reveals the correlation batviee command "Is" and
the flags "-al". Interestingly, the relatively infrequeminemand "Is -al" also has a low
confidence, and would therefore be completely excluded frenSupport/Confidence
results list. The reason for this is that the flags "-al" fokml the command "Is" in only
160 out of 1710 executions(9%). DD has discovered this sequence because out of
the other 13422 2-sequences, which do not start with the aomdis”, the flags "-al"
have appeared only once. This helped establishing thelatorebetween "Is" and "-
al" despite the low confidence. Finally, DD has also discegi¢he correlation between
the command "mv" and the two arguments that often followéthé 10th sequence in
DD list, "'mv <2>"), since most other shell commands in theadat were followed by
either zero or one arguments.

In conclusion, after skipping the most frequent sequencebé dataset, which
receive the highest ranks from both Support/Confidence @ndD uncovers inter-
esting sequential behavior while Support/Confidence tesointain mostly irrelevant
combinations of frequent events. A somewhat similar notibeiscovering interesting
results "down the list" was suggested in [5] for convictlmased rules on Census data.

4 Statistical Biases

Following the empiric comparison, we analyze the failured auccesses of the dif-
ferent techniques. While DD was significantly better thangufgConfidence, it did
not necessarily fair particularly well on an absolute scakpecially taking into ac-
count its seemingly-paradoxical drop in performance witfinar pattern rates. On the
other hand, support-based methods, even involving cordéjedid not appropriately
handle low pattern rates (high noise settings). Moreovépagh DD was able to
extract some useful sequential information from our reafltvdatasets, all methods
have essentially failed to detect more complex sequergiahtior, such as significant
correlations between two or three different shell commands

We have found that all methods suffer from common limitagiofi) a bias in the
ranking, based on length (Section 4.1); (ii) inability tongealize from similar discov-
ered patterns (Section 4.2).

4.1 RemovingtheLength Bias

The first common limitation of the approaches described aixtheir bias with respect
to the length of the segments. Figure 5 shows the averagéhl@ighe segments
returned by the learning algorithms, in a subset of the &wign in Figure 1, for two
different values of pattern rate (0.5% and 75%), where thgtleof the true patterns
was set to 3-5 (average 4) and alphabet size was fixed at 10. The figure shows
that the support algorithm prefers short segments. ThenaptSupport/Confidence

14

algorithm behaves similarly, though it improves when patteate increases (75%).
DD is slightly better, but also prefers shorter sequencésianoise (high pattern rate)
settings. In contrast to all of these, Confidence prefergdosequences.

6
B Real Length
5
< O Support
o 4
©
° 3 E Sup/ Conf
g Optimal
22 7DD
<
1 O Confidence
0

0.5% 75%
Pattern Rate(%)

Figure 5: Average segment length for two pattern rate values

Different methods have different reasons for these biaSepport-based methods
have a bias towards shorter patterns, because there areofithrem: Given a tar-
get patterPABCD, the patternrAB will have all the support 0ABCD with additional
support from (random) appearancesA®BE, ABC, ABGetc. Confidence has a bias
towards longer sequences, because their suffix can be gasdicted based on their
prefix simply because both are very rare. Finally, DD metthgrééer shorter segments
at higher pattern rate settings. We found that this is dueRdd¥oring subsequences
of true patterns to the patterns themselves. When patternisaigh, significant pat-
terns also have significant sub-patterns. Moreover, thepatterns may have higher
significance score because they are based on counts ofrsbegteences—which are
more frequent as we have seen. This explains the degradiafin accuracy at higher
pattern rates.

In order to overcome the length bias obstacle, we normatindidate pattern ranks
based on their length. The key to this method is to normallzamking based on units
of standard deviation, which can be computed for all lendifes, their standard
score). Given the rank distribution for all candidates ofjh &, let R* be the average
rank, andS* be the standard deviation of ranks. Then given a sequenangfti,
with rankr, the normalized rank will béi This translates the rankinto units
of standard deviation, where positive valaes are aboveageerUsing the normalized
rank, one can compare pattern candidates of different hengtince all normalized
ranks are in units of standard deviation. This method wad irsg5] for unsupervised
segmentation of observation streams based on statisépaihdience tests. To our best
knowledge, this is a first application in sequence learrang,in the context of methods

15

other than DD.

4.2 Generalizing from Similar Patterns

A second limitation we have found in all evaluated methodaability to generalize
patterns, in the sense that sub-segments of frequent @tistty significant patterns
are often themselves frequent (or significant). Thus bogimeat and its subsegment
receive high normalized ranks, yet are treated as compldifferent patterns by the
learning methods. For instance, if a pattet®BC D is ranked high (after normaliza-
tion), the algorithm is likely to also rank high tl#hadow sub-patternd BC', BC,
etc. Normalizing for length helps in establishing longett@as as preferable to their
shadows, but the shadows might still rank sufficiently highake the place of other
true patterns in the final pattern list.

We focus on a clustering approach, in which we group toggih#ern variations
based on their edit distance. Clustering techniques arelyvigsed in the data mining
community. Most related to our work are [4] and [13], whicle austering techniques
to learn the sequential behavior of users. A common themeaisclustering is done
based on similarity between sequential pattern instamceitraining data. Bauer [4]
uses the resulting clusters as classes for a supervisedrigalgorithm. Lane and
Brodley [13] use the clusters to detect anomalous user l@mha\Veither investigates
possible statistical biases as we do.

We cluster candidates that are within a user-specified bfé<of edit distance
from each other. The procedure goes through the list of datel top-down. The first
candidate is selected as the representative of the firdiecluBach of the following
candidates is compared against the representatives ofoédlsl existing groups. If
the candidate is within a user-provided edit-distance feorapresentative of a cluster,
it is inserted into the representative’s group. Otherwé&sagw group is created, and
the candidate is chosen as its representative. The resudt senposed of all group
representatives.

Generally, the edit-distance between two sequences isitlimal number of edit-
ing operations (insertion, deletion or replacement of glsirevent) that should be
applied on one sequence in order to turn it into the other. example, the editing
distance between ABC and ACC is 1, as is the editing distaateden AC and ABC.
A well known method for calculating the edit distance betwsequences iglobal
alignment{17].

However, our task requires some modifications to the gemee#thod. For exam-
ple, the sequence pai{s\BCDE, BCDEF} and{ABCD, AEF D} have an edit-
distance of 2, though the former pair has a large overlappiizequence5C D E),
and the latter pair has much smaller (fragmented) ovedl&iD.

We use a combination of a modified (weighted) distance catlicud, and heuristics
which come to bear after the distance is computed. Our akgrinmethod classifies
each event (belonging to one sequence and/or the othereasf tiree types: appear-
ing before an overlap between the patterns, appearingnititlei overlap, or appearing
after the overlap. It then assignsaeightededit-distance for the selected alignment,
where the edit operations have weights that differ by thesct the events they op-
erate on. Edit operations within the overlap are given a kiglght (calledmismatch

16

weigh). Edit operations on events appearing before or after teday are given a low
weight edge weight In our experiments we have used an infinite mismatch weight
meaning we did not allow any mismatch within the overlappsegment. However,
both weight values are clearly domain-dependent. We leartbdr investigation of
this issue for future work.

In order to avoid false alignments where the overlappingreed is not a signifi-
cant part of the overall unification, we set a minimal thrédhgon the length of the
overlapping segment. This threshold is set both as an aksadiue and as a portion
of the overall unification’s length.

5 Experiments

To evaluate the techniques we presented, we conductedsasdaxperiments on syn-
thetic (Section 5.1) and real data (5.2). We show signifigaptovements to all meth-
ods.

5.1 Synthetic Data Experiments

We repeated our experiments from Section 3, this time wighnttodified techniques.
Figures 6 and 7 show the accuracy achieved at differentrpati¢es, paralleling Fig-
ures 1 and 2, respectively. The figures contrast standarthatized (markedN) and
normalized-clustered\C) versions of DD, Support, and Optimal Support/Confidence
(called simply Support/Confidence henceforth).

Figure 6 shows the results for all pattern rates, separéaesupport (Figure 6-a),
Support/Confidence (6-b), and DD (6-c). Figure 7 focusesowndattern rates (high
noise) for the same techniques. Every point in the figurdsiaterage o450different
trials.

The results show that length normalization improaisested learning methods,
sometimes dramatically. For instance, the original suipigahnique completely fails
to detect true segments for pattern rate of 1%. Howevermitsalized version achieves
accuracy of 39% at this rate. Clustering the normalizedltesmproved the results
further, by notable margins.

The improvements derived from normalizing and clusterirgresults both proved
to be statistically significant for all learning techniquésor instance, a paired one-
tailed t-test shows that the normalized version of DD is i§icemtly better than the
standard versiomp(< 1 x 107'%) and that the clustered-normalized version of DD
significantly outperforms the normalized versign< 1 x 10710).

The improvements are such that after normalization andering, the simple sup-
port technique outperforms the standard DD method for aliepa rate values, in-
cluding 0.2%-0.5%. This is where standard DD performs S§icanitly better than the
other standard techniques. Indeed, after length-basadastdization and clustering,
DD may no longer be superior over the Support/Confidenceoagprfor any range of
pattern rate.

Figure 8 shows the results from one specific setting, whetie bormalizing and
normalizing-clustering proved particularly effectiveadh point in the figure represents

17

the average of 50 different tests, with an alphabet sizertbtrae patterns composed of
3-5 events. In the figure, the normalized version of the stpgpchnique has achieved
accuracy of 78% for a pattern rate of 1%, comparing to 0% aoyuof the standard
version. The Normalized-Clustered versions of all aldgwnis have achieved more than
95% accuracy for a pattern rate as low as 1%, where the agcofabe standard
techniques was 0% for support, 66% for Support/Confidendedao for DD.

These non-trivial results (in particular for support/cdefice techniques) stem
from the fact that some of the major deficiencies we describaection 2.1 with re-
spect to the Support/Confidence approach are inhibited bya@unalization and clus-
tering techniques. In particular, short frequent sequengkich previously flooded the
results returned by the technique, are suppressed by agthkased normalization.
Moreover, the techniques also improve the ability of Supg@anfidence methods to
handle significant, yet infrequent sequences, since |lamfgiant sequences are often
relatively frequent, when comparing them to other sequentéhe same length. They
are not detected by the standard Support/Confidence frarketuat after normaliza-
tion and clustering they are often assigned high ranks. Memghort significant yet
infrequent sequences (like the "quota -v" example fromige&.2), are not discovered
even by the clustered normalized frequency-based tecasiqu

We now turn to examine the effects of intra-pattern noise lenduality of the
result segments. Figure 9 shows the accuracy resulting ising the standard, Nor-
malized and Normalized-Clustered methods separatelyufgpat (Figure 9-a), Sup-
port/Confidence (9-b), and DD (9-c). Pattern-rate was fixe8%, while we varied
the intra-pattern noise rate from 0% to 50% (on the X axis)eXzected based on the
results presented above, the figures show a distinct adyatausing clustering with
all normalized methods. In addition, the figures show thiataldvantage is maintained
even when the amount of intra-pattern noise is increastywh it becomes less sig-
nificant. The results in Figure 9 were measured for an alphafti26 events and true
patterns of size 3-5. We have measured similar resultslfeetiings ofl” and pattern
size.

The ability to measure the improvements stemming from tieeafisiormalization
and clustering technique is of course a function of the gt control the data. How-
ever, we wanted to go beyond purely synthetic data.

We thus evaluated our techniques with an additional data§etused the text of
George Orwell’s1984to test our modified techniques on data that was both realisti
yet still allowed for controlled experiments. In one expeent, we changed the origi-
nal text by introducing noise within the words and betweamthFor instance, the first
sentence in the book - "It was a bright cold day in April* waplaeed by toH714H
XywOct8M (...9 more noisy words) 6@as2x imfG8elx (...2 more noisy words)
nBaorloL iWtHhTEqbrightcT xcoldVuv vifdaylAp BsQG9pyK 8NxinXR 8TGmx-
cXO EllenU2QApriulxL".

We inserted only fixed 8-character sequences, such thataighl word that is
shorter than 8 characters was padded with noise, and wanderdhan 8 characters
were cut. We set pattern rate to 40% by inserting 6 noisystsefor each 4 containing
actual words. Intra pattern noise was set at 10%. We therntedinow many of the top
100 candidates returned by each technique are actual wopdsiang in the book. We
hoped to find as many actual words in the results set as pessihé results, reflecting

18

the average accuracy over the first 8 chapters of the bookstemen in Figure 10.
Similar improvement results were achieved for other sgétiof pattern rate and intra
pattern noise.

The results show that for each of the presented techniquesNtrmalized-
Clustered versions have significantly outperformed thadsted versions, increasing
accuracy by up to 41% for the support algorithm. The norredlizersions have typ-
ically outperformed the standard versions, except for teeof DD, where the nor-
malized results contained various sequences that refldeteshme words (see Section
4.2), and were then significantly improved by our cluste@pgroach. Note also that
among the standard techniques, DD has once again outpeddha other methods.

Tables 7 and 8 show the top 25 sequences of Support/Confid&®e and
normalized-clustered Support/Confidence (SC-NC) regmyt as measured on the
first chapter of the book. For each sequence each table psritaifrequency and con-
fidence, as well as its position within the results list. ®a®lalso contains the original
position of each sequence within the results list of the ddash Support/Confidence
technique. The results demonstrate the difference betweestandard results and
the Normalized-Clustered ones. While the results of stah8apport/Confidence are
mostly composed of short sequences, the normalized-ohastesults are able to de-
tect more complex sequential patterns, such as the name bbtvk’s main character
Winston, which appears second in the normalized-clustergdlts list, and only 71st
in the original list.

5.2 Experimentswith Real-World Data

We now turn back to our real-world UNIX command-line sequena@as described in
section 3.2. Tables 9 and 10 depict the results of the top @esees returned by the
Normalized-Clustered techniques of Support/Confidenes) @d DD respectively.
The results were received on the same user dataset whicbdsesvfor the demon-
stration of Tables 3, 5 and 6. For each user sequence the ttniéain the following
fields.

1. Support.
. Confidence.

2
3. Position within the Normalized-Clustered results listhee given technique.
4. Position within the original results list of the given bedque.

5

. Position within the Normalized-Clustered results lighe alternative technique.
Due to clustering the result within the alternative list htigiot be identical to
the given sequence.

6. Position within the original results list of the alteriwattechnique.

The results of Tables 9 and 10 suggest that the clusteredatiaed versions of
both DD and Support/Confidence discovered similar seqalgueitterns. This was the
case for most of the result sequences. More importantlyh tethniques detected

19

Sequence Frequency| Confidence| SC position
he 799 0.23 1
the 466 0.58 2
ing 220 0.36 3
was 183 0.63 4
and 162 0.46 5
ere 106 0.22 6
hat 91 0.30 7
ent 89 0.25 8
ver 86 0.43 9
had 80 0.26 10
his 79 0.28 11
ith 73 0.25 12
that 67 0.78 13
eve 67 0.60 14
wit 67 0.55 15
all 66 0.37 16
ter 65 0.25 17
with 57 0.85 18
ome 57 0.33 19
een 53 0.31 20
ove 52 0.60 21
nst 52 0.47 22
The 51 0.61 23
here 50 0.37 24
ess 50 0.21 25

Table 7: 1984: Support/Confidence: Top 25 sequences.

20

Sequence Frequency| Confidence| SC-NC | SC position
position
the 466 0.58 1 2
Winston 31 1.00 2 71
ing 220 0.36 3 3
that 67 0.78 4 13
was 183 0.63 5 4
with 57 0.85 6 18
and 162 0.46 7 5
screen 23 0.92 8 115
here 50 0.37 9 24
which 29 0.97 10 86
moment 21 1.00 11 127
hough 27 1.00 12 91
Goldstei 15 1.00 13 197
ight 43 0.98 14 40
telescre 14 1.00 15 235
ould 38 0.93 16 48
Brother 14 1.00 17 235
ever 35 0.52 18 55
tion 34 0.83 19 58
Writing 13 1.00 20 270
Ministry 11 0.92 21 362
possible 11 1.00 22 362
this 17 0.27 23 161
O’brien 12 1.00 24 319
because 12 1.00 25 319

Table 8: 1984: Normalized-Clustered Support/Confidenog: Z5 sequences.

21

Sequence Freq | Conf | NC-SC SCpos | NC-DD DD pos
pos pos

cd <1>;lIs; cd <1>; Is 140 | 0.74 | 1 29 9 42

g++ -g <1>; a.out; g++ -g <1>; a.out; 28 1.00 | 2 217 1 388

g++-g<1>

<1>;vi<l> 464 | 0.99 | 3 6 4 4

vi <1>; gcc <1>; a.out; vi<1>; gcc <1 25 1.00 | 4 257 7 469

<1>; vi<1>; gcc <1>; a.out 62 | 069 | 5 84 3 59

<1>;Is; more <1> 177 | 1.00 | 6 23 8 36

<1>; fg <1>; fg <1>; fg <1>; fg <1>; fg| 12 1.00 | 7 569 14 1397

<1>

<1>; gcc <1>; vi <1>; gcc <1>; vi<l>] 12 1.00 | 8 569 6 1397

gce <1>

Vi <1>; gcc <1>; a.out; more <1>; v| 17 1.00 | 9 393 3 785

<1>

f<1>; f<1> 120 | 0.98 | 10 40 18 76

Table 9: Normalized-Clustered Support/Confidence: Topddusnces

Sequence Freq | Conf | NC-SC SC pos | NC-DD DD pos
pos pos

g++ -g <1>; a.out; g++ -g <1>; a.out; 28 1.00 | 2 217 1 78

g++-g

<1>;ls; cd <1>; s 201 | 0.77 | 1 17 2 17

vi <1>; gcc <1>; a.out 92 | 067 | 5 55 3 31

<1>;vi<l> 464 | 0.99 | 3 6 4 4

cd <1>;lIs; cd 219 | 0.36 | 1 15 5 26

<1>; gcc <1>;vi<1>; gcc 31 | 0.82 | 7 187 6 100

<1>; gcc <1>; a.out; vi <1>; gcc 25 069 | 4 257 7 144

<1>; Is; more <1> 177 | 1.00 | 6 23 8 36

cd <1>;lIs; cd <1>;Is; cd <1>; Is; cd 29 059 | 1 208 9 249

f<1>| more 64 0.96 | 19 82 10 51

Table 10: Normalized-Clustered DD: Top 10 Sequences

22

Sequence Description

ps -aux | grep <1>; kill -9 A user looking for a certain process id to Kill.
tar <3>; cd; uuencode <2> > <1>; mailx -s <2> < A user packaging a directory tree, encoding it to a
file, and sending it by mail.
compress <1>;quota;compress <1>; quota A user trying to overcome quota problems by com-
pressing files.

latex <1>; dvips <1>; ghostview<1>; latex <1%*; A latexwrite — compile — view cycle.
dvips <1>; ghostview<1>

grep <2> | wc -l; grep <2> | wc A user counting the number of occurrences of a
certain expression in one or more files.

zcat <1> | tar xvf A user uncompressing a zipped archive file and gx-
tracting files from it.

| awk <1> | sort -n | tail A user processing data, sorting it arithmetically

and examining the last part of it.

Table 11: Normalized-Clustered techniques: Samples offgignt sequential patterns.

longer and more complex, user patterns than the basic #igwidid. For instance,
the second pattern in Table @+ -g <1>; a.out; g++ -g <1>; a.out; g++ -g <1> ,
reflects acompile — run cycle. The fourth pattern in the table, <1>; gcc <1>;
a.out; vi <1>; gcc <1> represents an even more interestidgt — compile — run
cycle. The seventh sequence in Table®>; fg <1>; fg <1>; fg <1>; fg <1>; fg
<1>, points at a repetitive behavior, which is quite typicalfonix users. Similarly, the
ninth sequence of Table 16d <1>; Is; cd <1>; Is; cd <1>; Is; cd, reflects a typical
repetitive behavior of a user traversing through severaktiries while examining the
content of each of them.

In general, the results we received throughout the nine desaisets were similar,
further demonstrating the ability of the improved techmig|io discover valuable se-
quential patterns, which characterize interesting uskavier, and are overlooked by
the basic methods. Additional examples of such user patfesm the other 8 datasets
appear in Table 11.

6 Conclusionsand Future Work

This paper tackles challenges in improving the quality efusmtial pattern learning.
We empirically compared several popular learning methtulsletermine their rela-
tive strengths. Based on the comparison, we noted sevarahoo deficiencies in all
tested algorithms: All are susceptible to a bias in prefgrgattern candidates based on
length; and all fail to generalize patterns, often takingginfranked pattern candidate
as distinct from its shorter sub-patterns.

We presented techniques that are able to tackle thesdistdtiiases that under-
lie many existing learning methods, in a general fashionthat, the techniques we
presented are method-neutral: They significantly imprdi/ewaluated methods, as
empirically demonstrated in thousands of trials on symtheetd real-world data.

23

We use a normalization method to effectively neutralizeéngth bias in all learn-
ing methods tested, by normalizing the frequency/signifiearankings produced by
the learning methods. Use of this method had improved acgimaup to 42% in test-
ing on synthetic data. We then use a clustering approachdlmsa modified weighted
edit-distance measure, to group together all patternsatieatliosely related. The use
of clustering in addition to normalization had further iraped accuracy by up to 22%
in some cases. We also show that the techniques are robusistin and out of the
patterns. Finally, the improved methods were run on twotaddil sets of data: se-
quences from Orwell’s 1984, and UNIX real-world commanteldata. The methods
successfully detected many interesting patterns in both.

We believe that the implications of our work go beyond thesiits, in that they
demonstrate that existing techniques may suffer from siiises, that must be tackled
in a principled manner. However, a weakness with the mettiwatswe presented is
their use with very large data-bases. For instance, nozatain requires counting all
the patterns in the database, and would therefore be irftiéor large data-mining
applications. However, the techniques are well suited ypical agent-observation
data (such as the UNIX command-line data). We plan to con&idge data-mining
applications in our future work.

Acknowledgments

A subset of preliminary results from this work appears in [Bhe authors gratefully
acknowledge useful discussions with Adele Howe, Paul Cohed Ronen Feldman.
Special thanks to K. Ushi.

References

[1] C. C. Aggarwal and P. S. Yu. A new framework for itemset gr@tion. pages
18-24, 1998.

[2] R. Agrawal, T. Imielinski, and A. N. Swami. Mining assation rules between
sets of items in large databases. In P. Buneman and S. Jagmutifars, Pro-
ceedings of the 1993 ACM SIGMOD International Conferencélanagement
of Data, pages 207-216, Washington, D.C., 26-28 1993.

[3] R. Agrawal and R. Srikant. Mining sequential patterns.Pl S. Yu and A. S. P.
Chen, editorsEleventh International Conference on Data Engineeripgges
3-14, Taipei, Taiwan, 1995. IEEE Computer Society Press.

[4] M. Bauer. From interaction data to plan libraries: A ¢kring approach. Ii®ro-
ceedings of the International Joint Conference on Artifitidelligence (IJCAI-
99), volume 2, pages 962-967, Stockholm, Sweden, August 19%Bgan-
Kaufman Publishers, Inc.

[5] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamicniteet counting and
implication rules for market basket data. In J. PeckhantpedIGMOD 1997,

24

Proceedings ACM SIGMOD International Conference on Managyg of Data,
May 13-15, 1997, Tucson, Arizona, U$ages 255-264. ACM Press, 05 1997.

[6] P.Cohen and N. Adams. An algorithm for segmenting caiegbtime series into
meaningful episoded.ecture Notes in Computer Scien@d 89, 2001.

[71 W. DuMouchel and D. Pregibon. Empirical bayes screefiargnulti-item asso-
ciations. InProceedings of the seventh ACM SIGKDD international canfee
on Knowledge discovery and data minjpgages 67—76. ACM Press, 2001.

[8] S. Hettich and S. D. Bay. The uci kdd archive. http://kdsluci.edu/, 1999.

[9] Y. Horman and G. A. Kaminka. Removing statistical biaseansupervised se-
guence learning. IRProceedings of Intelligent Data Analysis (IDA-QBjadrid,
Spain, 2005.

[10] A. E. Howe and P. R. Cohen. Understanding planner benaitificial Intelli-
gence 76(1-2):125-166, 1995.

[11] G. A. Kaminka, M. Fidanboylu, A. Chang, and M. Veloso.arring the sequen-
tial behavior of teams from observations. Rnoceedings of the 2002 RoboCup
Symposiun2002.

[12] M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivoneamd A. I. Verkamo.
Finding interesting rules from large sets of discoveredasasion rules. In N. R.
Adam, B. K. Bhargava, and Y. Yesha, editoid)ird International Conference
on Information and Knowledge Management (CIKM'9gdges 401-407. ACM
Press, 1994.

[13] T. Lane and C. E. Brodley. Temporal sequence learnind) @data reduction
for anomaly detectionACM Transactions on Information and System Security
2(3):295-331, 1999.

[14] H. Mannila, H. Toivonen, and A. I. Verkamo. Discoveryfoéquent episodes in
event sequence®ata Mining and Knowledge Discover¥(3):259-289, 1997.

[15] T. Oates and P. R. Cohen. Searching for structure inipheilstreams of data.
In Proceedings of the Thirteenth International Conferencé/achine Learning
pages 346—-354, 1996.

[16] J. S. Park, M.-S. Chen, and P. S. Yu. Using a hash-bas#ubohevith transac-
tion trimming for mining association ruleKnowledge and Data Engineering
9(5):813-825, 1997.

[17] P. Sellers. The theory and computation of evolutiordisfances: pattern recog-
nition. Journal of Algorithms(1):1:359-373, 1980.

[18] C. Silverstein, S. Brin, and R. Motwani. Beyond markeskets: Generalizing
association rules to dependence rul®ata Mining and Knowledge Discovery
2(1):39-68, 1998.

25

[19] R. R. Sokal and F. J. RohlBiometry: The Principles and Practice of Statistics
in Biological ResearchW.H. Freeman and Co.,, New York, 1981.

[20] R. Srikant and R. Agrawal. Mining sequential patter@gneralizations and per-
formance improvements. In P. M. G. Apers, M. Bouzeghoub @Gr@ardarin, ed-
itors, Proc. 5th Int. Conf. Extending Database Technology, ED®Iume 1057,
pages 3—-17. Springer-Verlag, 25-29 1996.

[21] P.-N. Tan, V. Kumar, and J. Srivastava. Selecting thbtiinterestingness measure
for association patterns. RProceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mingages 32—41. ACM Press,
2002.

[22] M. Zaki. Fast mining of sequential patterns in very ptabases. Technical
Report 668, University of Rochester Compute Science Deyant, 1997.

[23] M. Zaki, N. Lesh, and M. Ogihara. Planmine: Sequencamgifor plan failures.
In Proceedings of the 4th International Conference on Knogeeldiscovery and
Data Mining, pages 369-374. AAAI Press, 1998.

[24] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. Négodthms for fast
discovery of association rules. Technical Report TR659719

26

80

PN -
K- - X _x Support

K =X =N. Support
40
¥
20 >l<

Accuracy (%)
\
X
|
|

= X =NC. Support

0
0 25 50 75 100
Pattern Rate (%)
(a) Support
100
.--A
aaee A
_____ &
80 _/A ‘_”_—k-"'*
_ ,A‘ _ A - —&— Sup/ Conf
oo xk
§ —A-N. Sup/ Conf
5
S 40
< - A -NC. Sup/
Conf
20
0
0 25 75 100
Pattern Rate (%)
(b) Support/Confidence
100
80
|
............. —=-DD
g woo bR
Se0 W -
g W
8 —&-N.DD
3
§ 40
- ® -NC.DD
20
0
0 25 50 75 100
Pattern Rate (%)
(c) DD

Figure 6: Modified: All Pattern Rates, average results.

27

100

80
—¥—Support
o X
Kemme s ¥ ---";— _____ % =—X~=N. Support
40 e — e T T
- X -NC. Support
20 <
0 M
0 1 2 3 4 5
Pattern Rate (%)
(a) Support
100
80
L. -A —4— Sup/ Conf
60 P T
‘--::,—”’ —A-N. Sup/ Conf
lk -
40 s
/(/ - A -NC. Sup/
Conf
20 1
0
0 1 2 3 4 5
Pattern Rate (%)
(b) Support/Confidence
100
80
—=-DD
60
—a-N.DD
40
- ®-NC. DD
20
0
0 1 2 3 4 5
Pattern Rate (%)
(c) bD

Figure 7: Modified: Low Pattern Rates, average results.

28

100))K)Qé Kemm Kemm e s Ke=mmmm Kommm s K
It e — =k — —
80 K — K— — *
g E(—*—=Support
5‘60]
g =X =N. Support
[*]
240 '(
= X =-NC. Support
20
0 SHoK—k¢ —— e X
0 20 40 60 80 100
Pattern Rate (%)
(a) Support
100
— A= — — &k — — —A
80
—&—Sup/ Conf
S
<60
] —A~N. Sup/ Conf
§ a0
< - A -NC. Sup/
Conf
20
oA ! ! ! !)
0 20 40 60 80 100
Pattern Rate (%)
(b) Support/Confidence
100
80
— —&-DD
S
<60
3
I - -N. DD
=]
S0
- -NC.DD

0 T T T T |
0 20 40 60 80 100
Pattern Rate (%)

(c) DD

Figure 8: Modified:I" = 26, Patterns of size 3-5.

29

Accuracy (%)

K=K — i
75 B Il
—_ ~N N —¥—Support
IS N
[NN
> ~N N . _
g 50 NG ~ gu ort
3 N .
< N\ - X-NC.
S rt
25 uppo
0 DR——K K o
0 25 50
Intra-Pattern Noise (%)
(a) Support
100 Ak A- - p- -
. A
A=k ——
75] SO
~ —&— Sup/ Conf
N
~
i a —A -N. Sup/
~N
50 Conf
- A -NC. Sup/
Conf
25 4

0 25 50
Intra-Pattern Noise (%)

(b) Support/Confidence

Accuracy (%)

25
Intra-Pattern Noise (%)

(c) DD

Figure 9: Handling intra-pattern noise.

30

Accuracy (%)

[0}
o
|

M Standard
60 -
40 ~ CONormalized
20
M Clustered
0 - Normalized
DD Support Sup/ Conf
Conf

Figure 10:Accuracy improvements: Orwell’s 1984.

31

