
Bar-Ilan University

Department of Computer Science

Flexible Teamwork in

Behavior-Based Robots,

BITE (Bar Ilan Teamwork Engine).

by

Inna Frenkel

Submitted in partial fulfillment of the requirements for the Master’s degree in the

department of Computer Science

Ramat-Gan, Israel

2005

1

This work was carried out under the supervision of

Dr. Gal A. Kaminka

Department of Computer Science, Bar-Ilan University.

2

Abstract

The key challenge of deploying teams of robots in real world applications is to

automate the control of teamwork, such that the designer can focus on the implementation

of the tasks that the robots have to perform. Existing teamwork architectures that seek to

address this challenge are monolithic, such that they are committed to interaction protocols

at the architectural level and do not allow the designer to choose the most appropriate

protocols for a given task. Moreover, most of the teamwork architectures have not been

applied to physical robot teams. Therefore, they lack a number of key architectural features

that are important for robots in physical environments. We present a behavior-based

teamwork BITE architecture that automates collaboration of physical robots in a

distributed fashion. BITE separates task behaviors that control the interaction of the robot

with its task from interaction behaviors that control the interaction of the robot with its

teammates. This distinction provides flexibility and modularity in terms of the interactions

used to make collaboration between teammates effective. It also allows BITE to synthesize

and significantly extend existing teamwork architectures. BITE also incorporates the

conclusions drawn from earlier research by applying multi-agent teamwork architectures

in physical robot teams. We present empirical results from experiments with teams of Sony

AIBO robots executing BITE and discuss the lessons learned.

3

Acknowledgments

 I would like to express my gratitude to:

Dr. Gal Kaminka - for his support and understanding during the course of research, for his

attentiveness and interest.

For Kat’a Tryshkin, Maarten Beek and Natali Kanevsky, who helped all the way by

commenting and reading this thesis.

Mr. Maor Asulin - for the assistance in creation of baseline test environment and

simulation. He evaluated all the possible solutions, when one of the robots malfunctioned

and the research was to be stopped, and gave this research a chance to be preceded.

Mr. Tom Shpigelman - for his professional skills and knowledge at creation of films,

presentations, etc.

Mr. Danny Simony - for assistance at filming the experiment.

Ms. Ruti Glick and Mr.Yehuda Elmaliach - for the encouragement.

4

Contents

Abstract...3

Acknowledgments...4

Introduction..9

Motivation...9

Proposed..10

Thesis Outline...11

Background..13

Methodology...16

Representation..16

Algorithms..25

Principal Control Algorithm...25

Resource Precondition Control Algorithm...29

Fuse Information...29

Operation Control Algorithm..31

A Simple Execution Example..33

Hardware Configuration and Software Applications...41

The AIBO..42

Tools..43

OPEN-R..43

Tekkotsu..44

Project’s Choice..45

BITE..46

5

BITE Installation...47

BITE: Experiments..49

Experiments Setup...49

Experiments Data...52

Results and Conclusions..54

Errors..61

Operator Control...64

Summary and Future Work...65

Bibliography...67

6

List of Figures

Figure 1. Behavior graph...17

Figure 2. Organization hierarchy..20

Figure 3 BITE Structures and Links for a formation maintenance task.....................23

Figure 4 Triangle Formations..35

Figure 5. Executed StandUp behavior..36

Figure 6. State of the team..38

Figure 7. Position of each robot in Triangle Formations..40

Figure 8. Termination of Walk behavior execution by all the robots............................41

Figure 9. Aibo front and back features...42

Figure 10. Layer diagram...47

Figure 11. Behavior graph..50

Figure 12. Robots executing triangle formation...63

7

List of Tables

Table 1. Social behavior profiles used for the experiments..52

Table 2. Experiment group type is based on which behavior nodes in the graph were

traversed and which social behaviors were executed by robots in the experiment......53

Table 3. Time measurements for executing social behaviors...55

Table 4. Average time spent on allocation and synchronization and total average

time of the experiments for each group..56

Table 5. Interaction and task times ..61

8

List of Graphs

Graph 1 . Relation between the social time and task time..56

Graph 2. Allocation and synchronization needs for each group...................................57

Graph 3. Combination of the all data time...58

Graph 4. Relation between number of error experiment and total experiment...........63

9

Chapter 1

Introduction

1.1 Motivation

Teamwork of autonomous robots gains more and more interest among academic

and industrial research groups, motivated by the deployment of autonomous and semi-au-

tonomous multi-robot teams in real-world applications. Teamwork architectures are in-

creasingly used for the implementation of automated interactions between team-members

to facilitate robust and speedy deployment.

Existing architectures provide important teamwork services to deployed teams, such

as synchronized task execution [5, 9], and task allocation [6, 1, 3, 10]. These allow the de-

signer to focus on developing the work to be done, rather than on the collaboration of the

robots.

However, existing architectures leave important challenges open when applied to

multi-robot teams. First, most existing robot teamwork architectures do not address syn-

chronized task execution and dynamic task allocation in a single architecture. Therefore,

the team's developer must decide whether synchronization or allocation is more important.

Second, most of the existing architectures are monolithic in the sense that they commit only

to specific services and to the specific interaction protocol used to implement each service,

e.g., confirm-request for synchronization [9]. Finally, while previous work in robotics be-

gan to explore the use of task-allocation in physical robot teams [6, 1, 3], the actual appli-

cation of multi-agent techniques to robotics has not been researched yet.

10

This thesis describes the Bar-Ilan Teamwork Engine (BITE), a novel behavior-

based teamwork architecture targeting physical robot applications and addressing the

challenges mentioned above. BITE integrates and synthesizes many features of existing

teamwork architectures, and offers novel features. The architecture of behaviors is very

flexible and comfortable to work with and it allows a designer to easily change and adjust

the architecture to re-define the mission for the multi-robot teams.

BITE can be used for testing algorithms that are designed for multi-robot teams, for

games that employ multiple robots such as GameBots or RoboCup, and even for

synchronizing tasks of robot teams at an assembly line.

1.2 Proposed BITE System

We propose a novel behavior-based teamwork architecture targeting physical robot

applications such as Sony AIBO platforms. This work represents our first step towards a

comprehensive framework of controlling teams of behavior-based agents and robots,

synthesizing and integrating many existing algorithms, and adding novel capabilities.

Similarly to previous architectures [9, 10], BITE maintains an organization

hierarchy and a task/sub-task behavior graph of managing teamwork. However, previous

architectures are monolithic and have utilized only a task/sub-task behavior hierarchy, or a

behavior hierarchy with organization hierarchy. Next to these two hierarchies, BITE

maintains a novel third structure, a set of hierarchically-linked social interaction behaviors

implementing interaction protocols for synchronization and task allocation. These social

behaviors handle interactions between the robots, and are triggered upon successful or

failed termination of the individual behaviors of robots.

Thus, BITE architecture framework relies on maintaining and linking three graph

structures:

11

 An organization hierarchy,

 A task/sub-task behavior hierarchy,

 A set of social behaviors.

The key idea of employing these three components is to simplify team control algo-

rithms by separating control of individual behavior execution from the control of team-

members interactions. Our proposed architecture implements a teamwork micro-kernel ap-

proach, in which different synchronization and allocation protocols can be used inter-

changeably and mixed as needed.

BITE integrates and synthesizes many features of existing teamwork architectures,

and offers novel features. In addition, BITE incorporates features that stem from our re-

search by applying multi-agent system techniques in physical robots. In particular, BITE

emphasizes preprocessing of sensory information before use (including fusion of informa-

tion from multiple robots) and facilitates human operator control.

We performed our experiment involving the BITE architecture on teams of Sony

AIBO platforms. The software components utilize and extend the Tekkotsu AIBO control

software [11]. In multiple experiments, we show that BITE's novel separation of social in-

teraction from task-oriented control is an empirically significant contribution. This way,

non-trivial effects on team performance can be accounted for. We additionally discuss con-

clusions drawn from applying multi-agent system techniques to robots.

1.3 Thesis Outline

From a design point of view, the BITE architecture is a large multiple-component-

based project that was designed, developed and integrated using an object-oriented method-

ology. The project had been implemented through several major stages in approximately

12

two years. At each stage, a major system component was implemented and tested through

laboratory experimental setups. The test results were analyzed and documented.

This thesis describes how the system was built from individual components. Each

chapter of this thesis describes one of the components. The thesis comprises of eight chap-

ters:

 Chapter 2 Background

Related work in multi-agent teamwork architecture is summarized here and compared

to the proposed BITE system.

 Chapter 3 Methodology

This chapter provides details of the design and algorithms of the BITE architecture. It

also presents a simple example of the BITE execution to demonstrate how the main

components of the architecture are related

 Chapter 4 Experiments

This chapter describes implementation and results, conclude the thesis.

 Chapter 5 Summary and Future Work

This chapters outline the future work for possible improvements and upgrades that

would allow robots to automatically find and choose the most suitable mechanism of

the team control and the negotiation protocol depending on the task settings.

The main contributions of this thesis was presented at the National Conference on

Artificial Intelligence (AAAI-2005, 2005) [16] and at the International Joint Conference on

Autonomous Agents and Multi-Agent Systems (AAMAS-05, 2005) [17]. Significant

portion of this work has been presented at the Eighth Conference on Intelligent

Autonomous Systems (IAS-8, 2004) [18].

13

Chapter 2

 Background

Our work seeks to examine the application of multi-agent teamwork techniques to

robotic teamwork and is inspired by research that has tackled teamwork at an architectural

level. The investigation of existing teamwork literature has revealed parallel research lines.

They focus on sub-task synchronization (coordination of robots task execution) or on task

allocation (allocating subtasks to robots) one at a time. Thus our initial motivation is to

combine both aspects of synchronization and allocation into a single architecture.

A second important motivation for this work has been to investigate the boundaries

of existing techniques of multi-agent systems in physical robot applications. While there

have been several successful applications of such techniques within robotics (e.g., [3, 4, 1]),

there has been little done to investigate the characteristics or properties analysis of these

techniques.

Tambe’s work on the STEAM teamwork model [12] has explored the use of

automated decision-theoretic communications in synchronizing the selection and

termination of hierarchical behaviors. Additionally, it investigated the use of organizational

repair behaviors that could be triggered based on failures in the organizational structure

(such as a teammate permanently crashing). Our current work on BITE does not, as of yet,

contain such monitoring and repair procedures.

Previous architectures have made hard commitments to the protocols used for

coordination. For instance, architectures that supported allocation utilized a market-based

approach [1, 4], or an agenda-based mechanism [6]. Other architectures utilized specific

14

protocols for synchronization. TEAMCORE [9] is an architecture that uses automated

decision-theoretic communications and applies a confirm-request protocol in synchronizing

selection and termination of hierarchical behaviors. I it also uses task re-allocation

behaviors that could be triggered based on catastrophic failures. TEAMCORE provides

synchronization and some allocation services.

Yen et al.’s CAST architecture [13] includes a mechanism for proactive

communications, in which virtual robots anticipate the information needs of their

teammates and respond appropriately. However, all synchronization is done via a simple

fixed protocol, and allocation services are not provided.

SCORE [10] demonstrated the usefulness of applying multiple allocation protocols

depending on execution context; however, SCORE only allows flexible allocation. Its

synchronization mechanism is based on synchronizing a table of pre-declared variables and

assumes that the latest value (communicated by anyone) is the correct one for all other

robots. This protocol is communication intensive and prone to failures (for instance, it

assumes robots always sense compatible information).

Within robotics work, Parker’s work on the ALLIANCE architecture [6] has

investigated robust distributed behavior-based control architecture, in which robots

dynamically allocate and re-allocate themselves to tasks by sensing their own failures and

those of their teammates. All ALLIANCE architectures have been demonstrated to work in

multiple domains. They offer dynamic task allocation facilities, but do not explicitly

synchronize robots that are jointly performing tasks.

Researches in the field of robotics have investigated a number of market-based

approaches for robot task allocation. However, these are monolithic in nature and commit

only to specific protocols. Dias and Stentz [1] discuss the use of markets to allow robots to

bid for tasks in spatial sensing domain. Gerkey and Mataric [3] explore actions for task

15

allocation challenges, and also analyze several task-allocation protocols useful in robotics

[14]. SCORE [10] uses multiple protocols, but lacks many of the fault-tolerance capabilities

of STEAM and ALLIANCE. ALLIANCE is extremely robust to failures, but does not

explicitly synchronize robots performing tasks jointly. CAST provides proactive

communications, but does not provide many of the services in STEAM.

Additional recent work in multi-robot systems underscores the need for a

comprehensive framework that facilitates automation of teamwork services. Goldberg et al.

[4] explore a distributed architecture based on the traditional three-tier architecture, in

which multiple robots interact with each other at all three layers using a market-based

resource allocation scheme. A key difference between this work and ours is that Goldberg

et al. makes a commitment to a market-based resource allocation scheme, while we leave

the allocation method in the hands of the designer. The designer may allow robots to use a

market-based approach, but may also direct them to use other methods.

To rapidly deploy robotic teams, we believe that teamwork architecture must

integrate many of the above mentioned capabilities and thus synthesize novel features.

However, this integration must not be monolithic, in the sense that it must allow the

designer to explore alternative protocols and automated coordination capabilities, for the

task at hand. The framework we provide seeks to fulfill this vision of flexible teamwork in

robot teams. Our work still lacks the failure-recovery facilities of STEAM or ALLIANCE;

however, it provides many other capabilities of previous research, and in addition it

separates coordination, control, and communications.

None of the previous investigations allows such separation, which we achieve

through the maintenance of separate social behaviors. Thus for instance, it is possible in our

framework to switch between multiple synchronization methods, to dynamically re-allocate

robots to tasks in more than one way, and to manage proactive communications.

16

Chapter 3

 Methodology

Given the popularity of behavior-based control in existing robotics work, BITE uses

hierarchical behaviors as the basis for the representation of underlying the controllers for

the team members. In addition it has a set of social interaction behaviors with associated

team-hierarchy which are described in Section 3.1. Section 3.2 presents a number of

principal algorithms that automate control and communication of a team of robots. Sections

3.3 and 3.4 describe the experimental setup and give an example for a simple execution of

the BITE.

3.1. Representation

SThe BITE system has three fundamental structures: behavior hierarchy,

organization hierarchy and social interaction behaviors. They are designed to break down

the monolithic structure of existing architectures.

Behavior hierarchy

Behavior hierarchy specifies the sequential and hierarchical relationships between

Figure 1. Behavior graph. (Relationships for Node A)

17

Node A
(b2)

Node “Following” A
(b5)

Synchronization

(Sequential)

Parent of Node
A (b0)

Child 1 of Node A
(b3)

Child 2 of Node A
(b4)

Allocation
(Decomposition)

CycleS
S S

S

Synchronization Node “Following” A
(b6)

task-oriented behaviors. It can be thought of as a Directed Cyclic-Horizon Graph in which

each node represents a behavior and each edge represents the link between two behaviors.

A typical behavior hierarchy, centered on the node A, is shown in Figure 1.

In the behavior hierarchy, there are two types of directed edges generated from one

node, namely horizontal and vertical edges. A horizontal edge represents a sequential

relationship whereas a vertical edge represents a decomposition relationship. If behavior A

is connected vertically to behavior B, we say that behavior B is a child behavior of A.

Similarly, if behavior A is connected horizontally to behavior B, we say that behavior B

follows behavior A or that behavior B is the follower of behavior A.

There are also two types of nodes in the behavior hierarchy: internal nodes and leaf

nodes. Internal nodes have one or more outgoing vertical edges, thus they represent

internal behaviors whose goals can only be achieved through the accomplishment of a set

of sub-goals of their child behaviors. On the other hand, leaf nodes have no outgoing

vertical edges and represent leaf behaviors that have an atomic goal and the execution

required to achieve that goal.

Each node in the behavior hierarchy is an augmented connected graph quadruple

<B, H, V, b0>, where B is a set of task-achieving behaviors (vertices); H and V are sets of

directed edges between behaviors (H ∩ V= Ø); and b0  B is a behavior from which the

execution begins. Each behavior bi  B may have preconditions which enable its selection

(the robot can select between multiple enabled behaviors), and termination conditions that

determine when execution must be stopped.

In the behavior hierarchy a path along sequential edges, i.e., a valid sequence of

behaviors is called an execution chain. H is a set of sequential edges that specifies temporal

order of execution of behaviors. A sequential edge from b2 to b5 (Figure 1) specifies that b2,

b3, b4 must be executed before executing b5. V is a set of vertical task-decomposition edges,

18

which allow a single higher level behavior to be broken down into execution chains

containing multiple lower-level behaviors. At any given moment, the robot executes a

complete root-to-leaf path through the behavior graph. Sequential edges may form circles,

but vertical edges cannot; thus an ancestor behavior cannot be repeated.

During the behavior hierarchy traversal, currently executing robot’s behaviors are

stored in the behavior stack. The order in which items are pushed on and popped from the

stack is defined by the BITE execution Algorithm1 (Section 3.2). An execution group for a

behavior is defined as a set of robots that are currently executing that behavior, or have the

behavior on their behavior stack. Each robot belongs to the execution group of all behaviors

that they have on their stack.

When the BITE execution follows a vertical edge in the behavior hierarchy,

allocation is required. Similarly, when a horizontal edge is encountered synchronization is

performed. In addition, synchronization is required for termination of robots execution of

team behaviors. When a team behavior termination conditions are satisfied for a robot,

BITE is triggered to coordinate the termination of this behavior with the other robots.

To allow BITE to automate synchronization, we impose a constraint on the

semantics of multiple outgoing edges. Two outgoing sequential edges < b5, b6 >, < b5, b2 >

(Figure 1) signify a choice-point between alternative execution chain, i.e. a robot that

finished execution of b5 must choose either b6 or b2. When these execution chains are

composed of team behaviors, the selection between alternatives must be coordinated, so

that all (relevant) robots select the same execution chain. Therefore, BITE's

synchronization services are triggered when multiple execution chains are enabled. Later on

in the thesis complex teams and the identification of relevant team-members are presented.

To automate allocation, we impose a related semantic constraint on decomposition

edges. Two outgoing decomposition edges < b2 , b3 > , < b2 , b4 > (Figure 1) signify

19

complementary execution chains: execution chain beginning with b3 and the execution

chain beginning with b4 must terminate for b2 to be considered complete. By convention,

vertical edges point only to the first behaviors of execution chains since in any case these

behaviors must be executed before others in their respective chains. Similarly to the

synchronization points, BITE's allocation services are triggered when multiple

decomposition edges are enabled.

Given the above constraints BITE can easily determine synchronization and

allocation points. A split in sequence edges leading to team behaviors signifies a

synchronization point. A split in decomposition edges leads to allocation. And

synchronized termination is triggered when a team behavior is de-selected. For all these

points BITE must coordinate with the other robots through their own BITE processes.

O rganization hierarchy

In order to be able to synchronize and allocate behaviors, BITE maintains

information about robots responsible for the execution of team behaviors. This information

is represented in the organization hierarchy (team hierarchy in [9, 10]), which is a Directed

Acyclic Graph (DAG) whose vertices are associated with sub-teams of robots, and whose

edges signify sub-team-membership relationships (Figure 2).

Figure 2. Organization hierarchy. (R1R  R2R, R3R2  R4R2)

20

Team (R)

Sub-Team (R4)

Sub-Team (R2)Sub-Team (R1)

Sub-Team (R3)

The organization hierarchy always has more than one node with complete set of

robot team-members R at the root. The set is further broken down into robot sub-teams Ri

R. To allow behaviors to determine which organizational unit is responsible for their

execution, links are created between the behavior graph and the team hierarchy. A link

from a behavior Bj to a sub-team Ri signifies that the behavior Bj is to be jointly executed

by the sub-team Ri.

Social interaction behaviors

A key novelty in BITE is that it allows the use of different interaction protocols at

different times, depending on the team behaviors in question and other context information.

To achieve this, BITE maintains a set of social interaction behaviors, which control inter-

robot interactions and allow robots to dynamically create links between the behavior graph

and the team hierarchy during execution of a particular behavior. Interaction behaviors

typically control communication actions and execute interaction protocols (e.g., voting) that

govern coordinated activity and are responsible for status notifications between robots. For

instance, a simple interaction behavior for the synchronization can be decomposed into four

atomic interaction behaviors that are executed in a sequence: announce vote, send votes,

tally votes, and announce the selected winner.

There are three different types of social interaction behaviors: a) synchronized

selection of behaviors prior to their execution; b) allocation of robots to behaviors; and c)

synchronized termination of behavior execution.

Synchronized selection is a protocol that allows a team of robots to synchronize the

selection of the next horizontal behavior to be executed in the behavior hierarchy graph.

Allocation of robots to behaviors occurs when a behavior in the graph is to be decomposed

into children behaviors. If a node in the graph is decomposed into n behaviors, the

allocation protocol is executed to divide the robot team into n sub-teams of robots to

execute each behavior.

21

During the execution of vertical edges in the behavior hierarchy, each behavior is

executed in parallel by a team of robots and there is no need for synchronization. On the

other hand, for horizontal edges each robot must terminate the particular behavior in order

to proceed with the next synchronized selection. Therefore, before calling the synchronized

selection, the synchronized termination of the behavior execution is performed to determine

which robot finished execution of the behavior. For instance, a parent behavior has several

robots doing a distributed search for a target. A robot that finds the target terminates the

search and informs its teammates. When all robots terminate their search the parent

behavior terminates.

Behavior hierarchy, organization hierarchy and social interaction behaviors are all

interconnected. Interaction behaviors are represented with the same behavior graphs as the

task-oriented behavior of the robots. Thus synchronization, allocation, and termination

points in the behavior graphs of interaction behaviors are linked to other interaction

behaviors, creating hierarchical interactions.

Figure 3 shows an example of the three fundamental structures of the BITE system

described in this chapter: a) organization hierarchy, b) behavior hierarchy, and c) social

interaction behaviors. We will use it to demonstrate a simple voting interaction behavior

composed of four atomic interaction behaviors: announce vote, send votes, tally votes, and

announce selected winner.

The organization hierarchy in the Figure 3a is composed of three robots identified

as a, b and c. Each robot team is linked with its associated behaviors. Similarly, the

behaviors are linked with their associated teams, which can be either predefined or linked

dynamically during the BITE execution.

22

Fig

ure

3 BITE Structures and Links for a formation maintenance task. (a) Portions of the team

hierarchy, (b) behavior graph, and (c) social behaviors. Links from (b) to social behaviors

in (c) are denoted by S1–S3.

Figure 3b shows an example of a simple behavior graph, constructed for multi-

robot formation maintenance tasks. There are two formation behaviors here - Triangle

Formation and Line Formation. Execution begins with triangle formation, and can (under

specific conditions) switch to the line formation. Both formations use the behavior Search

to choose a role in the formation (leader, follower, etc.). Once their role is selected, robots

choose between the Walk behavior (walking in triangle) and the Line Walk behavior (robots

23

Triangle
Formation

Search

Follow
Left

Walk

Line
Formation

Line
Walk

Follow
Right

FollowLead

S1
Begin End

S3S3

S4 S3
S2S2 S3

S2

S1S1

S2 S2

S1

S2

S1

S2

{a,b,c}

{a,c}

{a} {c} {b}

Announce
VotingS1: Vote

Tally
Voting

Call BiddersS2: Bidding Announce

All members
finished

S3:

(a) (b)

(c)

Wait

Only one
finished

S4: Wait

Search
S4

S2

follow each other in a line). The Walk and the Line Walk behaviors are marked as team

behaviors, and require two important teamwork capabilities:

 Synchronization - to guarantee that all robots select the same

behavior, and start/end the behavior at the same time

 Allocation - to guarantee that only a single leader for the formation

behavior is chosen

Figure 3c shows four social behaviors: a voting behavior S1, bidding behavior S2,

termination behaviors S3 and S4. Behavior S1 is a synchronized selection behavior, where

one predetermined robot announces the call for votes and the candidate behaviors. Then it

collects the votes from all team members and announces the winning behavior. This

behavior is then selected for execution by each robot in the team.

Behavior S2 is the allocation of sub-teams to behaviors and represents the

sequential phases of a market-based protocol to be used in allocating the children behaviors

to different robot sub-teams. Once the allocation is made, appropriate links are created

between the allocated behaviors in behavior-graph and the sub-teams in team-hierarchy

responsible for executing them.

 Behaviors S3 and S4 are very simple synchronized termination behaviors, which are

used in the formation task. These behaviors are marked bold because at this point all robots

constantly communicate with each other to update their status. For example, a robot that

has terminated execution of a joint behavior waits for all the other robots to reach the end

of their execution chains as well, before they all begin their joint execution of a new

behavior.

Let’s assume that three robots are executing the task Triangle Formation (Figure 3b).

They have together finished execution of the behavior Search and have started on Walk.

The robots must jointly decide how to allocate different roles of the formation among

24

themselves. One must lead the triangle at the front (the lead behavior), while the others

follow—one from the left (follow left) and the other from the right (follow right). To

negotiate this allocation, the robots may communicate, for instance by executing a bidding

protocol where different robots bid on the behaviors they wish to execute. Once this

decision is made, links are created from each behavior to the appropriate vertices in the

team-hierarchy, to denote who is executing what. Two sequential transitions connect the

behavior Search: one to the Walk behavior, and the other to the Line Walk behavior. A

synchronized decision is to be made on which connection to choose such that all robots

select the same behavior and the execution must begin simultaneously. The social behavior

S1 is used to coordinate this synchronized selection

25

3.2. Algorithms

Algorithms presented in this section are the base algorithms of the BITE system.

The main Principal Control algorithm is responsible for the behavior graph and for the

execution of all behaviors. The Resource Precondition Control algorithm is responsible for

recourses and it is linked to the platform in which BITE is executed. The Fuse Information

algorithm is responsible for linkage between all team members and it is based on the team

hierarchy. Finally, the Operation Control algorithm allows an operator to take control over

a robot for its own use.

3.2.1 Algorithm 1 – Principal Control Algorithm

This is a basic algorithm that controls the coordinated execution and selection of

behaviors by robots. The BITE control loop traverses the behavior hierarchy graph from

root to leafs, simultaneously executing each node and its selected children. The behavior on

top of the behavior stack corresponds to the currently active behavior of a robot in the

robot-team. Given a set of robots that is currently executing some node in the hierarchy (i.e.

synchronized), several important events can occur which trigger transitions in execution.

If a given set of robots is executing a leaf node, they will simply continue execution

of that node until the termination condition of one of the behaviors in their stack is met. At

this point, all robots either move to the parent of the terminated behavior, or move

horizontally to the following behavior if it exists. In both cases, once a robot transitions, it

enters a waiting state in which it will not begin execution of the next behavior until all

robots in the execution group of the terminated behavior have transitioned as well. This

ensures that all robots will begin executing the next behavior simultaneously, which is

essential if the next behavior is an internal behavior.

26

27

Algorithm 1 CONTROL

Input: behavior graph < B, H, V, b0>, team hierarchy T , interaction

behaviors set O

1. s0 b0 // initial behavior for execution

2. push s0 onto a new behavior stack G.

3. while s0 is non-atomic // has children

(a) A {bi} ,s.t. , < s0 , b0 > is a decomposition edge

(b) if A has only one behavior b , push(G, b).

(c) else b  Allocate(G, s0, A, T, O) , push(G, b).

(d) s0  b.

4. execute in parallel for all behaviors bi on G : // Execution

(a) check (and wait for) resources for bi (Algorithm 2)

(b) execute bi until it terminates

(c) while bi ≠ top(G),pop(G).

(d) break parallel execution, go to 5.

5. b  pop(G). // Terminate joint execution

6. c  Terminate (G, b, T, O)

7. if c ≠ NIL, push(G, c)

8. else: // Select next behavior in execution chain

(a) Let Q{si}, s.t., < b0, si > is a sequential edge

(b) if Q is empty, go to 5 // terminate parent

(c) if Q has one element s, push(G, s)

(d) else s  Decide(G, b0, Q, T, O)

(e) s0  s

9. if G not empty, go to 3.

On the other hand, if a set of robots is executing an internal node, all robots at that

node execute their social behavior until each one of them has enough information to

determine the child behavior that it should transition to.

Each robot executes Algorithm 1 using its own copy of the three BITE structures

(behavior hierarchy, organization hierarchy and social behaviors). Executions begin when

the initial behavior of the behavior graph (typically the root) is pushed on the behavior

stack (lines 1-2). Then the algorithm loops over the four following phases:

(i) Recursively expand the children of the behavior, allocating them to sub-

teams if necessary (lines 3a-3c).

(ii) Execute the behavior stack in parallel, waiting for the first behavior to

announce its termination (lines 4a-4d). All descendants of the terminating behavior

are popped off the stack (i.e., their execution is also terminated line 4b).

(iii) Next a synchronized termination takes place (line 6), which can in result

in one of the following:

(iv) Allocation of a new behavior within the current parent context, in which

case this behavior will be pushed on the behavior stack (line 7).

(v) The robot chooses between any enabled sequential transitions from the

terminated behavior (lines 8a-.8e). This process normally results in new behaviors

being pushed on the stack and the ‘goto’ line 3 causes the recursive expansion and

allocation to sub-teams (line 9).

 The recursive allocation of children behaviors to sub-teams on lines 3a-3c relies on

the call to the Allocate() procedure. To make the allocation decision, Allocate() takes the

current execution context (i.e., current stack, available children), and then calls the

28

appropriate social interaction behavior for descendants of the current node. The current

execution stack is used to ease allocations, by conveying information about where in the

behavior graph the allocation is taking place. In addition, the interaction behavior is given

access to any links from the parent behavior to the team hierarchy, e.g. to determine

whether any children task-behaviors are already pre-allocated.

Once a final allocation is determined, Allocate() is responsible for updating the links

from the behavior graph to the team hierarchy (and vice versa) to reflect the allocation. It

then returns, for each robot, the child behavior for which it is responsible as part of the split

sub-team (or individually, if the sub-team is only composed of a single robot).

Synchronized termination (lines 5-7) and selection (lines 8a-8e) rely on calls to the

procedures Terminate() and Decide(), respectively. Terminate() is responsible for invoking

the termination interaction behavior, which can return a new child behavior for execution

under the current node.

If the current node does not have descendants, the next behavior in the execution

chain must be selected by the Decide() procedure, which calls the appropriate interaction

behavior. Since synchronized selection involves all members of the current sub-teams

selecting together, this behavior would normally communicate with the members of the

sub-team assigned to the terminated behavior.

Note that in step 8b we also handle the case in which no more behaviors are

available in the execution chain. This case signals a termination of the execution chain,

which in turn signals termination of the parent, thus looping back to line 5. For clarity, we

omitted the check whether a parent actually exists, in which case the end of the behavior

graph has been reached and the execution halts.

29

3.2.2 Algorithm 2 – Resource Precondition Control Algorithm

In BITE, as in other behavior-based architectures, the execution of all selected

behavior is done in parallel (Algorithm 1, step 4). However, in contrast to other behavior-

based architectures, our architecture has a notion of resource preconditions that prevents

currently executing behaviors to utilize an already utilized resource (Algorithm 2). If a

resource is not available, the behavior takes a standby position until the resource is released

(Example Section 3.4). Semaphores are used to prevent deadlocks.

3.2.3. Algorithm 3 – Fuse Information

The Fuse Information algorithm is designed and intended to run concurrently with

the Resource Precondition Control algorithm (Algorithm 2). The algorithm is designed to

coordinate the linkage between all team members and it is based on the team hierarchy.

In the first phase of the algorithm (Algorithm 3, lines 1a-1c), each robot determines

whether new information has become available. This information, such as newly satisfied

conditions, affects the robot’s current behavior stack. That potentially affects the robot's

30

Algorithm 2 RESOURCEPRECONDITIONCONTROL

Input: interaction behaviors set O , resource status R

1. Resource precondition:

(a) p getResourcePrecondition(O) // return resource precondition

(b) if ResourceStatus(R, p)= true, goto 2. // Boolean function

(c) else: SleepingWait () and goto 1. // after 128ns return from sleep

2. Execute behavior O.

Algorithm 3 FUSEINFORMATION

Input: behavior graph < B, S, V, b0>, team hierarchy T, interaction behaviors

set O

1. for all behaviors b on behavior stack G:

(a) t subteam(b) // sub-team responsible for b

(b) if a termination condition of b is satisfied, Inform(b ,t, O)

(c) if a precondition of a behavior f (< b, f > a sequence edge) is

satisfied, Inform(b ,t, O)

2. for all teams t in the team hierarchy:

(a) C{b | b  B, t currently linking to b }

(b) for all b  C and not on the behavior stack:

i. if a termination condition of b is satisfied, Inform(b ,t, O)

ii. if a precondition of a behavior f (< b, f > a sequence edge)

is satisfied, Inform(b ,t, O)

immediate teammates, and must therefore be communicated to them by finding out which

sub-team is responsible for each behavior on the stack. This is done through the Inform()

procedure, which refers to an appropriate social interaction behavior. It takes into account

the cost of sending a message versus its utility as is done in TEAMCORE [9].

As stated earlier, a robot is strictly responsible of informing only its own team-

members. The second phase of the algorithm (Algorithm 3, lines 2a-2b) allows a robot to

determine whether the newly acquired information is also relevant to other sub-teams that

the robot is a member of. The Inform() procedure decides whether the robot should provide

the information to these sub-teams or not.

31

For instance, suppose a team of robots is executing the Triangle Formation (section

3.3) and are currently executing the Walk behavior. Suppose now that one of the follower

robots is currently executing the Follow Left behavior. Algorithm 3 guarantees that when

the robot meets termination conditions of Follow Left, Walk, or Triangle Formation, it

informs its team members. In addition, if the robot receives a termination condition from its

leader, it informs members of the sub-team associated with leader.

3.2.4. Algorithm 4 – Operation Control Algorithm

The Operation Control algorithm (Algorithm 4) follows up all the events that take

place when an operator intervenes in the work of a robot. Below we present a line by line

description of the algorithm.

 When the operator wants to control a robot, a message is sent.

 When a robot receives the message (line 1) it must signal to itself and to all

its teammates (line 2b) that it is controlled by an operator (line 2a).

 When the robot is released by the operator, it notifies its teammates again

and its status changes (line 3a-3b).

 The change of status of the robot is executed in parallel for all its behaviors

(line 4).

 Every launched behavior is set to OprWait status until the operator releases

control of the robot.

 When a robot receives a message that a Robot A is controlled by an operator,

it saves this message in its stack until it receives a message that the Robot A

is released (line 5).

 While executing social behaviors (line 6), BITE runs as usual. When a robot

is released, it doesn’t resume its execution, but operates at the exact point in

the behavior graph where currently its team is executing.

32

An important point is that members under the operator control are automatically

excluded from the usual decision-making process, but they do keep track of the execution

and decisions of their team members. Therefore, when they are released, they ‘know’ what

their team members are currently executing and what their future tasks will be.

Additional algorithms can be derived based on analysis of the behavior graph, team-

hierarchy and social behaviors structures and their interacting links. For instance,

straightforward analysis of the behavior graph can yield information about what behaviors

33

Algorithm 4 OPERATIONCONTROL

Input: behavior graph < B, S, V, b0>, team hierarchy T, interaction behaviors set O,

behavior stack G

1. t TeleoperatorStatus() // notification

2. if t= true and OPR_END=GetOperStatus() then

a. SetOperStatus(OPR_BEGIN) //change indicator

b. SendMsgToAllTeam(OPR_BEGIN)//send to all members of team about

my transition

3. if t= false and OPR_BEGIN=GetOperStatus() then

a. SetOperStatus(OPR_END)) //change indicator

b. SendMsgToAllTeam(OPR_END) //send to all members of team my

transition

4. Executed in parallel for all behaviors bi on G:

a. if bi== Executed and t= true then

i. ToReleaseResource()

ii. ChangeStatus(OprWait)

b. if bi== OprWait and t= false then

i. ChangeStatus(Executed)

5. if received message “operation control” from robot A

a. push robot A onto OprWaitMembers stack W.

6. Social behavior : a doesn’t participate in a choice.

are expected to be selected in the future, thus allowing robots to anticipate the needs of

their teammates [8]. We have found it useful to run a proactive communications algorithm

that informs teammates of sensed knowledge that may be relevant to them. The relevance is

chosen based on the team hierarchy and the behavior graph.

3.3 A Simple Execution Example

This chapter presents an example of a BITE execution. It demonstrates execution of

the Triangle Formation by three Robots A, B, and C (Figure 5). In the Triangle Formation

robots must walk in a triangle, where one robot is leading and the other two are following –

one on the right and the other on the left. All robots have a different color painted markers

on their back: Robot A is pink, Robot B is blue and Robot C is white. In the formation

robots maintain their positions and head angles relative to the leading robot. Color

segmentation is used to identify the angle and AIBO's distance sensor (infra-red) is used to

maintain distance within some constraints.

All three structures of the BITE architecture that are used for this example are

shown in Figure 4. The top left graph represents the organization (team) hierarchy, the top

right graph shows the behavior hierarchy and at the bottom social interaction behaviors are

shown. Each robot has a copy of this architecture.

Initially, the behavior stack of each robot contains only the StandUp behavior

(Algorithm1, line 1-2). Therefore, the state of the team at the startup is as follows (Figure

5a):

Robot A = StandUp

Robot B = StandUp

Robot C = StandUp

34

Figure 4 Triangle Formations.

Three structures of the BITE architecture used in the Triangle Formation example.

The top left graph represents the organization (team) hierarchy, the top right graph shows

the behavior hierarchy and at the bottom social interaction behaviors are shown.

StandUp is an atomic node in the behavior graph (Algorithm 1, line 3), therefore its

execution must be synchronized. Upon the termination of the StandUp behavior, each robot

35

Triangle
Formation

Search

Follow
Left

Walk

Line
Formation

Line
Walk

Follow
Right

FollowLead

S1
Begin End

S3S3

S4 S3
S2S2 S3

S2

S1S1

S2 S2

S1

S2

S1

S2

{a,b,c}

{a,c}

{a} {c} {b}

Announce
VotingS1: Vote

Tally
Voting

Call BiddersS2: Bidding Announce

All members
finished

S3:

(a) (b)

(c)

Wait

Only one
finished

S4: Wait

Search
S4

S2

pops out the StandUp behavior from its behavior stack (Algorithm 1, line 5) and executes

the social behavior S1 (Wait All) (Figure 5b).

 (a) (b) (c)

Figure 5. Executed StandUp behavior.

Start execute behavior StandUp (a), run behavior StandUp (b) and finish execute behavior

StandUp (c). Robot 1(A)-pink, Robot 2 (B)-blue and Robot 3(C)-white.

For example, if Robots A and B are first to terminate execution of the StandUp behavior,

the state of the team is:

Robot A = empty

Robot B = empty

Robot C = StandUp

StandUp behavior is executed simultaneously by all teammates, as shown in the

behavior hierarchy graph in Figure 4. This behavior is linked to the team hierarchy, and

points at all team members (A, B and C). Therefore, when terminating, each robot must

send a message of termination to the entire team, and wait for termination messages from

the others.

36

When all three robots terminate the StandUp behavior and notify others, they have

only one option to choose from the behavior graph. Thus the next behavior that is pushed

on the behavior stack is Search (Algorithm 1, line 8c) and the state of the team is:

Robot A = Search

Robot B = Search

Robot C = Search

Unlike the StandUp behavior, the Search behavior node has children (subtasks) in

the behavior graph; therefore the social behavior S2 (Team-wide allocation of robots and

sub-teams to behaviors) is launched (Algorithm 1, line 3). S2 will decide the next actions

of each robot, taking in to account the preconditions and the bidding of each robot. Based

on the links from the organization (team) hierarchy, each robot will choose its behavior and

start the execution (Figure 6). For each robot, two parallel behaviors (Search and Search

‘color’) are launched (Algorithm 1, line 4) and the state of the team is (Figure 7a):

Robot A = Search  Search blue (the blue color paper)

Robot B = Search  Search pink

Robot C = Search  Search pink

Before executing the Search ‘color’ behavior robot launches Resource Precondition

Control Algorithm (Algorithm 2) to see which resources are required for this behavior and

whether these resources are available. When two or more currently executing behaviors use

the same robot’s resources (for instance leg resources for walking), a conflict is created.

Algorithm 2 allows these behaviors to dynamically schedule their control of the resources

and run in parallel, each taking control of the resources only when needed.

37

Figure 6. State of the team.

(Top) Robot B execution social behavior S2
(Middle) Robot A execution social behavior S2
(Bottom) Robot C execution social behavior S2

38

End

S1

End

S1

{ABC}

{B} {C} {A}

Search

Search
pink

Walk

Search
pink

Search
blue

S1

Stand
Up S1

S2
S3

S2

S1S1

S2 S2

S1

S2

S1

S2

Follow
Left

Follow
Right

LeadS1S1

S2S2

{ABC}

{C} {A}

Search

Search
pink

Walk

Search
pink

Search
blue

S1

Stand
Up S1

S2
S3

S2

S1S1

S2 S2

S1

S2

S1

S2

Follow
Left

Follow
Right

LeadS1S1

S2S2

{B}

{ABC}

{C} {A}

Search

Search
pink

Walk

Search
pink

Search
blue

S1

Stand
Up

End
S1

S2
S3

S2

S1S1

S2 S2

S1

S2

S1

S2

Follow
Left

Follow
Right

LeadS1S1 S1

S2S2

{B}

Each robot now executes its own task, and there is no communication between the

team-members until they finish the Search ‘color’ behavior (Figure 6). For example, when

Robot B finds its designated color (pink), it finishes the behavior. It does not launch any

new social behavior but returns to the Search behavior and sends a message to all the

teammates stating that it successfully terminated the Search ‘color’ behavior (Algorithm1,

line 5-7). If Robot B and C finished their Search ‘color’ behavior but Robot A is still

searching, the state of the robots is:

Robot A = Search  Search blue (the blue color paper)

Robot B = Search

Robot C = Search

Since Robot A is still searching for the blue color, Robot B and C start the S1 social

behavior and wait for their teammate to finish its search. When Robot A successfully

terminates its Search blue behavior, it returns to the Search behavior and notifies its team

members (and itself).

If the number of messages received by each robot is the same as the number of

robots in the team, the team transitions to the execution of the next behavior Walk (Figure

4) and the state of the robots is:

Robot A = Walk

Robot B = Walk

Robot C = Walk

Execution of the Walk behavior is similar to the execution of the Search behavior in

the sense that robots go through the same allocation and synchronization process of

bidding, executing and waiting. The difference is that the robots have to execute the social

behavior S2 (Call Bidders) and bid on their position in the formation. The bidding depends

on the color they were searching in the Search ‘color’ behavior and on the angle of their

head when the search was completed. Therefore, in our example the state of the robots is:

Robot A = Walk  Lead

39

Robot B = Walk  Follow Right

Robot C = Walk  Follow Left

(a) (b)

Figure 7. Position of each robot in Triangle Formations.

(a) All robots execute the Walk behavior.
 (b) All robots terminate the Walk behavior.

During the Walk behavior execution, Robot A leads and follows the blue paper,

Robot B follows Robot A on the right and Robot C follows Robot A on the left (Figure 7а).

The robot’s sensors monitor the distance between them and the color that they must follow

(the color they searched in the Search behavior). Robots continue executing the Walk

behavior only because all of them sense their color. When a robot in the formation stops to

sense its designated color, it stops and terminates its Walk behavior and notifies itself and

its members. Robots in the formation that receive the termination message from their

teammate also stop walking and terminate their Walk behavior (Figure 7b) and the state of

the team is:

Robot A = empty

Robot B = empty

Robot C = empty

40

{B}

S1:

S2:

S3:

{ABC}

{C} {A}

Search

Search
pink

Walk

Search
pink

Search
blue

S1

Stand
Up

End

S1
S2

S3
S2

S1S1

S2 S2

S1

S2

S1

S2

Call Bidders Bidding Announce

Wait all

Follow
Left

Follow
Right

Lead
S1S1 S1

S2S2

Leader
Pick

Announce

At this point robots execute the social behavior S3 (Leader pick). The leader of the

Walk behavior (Robot A) randomly chooses the next execution step, which can be either

Search or End behavior (Figure 8). When the choice is made, the leader notifies its team

members. If the choice is to execute the Search behavior, then the process described above

repeats; otherwise the BITE execution terminates.

Figure 8. Termination of Walk behavior execution by all the robots.

41

Chapter 4

Hardware Configuration and Software Applications.

Figure 9. Aibo front and back features.

42

4.1 The AIBO

AIBO is the name of the robot developed by Sony Company for the entertainment

market. The robot mimics a dog and it has four legs, a tail, it can bark and make many other

sounds. From a technical point of view the AIBO is an impressive engineering

achievement. The AIBO has a MIPS Little Endian CPU sufficiently powerful to perform

tasks such as on-line image and voice recognition, a video camera, distance sensor, several

buttons, pressure sensors and step based engines that are not only capable of offering

resistance to change but also of reading their current position (Figure 9).

From the system’s point of view the robot is composed of several objects: sensors,

parts and the body. We didn’t use the body object for our experiment. The main sensors

that were used for our system are the Distance Sensor and the Image Sensor (Figure 9).

Distance Sensors can be attached to parts of the robot or to the robot’s body. Image Sensors

are programmed to recognized objects by their color (pink or blue).

A robot is composed of a set of movable parts. Each part can be moved according to

three parameters: tilt, pan and roll; and has a set of operational limits that indicate the

extent to which the part can be moved to.

The robots used for our experiments also had an abstract Motion Controller that

abstracts the system from the task of controlling the robots motion. It provides a way for

the system to indicate the speed at which the robot should move and takes care of all the

necessary tasks. For instance, a Motion Controller for the AIBO is capable of controlling

its legs to make it walk in the desired direction.

43

 4.2 Tools

Sony provides several tools that can be used in the development of applications for

the AIBO. These alternatives range from low level applications that require a full control

over all variables of the system, to high level ones that only allow scripting of behaviors.

We added other alternatives to the tools provided by Sony, such as OPEN-R and Tekkotsu.

4.2.1 OPEN-R

From a Software Developer’s point of view OPEN-R is a C++ Application

Programming Interface (API) that defines how the objects of the system should work.

OPEN-R facilitates a new way of developing software because OPEN-R also defines how

the objects interact with each other. Unlike a normal operating system which developers are

used to, OPEN-R does not provide abstractions such as processes and threads of execution.

It provides an abstraction of a message passing mechanism in which producers and

consumers only run when the recipients of the message are ready to receive the message or

when a message has been sent. This makes developing software in OPEN-R harder but it

also has its advantages.

The approach taken in OPEN-R seemingly has one main goal: to prevent CPU use if

there isn’t any input from the sensors. That is, from the OPEN-R perspective it only makes

sense to use CPU when the systems sensors produce data and the same principle should be

applied to higher levels of abstraction. For instance, if the system has a face recognition

module, the module computes only when the digital camera produces an image or a set of

images. After the face recognition module has detected a face, the logic that needs to know

when a face is recognized can start running.

By developing AIBO Sony attempts to make its OPEN-R API a standard for the

development of entertainment robot systems. Sony states that [15] “OPEN-R provides a

44

layered approach that is optimized to enable efficient development of hardware and

software for robots.” OPEN-R is well suited for low level control of the robot. High level

tasks, like walking, are harder to control since it involves monitoring several engines and

reading sensors of all robots legs. Unfortunately, OPEN-R does not provide an

implementation for such a high level task. In addition, OPEN-R’s message passing

mechanism is hard to control and involves changing several files. However, there are

several publicly available modules for OPEN-R that provide a high level control over

certain robot functionalities. Unfortunately, combining modules developed by different

software engineers in the same robot is challenging.

4.2.2 Tekkotsu

Tekkotsu was created at the Carnegie Mellon’s University labs. Tekkotsu means

“iron bones” in Japanese and is used often in the context of a buildings’ structural

framework [11]. In a similar manner, the Tekkotsu framework provides a skeleton that

abstracts the AIBO’s internals and that can be used to create complex behaviors and

applications.

On its basis the Tekkotsu framework is a C++ layer on top of OPEN-R that provides

a greater abstraction of low level details of the robot. Tekkotsu pursues the ambitious goal

of being an application framework for the development of robotic platforms. Currently it

supports OPEN-R enabled robots which include AIBO’s ESR-210, ESR-220 and ESR-7

models.

Tekkotsu is an object oriented event passing architecture that is similar in the design

to Java. In Java when an object provides notifications, it dispatches events to its listeners.

This means that objects can register themselves as listeners of events generated by another

object. Similarly, in the Tekkotsu framework it is possible to register a listener that is

notified when a specific button is pressed, or when the digital camera has taken another

45

picture, or when the distance sensor installed on the robot’s head has taken another

measure. The main goal of this approach is: 1) simulate what the OPEN-R API provides but

with a higher level of abstraction; 2) avoid the spaghetti code that tends to be written when

using OPEN-R, because OPEN-R does not support function calls.

Tekkotsu lies above OPEN-R in terms of abstraction. It provides a high level

functionality needed for the robot to start walking and to move its head, but it also

possesses the possibility to access the low-level details of the robot. Another possibility

offered by the framework is to register a listener that is notified when sensor information is

ready, which makes even easier to obtain low level information.

4.3 Project’s Choice

For this project the Tekkotsu framework was chosen for the development of the

interface with the AIBO for several reasons. First, the Tekkotsu framework provides access

to the low level detail of the robot using a high level API. Its abstraction allows convert the

notification of new sensor information into a native C++ method call. This in turn enables

the acquisition of values of the sensors available in the AIBO without using complicated

message passing mechanism of OPEN-R.

Besides providing an abstraction for the low-level details of the robot, Tekkotsu

also provides high level controls for complex operations. Tekkotsu modules are organized

as behaviors and sub-behaviors. For example, walking is a sub-behavior that allows robot

to walk simply by indicating the desired target speed. The speed can be either forward

speed, roll speed or side speed.

OPEN-R provides sockets to enable communication with an external computer

system. Tekkotsu builds upon this service and creates abstraction that makes it easier to

create a service to provide and obtain data from external systems, be it another AIBO or an

46

external computer system. This is crucial to provide an external monitoring and control

interface that can act both as another user input device as well as to present, in a human

readable fashion, the structures maintained by the system.

Tekkotsu depends solely on OPEN-R. This is a great advantage since OPEN-R

enables objects to be moved from the AIBO to an auxiliary system. By depending only on

OPEN-R, Tekkotsu also shares the advantage that enables ultimately to move heavy

operations to an auxiliary system that runs concurrently with the AIBO.

4.4 BITE

The BITE architecture is based on Tekkotsu and OPEN-R which allows to use

Tekkotsu’s abstract skeleton for the AIBO’s internals and to create complex behaviors

(Figure 10). In addition, the architecture is platform independent and allows intervenient

execution of multi-platform robots (ESR-210, ESR-220 and ESR-7 models).

Figure 10. Layer diagram.

The BITE framework is a C++ layer on top of the Tekkotsu framework and

provides the ability to use one robot as well as multi-robot teams. Control of multi-robot

47

OPEN-R

Tekkotsu

BITE

teams is done through a communications system described in the application layer. The

application layer is build on top of the Transmission Control Protocol layer, which is

proved by the OPEN-R and Tekkotsu.

4.4.1 BITE Installation

The BITE system can be compiled and run only on UNIX or Linux computers.

First, copy the BITE project to your directory then configure and run the Makefile. To

configure the Makefile you need to set the MEMSTICK ROOT to the path were the

robot’s memory stick is mounted on the UNIX or Linux system.

You have to generate binaries for Tekkotsu that run on either ERS-210, ERS-220 or

a specific model. This is done by creating a file named TARGET MODEL in the Tekkotsu

installation directory and indicating one of the following:

TGT ERS210 — for the ERS-210 model.

TGT ERS220 — for the ERS-220 model.

TGT ERS2xx — for both the ERS-210 and ERS-220 models.

TGT ERS7 — for the ERS-7 model.

You also need to setup the wireless interface for the Tekkotsu Monitor tool. This

can be achieved by creating the project/ms/open-r/system/-conf/wlandflt.txt file (see the

Open-R documentation). You have to add the IP address of all robot team members to

enable communication between them. This can be achieved by creating the

project/ms/open-r/system/-conf/team.txt file with this content:

 name=hostname\t IP=132.70.5.83

After compiling and configuring all required files, insert the robot’s memory stick

into the reader on the UNIX or Linux machine. In the command prompt type either ‘make

YourMountDriveName’ or ‘make update’ commands. Then insert the stick into the AIBO

48

robot to start it up. This will cause the AIBO to boot in an emergency stop (see Tekkotsu

documentation). Next start the monitor tool of the Tekkotsu located in the

/usr/loca/Tekkotsu/tools/mon directory. Finally, to open the controller graphical user

interface type: ./ControllerGUI “Aibo IP address” (requires Java 1.4 or higher installed on

your system). To make the AIBO respond to your commands, double tap its back button,

which will cause it to exit the emergency stop procedure.

49

Chapter 5

BITE: Experiments, Results and Conclusions.

5.1 Experiments Setup

The experiments of the BITE system were conducted on the AIBO ESR-7 platform

described in chapter 4. We run 50 experiment sessions with the main purpose to test the

influence of various social behaviors upon performance time and failure handling ability.

All experiment sessions were carried out in the same environment and identical conditions,

using three robots.

The behavior graph designed for our experiments had twenty-one behaviors and

nine social behaviors. It had two allocation points and three synchronization points. We ran

three separate versions of the tasks, where the same behavior graph was used with different

Figure 11. Behavior graph.

Nodes represented behaviors.

Points A, B, C, D and E represented social behaviors. Each point can be one of the social

behaviors shown in the Table 1.

50

Follow
Left

Follow
Right Lead Tree

Steps
 Five
Steps

5.
Search

0.
Stand

Up

1.
Step

9.
Walk

Search
pink

Search
blue

Follow Lead
Search

pink

21.
End

17.
Line
Walk

13.
Search

a b c

d e

combinations of interaction behaviors. During all experiment sessions, the designed

behavior graph remained static. The various social behaviors (Figure 11) differed in their

use of connection between the teams, as well as in the allocation social behavior and in the

synchronization social behavior.

The basic mission of each session was to:

1. Position in a triangle.

2. Walk a certain distance in the triangle formation.

3. Line up and cross the room from one wall to another opposite wall.

Table 1 displays all social behavior profiles used for the experiments, which are

triggered at each of the A, B, C, D, E points in the behavior graph in Figure 10. The table

shows the type of a social behavior, usages of the connection, and description of the basic

activities. Note that only certain social behaviors can be executed from a given behavior.

51

SB
Name

Transition
Type

Use
Network

Can be
executed from
behaviors Description

SF1
Synchroniz
ation No 1, 9, 17

Choice is made based on robots resources and
ID

SF2 Allocate No 9, 17 Choice is made based on robots ID
SF3 Allocate Yes 9 Choice is made based on the robots head angle

SF4
Synchroniz
ation Yes 17

Formation leader decides on the next behavior
and informs all its members (the decision is made
based on number of times this behavior is
executed)

SF5
Synchroniz
ation Yes 1, 17

Team members decide on a leader. After
execution of the behavior, the chosen leader
(randomly) decides on the next task to be
executed.

SF6 Allocate Yes 17 Choice is made based on the robots color

SF7
Synchroniz
ation No 9

Robots decide on the next behavior based on the
number of times this behavior is executed

SF8
Synchroniz
ation Yes 1 Each robot sends its bid

SF9
Synchroniz
ation Yes 9

Each robot sends its bid number. Then (the
average of all sent numbers by all team
members) MOD (number of branches from the
current behavior) is computed.

Table 1. Social behavior profiles used for the experiments.

52

5.2 Experiments Data

All experiments were divided into nine groups based on which behavior nodes in

the graph were traversed and which social behaviors were executed by the robots in the

experiment (Table 2). As stated earlier, the transition points A,B,C,D,E in the behavior

graph mark transition points where one of the nine social behaviors was used; where A, B

and C are Synchronization points, and D and E are Allocation points. Each group

experiment was executed five to seven times. We measured synchronization and allocation

times, as well as overall task time.

Group
name

Executed behaviors
Executed social behav-
ior
point A-B-C-D-E

Number of
experiment

Group 1 0-1-5-9-13-17-21 SF1-SF1-SF2-SF1-SF2 6
Group 3 0-1-5-9-13-17-21 SF1-SF9-SF2-SF1-SF2 7
Group 4 0-1-5-9-13-17-21 SF5-SF1-SF2-SF1-SF2 5
Group 5 0-1-5-9-13-17-21 SF8-SF9-SF3-SF1-SF2 7
Group 7 0-1-5-9-13-17-21 SF5-SF1-SF2-SF5-SF2 5

Group 8
0-1-13-17-21
(executed 13-17 four times)

SF1-SF9-SF2 5

Group 9 0-1-13-17-21 SF9-SF9-SF2 7

Group 2
0-1-5-9-13-17-21
(executed 5-9 twice and 13-17 four times)

SF1-SF9-SF2-SF1-SF2 5

Group 6
0-1-5-9-13-17-21
(executed 5-9 four times)

SF1-SF7-SF3-SF4-SF6 5

Table 2. Experiment group type is based on which behavior nodes in the graph were

traversed and which social behaviors were executed by robots in the experiment.

As can be seen from the behavior graph in Figure 11, transition 5-9 and 13-17 have

a cycle, which allows robots to loop back in the execution chain. Thus groups 2, 6 and 8

53

have repeated behaviors 5-9 and behaviors 13-17. The number of times the loop is repeated

is based on the social behaviors SF7, SF8 and SF9.

Cycles in the execution chain prevent direct comparison between the performances

of the teams in the looping groups to the others. To overcome this problem, we normalize

the duration of the experiments in the looping groups by averaging their time spent in the

cycles. In the following tables the performance times for groups 2, 6 were normalized.

Experimental results for groups 8 and 9 are not presented due to the jump from behavior 1

to behavior 13.

54

5.3 Results and Conclusions

Since social behaviors that do not use connections have near zero performance time,

our goal was to measure the time spent on communications between robots. We designed

our experiments in such a way that at each decision point A, B, C, D, E various social

behaviors were executed, which either did or did not use communications. Table 3 presents

time (in milliseconds) spent on communications between robots for executing social

behaviors.

Num
Grou
p

Point A
synchronization

Point C
synchronization

Point D
allocation

Point C
synchronization

Point E
allocation

SF
1

SF
8

SF5
SF
1

SF
7

SF
9

SF
2

SF3
SF
1

SF
4

SF5 SF2 SF6

1 0 0 0 0 0
2 0 688 0 0 0
3 0 0 403 0 433

4
128
4

0 0 0 0

5 663 624 544 0 0

6 0 0 894 361
100
2

7
147
8

0 0
142
2

0

Table 3. Time measurements for executing social behaviors.

All data in this table is measured in ms. Data error of +128 ms is possible.

 shows the average time spent on allocation and synchronization for each group

experiment. It also presents the interaction time (sum of allocation and synchronization)

and total average time of the experiments for each group. The data in the table is sorted by

the average interaction time.

55

Group
Number

Synchronization
Time

Allocation
Time

Interaction
Time

Total Exper-
iments Time

1 0 0 0 70251
2 688 0 688 53588
3 0 836 836 65487
4 1284 0 1284 54005
5 1287 544 1831 52730
6 361 1896 2257 65059
7 2900 0 2900 58183

Table 4. Average time spent on allocation and synchronization and total average time

of the experiments for each group.

All data in this table are measured in ms.(Data error of +128 ms is possible.)

Graph 1 presents the relation between the time spent on execution of the social

behaviors (Synchronization time plus allocation time) and total execution time of the

experiments for each group. By creating various groups, we tried to combine different

kinds of social behaviors to measure data on the wide execution time scale. This allowed us

to analyze the influence of social interaction behaviors on the task execution time. Graph 1

shows that increase in the social behavior execution time does not affect the total execution

time.

56

Graph 1 . Relation between the execution time of social behaviors and total execution

time (data from Table 4). Caption on both sides (Task Time, social interaction time)

Graph 2 shows deviations in time spent by each group on synchronization and

allocation. It shows that groups spent different times for allocation and synchronization.

Generally, groups that spent significant time on allocation spent much less time on

synchronization and vice versa.

57

Relation between the execution of social behaviors and

total execution time.

0

688 836

1284

1831

2257
2900

70251

53588

65487

54005 52730

65059 58183

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7

Groups

In
te

ra
ct

io
n

 T
im

e

0

10000

20000

30000

40000

50000

60000

70000

80000

Social Time

Task Time

T
a

s
k

 T
Im

e

Graph 2. Allocation and synchronization needs for each group. (Table 4)

 Axis X shows the names of the groups. Axis Y shows the time spent on social behavior for

each group.

Graph 3a presents the combination of all measured time in the experiments for

each group. We take special notice of time measured for groups 1, 3 and 6 (subgroup A)

and groups 2, 4, 5 and 7 (subgroup B) presented separately in Graph 3b and Graph 3c

respectively.

Each group in the subgroup A had a total execution time higher than the median

(58183 ms). The social time, interaction time and allocation time increased, while total task

time decreased. Group 6 had the lowest total execution time in the subgroup and the highest

time spent on allocation and synchronization. It was the only group in subgroup A that used

synchronization behaviors. From these results we can conclude that time spent on social

58

Allocation and synchronization needs for each group.

0 0

836

0

544

1896

00

688

0

1284 1287

361

2900

0

400

800

1200

1600

2000

2400

2800

1 2 3 4 5 6 7

Groups

S
o

c
ia

l
T

im
e

Allocation

Synchronization

interaction and specifically on synchronization is beneficial to the architecture

performance.

Graph 3. Combinations of all the data from Table 4.

The Left Axis Y shows the time spent on social behavior for each group the Right Y Axis

shows the overall task time.

59

Combinations of all the data time.

0

688
836

1284

1831

2257

0 0

836

0

544

1896

00

688

0

1284 1287

361

2900

70251

53588

65487

54005 52730

65059
58183

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7

Groups

In
te

ra
ct

io
n

 T
im

e

0
5000
10000
15000
20000
25000
30000
35000
40000
45000
50000
55000
60000
65000
70000
75000

Social Time
Allocation
Synch
Task Time

T
a

sk
 T

Im
e

Graph 4. Combinations all the data time for Subgroup A – groups 1, 3 and 6 (data

from Table 4).

Graph 5c. Combinations all the data time for Subgroup B – groups 2, 4, 5 and 7 (data

from Table 4).

60

Combinations all the data time of Subgroup A – groups 1, 3 and 6.

0

2257

0

1896

0 0
361

836

6505965487

70251

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 3 6

Groups

In
te

ra
ct

io
n

 T
im

e

40000

45000

50000

55000

60000

65000

70000

Social Time
Allocation
Synch
Task Time

T
a

sk
 T

Im
e

Combinations all the data time of Subgroup A – groups 1, 3 and 6.

0

2257

0

1896

0 0
361

836

6505965487

70251

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 3 6

Groups

In
te

ra
ct

io
n

 T
im

e

40000

45000

50000

55000

60000

65000

70000

Social Time
Allocation
Synch
Task Time

T
a

sk
 T

Im
e

For subgroup B we notice the opposite trend. For most of the groups we notice the

effect of social time: when social time increases, total execution time increases as well. The

only group in the subgroup B, for which this is not true, is group 5 (that uses the allocation

behavior). In light of this result we can conclude that time spent on allocation is also

beneficial to architecture performance.

Only groups 5 and 6 used synchronization and allocation. Group 5 spent more time

on synchronization while group 6 spent most of its time on allocation. From analyzing the

total execution time for these groups, one can conclude that it is beneficial to spend more

time on synchronization than on allocation. However, using only synchronization does not

guarantee good results as can be seen from performance of the group 7.

We divided the results of our experiments into 3 policies: the first policy is where

all the interaction time was spent on allocation, similarly the second policy is where all time

was spent on synchronization; and the third policy is where interaction time included both

allocation and synchronization. Table 5 summarizes these results and shows that even for a

simple behavior, the use of a variety of interaction behaviors makes a significant difference

in task performance.

Policy
Synchronization
Time

Allocation
Time

Interaction
Time Task Time

Only Allocation 0 836 836 65487
Only Synchronization 1624 0 1624 55259
Synchronization&Allocation 824 1220 2044 58895

Table 5. Interaction and task times (ms).

61

Comparing the Only Synchronization and Only Allocation policies, we see that

significant reduction in time spent on communication results in a 16% increase in total

performance time. This shows that saving interaction time does not necessarily reduce task

completion time. When synchronization and allocation were used together the interaction

time increased noticeably. However, total task time was reduced by 10% comparing to the

first policy (Only Allocation), and increased only by 7% comparing to the second policy

(Only Synchronization).

Therefore, our conclusion is that using both allocation and synchronization gives the

desired results of the architecture. For different tasks it is possible to find the optimum set

of social behaviors. BITE allows the designer to easily tune the architecture that will

produce the best total execution time. Our results show that the ability to mix and match

interaction behaviors can be a significant factor in task performance, signifying that

integrating social interaction behaviors into the architecture is an important contribution.

5.4 Errors

During the execution of the experiments, we observed that at point D in the

behavior graph the system was prone to errors.The errors occurred during execution of the

social behavior SF2 where robots had to decide on the role in the formation based on their

ID. This social behavior does not check the position of the robots and the angle of their

heads. Therefore, it can lead to a case where a robot on the left of the leader chooses to be

the right follower and robot on the right chooses to be the left follower. In such cases, the

two robots sometimes interfered with each other and therefore were unable to execute their

tasks (Figure 12).

On the other hand, behavior SF3 assigns robots to their roles based on the angle of

their head relative to the leader. Based on that the leftmost-robot is always assigned the task

of the left-follower and the right-most robot is always assigned the task of the right-

62

follower. Therefore, executing behavior SF3 at the allocation point D guarantees correct

task assignment as was confirmed by our experiments.

 (a) Success (b) Failure

Figure 12. Robots executing triangle formation.

Graph 4 presents the number of erroneous cases occurred in each group

configuration during the experiments. One solution to control such errors is to let the

designer of the behaviors cover each specific erroneous case in the behavior itself. In our

experiments we tried to prevent errors caused by the execution of the social behavior SF2

by pre-positioning the robots prior to the experiments. However, we could not always

succeed because this approach required us to anticipate every possible problem; therefore,

10% of all experiments were with errors.

However, BITE is inherently susceptible to sensing failures. For example, when a

robot looses track of the leading robot in the Triangle Formation, an appropriate

termination condition is satisfied and the Walk behavior terminates. This in turn triggers an

appropriate social interaction behavior in BITE, which causes other robots to stop

executing their Walk behavior, and jointly switch to the Search behavior.

63

To test the flexibility of our architecture, in some experiments we intentionally

switched the robots, such that their roles in the formation would be reversed. The allocation

interaction behavior automatically allowed the robots to re-select their role. Moreover, in

cases where both robots were placed to the right of the leader, the allocation behavior

decided which robot should remain as the right follower and which should be assigned as

the left follower.

Graph 6. Relation between number of errors and total number of experiments.

64

Relation between number of errors and total number of
experiments.

1 1
0

1
0 0

1

6
5

7

5

7

5 5

0
1
2
3
4
5
6
7
8
9

10

1 2 3 4 5 6 7

Groups

N
u

m
b

e
r

o
f

e
x

p
e

ri
m

e
n

ts

Error

Total

5.5 Operator Control

It is important to realize that the integration of a human operator in the control loop

of the robots is crucial. While the overarching goal is to achieve completely autonomous

robots, most applications require a human to be involved in the decision making. Moreover,

emphasis on autonomy is intended to allow a human operator to control several robots at

once, rather than just one [2]. Thus teamwork architectures for physical robots must be

designed to integrate a human operator.

Therefore, BITE allows an operator to control robots in several ways. First, the

social interaction behaviors that manage synchronization and allocation may defer to a

human. For instance, rather than executing a voting protocol, the synchronization

interaction behavior may display a graphical window on the operator's console and consult

the operator on which behavior the team should select. The operator is hidden behind the

interaction behavior and thus robots continue running BITE while the operator makes a

selection.

Second, BITE allows an operator to take control over a single robot without

removing it from the behavior graph or disturbing the behavior execution stack (Algorithm

4). Thus the behaviors on the stack continue to be active and all interactions with the other

robots (running BITE without the operator's control) continue to execute seamlessly. In

addition, members under the operator control are automatically excluded from the usual

decision-making process, but they do keep track of the execution and decisions of their

team members. Therefore, when they are released, they ‘know’ what their team members

are currently executing and what their future tasks will be.

65

Chapter 6

 Summary and Future Work

A key challenge in building robot teams is to automate teamwork in such a way that

the designer can focus on planning the robots' task work. Existing teamwork architectures

do automate key aspects of teamwork, but the architectures are monolithic. They do not

allow flexibility in achieving this automation in terms of the interaction protocols used.

Existing architectures also do not allow mixing different protocols within the same overall

robot team mission.

In this thesis we presented the BITE architecture that introduces a new key feature:

the social interactions. It is implemented as behaviors which are managed through the

same mechanisms as the task-oriented behaviors. This feature of BITE allows a significant

degree of flexibility in teamwork design over existing architectures. This was the key

motivation of our development.

BITE is a teamwork architecture based on distributed behaviors that enables the

flexibility for behavior-based robot teams. It separates behaviors that control social

interactions from those that manage subtasks. It enables creating of systems that combine

the capabilities of different architectures and allow different interactions to be used

depending on the context. The architecture of behaviors is very flexible and comfortable for

constructing any other behavior graph for various purposes. The designer can easily change

the type of social behavior in the definition of the behavior graph or he/she can build a new

behavior graph to replace existing ones. Moreover, existing behaviors can be readdressed to

different robot teams.

66

In this thesis we introduced new algorithms for controlling social interactions and

communications within the BITE architecture. Our results from multiple experiments run

on a team of Sony AIBO robots show that flexibility is very important and can significantly

affect task performance.

Our future efforts focus on human-team interactions and on extending BITE's

capabilities towards greater fault tolerance by integrating learning-algorithms. We also plan

to investigate the use of BITE in multiple robotic platforms and to test its execution of a

variety of other tasks on different robot platforms.

67

Bibliography

[1] M. B. Dias and A. T. Stentz. A free market architecture for distributed control of a

multi-robot system. In 6th International Conference on Intelligent Autonomous Systems

(IAS-6), pages 115.122, July 2000.

[2] Y. Elmaliach. Single operator control of coordinated robot teams. Master's thesis, Bar

Ilan University, 2004.

[3] B. P. Gerkey and M. J. Mataric. Sold!: Auction methods for multi-robot coordination.

IEEE Transactions on Robotics and Automation, 18(5):758.768, 10 2002. Special Issue on

Multi-Robot Systems.

[4] D. Goldberg, V. Cicirello, M. B. Dias, R. Simmons, S. Smith, and A. T. Stentz. Market-

based multi-robot planning in a distributed layered architecture. In Multi-Robot Systems:

From Swarms to Intelligent Automata: Proceedings from the 2003 International Workshop

on Multi-Robot Systems, volume 2, pages 27.38. Kluwer Academic Publishers, 2003.

[5] N. R. Jennings. Controlling cooperative problem solving in industrial multi-agent

systems using joint intentions. AIJ, 75(2):195.240, 1995.

[6] L. E. Parker. ALLIANCE: An architecture for fault tolerant multirobot cooperation.

IEEE Transactions on Robotics and Automation, 14(2):220.240, April 1998.

[7] A. W. Stroupe, M. C. Martin, and T. R. Balch. Distributed sensor fusion for object

position estimate by multi-robot systems. In ICRA-01, pages 1092.1098. IEEE Press, May

2001.

68

[8] M. Veloso, P. Stone, and M. Bowling. Anticipation: A key for collaboration in a team

of agents. In SPIE Sensor Fusion and Decentralized Control in Robotic Systems II (SPIE-

99), 1999.

[9] D. V.Pynadath and M. Tambe. Automated teamwork among heterogeneous software

agents and humans. AAMAS, 7:71.100, 2003.

[10] T. D. Vu, J. Go, G. A. Kaminka, M. M. Veloso, and B. Browning. MONAD: A

flexible architecture for multi-agent control. In AAMAS-03, 2003.

[11] The Tekkotsu Homepage. Carnegie Mellon University : http://www-2.cs.c-
mu.edu/_tekkotsu/, 2002–2003.

Journal of Arti_cial Intelligence Research 7 (1997) 83-124 Submitted 6/97; published 9/97

[12] Milind Tambe. Towards flexible teamwork. JAIR, 7:83–124, 1997.

[13] John Yen, Jianwen Yin, Thomas R. Ioerger, Michael S. Miller, Dianxiang Xu, and

Ricahrd A. Volz. CAST:Collaborative agents for simulating teamwork. In IJCAI-01, pages

1135–1144, 2001.

[14] Gerkey, Brian P. and Mataric, Maja J. 2003. Multi-robot task allocation: analyzing

the complexity and optimality of key architectures IEEE international conference on

robotics and automation (ICRA 2003).

[15] Sony Corporation: OPEN-R SDK Programmer’s Guide (2004) http://ai-
bo.com

[16] Kaminka, G. A. and Frenkel, I. 2005. Flexible Teamwork in Behavior-

Based Robots. In Proceedings of the National Conference on Artificial In-

telligence (AAAI-2005).

69

http://www.cs.biu.ac.il/~galk/Publications/05/AAAI051KaminkaG.pdf
http://www.cs.biu.ac.il/~galk/Publications/05/AAAI051KaminkaG.pdf

 [17] Kaminka, G. A. and Frenkel, I. 2005. Towards Flexible Teamwork in

Behavior-Based Robots: Extended Abstract. In Proceedings of the Inter-

national Joint Conference on Autonomous Agents and Multi-Agent Sys-

tems (AAMAS-05).

[18] Kaminka, G. A., Elmaliach, Y., Frenkel, I., Glick, R., Kalech, M., Sh-

pigelman, T. 2004. Towards a Comprehensive Framework for Teamwork

in Behavior-Based Robots. In Proceedings of the Eighth Conference on

Intelligent Autonomous Systems (IAS-8). IOS Press.

70

http://www.cs.biu.ac.il/~galk/Publications/04/ias04.pdf
http://www.cs.biu.ac.il/~galk/Publications/04/ias04.pdf
http://www.cs.biu.ac.il/~galk/Publications/05/p775-kaminka.pdf
http://www.cs.biu.ac.il/~galk/Publications/05/p775-kaminka.pdf

אוניברסיטת בר-אילן

מחלקה למדעי-המחשב

אינה פרנקל

.עבודת צוות גמישה לרובוטים מבוססי התנהגות

עבודה זו מוגשת כחלק מהדרישות לשם קבלת תואר מוסמך במחלקה למדעי המחשב של אוניברסיטת בר-אילן

(2005רמת-גן, תשס"ה)

עבודה זו נעשתה בהדרכתו

.דר' גל קמינקא

71

