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Abstract

The RoboCup (robot world-cup soccer) effort, ini-
tiated to stimulate research in multi-agents and
robotics, has blossomed into a significant effort
of internationa proportions. RoboCup is simul-
taneously a fundamenta research effort and a set
of competitions for testing research ideas. At 1J
CAI’97, a broad research challenge was issued for
the RoboCup synthetic agents, covering areas of
multi-agent learning, teamwork and agent model-
ing. This paper outlines our attack on the entire
breadth of the RoboCup research challenge, on all
of its categories, in the form of two fielded, con-
trasting RoboCup teams, and two off-line soccer
analysis agents. We compare the teams and the
agentsto generalize the lessons learned in learning,
teamwork and agent modeling.

1 Introduction

Increasingly, multi-agent systems are being designed for a
variety of complex, dynamic domains. To stimulate and pur-
sue research towards such multi-agent systems, the RoboCup
initiative has proposed simulation and robotic soccer asacom-
mon, unified domain for multi-agent research[Kitano et al.,
1997]. RoboCup has now blossomed into a significant effort
of international proportions.

At 1JCAI'97, abroad research challenge wasissued for the
RoboCup syntheticagents[Kitano et al., 1997]. Thispaper re-
spondsto thischallenge, intheform of research lessonsdrawn
from severa systems we have constructed for RoboCup. In
particular, wefielded the 1 S| S97 and | SI S98 teams, which won
third place and fourth place at RoboCup97 and RoboCup98
respectively (out of 30 to 35 participating teams). We have
also constructed two experts, ISAAC and TEAMORE, for
off-linereview of RoboCup. Our response draws from these
multiple systems for two reasons. First, the RoboCup chal-
lenge covers a broad spectrum of multi-agent research, and
requires teams and off-line experts to be built. Indeed, it
proposes three separate challenge areas, learning, teamwork
and agent modeling. Second, these challenge areas often do
not have just oneright answer, rather, they point to tradeoffs,
which we explorevia multiple systems.

Our challenge response aso attempts to extract general
lessons from RoboCup. Indeed, despite the RoboCup aim
to stimulate genera multi-agent research, few RoboCup
researchers have extracted domain-independent research
lessons (there are a few notabl e exceptions] Stone and Vel 0so,
1998b]). This paper attempts to remedy thissituation.

2 Background: Domain and Agents

The RoboCup simulation league uses a complex, dynamic,
noisy soccer simulation, called the soccerserver, which sim-
ulates the players (22) bodies, the ball and the soccer field
with goals and flags. Software agents (11 agents per team)
providethe “brains’ for the smulated bodies. Visual and au-
dio information as “sensed” by the player’s body are sent to
the player agent ("brain"), which can then send action com-
mands to control the smulated body (e.g., kick, dash, turn,
say, etc.). Theserver constrainsan agent’s actions (one action
per 100ms) and sensory updates (one perceptua update every
150-300ms). The players aso have limited stamina.

The software agents we constructed to control the player
bodies are based on a two-tier architecture. The lower-level,
developed in C, processes input received from the ssimulator,
and together with recommendations of an intercept micro-
plan and possible kicking directions, sends the information
up to the higher-level. The higher-level is implemented in
the Soar integrated architecture[Newell, 1990]. Soar usesthe
informationit receivesto reach adecision about thenext action
and communicates its decision to the lower-level, which then
forwardstherelevant actiontothe simulator. Soar’soperation
involves dynamically executing an operator (reactive plan)
hierarchy. Theoperator hierarchy showninFigurelillustrates
a portion of the operator hierarchy for ISIS player-agents.
Only one path through this hierarchy is typicaly active at
atime in a player agent. The hierarchy has two types of
operators. Team operators congtitute activities that the agent
takes on as part of a team or subteam, shown in [] (eg.,
[Play]). In contrast, the “norma” individua operators are
onesthat players execute as individuals (e.g., Intercept). The
implication of thisdistinctionwill be clarified later.

3 ResponsetotheLearning Challenge

| S| Steams have addressed the problemsof off-lineskill learn-
ingand on-lineadversarial learning, with resultsused inactual



[Win-Game]

[Play] [Interrupt]

[Attack] [Déend] [Midfield] [Defend-Goal]
[Simﬁe/\ﬁank [Carefu/%—goal

Advance]  Attack] defense] defense]

Score-goal ass

Figure 1: Operator hierarchy for player-agents.

competitions. Different learning algorithms are integrated in
ISIS via a divide-and-conquer approach, i.e., different mod-
ules (skills) withinindividual agents are learned separately.

3.1 Offline Skill Learning

Shootingaball to scoreagoal isclearly oneof thecritica skills
in soccer. Yet, our initial, heuristic, hand-coded approaches
(e.g., shoot to a corner of the goal) failed, because (i) small
variationsin shooter-position sometimes had dramatic effects
on thebest shooting directionand (ii) large number of heuristic
rules were needed.

We addressed these problems viaautomated, off-linelearn-
ing of the shooting rules. A human specialist created a set of
3000 shooting situations (each of them labeled with an opti-
mal shootingdirection: UB, DOWN, and CENTER) that were
used astrainingexamplesfor C4.5[Quinlan, 1993]. Each such
shooting scenario was used as atraining case described by 40
attributes: the recommended kicking direction, the shooter’s
facing direction, and the shooter’sangles to the visible play-
ers, flags, lines, ball, and goal. The system was trained on
1600 randomly chosen examples, and the other 1400 exam-
ples were used for testing. We repeated this procedure 50
times, and the average accuracy of the rules on the testing
sets was 70.8%. Even though the predictive power appears
low, the kicking rules were quite efficient in practice. This
is because |earned-rules covered far more difficult shots than
were actually used in practice.

Whilethe C4.5 learned rules dramatically improved shoot-
ing skills,inthecompetitions, therul es sometimes appeared to
take unnecessarily risky shots on the goal. Thisoccurred be-
cause offlinelearning assumed the worst about the opponents
level of play, whilein practice, weaker teams provided easier
opportunitiesthat did not justify such risks. Thus, while one
key lesson learned here is that a divide-and-conquer learning
techniquemay be promising for agent design, another key les-
son is that off-line learning in dynamic multi-agent contexts
must be sensitiveto the varying capabilities of other agents.

3.2 Online Adversarial Learning

A key skill in RoboCup where adaptation to the opponent
is critical is that of intercepting the ball. In particular, an
opponent may kick/pass/run harder than normal, thereby re-
quiring a player to adapt by running harder, modifying their
path or forgoing interception. To enable playersto adapt their
intercept online to adversaries, 1SIS exploits reinforcement
learning.

Onekey difficulty in applying reinforcement | earning how-
ever israpid adaptation — in the course of agame, there are
not many opportunitiesto intercept the ball. To address this
concern, our approach employs intermediate reinforcement,
rather thanwaiting for the end of theintercept. A player inter-
ceptstheball by stringing together a collection of micro-plans
of aturn followed by one or two dashes. For every step in
amicro-plan, 1SIS98 has an expectation as to what any new
information from the server should inform it as to the ball’s
location. Failure to meet that expectation resultsin alearn-
ing opportunity. To alow transfer to similar states, the input
conditionsare clustered. Repeated failureslead to changesin
the plan assigned to an input condition. In particular, theturn
increment specific to that input conditionis adjusted either up
or down upon repeated failure. Typicaly, the actud turnis
calculated from the turn increment in the foll owing fashion:

Turn = BallDir 4+ (TurnIncrement x Change Ball Dir)

Experiments: Inaccordance withthel JCAI challenge, ex-
periments were performed against publicly available teams,
specifically CMUnited97 (team of Stone and Veloso of
Carnegie Méllon, 4th a RoboCup’'97) Andhill97 (team of
T. Andou of NTT labs, 2nd at RoboCup'97). In each ex-
periment, each player started with a default value of 2.0 for
thelir turn increment across al input conditions. The online
learning in these games results in turn increment values that
range from +5 down to -1, across input conditions. While
these may appear smal numbers, because of the multiplica
tivefactors, and since theintercept plan isinvoked repeatedly,
even asmall changeisoverall very significant.

The results show some surprising differences in what is
learned. For instance, thesameplayer may learnvery different
turn increments against different teams. Figure 2 compares
the mean results for Player 1, a forward, in games against
CMUnited97 with games against Andhill97. The mean for
all playersis aso shown. The x-axis plots the clock ticks
(continued until 15000) and the y-axis plots the turn incre-
ment. This data is for the input condition of bals moving
across the player’s field of vision, a middling-to-close dis-
tance away. Against Andhill97, the player is learning aturn
increment similar to the mean across dl players for thisin-
put condition. However, against CMUnited97, the player is
learning aconsiderably larger increment (differencein means
issignificant using a Welch two-sided t-test, p-value=.0447).
Figure 3 shows that different players against the same team
do learn different increments. It plots mean turn-increments
for Player 1 and Player 10 for the the same input condition as
above, against CMUnited97. The difference in the meansis
significant (using a Welch two-sided t-test, p-value = 6.36e-
06)

Lessonslearned: Player 1 distinctly tailorsitsintercept to
itsrole and particular opponents. This occurs because CMU-
nited97’ sdefenders often clear the ball with astrong sideways
kick, which player 1 continuoudly faces. Player 1'sadaptation
not only illustrates the benefits of on-line learning, but also
agenera point: it shows a high specialization of (intercept)
skillsaccording to theroleand situationsfaced. Thus, sharing
experiences of individualsin different roles or training indi-
vidua across roles would appear to be detrimentd, i.e,, there
are key limitsto social learning. Of course, it does not rule
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Figure 2: Player 1 against CMUnited97 & Andhill97.
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Figure 3: Players 1 & 10 against CMUnited97.

out social learning. Indeed, in the results above, the trends of
the changes were shared across players, so that some socia
learning can be carried out. Thus, our goaee agents, which
tend not to get as many intercept opportunities during the
game, rely on mean intercept values from the other players.

4 Teamwork Challenge Response

The teamwork challenge covers team planning, plan decom-
position, execution, etc. There is not necessarily one best
answer to thischallenge, and our two RoboCup teams present
at least some of the tradeoffs.

41 Team Plan Execution

Our response to the team plan execution challenge is a key
digtinction of our 1SIS teams — the use of a general-purpose
teamwork model caled STEAM[Tambe, 1997]. Based on
the notion of joint commitments[ Cohen and L evesque, 1991],
STEAM enablesteam membersto autonomously reason about
coherence during team plan execution. It also enables team
reorganization upon disablement of a team member and se-
lective communication. STEAM’s reasoning isinstigated by
a (sub)team’s execution of ateam operator. For an example
of STEAM in operation, consider the SIMPLE-DEFENSE
team operator executed by the goalee subteam to position
themselves on the field and watch out for the bal (Fig 1).
Each player sees only within its limited cone of vision, and
can be unaware at times of the approaching ball. If any
one of these players sees the ball as being close, it declares
the SIMPLE-DEFENSE team operator to be irrdevant. Its
teammates now focus on defending the goal in a coordinated
manner viathe CAREFUL -DEFENSE team operator. Specif-
ically thisincludes intercepting the ball and then clearing it.
Should any one player in the goaee subteam see the ball
move sufficiently far away, it again alertsitsteam mates (that

CAREFUL-DEFENSE is achieved). The subteam players
once again revert to SIMPLE-DEFENSE. All the communi-
cation decisionsfor thesubteam coordination hereare handled
automatically by STEAM.

For teamwork, one evaluation criteria in [Kitano et al.,
1997] is generality, i.e., reuse of the teamwork capability
acrossapplications. STEAM wasoriginaly used inbattlefield
simulations| Tambe, 1997], and its generality isillustrated in
its reuse in RoboCup. We may measure this reuse in terms
of the number of STEAM rules reused. STEAM originaly
had 283 rules, of which 35%-45% are used in 1SIS. Without
STEAM reuse, communication in 1SIS would have required
dozens of domain-specific coordination plans.

A second evauation criteria is genera performance. To
this end, we measure impact of STEAM on ISIS97, by ex-
perimenting with different settings of communication cost in
STEAM. In particular, a “low” communication cost, 1SIS97
agents communicate a significant number of messages, while
at “high” communication cogt, SIS agents communicate no
messages. Since the portion of STEAM in use in ISIS is
effective only with communication, a“high” communication
cost essentially nullifiesthe effect of STEAM. Table 1 below
showstheresultsof gamesfor thetwo settingsof communica
tion cogt, illustrating the usefulness of STEAM. It compares
the performance of the two settings against Andhill97 and
CMUnited97 in approximately 60 games. It shows that the
mean goal differencebetween | SIS97 and Andhill 97 was-3.38
per game for “low” cost, and was -4.36 per game for “high”
cost. Thisdifference in the means is significant using at-test
(null hypothesisp=0.032). It a so showsasimilar comparison
for 30 games between 1 SI S97 and CMUnited97. It showsthat
the mean goal difference between 1SIS97 and CMUnited97
for “low” was 3.27, and was 1.73 for “high” (again, using at-
test, p=0.022). Thusin both cases, STEAM’s communication
(low cost) hel ped to significantly improvel SIS’ s performance.

Comm Mean goal difference | Mean goal difference
cost against Andhill97 against CMUnited97
Low -3.38 3.27
High -4.36 1.73

p(null hypo) 0.032 0.022

Tablel: 1SIS97: Mean god differencewith/without STEAM.

4.2 Team Monitoring Challenge

In response to theteam monitoring challenge (part of theteam
plan execution challenge), we contrast 1SIS98 with 1S1S97.
Our individual 1S1S98 players very precisely monitored their
own and the ball’s x,y positions on the RoboCup field. In
contrast, 1SIS97 players only approximately (and often in-
accurately) estimated their own or the ball position (without
X,y). Thus, 1S1S98 players were individualy more situation-
ally aware, and were expected to outperform | SIS97 players.

The surprise: In actua games (e.g., against CMUnited97)
however, | SIS97 playersappeared to be as effective as | SIS98
players. Our anaysisrevealed that | SIS97 playerswere com-



pensating for their lack of individual monitoring by relying
on their teammates. Consider for instance the CAREFUL -
DEFENSE team operator discussed earlier. This operator is
terminated if the ball issufficiently far away. 1n1S1S97, with-
out x,y locations, individually recognizing such termination
was difficult. However, one of the players in the subteam
would just happen to stay at afixed known location (e.g., the
goal), acting as areference. When it recognized that the ball
was far away, it would inform the teammates, as per itsjoint
commitments in the team operator. Thus, other players, who
werenot situationally well-aware, would now know theball is
far away. In contrast, | SIS98 players, with X,y computations,
would individually quickly recognize the termination of this
operator.

Table 2 shows the means of goal differences for 1SI1S98
with differing communication costs and different opponents
(over 170 games against CMUnited97, 60 against Andhill97).
STEAM’s communication (“low” communication cost) does
not provide a statistically significant improvement over no-
communication (using a two-tailed t-test). Thisindicates de-
creased reliance on communication among teammates, and
contrasts with results for 1S1S97 from Table 1.

Comm Mean goal difference | Mean goal difference
cost against Andhill97 against CMUnited97
Low -1.53 4.04
High -2.13 391

p(null hypo) 0.58 0.13

Table 2: Impact of STEAM in|SIS98.

Thus, the response to the team monitoring challengeis the
discovery of ageneral tradeoff: one monitoring approach pro-
videsindividual agentswith complex monitoring capabilities,
making them situationally well-aware and hence independent
of others (for monitoring). Another approach provides sm-
pler monitoring capabilitiesto agents, but they must now rely
on teammates to compensate for the lack of own capabilities.

4.3 Plan Decomposition Challenge

The RoboCup challenge of team plan decomposition focuses
on designing roles for individua agents in a team. Idedly,
roles should dividetheteam responsibilitiesfairly, avoid con-
flicts, and conserve resources by avoiding redunducies. In-
deed, in 1SIS98, these factors led to players roles being de-
fined in terms of non-overlapping regions of the soccer field,
in which they were responsible for intercepting and kicking
the ball. These regions were flexibly changed, if the team
went from attack to defense mode. In contrast, in 1S1S97,
players roles (also defined in terms of regions), had a sig-
nificant overlap, possibly wasting stamina. Thus, the role
non-overlap plan decomposition of 1S1S98 was expected to
be significantly superior to the role overlap style of 1SI1S97.
The surprise: When we played |SIS97 and 1S1S98 agai nst
CMUnited97, however, | SIS97 was not outperformed as ex-
pected. In particular, 1SIS97 managed to attain a reasonable
division of responsibilities, via competition within collabora-

tion. Essentialy, multiple playersin ISIS97 would chase the
ball, competing for opportunitiesto intercept theball. Players
that were out of stamina, or those that lost sight of the ball
etc., would al fall behind, and the player best ableto compete
(i.e., get close to the ball first) would get to kick the ball.
Thus, a key lesson is tradeoff in role design: a flexible,
role no-overlap design reduces conflicts, conserves resources,
but requires careful off-linerole planning. It can also fail in
dynamic load balancing, e.g., an 1SIS98 player, even if very
tired, is still solely responsible for its region. In contrast,
ISIS97’srole overlap can exploit competition within collabo-
ration to more autonomously planitsroledivision, and attain
more dynamic load balancing, e.q., if aplayer istired, ateam-
mate with more staminawill get to the ball quicker. However,
role overlap may waste resources, due to redundant actions.

5 Agent Modeling Response

The agent modeling area provides a key difficult RoboCup
challenge: off-linereview by an expert to anayze teams. We
have constructed two contrasting agents in response to this
challenge. Both agents use a domain-independent approach
that avoidsthe encoding of extensive domain knowledge and
rely instead on extensive data-mining. These agents are thus
collaborative assistants, relying on the “knowledge-rich” hu-
man observer to complete the analysis. Since both agents
rely on data-mining, they excel a uncovering unexpected
phenomena. Within the complexity of the RoboCup environ-
ment, these off-linereview agents appear capabl e of capturing
novel regularitiesthat escape unaided human observers.

5.1 Off-line Expert Agent

ISAAC is a web-based off-line soccer expert (Fig. 4,
http://coach.isi.edu). It isfocused on automated analysis to
aid in improving a team’s behavior. ISAAC approaches the
problem by investigating actions that did not produce the de-
sired result and then classifying the contextsin which failures
occured. Based on that classification, ISAAC recommends
changes in behavior to avoid the failures: ether the team
should perform a different action in that context or should
perform the action in a modified context. More specificaly,
ISAAC sandysisstartswithlogs of aparticular team’sgames.
From thelogs, ISAAC extracts interesting behaviors and the
outcomes of those behaviors. For instance, shots on own or
opponent goa s are interesting behaviors, so ISAAC gathers
data on such shots, and whether they succeed. 1SAAC then
classifies these successes and failures into subclasses with
similar contexts. For instance, a subclass might be all goa
shots with a near-by opponent, that fail. Currently, C4.5 is
used to induce these subclasses by generating rules that clas-
sify the successes and failures of the shooting team.
ISAAC’snext step isto formul ate suggestionsthat may im-
provetheteam’ sperformance, once again, using aknowledge-
lean approach. To that end, ISAAC formulates and analyzes
perturbations of the rules. Each rule consists of a number of
conditionsthat must be satisfied for the rule to be valid. We
define a perturbation to be the rule that resultsfrom reversing
one condition. Thus a rule with N conditions will have N
perturbations. The successes and failures governed by the
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Figure 4: ISAAC exists on the web.

perturbations of arule are examined to determine which con-
ditions have the most effect in changing the outcome of the
origina rule, turning afailureinto a success.

Let us consider a simple example of ISAAC's andysis of
Andhill97 against other teams in the RoboCup ’'97 tourna
ment. One of ISAAC’s |earned rules states that when taking
shots on god, the Andhill97 team often fails to score when
(i) ball velocity islessthan 2.57 meters per timetick and (ii)
the shot is aimed at greater than 6.7 meters from the center
of god (which isjust inside the goalpost). ISAAC reveals
that shots governed by thisrule score once, and fail to score
70 times. That Andhill97, the 2nd place winner of 97 had so
many goal-shot failures, and that poor aim was at |east afactor
was a surprising revelation to the human observers. The user
can review the“video” of these shotson goa inISAAC'slog
monitor to better appreciate what is occurring in these cases.
Perturbations of this rule can aso be considered. In cases
wheretheruleis perturbed so that ball velocity is greater than
2.57m/t and the shot aim is till greater than 6.7m, Andhill
scores onceand failsto score 3 times. In another perturbation,
where ball velocity is again less than 2.57m/t, but now shot
aim is equa to or less than 6.7m (see Figure 5), Andhill is
now scoring 63 times and failing to score 106 times. These
perturbationssuggest that improving Andhill97’ sshot aiming
capabilities can significantly improve performance.

More recently, ISAAC has been extended to anayze se-
guences of behaviors (again using C4.5), such as sequences
of actions (e.g., assists) that lead up to successes or failures.
This analysis has revealed that out of the top four teams of
RoboCup’ 97, ISISisat one extreme withlittleor no emergent
pattern of assists, while CMUnited shows deeper patterns of
assists and secondary assists.

5.2 Teamwork Review Agent

TEAMORE (or TEAmwork M Onitoring REview) isan agent
that performs off-line review via a contrast of the behav-
iors of the agents in a team. TEAMORE is based in
socially-attentive monitoring, originally applied in battlefield
simulations[Kaminka and Tambe, 1998], underscoring its
generaity. In RoboCup, TEAMORE complements the use
of goals scored as a measure of teamwork.

Kick-0ff Pause

Mext Case Sty
[ Show Mumbers

Shots more towards the center of goal

Ball Yelocity ==2.56935
Esxtrapolated Goal Line Position ==6.6875
Total Goals: 63

| IR

Figure5: ISAAC'srule perturbationsfor Andhill’ 97.

TEAMORE currently assumes that it has access to plans
or behaviors executed by agents during a game (via agents
execution traces). TEAMORE then compares the plansbeing
executed by different team members, identifying discrepant
situations, where team-members failed to agree on the joint
team-plan that they should have been executing together. For
instance, suppose the forwards are to execute a team tactic
together, but one forward fails to execute it — thisisateam
discrepancy. TEAMORE uses this discrepancy information
over time asthebasi sfor aquantitative measure of teamwork.

TEAMORE uses several measures of discrepancy, but one
particularly useful isthe average time that it takes for a sub-
team (e.g., forwards) to switch from one team plan to another.
In perfect teamwork situations, all team-members switchteam
plans (tactics) together, moving in unison from one agreed
upon team plan to another. Thus, the perfect team-plan switch
timeis exactly one time unit. The worst possible switchisif
one team member never makes the switch and the sub-team
never establishes agreement.

Earlier in this paper, 1SIS97 was shown (Table 1) to
havesignificantly different score-differenceswith and without
communications, while even a large number of games (over
230) of 1 SIS98resultedin no statistically significant difference
(Table 2). Table 3 presents the results of TEAMORE's anal -
ysis for the 1SI1S98-Andhill97 and 1SIS97-Anghill97 games.
The average time per switch for two sub-teams (defenders
and goalees) is shown for the two settings of the communi-
cation cost (approximately half of the games were played in
each setting). These results show that communi cations (when
cost is low) do reduce the average time per switch for each
of the sub-teams. This reduction is statistically significant
(two tailed t-test values are shown in the table), hinting at an
improvement inthequality of teamwork with communication.

Thefirst two columnsof table3 show that while 1S S98 had
no statistically significant difference in the goal-difference
for these games, TEAMORE is able to confirm that in fact
STEAM isdtill making astatisically significant impact onthe
quality of teamwork, allowing validationof design objectives.
Moreover, as the last two columns (presenting TEAMORE's



analysis of the 1SIS97-Andhill97 games) show, the differ-
ence in quality of teamwork that STEAM makesfor ISIS97 is
much greater than it isfor 1S1S98, supporting our hypothesis
that 1S1S98’s superior monitoring capabilities reduced its de-
pendency on teamwork. In fact, the average-time-per-switch
values for 1SI1S97 using communications lie in between the
values for 1S1S98 with and without communications. How-
ever, thevaluesfor | SIS97 without communi cations are much
greater then those for 1S1S98, explaining the much bigger
impact communication had on 1S S97.

Comm 1S1S98 1S1S98 1SI1S97 1SIS97
cost Goalees | Defenders | Goalees | defenders
High 13.28 12.99 32.80 575
Low 3.65 3.98 5.79 6.81

p(null-hypo) | 9.26E-16 | 7.13E-5 | 7.13E-13 | 1.45E-10

Table 3: Avetime per switch in games against Andhill97.

6 LessonsL earned

Our research in RoboCup has been fueled by the IJCAI’97
challenge. We haveresponded tothechallengeinall threecat-
egoriesof learning, teamwork and agent modeling. Few other
RoboCup teams have attacked the IJCAI’' 97 chalengein this
much breadth. One possible exception is [Stone and Vel 0so,
1998b], who have focused on layered learning for agent de-
sign, and an approach to teamwork based on locker-room
arrangements]Stone and Veloso, 1998a]. In their teamwork
approach, agents synchronize their individua beliefs period-
icaly in a fixed manner, in contrast with 1SIS's STEAM in
which communications are issued dynamicaly. Indeed, in
comparison with [Stone and Veloso, 1998a] and other teams,
ISIS stands alone in its use of a domain-independent team-
work model, with its demonstrated reuse. Other RoboCup
researchers have investigated individual research areas. For
instance, [Luke et al., 1998] have investigated an innovative
approach tolearningin RoboCup, but they haveyet to address
the agent modeling and teamwork challenge of RoboCup.
Others have investigated teamwork via explicit team plans
and roles|Ch'ng and Padgham, 1998], but not learning or
agent modeling, and they fail the basic performance require-
ment of the RoboCup chalenge, i.e., the team must be able
to play reasonably well. 1SIS passes thistest, given itsthird-
and fourth-place in RoboCup’ 97 and RoboCup’ 98.

In conclusion, in responding to the IJCAI challenge, we
have been able to extract the following genera lessons in
multi-agent learning, teamwork, and agent modeling:

¢ Somemulti-agent environmentsrequireasignificantrole
specialization of individuas. Thus, sharing experiences
of individualsin different roles can sometimes be sig-
nificantly detrimental to team performance, placing key
limitson socia learning.

¢ Divide-and-conquer learning can be used to enable dif-
ferent learning techniques to co-exist, reducing the com-
plexity of the learning problem.

¢ Reuse of generd teamwork models can improve perfor-
mance and reduce development time.

o Tradeoffs exist in individual and team monitoring, e.g.,
responsible team behavior enables the design of smpler
monitoring capabilities for individuals.

o Competition within collaboration can provide a smple
but powerful techniquefor designing roleresponsibilities
for individuals.

¢ Inanalyzing agent behavior in complex multi-agent en-
vironments, data-driven analysis combined with human
oversight appears promising.

e Comparison of the behavior of team members can pro-
vide a useful teamwork monitoring tool.

Acknowledgements

Thisresearch issupportedin part by NSF grant IRI-9711665,
and in part by a generous gift from the Intel Corporation.

References

[Ch'ng and Padgham, 1998] S. Ch'ng and L. Padgham. Team de-
scription: Royal merlbourne knights. In RoboCup-97: The first
robot world cup soccer games and conferences. Springer-Verlag,
Heidelberg, Germany, 1998.

[Cohen and Levesque, 1991] P.R. CohenandH. J. Levesgue. Team-
work. Nous, 35, 1991.

[Kaminkaand Tambe, 1998] G. Kaminka and M. Tambe. What is
wrong with us? improving robustnessthrough social diagnosis. In
Proceedingsof the National Conferenceon Artificial Intelligence
(AAAI), August 1998.

[Kitano et al., 1997] H. Kitano, M. Tambe, P. Stone, S. Coradesci,
H. Matsubara, M. Veloso, |. Noda, E. Osawa, and M. Asada.
The robocup synthetic agents' challenge. In Proceedings of the
International Joint Conferenceon Artificial Intelligence (IJCAl),
August 1997.

[Lukeetal., 1998] S. Luke, Hohn C., J. Farris, G. Jackson, and
J. Hendler. Co-evolving soccer softbot team coordination with
genetic programming. In RoboCup-97: The first robot world
cup soccer games and conferences. Springer-Verlag, Heidelberg,
Germany, 1998.

[Newell, 1990] A. Newell. Unified Theoriesof Cognition. Harvard
Univ. Press, Cambridge, Mass., 1990.

[Quinlan, 1993] J. R. Quinlan. C4.5: Programsfor machine learn-
ing. Morgan Kaufmann, San Mateo, CA, 1993.

[Stone and Veloso, 1998a] P. Stone and M. Veloso. Task decompo-
sition and dynamic role assignment for real-time strategic team-
work. In Proceedings of the international workshop on Agent
theories, Architecturesand Languages, 1998.

[Stone and Veloso, 1998b] P. Stone and M. Veloso. Using decision
tree confidence factors for multiagent control. In RoboCup-97:
Thefirst robot world cup soccer gamesand conferences. Springer-
Verlag, Heidelberg, Germany, 1998.

[Tambe, 1997] M. Tambe. Towards flexible teamwork. Journal of
Artificial Intelligence Research (JAIR), 7:83-124, 1997.



