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Abstract

Unsupervised sequence learning is important to many applications. A learner
is presented with unlabeled sequential data, and must discover sequential patterns
that characterize the data. Popular approaches to such learning include(and often
combine) frequency-based approaches and statistical analysis. However, the qual-
ity of results is often far from satisfactory. Though most previous investigations
seek to address method-specific limitations, we instead focus on general(method-
neutral) limitations in current approaches. This paper takes two key stepstowards
addressing such general quality-reducing flaws. First, we carry outan in-depth em-
pirical comparison and analysis of popular sequence learning methodsin terms of
thequality of information produced, for several synthetic and real-world datasets,
under controlled settings of noise. We find that both frequency-based and statistics-
based approaches (i) suffer from common statistical biases based onthe length of
the sequences considered; (ii) are unable to correctly generalize the patterns dis-
covered, thus flooding the results with multiple instances (with slight variations)
of the same pattern. We additionally show empirically that the relative quality of
different approaches changes based on the noise present in the data: Statistical ap-
proaches do better at high levels of noise, while frequency-based approaches do
better at low levels of noise. As our second contribution, we develop methods for
countering these common deficiencies. We show how to normalize rankings of
candidate patterns such that the relative ranking of different-length patterns can be
compared. We additionally show the use of clustering, based on sequence similar-
ity, to group together instances of the same general pattern, and choosethe most
general pattern that covers all of these. The results show significant improvements
in the quality of resultsin all methods, and across all noise settings.
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1 Introduction

Automated sequence learning is an important task in which a data learning system is
presented with unlabeled sequential data, and must discover sequential patterns that
characterize the data [3]. Applications include user modeling [4], anomaly detection
[13], and system execution analysis [10,11,23].

Two popular approaches to this task are frequency-based (support) methods (e.g.,
[3,22]), and statistical dependence methods (e.g., [10]).These methods have been stud-
ied separately and in combination, often with the intent of the investigation on scalabil-
ity and removal of spurious results. Yet the quality of sequential pattern learning results
is still often far from satisfactory [11,18]. Much of recentliterature is therefore devoted
to examining method-specific flaws of various statistical and frequency-based methods
(e.g., [1]). For instance, [5] discusses different flaws of several statistical methods often
used in combination with support-based learning techniques.

In contrast, we seek to determine general (method-neutral)causes for the poor re-
sults of existing methods. In an effort to better understandthe issues, we empirically
compare the results produced by popular support-based and statistical sequential pat-
tern learning methods on several synthetic and real-world data sets. The comparison
uncovers severalgeneraldeficiencies inall the methods we tested.

First, the results show that all tested methods are biased inpreferring sequences
based on their length, often preferring shorter sequences to more meaningful longer
sequential patterns. Second, we find that all approaches areunable to correctly gen-
eralize the patterns discovered, thus flooding the results with multiple instances (with
slight variations) of the same pattern. Finally, the results show that the relative quality
of different approaches changes based on the noise present in the data: Statistical ap-
proaches do better at high levels of noise, while frequency-based approaches do better
at low levels of noise.

We present methods for addressing all of these deficiencies.First, we present a
length normalizationmethod that leads to significant improvements inall sequence
learning methods tested (up to 42% improvement in accuracy). We then show how to
use clustering to group together similar sequences. We showthat previously distin-
guished sub-patterns are now correctly identified as instances of the same general pat-
tern, leading toadditionalsignificant accuracy improvements. The experiments show
that the techniques are generic, in that they significantly improve all of the methods
initially tested. All experiments are carried out in tens ofthousands of repeated trials,
on both synthetic and real-world data.

This paper is organized as follows. First, Section 2 presents a brief overview of the
sequential pattern learning problem, and previous work, which has focused on method-
specific limitations of various support-based and statistical data analysis approaches.
Then (Section 3), we present the results from our empirical investigation of popular
methods using synthetic and real-world datasets. The conclusions we draw from these
results as to general biases in existing learning approaches are presented in Section
4, and this section also presents techniques for addressingthese biases, regardless of
the approach used. Section 5 presents the results of experiments with the techniques
we develop, and demonstrates the significant improvements achieved. Section 6 con-
cludes.
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2 Background and Related Work

In unsupervised learning of sequential patterns, the learning system is given exam-
ple streams, each a sequenceα1, α2, . . . , αm of some atomicevents(e.g., observed
actions). The system must extractsequential patterns—sequences of events—which
characterize the example streams, with as little assistance as possible. Of course,
not every pattern is characteristic of the streams, as some of the patterns reflect no
more than a random co-occurrence of events. Thus it is important to only extract
patterns that are composed of correlated events and that reveal valuable information
about the dataset. Different methods for sequence learningdiffer in their scalability
(e.g., [16, 20, 22, 24]), in their goal settings (e.g., patterns allowing for arbitrary sepa-
ration between events [3] or only for closely-occurring events [14]), and in how they
characterize such patterns (i.e., in how they determine that a pattern is interesting). Our
study in this paper focuses on determining limitations thatare general, in that many dif-
ferent characterizations of interesting patterns suffer from them. We thus ignore here
the issue of differences between methods based on scalability or event separation.

2.1 Frequency based methods

Perhaps the most common characterization of patterns is based on their relative
frequency—calledsupport—within the database [3]. The algorithm first finds all fre-
quent sequences of size 1, i.e. all attributes whose supportexceeds a user-defined
threshold calledmin_support. Since the subsequences of each frequent 2-sequence are
in fact frequent 1-sequences, the algorithm generates a list of candidate 2-sequences
by concatenating all frequent 1-sequences to one another. It then counts all candidates
by iterating the entire dataset, and maintains a list of frequent 2-sequences. The algo-
rithm then generates a list of candidate 3-sequences based on combinations of frequent
2-sequences, and the process repeats until no more frequentpatterns are discovered.
The main advantage of frequency-based techniques is the fact that many sequences
that appear in the dataset are not counted at all. This is due to theclosureproperty of
the frequency measure, i.e. the fact that each subsequence of a frequent pattern is also
frequent. Consequently, frequency-based techniques are appropriate for analyzing and
learning from large datasets, such as transactional databases of retail organizations [22].

However, frequent sequential patterns are not necessarilymeaningful. For instance,
if an eventa is frequent, and an eventb is frequent, then the eventsab, ba are often
frequent as well, simply due to random chance which places them next to each other
(random co-occurrence). To battle such spurious frequent patterns generated by the
first-tier support-based algorithm, many investigations propose a number of second-
tier methods, to further filter the results generated by the first tier.

A common second-tier technique—confidence—measures the likelihood of a se-
quence’s suffix given its prefix, i.e., the predictive power of the prefix with respect to
the suffix. For a sequencep composed of a prefixpr, the confidence ofp is given by
conf(p) = freq(p)

freq(pr) . The Support/Confidence framework ( [2]) detects all sequences
whose frequency exceeds a user definedmin_supportand confidence exceeds a user
definedmin_confidence.

The Support/Confidence approach suffers from several specific limitations. First,
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COFFEE ¬COFFEE

TEA 20 5 25

¬TEA 70 5 75

90 10 100

Table 1: Correlation between purchases of tea and coffee.

significant patterns are not necessarily very frequent. Reducing the minimal support
threshold might help, but this also introduces many uninteresting patterns and affects
the performance of the learning process [1]. A second problem ( [1, 12, 23]) is the
flooding of results, i.e. the large number of patterns returned by the algorithm. The
problem is emphasized as the data set becomes more dense [1].One way to address
the flooding challenge is to rely on external knowledge to filter irrelevant patterns. This
knowledge can either be explicitly provided by a domain expert ( [12]) or inferred from
the domain, e.g. when sequences are labeled ( [23]). These solutions, however, require
knowledge outside of the original unlabeled data.

The third problem is the spuriousness of the results [1,5,18]. Silverstein et. al [18]
demonstrate the problem with the following example. Consider a database containing
information about goods that have been bought together by customers. In particular,
consider a candidate association rule that associates purchases of tea and coffee. The
relevant data is shown in Table 1. For instance, the table shows (row 1, marked TEA)
that out of 25 customers that bought tea, 20 also bought coffee, while 5 did not. Also
(column 2, marked¬COFFEE), out of 10 customers thatdid notbuy coffee, 5 bought
tea (row 1), and five did not.

The strength of the rule TEA→ COFFEE can be calculated by the Sup-
port/Confidence approach using the contingency table (Table 1). The support for
this rule is 20%, which is quite high, and its confidence is 80%, certainly a high
value, as 20 out of 25 tea buyers have also purchased coffee. Consequently, the rule
TEA → COFFEE is expected to be part of the results set. Note, however, that the
apriori probability of a customer to purchase coffee is 90% (margin of first column).
In other words, a customer that buys tea isless likelyto buy coffee than a customer we
don’t know anything about. Moreover, a customer who doesn’tbuy tea is much more
likely to purchase coffee. This means there is in fact anegativecorrelation between
tea and coffee, although the rule TEA→ COFFEE would have been discovered by the
Support/Confidence framework. This results from the fact that the Support/Confidence
framework does not consider the null hypothesis, i.e. the chance to encounter the pat-
tern under the assumption of independence.

2.2 Statistical and Probability Approaches

In direct response to the specific deficiencies of support/confidence techniques, alter-
native statistical and probability-based analysis methods have been proposed, typically
to replace the confidence measure. [21] surveys a large number of such measures and
demonstrates that they can provide conflicting information.
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Interestis a measure that attempts to contrast predictive power withthe probabilis-
tic independence assumption [5, 18, 21]. LetAB be an sequence, where bothA and
B reflect patterns containing one or more events. Then the interest measure ofAB is

sup(AB)
sup(A)sup(B) . Interest values above 1 indicate positive dependence, while those below
1 indicate negative dependence. Thus in contrast to confidence, interest considers the
assumption of independence ofA andB, and might therefore provide better results as
a second-tier technique (on top of support).

However, previous work has recognized limitations specificto interest [18]. In par-
ticular, since interest does not consider the frequency ofA andB, its absolute value
may be misleading. For instance, long patterns, which are less expected to appear to-
gether under the assumption of independence, almost alwaysreceive very high values
of interest despite the fact that their frequency is typically very low and they might
therefore be insignificant. Indeed, [18] suggests that interest should only be used to
compare different associations between set of events that are already considered cor-
related, and not for comparing different patterns. Anotherpossible problem is that in-
terest is completely symmetric, which makes its use in sequence learning applications
(whereA → B andB → A are different) problematic.

To address these difficulties,convictionhas been proposed in [5]. It is defined as
sup(A)sup(¬B)

sup(A¬B) , with the underlying intuition thatA → B is in fact¬(A∧¬B), and thus
we can measure how farA∧¬B deviates from independence, and then invert the ratio
to handle the negation. Unlike interest, conviction is asymmetric and is therefore more
appropriate for measuring sequences. However, convictionstill suffers from similar
flaws as interest in other ways. For instance, like confidence, conviction does not take
frequency into account. Thus, two eventsA andB that have occurred only once and
happened to appear together are given the maximal conviction rate of∞. Also, like
interest, conviction favors longer sequences, which are less expected to appear under
the assumption of independence (this is indeed mentioned in[5], which claims many
rules were very long and too complicated to be interesting).

A different approach is presented in [1]. The authors present a measure called
collective strength, which is defined as follows. For each item-setI in the data set
the violation rate of the item, denotedv(I), is the fraction of transactions that contain
some, but not all, of the attributes of I. The collective strength of an itemI is defined as
C(I) = (1−v(I))E[v(I)]

v(I)(1−E[v(I)]) , whereE reflects expectation under the assumption of indepen-
dence. Note that the collective strength increases as the number of "violating" transac-
tions decreases, and as the number of "supportive" transactions exceeds expectations.
The value of C(I) under the assumption of independence is 1, and it exceeds this value
in case of an interesting pattern. However, this measure canalso be quite misleading,
as mentioned in [7], in that strong statistical correlations between relatively infrequent
attributes yield collective strength values that only marginally exceed 1, the value of
C(I) under the assumption of independence. For instance, assuming attributesA, B,
C andD each appear in 5% of the itemsets, they are all expected to appear together
in less than0.0006% of the itemsets (0.054) and are expected not to appear at all in
≈ 0.81% of the itemsets. If all attributes appear together in1% of the itemsets, which
is ≈ 1666 times more than what is expected under the assumption of independence,
and all do not appear at all in0.82% of the itemsets (which matches expectations), the
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collective strength ofABCD is ≈ 1.11, only slightly above the independence value.
Moreover, the definition of a strongly collective item-set requires not only a high

collective strength rank, but also demands all sub-itemsets to be strongly collective.
This definition makes sure the suggested measure maintains the closure property, and
makes it appropriate for large-scale data mining purposes.However, this also means
that strongly-collective itemsets contain items which areall correlated to one another.
This property is not guaranteed in all data mining domains. For instance, one may
want to discover whether a certain combination of age, gender and origin increases the
chance of getting a certain disease. A rule such asAge > 80,Male, European →
AlzheimerDisease may, of course, be interesting, although there is no correlation
between the attributes reflecting age, gender and origin, and therefore it will not be
considered strongly collective.

Silverstein et. al [18] offer an extensive discussion of therelative weaknesses and
strengths of different statistical approaches, and suggests learning association rules that
are judged significant using a chi-squared statistical test. For eachk-item-set (a set of
k attributes within a customer basket), the authors run a chi-squared statistical test, us-
ing ak-dimensional contingency table, where each cell reflects a combination of the
k attributes involved. For instance, for the patternABC the authors suggest count-
ing ABC, AB¬C, A¬BC, A¬B¬C, ¬ABC, ¬AB¬C, ¬A¬BC and¬A¬B¬C.
The authors claim that chi-square test is upward closed. In other words, for each 3
attributesA, B andC chi − square(ABC) >= chi − square(AB). Based on this
property the suggested algorithm stops mining patterns that already contain significant
subsequences, assuming onlyminimally dependentassociation rules are interesting.
However, later work [7] has shown that although raw chi-square values are indeed
increasing when expanding a rule by additional attributes,the statistical significance
(p-value) does not necessarily increase. This invalidatesthe concept of minimally de-
pendent association rules.

A similar technique uses a G-test [19] for detecting statistically significant patterns
[10, 15]. To calculate the rank of a given patternp, a 2 × 2 contingency table is built
for its prefixpr and suffixαk (Table 2). In the top row,n1 is the number of times that
we saw the patternp (pr followed by αk), and is simplyfreq(p). n2 is the number
of times we saw a different suffix to the same prefix, i.e.,

∑
αi 6=αk

freq(prαi). In the
second row,n3 is the number of patterns in whichαk followed a different prefix than
pr (

∑
pm 6=pr

freq(pmαk)). n4 is the number of patterns in which a different prefix was
followed by a different suffix (

∑
pm 6=pr

∑
αi 6=αk

freq(pmαi)). The table margins are
the sums of their respective rows or columns. A G-test is thenrun on the contingency
table to calculate the dependence ofαk onpr as follows:G = 2

∑
ni × log ni

Ei

, where
E is the expected frequency under the assumption of independence.

The advantage of dependency detection methods (hereinafter, markedDD) such as
chi-square or G-test over other statistical measures such as interest, conviction and col-
lective strength is that they consider both frequency and departure from independence.
Another advantage of these tests is that while they do not maintain the closure prop-
erty, it is still possible to compute an upper bound for theirranks. Such an upper bound
evaluation was used in [15] as a pruning technique for searching the best correlations
between multiple streams of data. DD methods have been utilized in several data anal-
ysis applications, including analysis of execution traces[10], time-series analysis [6],
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αk ¬αk

pr n1 n2 freq(pr)

¬pr n3 n4

∑
pm 6=pr

freq(pm)

freq(αk)
∑

αi 6=αk

freq(αi)

Table 2: A statistical contingency table for sequential patternp, composed of a prefix
pr = α1, α2, . . . , αk−1 and suffixαk.

and RoboCup soccer coaching [11]. However, DD methods have not been shown to
scale to large databases, and (as we show below) also suffer from a length-based bias.

2.3 Summary

The problem of the poor quality of the results generated by existing methods is well
known in the literature, as the discussion above demonstrates. However, investigations
have often tended to point out specific limitations of previous work. Thus work on
interest is largely motivated by limitations of confidence,and work on conviction is
motivated by limitations of interest, etc.

This paper focuses instead on addressing general limitations: Those that are com-
mon to many or all approaches. The next section begins with anempirical investigation
of two representative approaches, and draws conclusions asto such general limitations.

3 Sequential pattern learning techniques: Initial exper-
iments

Our research begins with a comparison of several sequence mining techniques, fo-
cusing on the quality of their results. Our main interest is to contrast the results of
support-based and statistical techniques, and their combinations, to find out whether
one of these approaches outperforms the other significantlyand under which condi-
tions. Section 3.1 describes the experiments we performed on synthetic data. Our
experiments using real-world data are described in section3.2.

3.1 Synthetic Data Experiments

We conducted extensive experiments using synthetic data, comparing Support, Confi-
dence, Support/Confidence and dependency-detection usinga G-test (DD). In each run,
these techniques were to discover five different re-occurring true segments, uniformly
distributed within a file of 5000 streams. We refer to the percentage of the streams
that contain true segments aspattern rate; thus low pattern rates indicate high levels
of noise. The example streams might include additional random events before, after,
or within a segment. We controlledintra-pattern noise rate: The probability of having
noise inserted within a pattern. However, in the following tests no noise was inserted
(we evaluate the effects of intra-pattern noise in Section 5).
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Figure 1: Accuracy of unsupervised sequence learning methods.

In each experiment, each technique reported its best 10 segment candidates, and
those were compared to the five true segments. The results were measured as the per-
centage of true segments that were correctly detected (the recall of the technique, here-
inafter denotedaccuracy). The Support/Confidence technique requires setting manual
thresholds. To allow this method to compete, we set its thresholds such that no true pat-
tern would be pruned prematurely. We refer to this techniqueas “Support/Confidence
Optimal”. We have also tested a more realistic version of thealgorithm, using fixed
minimal confidence of 20% (“Support/Confidence”). While the Support/Confidence
method is meant to return all segments satisfying the thresholds, with no ordering, we
approximated ranking of resulting segments by their support (after thresholding).

We varied several key parameters in order to verify the consistency of the results.
For three different values of alphabet size, denotedT (5, 10 and 26) and three ranges
of true-pattern sizes (2–3, 3–5 and 4–7) we have generated data sets of sequences
with incrementing values of pattern rate. For each pattern rate we have conducted
50 different tests. Overall, we ran a total of 4500 tests, each using different 5000
sequences and different sets of 5 true patterns.

The results are depicted in Figure 1. The X-axis measures thepattern rate from
0.2% to 100%. The Y-axis measures the average accuracy of thedifferent techniques
over the various combinations ofT and pattern size. Each point in the figure reflects the
average of450different tests. The “Optimal Support/Confidence” technique is denoted
"Sup/Conf Optimal", where the standard method, using a fixedminimal confidence
value, is denoted "Sup/Conf". The dependency-detection isdenoted “DD”.

The figure shows that dependency-detection (DD) outperforms all other methods
for low and medium values of pattern rate. However, the results cross over and
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Support/Confidence optimal outperforms DD at high pattern rates. This unexpected
degradation in DD results at increasing pattern rates is addressed in Section 4.1. The
manually-set Support/Confidence, as well as the simple support technique, provide rel-
atively poor results. Finally, confidence essentially fails for most pattern rate values.

Figure 2 shows the results for the same experiment, focusingon pattern rates up to
5%. As can be clearly seen, DD quickly achieves relatively high accuracy, at least twice
as accurate as the next best technique, Support/Confidence optimal. A paired one-tailed
t-test comparing DD and Support/Confidence optimal for pattern rates of up to 5%
shows that the difference is significant at the 0.01 significance level (p < 1 × 10−10).
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Figure 2: Accuracy at low pattern rates (high noise).

We evaluated the effect of alphabet sizeT on the accuracy of the different algo-
rithms. Figures 3 and 4 show the accuracy we measured for the two different alphabet
sizes 5 and 26 respectively, corresponding to the tests depicted in Figure 2. The alpha-
bet size is concatenated to the name of each technique, e.g.,"DD-26" corresponds to
the results of the DD technique for an alphabet of size 26. TheFigures clearly show
that all methods have achieved better results when a larger alphabet was used. The
reason for this is that as the size of the alphabet grows, the chance of the noise to form
significant patterns in terms of the tested techniques decreases.

More importantly, the advantage of DD over the other techniques in high noise
settings becomes even more significant for the smaller alphabet tests. ForT = 5
DD’s results are 25 times more accurate than the second best technique for pattern rate
of 0.5%, and more than 6 times more accurate for pattern ratesbetween 1% and 5%.
Similar results were achieved in experiments where the sizeof true patterns was varied.
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3.2 Real World Experiments

We conducted real-world experiments on UNIX command line sequences. We utilized
9 data sets of UNIX command line histories, collected for 8 different users at Purdue
university over the course of 2 years [8]. In this case, we do not know in advance what
true patterns were included in the data, thus quantitative evaluation of accuracy is not
possible. However, we hoped to qualitatively contrast the pattern candidates generated
by the different methods. The data has been stripped out of file names, user names
etc., so only command names and flags remained. The argumentsof each command
were replaced by a token that reflects their number. For instance "ls -la /private/docs"
was replaced by "ls -la <1>" and "cat foo.txt bar.txt zorch.txt > somewhere" was re-
placed by "cat <3> > <1>". We applied a minimal confidence threshold of 0.25 for the
Support/Confidence technique, and used G-test for DD.

The results imply once again that DD is superior to the other tested methods, but
its advantage in this case is less obvious. For simplicity wefocus on the results of one
user. We begin with the first 10 patterns discovered by Support/Confidence, depicted
in Table 3. For each sequence the table shows its frequency and confidence, as well as
its position within the DD results list.

The results depicted in Table 3 consist of very short sequences, reflecting the most
common Unix commands, such asls, cd, vi andmore. The only interesting result is "f
<1>", because we are not familiar with the Unix command "f" ("f" is probably an alias
that our specific user has configured for one of the common shell commands).

This tells us something about the nature of frequency-basedresults, which can
be useful for learning the most basic sequential behavior ofa user, but might fail in
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detecting more complex / interesting phenomena. For someone who is not familiar with
Unix (like we are not with the command "f") the results can be very useful, because
they point at the most common features in a new domain. However, for someone
who is looking for more novel information, the results mightbe disappointing. A
Similar point was made in [5] with respect to highly ranked conviction-based rules that
were extracted from Census data and included examples such as "five year olds don’t
work", "unemployed residents don’t gain income from work" and "men don’t give
birth". Given an adult’s perspective, such rules are not interesting. But to someone
(say, a theoretical alien), these results may in fact be interesting.

Interestingly, Table 3 also shows that the most frequent sequences in the dataset
have also received high DD ranks. In fact, 7 out of the 8 most frequent sequences were
included in the top 8 results of DD. This seems surprising, because rules such as "cd
<1>" and "vi <1>" do not seem to be statistically significant,as the existence of a single
argument does not seem highly correlated with the commandscd or vi.

The reason for this behavior is that DD, like many other methods we tested, is
biased towards frequent sequences, which yield high-confidence rules. Given two sta-
tistically significant patterns with the same underlying relations betweenn1, n2, n3

andn4 in the contingency tables, the more frequent pattern will also receive a higher
score by statistical tests such as G or Chi-Square. In order to understand this better, let
us examine the contingency table of the sequence "cd <1>" (Table 4). Out of the 987
appearances of "cd" it was followed by a single argument 832 times (84% of the cases).
Among all other 14145 2-sequences, only 3450 (24%) were followed by the single ar-
gument indicator "<1>". The fact that "cd" is a relatively frequent command also helps
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Sequence Frequency Confidence SC position DD position
<1>; ls 1088 0.25 1 7
cd <1> 832 0.84 2 3
vi <1> 774 0.99 3 1
more <1> 669 0.83 4 6
cd <1>; ls 607 0.73 5 2
<1>; vi <1> 464 0.99 6 4
ls; cd 430 0.25 7 13
f <1> 404 0.98 8 8
ls; cd <1> 364 0.85 9 18
<1>; ls; cd 309 0.28 10 20

Table 3: User sequences with highest support

<1> ¬ <1>

cd 832 155 987
¬ cd 3450 10695 14145

4282 10850 15132

Table 4: Contingency table for "cd <1>"

rejecting the null hypothesis and establishing the statistical correlation between "cd"
and "<1>". For instance, if "cd" had appeared only 10 times, and was followed by
a single argument in 9 of the cases (maintaining a similar ratio to our database, and
leaving all other sequences unchanged) the G rank of "cd <1>"would have been≈ 20,
comparing to≈ 1450, the original rank of "cd <1>".

By now we have covered the 10 most frequent sequences in our dataset. Looking
further down the result list reveals the advantage of DD overthe Support/Confidence
approach. Table 5 depicts the 10 next candidates of Support/Confidence, where table
6 shows the 10 next candidates of DD, starting from candidate5 (which was skipped
before due to its relatively low frequency) and skipping other frequent candidates we
have already covered. For each sequence we indicate its position within both Sup-
port/Confidence and DD result lists, or ’-’ when it is not included in the top 20 se-
quences of the relevant technique.

The sequences in Table 5 are not of much interest. Most of the sequences represent
different combinations of frequent commands such asls, cd andmore. Note that most
of these irrelevant sequences are not detected by DD, despite their high frequency and
confidence values. The only news we learn from Table 5 are two new frequent one-
argument shell commands —rm andgcc, one of which is also discovered by DD.

Table 6 on the other hand, contains a lot of interesting information. The first
command—"q -v"—received a very high rank by DD, although it is relatively infre-
quent. Once again, we are not familiar with the Unix command "q" and thanks to DD
we learn not only about its existence, but also about its correlation with the flag "-v" (we
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Sequence Frequency Confidence SC position DD position
rm <1> 297 0.92 11 19
ls; cd <1>; ls 287 0.79 12 9
<1>; ls; cd <1> 261 0.84 13 -
ls; more <1> 235 1.00 14 -
cd <1>; ls; cd 219 0.36 15 -
gcc <1> 212 0.99 16 -
<1>; ls; cd <1>; ls 201 0.77 17 17
<1>; more <1> 196 0.99 18 -
cd <1>; ls; cd <1> 189 0.86 19 -
<1>; cd <1> 189 0.84 20 -

Table 5: Support/Confidence: 10 next user sequences.

Sequence Frequency Confidence SC position DD position
q -v 99 0.94 - 5
ls; cd <1>; ls 287 0.79 12 9
mv <2> 125 0.93 - 10
g++ -g 94 0.47 - 11
| more 136 0.98 - 12
gcc <1>; a.out 144 0.68 - 14
ls -al 160 0.09 - 15
<1>; gcc <1>; a.out 125 0.68 - 16
<1>; ls; cd <1>; ls 201 0.77 17 17
ls; cd <1> 364 0.85 9 18

Table 6: DD: 10 next user sequences.
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assume this is an alias for the "quota" command). In the 11th position we learn about
another relatively infrequent command, "g++", which is used in sequence with the flag
"-g". The 12th sequence discovers the non-trivial correlation between the pipe symbol
and the shell command "more". The 14th sequence discovers aneven more interesting
sequential behavior — the correlation between compilation("gcc <1>") and execution
("a.out"). The 15th sequence reveals the correlation between the command "ls" and
the flags "-al". Interestingly, the relatively infrequent command "ls -al" also has a low
confidence, and would therefore be completely excluded fromthe Support/Confidence
results list. The reason for this is that the flags "-al" followed the command "ls" in only
160 out of 1710 executions (≈ 9%). DD has discovered this sequence because out of
the other 13422 2-sequences, which do not start with the command "ls", the flags "-al"
have appeared only once. This helped establishing the correlation between "ls" and "-
al" despite the low confidence. Finally, DD has also discovered the correlation between
the command "mv" and the two arguments that often followed it(the 10th sequence in
DD list, "mv <2>"), since most other shell commands in the dataset were followed by
either zero or one arguments.

In conclusion, after skipping the most frequent sequences in the dataset, which
receive the highest ranks from both Support/Confidence and DD, DD uncovers inter-
esting sequential behavior while Support/Confidence results contain mostly irrelevant
combinations of frequent events. A somewhat similar notionof discovering interesting
results "down the list" was suggested in [5] for conviction-based rules on Census data.

4 Statistical Biases

Following the empiric comparison, we analyze the failures and successes of the dif-
ferent techniques. While DD was significantly better than Support/Confidence, it did
not necessarily fair particularly well on an absolute scale, especially taking into ac-
count its seemingly-paradoxical drop in performance with higher pattern rates. On the
other hand, support-based methods, even involving confidence, did not appropriately
handle low pattern rates (high noise settings). Moreover, although DD was able to
extract some useful sequential information from our real-world datasets, all methods
have essentially failed to detect more complex sequential behavior, such as significant
correlations between two or three different shell commands.

We have found that all methods suffer from common limitations: (i) a bias in the
ranking, based on length (Section 4.1); (ii) inability to generalize from similar discov-
ered patterns (Section 4.2).

4.1 Removing the Length Bias

The first common limitation of the approaches described above is their bias with respect
to the length of the segments. Figure 5 shows the average length of the segments
returned by the learning algorithms, in a subset of the testsshown in Figure 1, for two
different values of pattern rate (0.5% and 75%), where the length of the true patterns
was set to 3–5 (average≈ 4) and alphabet size was fixed at 10. The figure shows
that the support algorithm prefers short segments. The optimal Support/Confidence
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algorithm behaves similarly, though it improves when pattern rate increases (75%).
DD is slightly better, but also prefers shorter sequences atlow noise (high pattern rate)
settings. In contrast to all of these, Confidence prefers longer sequences.
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Figure 5: Average segment length for two pattern rate values.

Different methods have different reasons for these biases.Support-based methods
have a bias towards shorter patterns, because there are moreof them: Given a tar-
get patternABCD, the patternAB will have all the support ofABCD with additional
support from (random) appearances ofABE, ABC, ABG, etc. Confidence has a bias
towards longer sequences, because their suffix can be easilypredicted based on their
prefix simply because both are very rare. Finally, DD methodsprefer shorter segments
at higher pattern rate settings. We found that this is due to DD favoring subsequences
of true patterns to the patterns themselves. When pattern rate is high, significant pat-
terns also have significant sub-patterns. Moreover, the sub-patterns may have higher
significance score because they are based on counts of shorter sequences—which are
more frequent as we have seen. This explains the degradationin DD accuracy at higher
pattern rates.

In order to overcome the length bias obstacle, we normalize candidate pattern ranks
based on their length. The key to this method is to normalize all ranking based on units
of standard deviation, which can be computed for all lengths(i.e., their standardz
score). Given the rank distribution for all candidates of lengthk, let R̄k be the average
rank, andŜk be the standard deviation of ranks. Then given a sequence of lengthk,
with rank r, the normalized rank will ber−R̄k

Ŝk
. This translates the rankr into units

of standard deviation, where positive values are above average. Using the normalized
rank, one can compare pattern candidates of different lengths, since all normalized
ranks are in units of standard deviation. This method was used in [6] for unsupervised
segmentation of observation streams based on statistical dependence tests. To our best
knowledge, this is a first application in sequence learning,and in the context of methods
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other than DD.

4.2 Generalizing from Similar Patterns

A second limitation we have found in all evaluated methods isinability to generalize
patterns, in the sense that sub-segments of frequent or statistically significant patterns
are often themselves frequent (or significant). Thus both segment and its subsegment
receive high normalized ranks, yet are treated as completely different patterns by the
learning methods. For instance, if a patternABCD is ranked high (after normaliza-
tion), the algorithm is likely to also rank high theshadow sub-patternsABC, BC,
etc. Normalizing for length helps in establishing longer patterns as preferable to their
shadows, but the shadows might still rank sufficiently high to take the place of other
true patterns in the final pattern list.

We focus on a clustering approach, in which we group togetherpattern variations
based on their edit distance. Clustering techniques are widely used in the data mining
community. Most related to our work are [4] and [13], which use clustering techniques
to learn the sequential behavior of users. A common theme is that clustering is done
based on similarity between sequential pattern instances in the training data. Bauer [4]
uses the resulting clusters as classes for a supervised learning algorithm. Lane and
Brodley [13] use the clusters to detect anomalous user behavior. Neither investigates
possible statistical biases as we do.

We cluster candidates that are within a user-specified threshold of edit distance
from each other. The procedure goes through the list of candidates top-down. The first
candidate is selected as the representative of the first cluster. Each of the following
candidates is compared against the representatives of eachof the existing groups. If
the candidate is within a user-provided edit-distance froma representative of a cluster,
it is inserted into the representative’s group. Otherwise,a new group is created, and
the candidate is chosen as its representative. The result set is composed of all group
representatives.

Generally, the edit-distance between two sequences is the minimal number of edit-
ing operations (insertion, deletion or replacement of a single event) that should be
applied on one sequence in order to turn it into the other. Forexample, the editing
distance between ABC and ACC is 1, as is the editing distance between AC and ABC.
A well known method for calculating the edit distance between sequences isglobal
alignment[17].

However, our task requires some modifications to the generalmethod. For exam-
ple, the sequence pairs{ABCDE,BCDEF} and{ABCD,AEFD} have an edit-
distance of 2, though the former pair has a large overlappingsubsequence (BCDE),
and the latter pair has much smaller (fragmented) overlapA??D.

We use a combination of a modified (weighted) distance calculation, and heuristics
which come to bear after the distance is computed. Our alignment method classifies
each event (belonging to one sequence and/or the other) as one of three types: appear-
ing before an overlap between the patterns, appearing within the overlap, or appearing
after the overlap. It then assigns aweightededit-distance for the selected alignment,
where the edit operations have weights that differ by the class of the events they op-
erate on. Edit operations within the overlap are given a highweight (calledmismatch
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weight). Edit operations on events appearing before or after the overlap are given a low
weight (edge weight). In our experiments we have used an infinite mismatch weight,
meaning we did not allow any mismatch within the overlappingsegment. However,
both weight values are clearly domain-dependent. We leave further investigation of
this issue for future work.

In order to avoid false alignments where the overlapping segment is not a signifi-
cant part of the overall unification, we set a minimal threshold upon the length of the
overlapping segment. This threshold is set both as an absolute value and as a portion
of the overall unification’s length.

5 Experiments

To evaluate the techniques we presented, we conducted extensive experiments on syn-
thetic (Section 5.1) and real data (5.2). We show significantimprovements to all meth-
ods.

5.1 Synthetic Data Experiments

We repeated our experiments from Section 3, this time with the modified techniques.
Figures 6 and 7 show the accuracy achieved at different pattern rates, paralleling Fig-
ures 1 and 2, respectively. The figures contrast standard, normalized (markedN) and
normalized-clustered (NC) versions of DD, Support, and Optimal Support/Confidence
(called simply Support/Confidence henceforth).

Figure 6 shows the results for all pattern rates, separatelyfor support (Figure 6-a),
Support/Confidence (6-b), and DD (6-c). Figure 7 focuses on low pattern rates (high
noise) for the same techniques. Every point in the figures is the average of450different
trials.

The results show that length normalization improvesall tested learning methods,
sometimes dramatically. For instance, the original support technique completely fails
to detect true segments for pattern rate of 1%. However, its normalized version achieves
accuracy of 39% at this rate. Clustering the normalized results improved the results
further, by notable margins.

The improvements derived from normalizing and clustering the results both proved
to be statistically significant for all learning techniques. For instance, a paired one-
tailed t-test shows that the normalized version of DD is significantly better than the
standard version (p < 1 × 10−10) and that the clustered-normalized version of DD
significantly outperforms the normalized version (p < 1 × 10−10).

The improvements are such that after normalization and clustering, the simple sup-
port technique outperforms the standard DD method for all pattern rate values, in-
cluding 0.2%-0.5%. This is where standard DD performs significantly better than the
other standard techniques. Indeed, after length-based standardization and clustering,
DD may no longer be superior over the Support/Confidence approach for any range of
pattern rate.

Figure 8 shows the results from one specific setting, where both normalizing and
normalizing-clustering proved particularly effective. Each point in the figure represents
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the average of 50 different tests, with an alphabet size 26, and true patterns composed of
3–5 events. In the figure, the normalized version of the support technique has achieved
accuracy of 78% for a pattern rate of 1%, comparing to 0% accuracy of the standard
version. The Normalized-Clustered versions of all algorithms have achieved more than
95% accuracy for a pattern rate as low as 1%, where the accuracy of the standard
techniques was 0% for support, 66% for Support/Confidence and 82% for DD.

These non-trivial results (in particular for support/confidence techniques) stem
from the fact that some of the major deficiencies we describedin section 2.1 with re-
spect to the Support/Confidence approach are inhibited by our normalization and clus-
tering techniques. In particular, short frequent sequences, which previously flooded the
results returned by the technique, are suppressed by our length-based normalization.
Moreover, the techniques also improve the ability of Support/Confidence methods to
handle significant, yet infrequent sequences, since long significant sequences are often
relatively frequent, when comparing them to other sequences of the same length. They
are not detected by the standard Support/Confidence framework, but after normaliza-
tion and clustering they are often assigned high ranks. However short significant yet
infrequent sequences (like the "quota -v" example from section 3.2), are not discovered
even by the clustered normalized frequency-based techniques.

We now turn to examine the effects of intra-pattern noise on the quality of the
result segments. Figure 9 shows the accuracy resulting fromusing the standard, Nor-
malized and Normalized-Clustered methods separately for support (Figure 9-a), Sup-
port/Confidence (9-b), and DD (9-c). Pattern-rate was fixed at 5%, while we varied
the intra-pattern noise rate from 0% to 50% (on the X axis). Asexpected based on the
results presented above, the figures show a distinct advantage to using clustering with
all normalized methods. In addition, the figures show that this advantage is maintained
even when the amount of intra-pattern noise is increased, although it becomes less sig-
nificant. The results in Figure 9 were measured for an alphabet of 26 events and true
patterns of size 3–5. We have measured similar results for all settings ofT and pattern
size.

The ability to measure the improvements stemming from the use of normalization
and clustering technique is of course a function of the ability to control the data. How-
ever, we wanted to go beyond purely synthetic data.

We thus evaluated our techniques with an additional dataset. We used the text of
George Orwell’s1984to test our modified techniques on data that was both realistic,
yet still allowed for controlled experiments. In one experiment, we changed the origi-
nal text by introducing noise within the words and between them. For instance, the first
sentence in the book - "It was a bright cold day in April" was replaced by "ItoH7l4H
XywOct8M (. . . 9 more noisy words) 6jOwas2x imfG8e1x (. . . 2 more noisy words)
nBaor1oL iWtHhTEqbrightcT xcoldVuv vfday1Ap BsQG9pyK 8NxfinXR 8TGmx-
cXO E1IenU2QApriulxL".

We inserted only fixed 8-character sequences, such that eachactual word that is
shorter than 8 characters was padded with noise, and words longer than 8 characters
were cut. We set pattern rate to 40% by inserting 6 noisy streams, for each 4 containing
actual words. Intra pattern noise was set at 10%. We then counted how many of the top
100 candidates returned by each technique are actual words appearing in the book. We
hoped to find as many actual words in the results set as possible. The results, reflecting
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the average accuracy over the first 8 chapters of the book, areshown in Figure 10.
Similar improvement results were achieved for other settings of pattern rate and intra
pattern noise.

The results show that for each of the presented techniques the Normalized-
Clustered versions have significantly outperformed the standard versions, increasing
accuracy by up to 41% for the support algorithm. The normalized versions have typ-
ically outperformed the standard versions, except for the case of DD, where the nor-
malized results contained various sequences that reflectedthe same words (see Section
4.2), and were then significantly improved by our clusteringapproach. Note also that
among the standard techniques, DD has once again outperformed the other methods.

Tables 7 and 8 show the top 25 sequences of Support/Confidence(SC) and
normalized-clustered Support/Confidence (SC-NC) respectively, as measured on the
first chapter of the book. For each sequence each table contains its frequency and con-
fidence, as well as its position within the results list. Table 8 also contains the original
position of each sequence within the results list of the standard Support/Confidence
technique. The results demonstrate the difference betweenthe standard results and
the Normalized-Clustered ones. While the results of standard Support/Confidence are
mostly composed of short sequences, the normalized-clustered results are able to de-
tect more complex sequential patterns, such as the name of the book’s main character
Winston, which appears second in the normalized-clusteredresults list, and only 71st
in the original list.

5.2 Experiments with Real-World Data

We now turn back to our real-world UNIX command-line sequences, as described in
section 3.2. Tables 9 and 10 depict the results of the top 10 sequences returned by the
Normalized-Clustered techniques of Support/Confidence (SC) and DD respectively.
The results were received on the same user dataset which served us for the demon-
stration of Tables 3, 5 and 6. For each user sequence the tables contain the following
fields.

1. Support.

2. Confidence.

3. Position within the Normalized-Clustered results list of the given technique.

4. Position within the original results list of the given technique.

5. Position within the Normalized-Clustered results list of the alternative technique.
Due to clustering the result within the alternative list might not be identical to
the given sequence.

6. Position within the original results list of the alternative technique.

The results of Tables 9 and 10 suggest that the clustered-normalized versions of
both DD and Support/Confidence discovered similar sequential patterns. This was the
case for most of the result sequences. More importantly, both techniques detected
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Sequence Frequency Confidence SC position
he 799 0.23 1
the 466 0.58 2
ing 220 0.36 3
was 183 0.63 4
and 162 0.46 5
ere 106 0.22 6
hat 91 0.30 7
ent 89 0.25 8
ver 86 0.43 9
had 80 0.26 10
his 79 0.28 11
ith 73 0.25 12
that 67 0.78 13
eve 67 0.60 14
wit 67 0.55 15
all 66 0.37 16
ter 65 0.25 17
with 57 0.85 18
ome 57 0.33 19
een 53 0.31 20
ove 52 0.60 21
nst 52 0.47 22
The 51 0.61 23
here 50 0.37 24
ess 50 0.21 25

Table 7: 1984: Support/Confidence: Top 25 sequences.
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Sequence Frequency Confidence SC-NC
position

SC position

the 466 0.58 1 2
Winston 31 1.00 2 71
ing 220 0.36 3 3
that 67 0.78 4 13
was 183 0.63 5 4
with 57 0.85 6 18
and 162 0.46 7 5
screen 23 0.92 8 115
here 50 0.37 9 24
which 29 0.97 10 86
moment 21 1.00 11 127
hough 27 1.00 12 91
Goldstei 15 1.00 13 197
ight 43 0.98 14 40
telescre 14 1.00 15 235
ould 38 0.93 16 48
Brother 14 1.00 17 235
ever 35 0.52 18 55
tion 34 0.83 19 58
Writing 13 1.00 20 270
Ministry 11 0.92 21 362
possible 11 1.00 22 362
this 17 0.27 23 161
O’brien 12 1.00 24 319
because 12 1.00 25 319

Table 8: 1984: Normalized-Clustered Support/Confidence: Top 25 sequences.
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Sequence Freq Conf NC-SC
pos

SC pos NC-DD
pos

DD pos

cd <1>; ls; cd <1>; ls 140 0.74 1 29 9 42
g++ -g <1>; a.out; g++ -g <1>; a.out;
g++ -g <1>

28 1.00 2 217 1 388

<1>; vi <1> 464 0.99 3 6 4 4
vi <1>; gcc <1>; a.out; vi <1>; gcc <1> 25 1.00 4 257 7 469
<1>; vi <1>; gcc <1>; a.out 62 0.69 5 84 3 59
<1>; ls; more <1> 177 1.00 6 23 8 36
<1>; fg <1>; fg <1>; fg <1>; fg <1>; fg
<1>

12 1.00 7 569 14 1397

<1>; gcc <1>; vi <1>; gcc <1>; vi <1>;
gcc <1>

12 1.00 8 569 6 1397

vi <1>; gcc <1>; a.out; more <1>; vi
<1>

17 1.00 9 393 3 785

f <1>; f <1> 120 0.98 10 40 18 76

Table 9: Normalized-Clustered Support/Confidence: Top 10 Sequences

Sequence Freq Conf NC-SC
pos

SC pos NC-DD
pos

DD pos

g++ -g <1>; a.out; g++ -g <1>; a.out;
g++ -g

28 1.00 2 217 1 78

<1>; ls; cd <1>; ls 201 0.77 1 17 2 17
vi <1>; gcc <1>; a.out 92 0.67 5 55 3 31
<1>; vi <1> 464 0.99 3 6 4 4
cd <1>; ls; cd 219 0.36 1 15 5 26
<1>; gcc <1>; vi <1>; gcc 31 0.82 7 187 6 100
<1>; gcc <1>; a.out; vi <1>; gcc 25 0.69 4 257 7 144
<1>; ls; more <1> 177 1.00 6 23 8 36
cd <1>; ls; cd <1>; ls; cd <1>; ls; cd 29 0.59 1 208 9 249
f <1> | more 64 0.96 19 82 10 51

Table 10: Normalized-Clustered DD: Top 10 Sequences
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Sequence Description
ps -aux | grep <1>; kill -9 A user looking for a certain process id to kill.
tar <3>; cd; uuencode <2> > <1>; mailx -s <2> < A user packaging a directory tree, encoding it to a

file, and sending it by mail.
compress <1>;quota;compress <1>; quota A user trying to overcome quota problems by com-

pressing files.
latex <1>; dvips <1>; ghostview<1>; latex <1>;
dvips <1>; ghostview<1>

A latexwrite → compile → view cycle.

grep <2> | wc -l; grep <2> | wc A user counting the number of occurrences of a
certain expression in one or more files.

zcat <1> | tar xvf A user uncompressing a zipped archive file and ex-
tracting files from it.

| awk <1> | sort -n | tail A user processing data, sorting it arithmetically
and examining the last part of it.

Table 11: Normalized-Clustered techniques: Samples of significant sequential patterns.

longer and more complex, user patterns than the basic algorithms did. For instance,
the second pattern in Table 9,g++ -g <1>; a.out; g++ -g <1>; a.out; g++ -g <1> ,
reflects acompile → run cycle. The fourth pattern in the table,vi <1>; gcc <1>;
a.out; vi <1>; gcc <1> represents an even more interestingedit → compile → run

cycle. The seventh sequence in Table 9,<1>; fg <1>; fg <1>; fg <1>; fg <1>; fg
<1> , points at a repetitive behavior, which is quite typical forUnix users. Similarly, the
ninth sequence of Table 10,cd <1>; ls; cd <1>; ls; cd <1>; ls; cd , reflects a typical
repetitive behavior of a user traversing through several directories while examining the
content of each of them.

In general, the results we received throughout the nine userdatasets were similar,
further demonstrating the ability of the improved techniques to discover valuable se-
quential patterns, which characterize interesting user behavior, and are overlooked by
the basic methods. Additional examples of such user patterns from the other 8 datasets
appear in Table 11.

6 Conclusions and Future Work

This paper tackles challenges in improving the quality of sequential pattern learning.
We empirically compared several popular learning methods,to determine their rela-
tive strengths. Based on the comparison, we noted several common deficiencies in all
tested algorithms: All are susceptible to a bias in preferring pattern candidates based on
length; and all fail to generalize patterns, often taking a high-ranked pattern candidate
as distinct from its shorter sub-patterns.

We presented techniques that are able to tackle these statistical biases that under-
lie many existing learning methods, in a general fashion. Inthat, the techniques we
presented are method-neutral: They significantly improve all evaluated methods, as
empirically demonstrated in thousands of trials on synthetic and real-world data.
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We use a normalization method to effectively neutralize thelength bias in all learn-
ing methods tested, by normalizing the frequency/significance rankings produced by
the learning methods. Use of this method had improved accuracy by up to 42% in test-
ing on synthetic data. We then use a clustering approach, based on a modified weighted
edit-distance measure, to group together all patterns thatare closely related. The use
of clustering in addition to normalization had further improved accuracy by up to 22%
in some cases. We also show that the techniques are robust to noise in and out of the
patterns. Finally, the improved methods were run on two additional sets of data: se-
quences from Orwell’s 1984, and UNIX real-world command-line data. The methods
successfully detected many interesting patterns in both.

We believe that the implications of our work go beyond these results, in that they
demonstrate that existing techniques may suffer from subtle biases, that must be tackled
in a principled manner. However, a weakness with the methodsthat we presented is
their use with very large data-bases. For instance, normalization requires counting all
the patterns in the database, and would therefore be inefficient for large data-mining
applications. However, the techniques are well suited for typical agent-observation
data (such as the UNIX command-line data). We plan to consider large data-mining
applications in our future work.
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Figure 6: Modified: All Pattern Rates, average results.
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Figure 7: Modified: Low Pattern Rates, average results.
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Figure 8: Modified:T = 26, Patterns of size 3–5.
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Figure 9: Handling intra-pattern noise.
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Figure 10:Accuracy improvements: Orwell’s 1984.
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