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Abstract

The RoboCup (robot world-cup soccer) effort, ini-
tiated to stimulate research in multi-agents and
robotics, has blossomed into a significant effort
of international proportions. RoboCup is simul-
taneously a fundamental research effort and a set
of competitions for testing research ideas. At IJ-
CAI’97, a broad research challenge was issued for
the RoboCup synthetic agents, covering areas of
multi-agent learning, teamwork and agent model-
ing. This paper outlines our attack on the entire
breadth of the RoboCup research challenge, on all
of its categories, in the form of two fielded, con-
trasting RoboCup teams, and two off-line soccer
analysis agents. We compare the teams and the
agents to generalize the lessons learned in learning,
teamwork and agent modeling.

1 Introduction
Increasingly, multi-agent systems are being designed for a
variety of complex, dynamic domains. To stimulate and pur-
sue research towards such multi-agent systems, the RoboCup
initiative has proposed simulation and robotic soccer as a com-
mon, unified domain for multi-agent research[Kitano et al.,
1997]. RoboCup has now blossomed into a significant effort
of international proportions.

At IJCAI’97, a broad research challenge was issued for the
RoboCup synthetic agents[Kitano et al., 1997]. This paper re-
sponds to this challenge, in the form of research lessons drawn
from several systems we have constructed for RoboCup. In
particular, we fielded the ISIS97 and ISIS98 teams, which won
third place and fourth place at RoboCup97 and RoboCup98
respectively (out of 30 to 35 participating teams). We have
also constructed two experts, ISAAC and TEAMORE, for
off-line review of RoboCup. Our response draws from these
multiple systems for two reasons. First, the RoboCup chal-
lenge covers a broad spectrum of multi-agent research, and
requires teams and off-line experts to be built. Indeed, it
proposes three separate challenge areas, learning, teamwork
and agent modeling. Second, these challenge areas often do
not have just one right answer, rather, they point to tradeoffs,
which we explore via multiple systems.

Our challenge response also attempts to extract general
lessons from RoboCup. Indeed, despite the RoboCup aim
to stimulate general multi-agent research, few RoboCup
researchers have extracted domain-independent research
lessons (there are a few notable exceptions[Stone and Veloso,
1998b]). This paper attempts to remedy this situation.

2 Background: Domain and Agents
The RoboCup simulation league uses a complex, dynamic,
noisy soccer simulation, called the soccerserver, which sim-
ulates the players’ (22) bodies, the ball and the soccer field
with goals and flags. Software agents (11 agents per team)
provide the “brains” for the simulated bodies. Visual and au-
dio information as “sensed” by the player’s body are sent to
the player agent ("brain"), which can then send action com-
mands to control the simulated body (e.g., kick, dash, turn,
say, etc.). The server constrains an agent’s actions (one action
per 100ms) and sensory updates (one perceptual update every
150-300ms). The players also have limited stamina.

The software agents we constructed to control the player
bodies are based on a two-tier architecture. The lower-level,
developed in C, processes input received from the simulator,
and together with recommendations of an intercept micro-
plan and possible kicking directions, sends the information
up to the higher-level. The higher-level is implemented in
the Soar integrated architecture[Newell, 1990]. Soar uses the
information it receives to reach a decision about the next action
and communicates its decision to the lower-level, which then
forwards the relevant action to the simulator. Soar’s operation
involves dynamically executing an operator (reactive plan)
hierarchy. The operator hierarchy shown in Figure 1 illustrates
a portion of the operator hierarchy for ISIS player-agents.
Only one path through this hierarchy is typically active at
a time in a player agent. The hierarchy has two types of
operators. Team operators constitute activities that the agent
takes on as part of a team or subteam, shown in [] (e.g.,
[Play]). In contrast, the “normal” individual operators are
ones that players execute as individuals (e.g., Intercept). The
implication of this distinction will be clarified later.

3 Response to the Learning Challenge
ISIS teams have addressed the problems of off-line skill learn-
ing and on-line adversarial learning, with results used in actual
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Figure 1: Operator hierarchy for player-agents.

competitions. Different learning algorithms are integrated in
ISIS via a divide-and-conquer approach, i.e., different mod-
ules (skills) within individual agents are learned separately.

3.1 Offline Skill Learning
Shooting a ball to score a goal is clearly one of the critical skills
in soccer. Yet, our initial, heuristic, hand-coded approaches
(e.g., shoot to a corner of the goal) failed, because (i) small
variations in shooter-position sometimes had dramatic effects
on the best shooting direction and (ii) large number of heuristic
rules were needed.

We addressed these problems via automated, off-line learn-
ing of the shooting rules. A human specialist created a set of
3000 shooting situations (each of them labeled with an opti-
mal shooting direction: UP, DOWN, and CENTER) that were
used as trainingexamples for C4.5[Quinlan, 1993]. Each such
shooting scenario was used as a training case described by 40
attributes: the recommended kicking direction, the shooter’s
facing direction, and the shooter’s angles to the visible play-
ers, flags, lines, ball, and goal. The system was trained on
1600 randomly chosen examples, and the other 1400 exam-
ples were used for testing. We repeated this procedure 50
times, and the average accuracy of the rules on the testing
sets was 70.8%. Even though the predictive power appears
low, the kicking rules were quite efficient in practice. This
is because learned-rules covered far more difficult shots than
were actually used in practice.

While the C4.5 learned rules dramatically improved shoot-
ing skills, in the competitions, the rules sometimes appeared to
take unnecessarily risky shots on the goal. This occurred be-
cause offline learning assumed the worst about the opponents’
level of play, while in practice, weaker teams provided easier
opportunities that did not justify such risks. Thus, while one
key lesson learned here is that a divide-and-conquer learning
technique may be promising for agent design, another key les-
son is that off-line learning in dynamic multi-agent contexts
must be sensitive to the varying capabilities of other agents.

3.2 Online Adversarial Learning
A key skill in RoboCup where adaptation to the opponent
is critical is that of intercepting the ball. In particular, an
opponent may kick/pass/run harder than normal, thereby re-
quiring a player to adapt by running harder, modifying their
path or forgoing interception. To enable players to adapt their
intercept online to adversaries, ISIS exploits reinforcement
learning.

One key difficulty in applying reinforcement learning how-
ever is rapid adaptation — in the course of a game, there are
not many opportunities to intercept the ball. To address this
concern, our approach employs intermediate reinforcement,
rather than waiting for the end of the intercept. A player inter-
cepts the ball by stringing together a collection of micro-plans
of a turn followed by one or two dashes. For every step in
a micro-plan, ISIS98 has an expectation as to what any new
information from the server should inform it as to the ball’s
location. Failure to meet that expectation results in a learn-
ing opportunity. To allow transfer to similar states, the input
conditions are clustered. Repeated failures lead to changes in
the plan assigned to an input condition. In particular, the turn
increment specific to that input condition is adjusted either up
or down upon repeated failure. Typically, the actual turn is
calculated from the turn increment in the following fashion:
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Experiments: In accordance with the IJCAI challenge, ex-
periments were performed against publicly available teams,
specifically CMUnited97 (team of Stone and Veloso of
Carnegie Mellon, 4th at RoboCup’97) Andhill97 (team of
T. Andou of NTT labs, 2nd at RoboCup’97). In each ex-
periment, each player started with a default value of 2.0 for
their turn increment across all input conditions. The online
learning in these games results in turn increment values that
range from +5 down to -1, across input conditions. While
these may appear small numbers, because of the multiplica-
tive factors, and since the intercept plan is invoked repeatedly,
even a small change is overall very significant.

The results show some surprising differences in what is
learned. For instance, the same player may learn very different
turn increments against different teams. Figure 2 compares
the mean results for Player 1, a forward, in games against
CMUnited97 with games against Andhill97. The mean for
all players is also shown. The x-axis plots the clock ticks
(continued until 15000) and the y-axis plots the turn incre-
ment. This data is for the input condition of balls moving
across the player’s field of vision, a middling-to-close dis-
tance away. Against Andhill97, the player is learning a turn
increment similar to the mean across all players for this in-
put condition. However, against CMUnited97, the player is
learning a considerably larger increment (difference in means
is significant using a Welch two-sided t-test, p-value=.0447).
Figure 3 shows that different players against the same team
do learn different increments. It plots mean turn-increments
for Player 1 and Player 10 for the the same input condition as
above, against CMUnited97. The difference in the means is
significant (using a Welch two-sided t-test, p-value = 6.36e-
06)

Lessons learned: Player 1 distinctly tailors its intercept to
its role and particular opponents. This occurs because CMU-
nited97’s defenders often clear the ball with a strong sideways
kick, which player 1 continuously faces. Player 1’s adaptation
not only illustrates the benefits of on-line learning, but also
a general point: it shows a high specialization of (intercept)
skills according to the role and situations faced. Thus, sharing
experiences of individuals in different roles or training indi-
vidual across roles would appear to be detrimental, i.e., there
are key limits to social learning. Of course, it does not rule
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Figure 2: Player 1 against CMUnited97 & Andhill97.
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Figure 3: Players 1 & 10 against CMUnited97.

out social learning. Indeed, in the results above, the trends of
the changes were shared across players, so that some social
learning can be carried out. Thus, our goalee agents, which
tend not to get as many intercept opportunities during the
game, rely on mean intercept values from the other players.

4 Teamwork Challenge Response
The teamwork challenge covers team planning, plan decom-
position, execution, etc. There is not necessarily one best
answer to this challenge, and our two RoboCup teams present
at least some of the tradeoffs.

4.1 Team Plan Execution
Our response to the team plan execution challenge is a key
distinction of our ISIS teams — the use of a general-purpose
teamwork model called STEAM[Tambe, 1997]. Based on
the notion of joint commitments[Cohen and Levesque, 1991],
STEAM enables team members to autonomously reason about
coherence during team plan execution. It also enables team
reorganization upon disablement of a team member and se-
lective communication. STEAM’s reasoning is instigated by
a (sub)team’s execution of a team operator. For an example
of STEAM in operation, consider the SIMPLE-DEFENSE
team operator executed by the goalee subteam to position
themselves on the field and watch out for the ball (Fig 1).
Each player sees only within its limited cone of vision, and
can be unaware at times of the approaching ball. If any
one of these players sees the ball as being close, it declares
the SIMPLE-DEFENSE team operator to be irrelevant. Its
teammates now focus on defending the goal in a coordinated
manner via the CAREFUL-DEFENSE team operator. Specif-
ically this includes intercepting the ball and then clearing it.
Should any one player in the goalee subteam see the ball
move sufficiently far away, it again alerts its team mates (that

CAREFUL-DEFENSE is achieved). The subteam players
once again revert to SIMPLE-DEFENSE. All the communi-
cation decisions for the subteam coordinationhere are handled
automatically by STEAM.

For teamwork, one evaluation criteria in [Kitano et al.,
1997] is generality, i.e., reuse of the teamwork capability
across applications. STEAM was originallyused in battlefield
simulations[Tambe, 1997], and its generality is illustrated in
its reuse in RoboCup. We may measure this reuse in terms
of the number of STEAM rules reused. STEAM originally
had 283 rules, of which 35%-45% are used in ISIS. Without
STEAM reuse, communication in ISIS would have required
dozens of domain-specific coordination plans.

A second evaluation criteria is general performance. To
this end, we measure impact of STEAM on ISIS97, by ex-
perimenting with different settings of communication cost in
STEAM. In particular, at “low” communication cost, ISIS97
agents communicate a significant number of messages, while
at “high” communication cost, ISIS agents communicate no
messages. Since the portion of STEAM in use in ISIS is
effective only with communication, a “high” communication
cost essentially nullifies the effect of STEAM. Table 1 below
shows the results of games for the two settings of communica-
tion cost, illustrating the usefulness of STEAM. It compares
the performance of the two settings against Andhill97 and
CMUnited97 in approximately 60 games. It shows that the
mean goal difference between ISIS97 and Andhill97 was -3.38
per game for “low” cost, and was -4.36 per game for “high”
cost. This difference in the means is significant using a t-test
(null hypothesis p=0.032). It also shows a similar comparison
for 30 games between ISIS97 and CMUnited97. It shows that
the mean goal difference between ISIS97 and CMUnited97
for “low” was 3.27, and was 1.73 for “high” (again, using a t-
test, p=0.022). Thus in both cases, STEAM’s communication
(low cost) helped to significantly improve ISIS’s performance.

Comm Mean goal difference Mean goal difference

cost against Andhill97 against CMUnited97

Low -3.38 3.27

High -4.36 1.73

p(null hypo) 0.032 0.022

Table 1: ISIS97: Mean goal difference with/withoutSTEAM.

4.2 Team Monitoring Challenge
In response to the team monitoringchallenge (part of the team
plan execution challenge), we contrast ISIS98 with ISIS97.
Our individual ISIS98 players very precisely monitored their
own and the ball’s x,y positions on the RoboCup field. In
contrast, ISIS97 players only approximately (and often in-
accurately) estimated their own or the ball position (without
x,y). Thus, ISIS98 players were individually more situation-
ally aware, and were expected to outperform ISIS97 players.

The surprise: In actual games (e.g., against CMUnited97)
however, ISIS97 players appeared to be as effective as ISIS98
players. Our analysis revealed that ISIS97 players were com-



pensating for their lack of individual monitoring by relying
on their teammates. Consider for instance the CAREFUL-
DEFENSE team operator discussed earlier. This operator is
terminated if the ball is sufficiently far away. In ISIS97, with-
out x,y locations, individually recognizing such termination
was difficult. However, one of the players in the subteam
would just happen to stay at a fixed known location (e.g., the
goal), acting as a reference. When it recognized that the ball
was far away, it would inform the teammates, as per its joint
commitments in the team operator. Thus, other players, who
were not situationallywell-aware, would now know the ball is
far away. In contrast, ISIS98 players, with x,y computations,
would individually quickly recognize the termination of this
operator.

Table 2 shows the means of goal differences for ISIS98
with differing communication costs and different opponents
(over 170 games against CMUnited97, 60 against Andhill97).
STEAM’s communication (“low” communication cost) does
not provide a statistically significant improvement over no-
communication (using a two-tailed t-test). This indicates de-
creased reliance on communication among teammates, and
contrasts with results for ISIS97 from Table 1.

Comm Mean goal difference Mean goal difference

cost against Andhill97 against CMUnited97

Low -1.53 4.04

High -2.13 3.91

p(null hypo) 0.58 0.13

Table 2: Impact of STEAM in ISIS98.

Thus, the response to the team monitoring challenge is the
discovery of a general tradeoff: one monitoringapproach pro-
vides individual agents with complex monitoring capabilities,
making them situationally well-aware and hence independent
of others (for monitoring). Another approach provides sim-
pler monitoring capabilities to agents, but they must now rely
on teammates to compensate for the lack of own capabilities.

4.3 Plan Decomposition Challenge
The RoboCup challenge of team plan decomposition focuses
on designing roles for individual agents in a team. Ideally,
roles should divide the team responsibilities fairly, avoid con-
flicts, and conserve resources by avoiding redunducies. In-
deed, in ISIS98, these factors led to players’ roles being de-
fined in terms of non-overlapping regions of the soccer field,
in which they were responsible for intercepting and kicking
the ball. These regions were flexibly changed, if the team
went from attack to defense mode. In contrast, in ISIS97,
players’ roles (also defined in terms of regions), had a sig-
nificant overlap, possibly wasting stamina. Thus, the role
non-overlap plan decomposition of ISIS98 was expected to
be significantly superior to the role overlap style of ISIS97.

The surprise: When we played ISIS97 and ISIS98 against
CMUnited97, however, ISIS97 was not outperformed as ex-
pected. In particular, ISIS97 managed to attain a reasonable
division of responsibilities, via competition within collabora-

tion. Essentially, multiple players in ISIS97 would chase the
ball, competing for opportunities to intercept the ball. Players
that were out of stamina, or those that lost sight of the ball
etc., would all fall behind, and the player best able to compete
(i.e., get close to the ball first) would get to kick the ball.

Thus, a key lesson is tradeoff in role design: a flexible,
role no-overlap design reduces conflicts, conserves resources,
but requires careful off-line role planning. It can also fail in
dynamic load balancing, e.g., an ISIS98 player, even if very
tired, is still solely responsible for its region. In contrast,
ISIS97’s role overlap can exploit competition within collabo-
ration to more autonomously plan its role division, and attain
more dynamic load balancing, e.g., if a player is tired, a team-
mate with more stamina will get to the ball quicker. However,
role overlap may waste resources, due to redundant actions.

5 Agent Modeling Response
The agent modeling area provides a key difficult RoboCup
challenge: off-line review by an expert to analyze teams. We
have constructed two contrasting agents in response to this
challenge. Both agents use a domain-independent approach
that avoids the encoding of extensive domain knowledge and
rely instead on extensive data-mining. These agents are thus
collaborative assistants, relying on the “knowledge-rich” hu-
man observer to complete the analysis. Since both agents
rely on data-mining, they excel at uncovering unexpected
phenomena. Within the complexity of the RoboCup environ-
ment, these off-line review agents appear capable of capturing
novel regularities that escape unaided human observers.

5.1 Off-line Expert Agent
ISAAC is a web-based off-line soccer expert (Fig. 4,
http://coach.isi.edu). It is focused on automated analysis to
aid in improving a team’s behavior. ISAAC approaches the
problem by investigating actions that did not produce the de-
sired result and then classifying the contexts in which failures
occured. Based on that classification, ISAAC recommends
changes in behavior to avoid the failures: either the team
should perform a different action in that context or should
perform the action in a modified context. More specifically,
ISAAC’s analysis starts with logs of a particular team’s games.
From the logs, ISAAC extracts interesting behaviors and the
outcomes of those behaviors. For instance, shots on own or
opponent goals are interesting behaviors, so ISAAC gathers
data on such shots, and whether they succeed. ISAAC then
classifies these successes and failures into subclasses with
similar contexts. For instance, a subclass might be all goal
shots with a near-by opponent, that fail. Currently, C4.5 is
used to induce these subclasses by generating rules that clas-
sify the successes and failures of the shooting team.

ISAAC’s next step is to formulate suggestions that may im-
prove the team’s performance, once again, using a knowledge-
lean approach. To that end, ISAAC formulates and analyzes
perturbations of the rules. Each rule consists of a number of
conditions that must be satisfied for the rule to be valid. We
define a perturbation to be the rule that results from reversing
one condition. Thus a rule with N conditions will have N
perturbations. The successes and failures governed by the



Figure 4: ISAAC exists on the web.

perturbations of a rule are examined to determine which con-
ditions have the most effect in changing the outcome of the
original rule, turning a failure into a success.

Let us consider a simple example of ISAAC’s analysis of
Andhill97 against other teams in the RoboCup ’97 tourna-
ment. One of ISAAC’s learned rules states that when taking
shots on goal, the Andhill97 team often fails to score when
(i) ball velocity is less than 2.57 meters per time tick and (ii)
the shot is aimed at greater than 6.7 meters from the center
of goal (which is just inside the goalpost). ISAAC reveals
that shots governed by this rule score once, and fail to score
70 times. That Andhill97, the 2nd place winner of 97 had so
many goal-shot failures, and that poor aim was at least a factor
was a surprising revelation to the human observers. The user
can review the “video” of these shots on goal in ISAAC’s log
monitor to better appreciate what is occurring in these cases.
Perturbations of this rule can also be considered. In cases
where the rule is perturbed so that ball velocity is greater than
2.57m/t and the shot aim is still greater than 6.7m, Andhill
scores once and fails to score 3 times. In another perturbation,
where ball velocity is again less than 2.57m/t, but now shot
aim is equal to or less than 6.7m (see Figure 5), Andhill is
now scoring 63 times and failing to score 106 times. These
perturbations suggest that improving Andhill97’s shot aiming
capabilities can significantly improve performance.

More recently, ISAAC has been extended to analyze se-
quences of behaviors (again using C4.5), such as sequences
of actions (e.g., assists) that lead up to successes or failures.
This analysis has revealed that out of the top four teams of
RoboCup’97, ISIS is at one extreme with little or no emergent
pattern of assists, while CMUnited shows deeper patterns of
assists and secondary assists.

5.2 Teamwork Review Agent
TEAMORE (or TEAmwork MOnitoring REview) is an agent
that performs off-line review via a contrast of the behav-
iors of the agents in a team. TEAMORE is based in
socially-attentive monitoring, originally applied in battlefield
simulations[Kaminka and Tambe, 1998], underscoring its
generality. In RoboCup, TEAMORE complements the use
of goals scored as a measure of teamwork.

Figure 5: ISAAC’s rule perturbations for Andhill’97.

TEAMORE currently assumes that it has access to plans
or behaviors executed by agents during a game (via agents’
execution traces). TEAMORE then compares the plans being
executed by different team members, identifying discrepant
situations, where team-members failed to agree on the joint
team-plan that they should have been executing together. For
instance, suppose the forwards are to execute a team tactic
together, but one forward fails to execute it — this is a team
discrepancy. TEAMORE uses this discrepancy information
over time as the basis for a quantitative measure of teamwork.

TEAMORE uses several measures of discrepancy, but one
particularly useful is the average time that it takes for a sub-
team (e.g., forwards) to switch from one team plan to another.
In perfect teamwork situations, all team-members switch team
plans (tactics) together, moving in unison from one agreed
upon team plan to another. Thus, the perfect team-plan switch
time is exactly one time unit. The worst possible switch is if
one team member never makes the switch and the sub-team
never establishes agreement.

Earlier in this paper, ISIS97 was shown (Table 1) to
have significantly different score-differences with and without
communications, while even a large number of games (over
230) of ISIS98 resulted in no statistically significant difference
(Table 2). Table 3 presents the results of TEAMORE’s anal-
ysis for the ISIS98-Andhill97 and ISIS97-Anghill97 games.
The average time per switch for two sub-teams (defenders
and goalees) is shown for the two settings of the communi-
cation cost (approximately half of the games were played in
each setting). These results show that communications (when
cost is low) do reduce the average time per switch for each
of the sub-teams. This reduction is statistically significant
(two tailed t-test values are shown in the table), hinting at an
improvement in the quality of teamwork with communication.

The first two columns of table 3 show that while ISIS98 had
no statistically significant difference in the goal-difference
for these games, TEAMORE is able to confirm that in fact
STEAM is still making a statisically significant impact on the
qualityof teamwork, allowing validationof design objectives.
Moreover, as the last two columns (presenting TEAMORE’s



analysis of the ISIS97-Andhill97 games) show, the differ-
ence in quality of teamwork that STEAM makes for ISIS97 is
much greater than it is for ISIS98, supporting our hypothesis
that ISIS98’s superior monitoring capabilities reduced its de-
pendency on teamwork. In fact, the average-time-per-switch
values for ISIS97 using communications lie in between the
values for ISIS98 with and without communications. How-
ever, the values for ISIS97 without communications are much
greater then those for ISIS98, explaining the much bigger
impact communication had on ISIS97.

Comm ISIS98 ISIS98 ISIS97 ISIS97

cost Goalees Defenders Goalees defenders

High 13.28 12.99 32.80 57.5

Low 3.65 3.98 5.79 6.81

p(null-hypo) 9.26E-16 7.13E-5 7.13E-13 1.45E-10

Table 3: Ave time per switch in games against Andhill97.

6 Lessons Learned
Our research in RoboCup has been fueled by the IJCAI’97
challenge. We have responded to the challenge in all three cat-
egories of learning, teamwork and agent modeling. Few other
RoboCup teams have attacked the IJCAI’97 challenge in this
much breadth. One possible exception is [Stone and Veloso,
1998b], who have focused on layered learning for agent de-
sign, and an approach to teamwork based on locker-room
arrangements[Stone and Veloso, 1998a]. In their teamwork
approach, agents synchronize their individual beliefs period-
ically in a fixed manner, in contrast with ISIS’s STEAM in
which communications are issued dynamically. Indeed, in
comparison with [Stone and Veloso, 1998a] and other teams,
ISIS stands alone in its use of a domain-independent team-
work model, with its demonstrated reuse. Other RoboCup
researchers have investigated individual research areas. For
instance, [Luke et al., 1998] have investigated an innovative
approach to learning in RoboCup, but they have yet to address
the agent modeling and teamwork challenge of RoboCup.
Others have investigated teamwork via explicit team plans
and roles[Ch’ng and Padgham, 1998], but not learning or
agent modeling, and they fail the basic performance require-
ment of the RoboCup challenge, i.e., the team must be able
to play reasonably well. ISIS passes this test, given its third-
and fourth-place in RoboCup’97 and RoboCup’98.

In conclusion, in responding to the IJCAI challenge, we
have been able to extract the following general lessons in
multi-agent learning, teamwork, and agent modeling:

� Some multi-agent environments require a significant role
specialization of individuals. Thus, sharing experiences
of individuals in different roles can sometimes be sig-
nificantly detrimental to team performance, placing key
limits on social learning.

� Divide-and-conquer learning can be used to enable dif-
ferent learning techniques to co-exist, reducing the com-
plexity of the learning problem.

� Reuse of general teamwork models can improve perfor-
mance and reduce development time.

� Tradeoffs exist in individual and team monitoring, e.g.,
responsible team behavior enables the design of simpler
monitoring capabilities for individuals.

� Competition within collaboration can provide a simple
but powerful technique for designing role responsibilities
for individuals.

� In analyzing agent behavior in complex multi-agent en-
vironments, data-driven analysis combined with human
oversight appears promising.

� Comparison of the behavior of team members can pro-
vide a useful teamwork monitoring tool.
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