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Abstract—Classic support based approaches ef�ciently address
frequent sequence mining. However, support based mining has
been shown to suffer from a bias towards short sequences.
In this paper, we propose a method to resolve this bias when
mining the most frequent sequences. In order to resolve the
length bias we de�ne norm-frequency, based on the statistical z-
score of support, and use it to replace support based frequency.
Our approach mines the subsequences that are frequent relative
to other subsequences of the same length. Unfortunately, naive
use of norm-frequency hinders mining scalability. Using norm-
frequency breaks the anti-monotonic property of support, an
important part in being able to prune large sets of candidate
sequences. We describe a bound that enables pruning to provide
scalability. Calculation of the bound uses a preprocessing stage
on a sample of the dataset. Sampling the data creates a distortion
in the samples measures. We present a method to correct this
distortion. We conducted experiments on 4 data sets, including
synthetic data, textual data, remote control zapping data and
computer user input data. Experimental results establish that
we manage to overcome the short sequence bias successfully,
and to illustrate the production of meaningful sequences with
our mining algorithm.

Index Terms—Frequent Sequence Mining; Data Mining; Z-
score; Sampling; Multivariate Sequences

I. I NTRODUCTION

In a previous study [1] we discussed resolving the length
bias in frequent sequence mining. The frequent sequence
mining problem was �rst introduced by Agrawal and Srikant
[2] and by Mannila et al. [3]. There are many possible
applications for frequent sequential patterns, such as DNA
sequence mining [4], text mining [5], anomaly detection [6],
[7], classi�cation [8] and Web mining [9].

Frequent sequential pattern generation is traditionally based
on selecting those patterns that appear in a large enough
fraction of input-sequences from the database. This measure is
known assupport. In support based mining a threshold termed
minsupis set. All sequences with asupporthigher thanminsup
are considered frequent.

Support based mining is known to suffer from a bias
towards short patterns [10]: short patterns are inherently more
frequent than long patterns. This bias creates a problem,
since short patterns are not necessarily the most interesting
patterns. Often, short patterns are simply random occurrences
of frequent items. The common solution of lowering the
minsupresults in obtaining longer patterns, but generates a
large number of useless short sequences as well [11]. Using
con�dence measures lowers the number of output sequences
but still results in short sequences.

Thus, removing the short sequence bias is a key issue in
�nding meaningful patterns. One possible way to �nd valuable
patterns is to add weights to important items in the data. Yun
[12] provides an algorithm for frequent sequence mining using
weights. The drawback of this technique is that for many data
sets there is no knowledge of what weights to apply. Seno and
Karypis [13] propose eliminating the length bias by extracting
all patterns with a support that decreases as a function of
the pattern length. This solution is based on the assumption
that a short pattern must have a very high support to be
interesting, and a long pattern may be interesting even with
a lower support. Although this is a fair assumption in many
scenarios, it is challenging to �nd a measure that can be used
for frequent pattern mining without making an assumption on
the relationship between frequency and length. Searching for
closed or maximal patterns [14]–[16] is another way to ap-
proach this bias. However, mining closed or maximal patterns
may not be the best approach to solve the short sequence bias.
Using closed and maximal sequences ignores shorter partial
sequences that may be of interest. Other approaches include
comparing the frequency of a sequence to its subsequences
[17], and testing for self suf�cient sequences [18]. We propose
an algorithm that mines sequences of all lengths without a
bias towards long or short sequences. Horman and Kaminka
[10] proposed using a normalized support measure for solving
the bias. However, their solution is not scalable. Furthermore,
they cannot handle subsequences that are not continuous or
have multiple attributes. We allow holes in the sequence, for
example: if the original sequence is ABCD, Horman and
Kaminka can �nd the subsequences AB, ABC, ABCD, BC
etc, but cannot mine ACD or ABD, whereas our proposed
method can.

In [1], we presented an algorithm forREsolving lEngth
bias in Frequent sequence mining (REEF), this algorithm is
expanded in the current paper. REEF is an algorithm for
mining frequent sequences that normalizes the support of each
candidate sequence with a length adjusted z-score. The use
of the z-score in REEF eliminates statistical biases towards
�nding shorter patterns, and contributes to �nding meaningful
patterns as we will illustrate. However, it challenges the
scalability of the approach: z-score normalization lacks the
anti-monotonic property used in support based measures, and
thus supposedly forces explicit enumeration of every sequence
in the database. This renders useless any support based pruning
of candidate sequences, the basis for scalable sequence mining



algorithms, such as SPADE [19].
In order to provide a means for pruning candidate se-

quences, we introduce a bound on the z-score of future se-
quence expansions. The z-score bound enables pruning in the
mining process to provide scalability while ensuring closure.
Details on how the bound is calculated will be described later
in the paper. We use this bound with an enhanced SPADE-
like algorithm to ef�ciently search for sequences with high
z-score values, without enumerating all sequences. A previous
preliminary study [20] indicates that this bound assists the
speedup substantially, we add more proof of this in the current
note. We use three text corpora, input from TV remote control
usage and computer user input to demonstrate how REEF
overcomes the bias towards short sequences. We also show
that the percentage of real words among the sequences mined
by REEF is higher than those mined with SPADE.

This paper enhances the previous work presented in [1]
in several ways. First, we present the method used for the
sampling of the data that we use for calculating the bound. We
also present an extensive evaluation of the parameter setting
for this method using the various data sets. Second, we report
the runtime results for use of the bound and discuss them.
Finally, we present the results of our experimental evaluation
on two extra data sets, TV remote control usage (Zapping)
and a synthetic data set, that were not reported in [1].

The structure of the paper is as follows: Section II de-
scribes the related work. Section III provides background
and notation and introduces Norm-Frequent Sequence Mining
Problem (with Sampling). In Section IV, the algorithm used
for the Norm-Frequent Sequence Mining is described in detail.
Experimental evaluation is provided in Section V, and �nally
Section VI concludes our paper.

II. RELATED WORK

The topic of frequent sequence mining is highly researched.
This essential data mining task has broad applications in many
domains and is used for a variety of applications such as agent
modeling. In multi-agent settings there are many usages to
modeling agents. A group of coordinating agents must have a
clear model of each agent in the group and agents working
in adversarial environments must be able to model their
opponent. In cases where there is no prior behavior library (as
is often the case) it is necessary to use the observed behavior
in order to deduce the model. This task can be performed
using the multivariate sequences generated by agents, mining
them for frequent patterns and using them for modeling. An
example to this type of application is presented by Kaminka
et al. [21] where the RoboCup soccer simulation games are
used to model the various team behaviors.

One of the prominent applications of frequent sequence
mining is classi�cation of a sequential dataset. In [20], the
behavior of people in a prede�ned group is observed, and
frequent patterns are mined. These patterns are used in for
classifying a given behavior as belonging to a speci�c person.
The same application has been applied to a commercial setting
in the personalized television domain. The work we will

present is an extension of the mining component described
in [20].

Support based algorithms for frequent sequence mining
were �rst introduced by Agrawal and Srikant [2], where
the algorithms AprioriAll, AprioriSome and DynamicSome
were introduced. These algorithms naturally expand frequent
itemset mining to frequent sequence mining. Itemsets do not
contain a sequential ordering, whereas sequences do. The
algorithms perform pattern mining in sequences of itemsets
(events) and �nd frequent patterns in the input. The itemsets
typically contain multiple items. Later they introduced the
more ef�cient GSP [22] which has been broadly implemented
and used since.

Since the search space for these mining problems is in-
credibly large other support based algorithms were introduced
to improve the speed and ef�ciency of the mining process.
SPADE [19], introduced by Zaki, is an algorithm for frequent
sequence mining that belongs to the family of support based
mining algorithms. SPADE outperforms GSP, due to the use
of a vertical layout for the database and a lattice-theoretic ap-
proach for search space decomposition. We adopt the method
presented in SPADE [19] and adapt it to use a normalized
support for �nding frequent sequences.

The key idea in many of these support based algorithms
is the generation of candidate sequences. The candidate
sequences are subsequences of the input-sequences in the
database.Frequentcandidate sequences are both placed in the
set of minedfrequentsequences, as well as used to generate the
next generation of candidates. First, 2-sequences (sequences
of length 2) are generated, then they are used to create 3-
sequences etc: pairs ofl-sequences with common pre�xes are
combined, to create anl+1-sequence.

Generating all possible candidate sequences is infeasible
and results in an unscalable solution. Therefore, a pruning
is introduced to this process. Candidates that arenot frequent
are pruned. They are not used to generate the next generation
of candidates. The reason this can be done is based on the
anti-monotonic property of support. Support has a nice anti-
monotonic property promising that it does not grow when a
candidate sequence is expanded. This promises that candidate
sequences that arenot frequentwill never generatefrequent
sequences, and therefore can be pruned. Thus, the anti-
monotonic property is very important and ensures scalability
of the mining.

Alongside the rich variety of support based mining algo-
rithms Mannila et al. [3] proposed an algorithm for mining
frequent episodes, a type of frequent sequence, in an input
composed of a single long sequence. Frequentepisodemining
algorithms �nd frequent items that are frequent within a single
sequence whereas frequent support based sequence mining
searches for items that reoccur in multiple sequences. Tatti
and Cule [16] proposed mining closed episodes that are rep-
resented as DAGs. This algorithm cannot handle multivariate
sequences. Salam and Khayal [23] introduced a method for
mining top-k frequent patterns without the use of a minimum
support. They generate patterns of length 2, and then use a top-



down mechanism that only generates the top maximal frequent
itemsets. They build a graphical representation of the data and
search for maximal cycles in the graph.

The problem of Frequent Sequence Mining has been solved
with many algorithms, an extended survey can be found in
[24]. Often, the frequent sequences found are often insuf-
�cient. Unfortunately, support based mining methods suffer
from a bias towards shorter sequences as has been shown in
[10]. This means that in the frequent sequence mining, short
sequences are found more often than long sequences. This is
very problematic since these short sequences are often not very
interesting as we will illustrate in Section V-E.

Several attempts have been made to address this bias.
One possibility is to force large patterns by searching for
closed patterns as in TSP [14] or maximal patterns such as
MSPS [15]. However, mining closed or maximal patterns may
not be the best approach to solve the short sequence bias.
Using closed and maximal sequences ignores shorter partial
sequences that may be of interest. We propose an algorithm
that mines sequences of all lengths without a bias towards long
or short sequences.

In LPMiner [25] (itemset mining) and SLPMiner [13] (se-
quence mining) Seno and Karypis introduce a length decreas-
ing support constraint in order to overcome the short sequence
bias. This is based on the observance that an interesting short
sequence must be very frequent (have a very high support)
to be interesting. Long sequences on the other hand may
be interesting with a lower support. SLPMiner is a heuristic
approach whereas in our work we attempt to �nd a general
solution based on support normalization.

An alternative approach is taken by Yun and Legget in
WSpan [12]. They introduce a weighted mining algorithm, for
sequences with weighted items. Using weights in the mining
process is very useful since it provides more input than using
frequency alone. Unfortunately, this is of no assistance in
domains where there is no information on what weights to
apply. Our solution requires no knowledge on what weights
should be used and can be implemented in any domain.

The methods for solving the bias towards short subse-
quences suggested in [12], [13], [25] are heuristic. They are
based on forcing long sequences to be mined. In contrast, Hor-
man and Kaminka [10] proposed using a statistical normaliza-
tion of support. The support measure is normalized in relation
to sequence length. They showed how support normalization
enables �nding frequent subsequences with different lengths
in an unbiased fashion. Using normalized support makes no
assumptions on the relation between length to support, or on
the relative weights of the items in a database as were made
in the other methods.

Normalization for frequent pattern mining has been per-
formed in the past. SEARCHPATTOOL [4] uses z-score for
normalization of mined frequent patterns. It �rst performs the
sequence mining using a support based algorithm and then
selects the signi�cant sequences using the z-score measure.
In [26] z-score is used to normalize the data in preprocessing
stage, before any mining is performed. We also use the z-score

measure for normalization. We show how to use the z-score
measure for scale-up in the mining task. To the best of our
knowledge this application of z-score is novel, and has been
applied only in [10].

Although Horman and Kaminka [10] successfully solve the
statistical bias using normalization, their method suffers from
three problems. The �rst dif�culty with the method proposed
by Horman and Kaminka, solved in this paper involves the
scalability of the algorithm. Using the normalized support
ruins the anti-monotonic property used for pruning in support
based mining. Unfortunately, this makes pruning impossible
and therefore the algorithm is unscalable. The second differ-
ence between this paper their work is that as opposed to [10]
where the mined sequences must be continuous in the original
sequence, we allow holes in the sequence. An example would
be if the original sequence is ABCD, the previous method can
�nd the subsequences AB, ABC, ABCD, BC etc, but cannot
mine ACD or ABD, whereas our algorithm mines both types.
The third difference is that the previous method could not
handle multiple attributes, as opposed to our approach that
can.

With the scalability spoiled it seems there is a need to
choose between a scalable algorithm to one that can fully
overcome the short sequence bias. In this paper, we propose
an algorithm that can do both. The algorithm we present
uses normalized support to overcome the short sequence bias
successfully while using a pruning method with a sampling
unit to solve scalability issues.

III. N ORM-FREQUENTSEQUENCEM INING

Norm-FrequentSequence Mining solves the short sequence
bias present in traditionalFrequent Sequence Mining. We
begin by introducing the notation and the traditionalFrequent
Sequence Mining problem in Section III-A. We then de�ne
the Norm-Frequent Sequence Mining problem in Section
III-B. We explain why the scalability is hindered by the
naive implementation of normalized support and how this is
resolved in Section III-C. Section III-C addresses scalability
by introducing a bound that enables pruning in the candidate
generation process and Section III-D describes the Sampling
component. Finally, in Section IV, we bring all parts together
to compose the REEF algorithm.

A. Notation and Frequent Sequence Mining

We use the following notation in discussing Norm Frequent
Sequence Mining.

event Let I = f I 1; I 2; :::; I m g be the set of allitems. An
event (also called anitemset) is a non-empty unordered set
of items denoted ase = f i 1; :::; i n g, where i j 2 I is an
item. Without loss of generality we assume they are sorted
lexicographically. For example,e = f ABC g is an event with
items A B and C .

sequenceA sequenceis an ordered list ofevents, with a
temporal ordering. The sequences = e1 ! e2 ! ::: ! eq is
composed ofq events. If eventei occurs before eventej , we
denote it asei < e j . ei andej do not have to be consecutive



events and no twoeventscan occur at the same time. For
example, in the sequence s=f ABC g ! f AE g we may say that
f ABC g < f AE g since f ABC g occurs beforef AE g.

sequence size and lengthThe size of a sequence is the
number of events in a sequence,size(f ABC g ! f ABD g) = 2 .
The lengthof a sequence is the number of items in a sequence
including repeating items. A sequence with lengthl is called
an l-sequence. length (f ABC g ! f ABD g) = 6 .

subsequence and contain A sequence si is a
subsequenceof the sequencesj , denoted si � sj , if
8ek ; el 2 si ; 9em ; en 2 sj such thatek � em and el � en

and if ek < e l then em < en . We say thatsj containssi if
si � sj . E.g., f AB g ! f DF g � f ABC g ! f BF g ! f DEF g.

databaseThe databaseD used for sequence mining is
composed of a collection of sequences.

support The supportof a sequences in databaseD is the
proportion of sequences inD that contain s. This is denoted
supp(s;D).

This notation allows the description of multivariate sequence
problems. The data is sequential in that it is composed of
ordered events. The ordering is kept within the subsequences
as well. The multivariate property is achieved by events being
composed of several items. The notation enables discussion of
mining sequences with gaps both in events and in items, as
long as the ordering is conserved. The mined sequences are
sometimes called patterns.

In traditional support based mining, a user speci�ed min-
imum support calledminsupis used to de�ne frequency. A
frequent sequence is de�ned as a sequence with a support
higher thanminsup, formally de�ned as follows:

De�nition 1 (Frequent): Given a databaseD, a sequences
and a minimum supportminsup. s is frequentif supp(s;D) �
minsup .

The problem of frequent sequence mining is described as
searching for all thefrequentsequences in a given database.
The formal de�nition is:

De�nition 2 (Frequent Sequence Mining):Given a
databaseD, and a minimum supportminsup, �nd all
the frequentsequences.

In many support based algorithms such as SPADE [19],
the mining is performed by generating candidate se-
quences and evaluating whether they are frequent. In or-
der to obtain a scalable algorithm a pruning is used
in the generation process. The pruning is based on the
anti-monotonic property of support. This property en-
sures that support does not grow when expanding a se-
quence, e.g.,supp(f AB g ! f Cg) � supp(f AB g ! f CDg).
This promises that candidate sequences that arenot frequent
will never generatefrequent sequences, and therefore can
be pruned.Frequentsequence mining seems to be a solved
problem with a scalable algorithm. However, it suffers from
a bias towards mining short subsequences. We provide an
algorithm that enables mining subsequences of all lengths.

B. Norm-Frequent Sequence Mining using Z-Score

In this section, we de�ne the problem ofNorm-Frequent
Sequence Mining. We use the statistical z-score for normal-
ization. The z-score for a sequence of lengthl is de�ned as
follows:

De�nition 3 (Z-score): Given a databaseD and a sequence
s. Let l = len(s) be the length of the sequences. Let � l and
� l be the average support and standard deviation of support
for sequences of lengthl in D . Thez-scoreof s denoted� (s)
is given by� (s) = supp (s) � � l

� l
.

We use the z-score because it normalizes the support
measure relative to the sequence length. Traditional mining,
where support is used to de�ne frequency, mines sequences
that appear often relative toall other sequences. This results
in short sequences since short sequences always appear more
often than long ones. Using the z-score normalization of
support for mining �nds sequences that are frequent relative
to othersequences of the same length. This provides an even
chance for sequences of all lengths to be found frequent.

Based on the de�nition of z-score for a sequence we de�ne
a sequence as beingNorm-Frequentif the z-score of the
sequence is among the top z-score values for sequences in
the database. The formal de�nition follows:

De�nition 4 (Norm-Frequent):Given a databaseD, a se-
quences of lengthl and an integerk. Let Z be the set of the
k highest z-score values for sequences in D,s is norm-frequent
if � (s) 2 Z . In other words, we perform top-K mining of the
most norm-frequent sequences.

We introduce the problem ofNorm-FrequentSequence
Mining. This new problem is de�ned as searching for all
the norm-frequentsequences in a given database. The formal
de�nition follows and will be addressed in this paper.

De�nition 5 (Norm-Frequent Sequence Mining):Given
a databaseD and integer k, �nd all the norm-frequent
sequences.

In Figure 1, we provide a small example. The sequences
f AB g, f Ag ! f Ag and f B g ! f Ag, of length2, all have a
support of 0.4 and are the most frequent patterns using support
to de�ne frequency. Notice that there are several sequences
with this support, and no single sequence stands out. Consider
the sequencef AB g ! f Ag of length 3. This sequence only
has a support of 0.3. However, all other sequences of length
3 have a support no higher than 0.1. Although there are
several sequences of length2 with a higher support than
f AB g ! f Ag, this sequence is clearly interesting when com-
pared to other sequences of the same length. This example
provides motivation for why support may not be a suf�cient
measure to use. The norm-frequency measure we de�ned is
aimed at �nding this type of sequence.

Unfortunately, the z-score normalization test hinders
the anti-monotonic property: wecannot determine that
� (f AB g ! f Cg) � � (f AB g ! f CDg).
Therefore, pruning becomes dif�cult; we cannot be sure that
the z-score of a candidate sequence with lengthl will not
improve in extensions of lengthl + 1 or in generall + n



seq 1: f AB g ! f Ag
seq 2: f AB g ! f B g
seq 3: f BC g ! f Ag
seq 4: f AB g ! f Ag
seq 5: f BC g ! f B g
seq 6: f AC g ! f B g
seq 7: f AB g ! f Ag
seq 8: f AC g ! f Cg
seq 9: f BC g ! f Cg
seq 10: f AC g ! f Ag

Figure 1: Example database.

for some positiven. Therefore, we cannot prune based on z-
score and ensure �nding allnorm-frequentsequences. This is
a problem since without pruning our search space becomes
unscalable.

Another problem with performingNorm-FrequentSequence
Mining is that the values for� l and � l must be obtained
for sequences of all lengths prior to the mining process.
This imposes multiple passes over the database and hinders
scalability.

These important scalability issues are addressed and solved
in Section III-C resulting in a scalable frequent sequence
mining algorithm that overcomes the short sequence bias.

C. Scaling Up

As we explained in Section III-B, pruning methods such
as those described in SPADE [19] cannot be used withnorm-
frequentmining. We propose an innovative solution that solves
the scalability problem caused by the inability to prune.

Our solution is to calculate a bound on the z-score of
sequences that can be expanded from a given sequence.
This bound on the z-score of future expansions of candidate
sequences is used for pruning. We de�ne the bound and then
explain how it is used. Z-score was de�ned in De�nition 3.
The bound on z-score is de�ned in De�nition 6.

De�nition 6 (Z-score-Bound):Given a databaseD and a
sequences. Let � l 0 and� l 0 be the average support and standard
deviation of support for sequences of lengthl0 in D . The z-
score-boundof s, for length l0 denoted� B (s; l0) is given by
� B (s; l0) = supp (s) � � l 0

� l 0
.

We know that support is anti-monotonic, therefore, as the
sequence length grows support can only get smaller. Given a
candidate sequences of lengthl with a support ofsupp(s) we
know that for all sequencess0 generated froms with length
l0 > l the maximal support issupp(s). We can calculate the
bound on z-score,� B (s; l0), for all possible extensions of a
candidate sequence. Notice that for all sequencess0 that are
extensions ofs, � (s0) � � B (s; l0). The ability to calculate this
bound on possible candidate extensions is the basis for the
pruning.

In order to mine frequent or norm-frequentsequences,
candidate sequences are generated and evaluated. In tradi-
tional frequentsequence mining there is only one evaluation
performed on each sequence. If the sequence is found to be
frequentit is both saved in the list offrequentsequences and
expanded to generate future candidates, if it is notfrequentit

can be pruned (not saved and not used for generating candi-
dates). Fornorm-frequentmining we perform two evaluations
for each sequence. The �rst is to decide whether the proposed
sequence isnorm-frequent. The second is to determine if it
should be expanded to generate more candidate sequences
for evaluation. There are two tasks since z-score is not anti-
monotonic and a sequence that is notnorm-frequentmay be
used to generatenorm-frequentsequences. This second task
is where the bound is used for pruning. The bound on future
expansions of the sequences is calculated for all possible
lengths. If the bound on the z-score for all possible lengths is
lower than the top n z-scores then no possible expansion can
ever benorm-frequentand the sequence can be safely pruned
from the generation process. If for one or more lengths the
bound is high enough to benorm-frequentwe must generate
candidates from the sequence and evaluate them in order
to determine if they arenorm-frequentor not. This process
guarantees that allnorm-frequentsequences will be generated.

Using the bound enables pruning of sequences that are guar-
anteed not to generatenorm-frequentcandidates. The pruning
enabled by using the bound resolves the �rst scalability issue
of sequence pruning in the generation process. The second
scalability problem of calculating� l and � l is resolved by
calculating the values for� l and � l on a small sample of the
data in a preprocessing stage described below.

D. Sampling for Norm-Frequent Mining

Norm-frequentmining uses the z-score de�ned in De�nition
3 and the bound described in De�nition 6. Both these measures
make use of the average and standard deviation of support
for each subsequence length (� l and � l ). We must calculate
these values prior to the sequence mining. The naive way
to calculate these values would be to generate all possible
subsequences and calculate these measures. However, this is
obviously irrelevant as making a full expansion completely
defeats the purpose of mining with the z-score pruning.

Therefore, we propose extracting a small sample of the
database and calculating these values on the sample. For the
sample, full expansion is feasible and generates the necessary
measures while ensuring scalability.

However, there is a problem that arises with the sampled
measures. They do not re�ect the full database measures
correctly. It has been shown by [11], [15], [27], [28], that
there is a distortion, also termed overestimation, in the values
of support calculated on a sample of a database relative to
support calculated over a full database. Similarly, the average
and standard deviation of support suffer a distortion in the
sampled data.

1) Effects of Sampling Distortion:We use Figure 2 to
demonstrate how the distortion affects sequence mining. The
norm-freq sequences that are mined using z-score and calcu-
lated with statistics from the full database are displayed in
column 1. The top most stripes (light) represent the most
norm-frequent sequences and the bottom (dark) represent
sequences that arenot norm-frequent(rare). Column 3 shows
the norm-frequentsequences discovered using averages and



standard deviations for z-score calculation from the sampled
database, the colors match the coloring in the full database, the
ordering is based on sampled results. One notices that the order
is confused and rare sequences in dark greys show up relatively
high in the list.Norm-frequent(light) sequences are pushed
down as rare. The black stripes at the side of the column
represent sequences that did not appear at all in thenorm-
frequentlist when using the full data set and appeared when
using the sampling. It is obvious that sequences are shifting
around andnorm-frequentsequences are being chosen as rare
and vice versa. Therefore, the distortion badly affects sequence
mining. In column 2 we use the correction displayed in the
next section and improve this shifting. The rare sequences
show up further down with the correction than without, as do
the candidates that didn't appear in the original list. Although
this is just an example on one small set of data it conveys the
effects of the distortion and the correction.

2) Chernoff Bounds and Hoeffding Inequalities:We would
like to evaluate how far off the sampled statistics are from the
real statistics. One might suggest using Chernoff bounds as in
[27], [29] or Hoeffding inequalities as in [28] for this task. In
[27]–[29], the aim is to show how far off sampled support is
from real support for a single subsequence. The appearance of
a subsequence in each sequence in the sample is described as
a random variable with a Bernoulli distribution. These random
variables areindependent, and the Chernoff bounds or Ho-
effding inequalities can be used. The scenario we are using is
different. Instead of looking at the accuracy of the support on
the sampled data we are looking at theaverageandstandard
deviation of support for a subsequence of a speci�c length.
Unlike the application of Chernoff and Hoeffding bounds in
[27]–[29], where the random variable was independent, the
random variable in our setting is the average of support of
sequences for a given length. This random variable is strongly
dependentand therefore the known bounds are problematic
to apply. There are also situations where although Chernoff
bounds can be applied, it is problematic to apply them because
a very large sample of the database is needed, as in [27]. For
cases where Chernoff and Hoeffding bounds cannot be applied,
or situations where one chooses not to apply them we propose
a method of distortion correction.

3) Sampling Distortion Correction Method:We introduce
a method for correcting the distortion that can be used for
any data set. This method �nds the model of the distortion
for various input sequence lengths and sample rates using
the non-linear regression functionnls�t() in the R Project
for Statistical Computing [30]. Once we have modeled the
distortion, correcting it is immediate. The model provides an
equation that determines the exact distortion value of average
support or standard deviation for a given input sequence length
and sample rate. A simple inverse multiplication provides the
corrected value.

In order to perform the regression we must propose func-
tions and then perform the non-linear regression to set the
parameters. We list the equations we propose using based
on our experimental experience as described in Section V-B.

1 2 3

Figure 2: Sampling distortion effect.

The variables in the equations arelen (length of the input-
sequences) andsmp (sampling rate). The coef�cients that
are determined in the non-linear regression area; b; c; d. The
functions we propose using are:

a � (len � 1)b� log (smp ) + c � smp (1)

a � (len)b� smp + c + d � smp (2)

a � (len � 1)b� smp + c + d � smp (3)

(len � 1)a + e � smpb + c � len + d � smp (4)

For the standard deviation of support we perform distortion
correction in a similar fashion using the following equations
for approximation.

a � (smpb) (5)

(smpb) + a (6)

A tool such as the R Project for Statistical Computing [30]
is used to �nd the correct parameters for these equations as
demonstrated in detail in Section V-B.

Once we have found the equations that represent the distor-
tion for average support and standard deviation of support, for
a certain type of data set, correction of this distortion is simple.
For new data in these sets we can select any sample rate
and calculate the distortion correction of average and standard
deviation for each possible sequence length. We multiply the
sampled values by the inverse of the distortion and use the
results as the average and standard deviation of support in the
z-score calculation fornorm-frequentmining.

We found the proposed equations to be general and provide
good approximations for different data sets, as shown in



Section V-B, and therefore suggest they can be used for other
data sets as well. However, for data sets where these equations
do not provide good approximations the same method we used
can be applied while using different equations.

Now that we have presented the full method for sampling
the data set and calculating the values for� l and � l we
have a complete scalable algorithm that minesnorm-frequent
sequences without a bias to short sequences, Section IV puts
all the pieces together and describes the full algorithm.

IV. REEF ALGORITHM

In this section, we combine all the components we have
described in the previous sections and describe the implemen-
tation of REEF. The REEF algorithm is composed of several
phases. The input to REEF is a database of sequences and
an integer'k' determining how many Z-scores will be used
to �nd norm-frequentsequences. The output of REEF is a
set of norm-frequentsequences. Initially, a sampling phase
is performed to obtain input for the later phases. Next we
perform the candidate generation phase. First, norm-frequent
1-sequences and 2-sequences are generated. Once 2-sequences
have been generated, an iterative process of generating can-
didate sequences is performed. The generated sequences are
evaluated, and if found to benorm-frequentare placed in the
output list of norm-frequentsequences. These sequences are
also examined in the pruning process of REEF in order to
determine if they should be expanded or not.

Sampling Phase -The sampling phase is performed as
a preprocessing of the data in order to gather statistics of
the average and standard deviation of support for sequences
of all possible lengths. This stage uses SPADE [19] with a
minsupof 0 to enumerate all possible sequences in the sampled
data and calculate their support. For each length the support
average and standard deviation are calculated. These values
are distorted and corrected values are calculated using the
technique described in Section III-D. These corrected values
provide the average support� l and standard deviation of
support� l that are used in z-score calculation and the bound
calculation.

Candidate Generation Phase -The candidate generation
phase is based on SPADE along with important modi�cations.
As in SPADE we �rst �nd all 1-sequence and 2-sequence
candidates. The next stage of the candidate generation phase
involves enumerating candidates and evaluating their fre-
quency.

We make two modi�cations to SPADE. The �rst is moving
from setting aminsupto setting the0k0 value.0k0 determines
the number of z-score values that norm-frequent sequences
may have. Note that there may be several sequences with the
same z-score value. The reason for this modi�cation is that
z-score values are meaningful for comparison within the same
database but vary between databases. Therefore, setting the
0k0 value is of more signi�cance than setting a min-z-score
threshold.

The second and major change we make is swappingfre-
quencyevaluation withnorm-frequencyevaluation. In other

1: for all x is a pre�x in S do
2: Tx = ;
3: FR = f k empty sequencesg
4: for all itemsA i 2 S do
5: for all itemsA j 2 S, with j � i do
6: R = A i

W
A j (join A i with A j )

7: for all r 2 R do
8: if � (r ) > � (a seqs in FR ) then
9: FR = FR

S
r ns //replaces with r

10: for all l0 = l +1 to input sequence length
do

11: if � B (r; l 0) > � (a seqs in FR ) then
12: if A i appears beforeA j then
13: Ti = Ti

S
r

14: else
15: Tj = Tj

S
r

16: enumerate-Frequent-Seq-Z-score(Ti )
17: Ti = ;

Figure 3: Enumerate-Frequent-Seq-Z-score(S).
WhereS is the set of input sequences we are mining for

frequent subsequences, A set ofnorm-frequentsubsequences
is returned,FR is a list of sequences with the top0k0

z-scores.

words, for each sequences replace the test of issupp(s;D) >
minsup with the test of is� (s) 2 Z where Z is the set
of the 0k0 highest z-score values for sequences inD . This
replacement of the frequency test with the norm-frequency
test is the essence of REEF and our main contribution.

The improved version of sequence enumeration including
the pruning is presented in Figure 3 and replaces the enumer-
ation made in SPADE. The joining ofl-sequences to generate
l+1-sequences (A i

W
A j found in line 6) is performed as in

SPADE [19].
Pruning Phase using Bound -Obviously REEF cannot

enumerate all possible sequences for norm-frequency evalua-
tion. Furthermore, as we discussed in Section III-B, the z-score
measure is not anti-monotonic and cannot be used for pruning
while ensuring that norm-frequent candidates are not lost. In
Section III-C, we introduced the bound on z-score that is used
for pruning.

The pruning in REEF calculates� B (s; l0) for all possible
lengths l0 > l of sequences than could be generated from
s. The key to this process that there is no need to actually
generate the extensionss0 that can be generated froms. It is
enough to know thesupp(s), � l and � l for all l0 > l . If for
any lengthl0 > l we �nd that � B (s; l0) 2 Z (in the list of 'k'
z-scores) we keep this sequence for candidate generation, if
not then we prune it. Using the bound for pruning reduces the
search space while ensuring closure or in other words ensuring
all frequent sequences are found. The pruning is performed
as part of the enumeration described in algorithm Figure 3.
This pruning is the key to providing ascalablenorm-frequent
algorithm.



V. EVALUATION

In this section, we present an evaluation of REEF on several
data sets, described in Section V-A. We �rst demonstrate how
to use our sampling distortion method in Section V-B. Next, in
Section V-C we compare runtime of the algorithms and justify
the use of the bound that was introduced in Section IV. Then in
Section V-D will show thatnorm-frequentmining overcomes
the short sequence bias present infrequentmining algorithms.
In Section V-E, we will provide evidence that the sequences
mined with REEF are more meaningful than sequences mined
with SPADE.

A. Data Sets and Experimental Settings

The evaluation is performed on4 data sets. One of these is
a synthetic data set, three use real world sequential data.

Syn is the synthetic data generated with the IBM QUEST
Synthetic Data Generator [31]. QUEST generates data for
various data mining tasks, including frequent sequence min-
ing. We generated sequences with the following parameters:
Number of customers in database = 1000, Average number of
intervals per sequence = 3, Average number of transactions
per interval = 3, Number of items = 10, all other settings are
the default settings. The tests in the evaluation are performed
on 5 synthetic sets with these parameters.

TEXT is a corpus of literature of various types. We treat
the words as sequences with letters as single item events.
We removed all formatting and punctuation from text (apart
from space characters) resulting in a long sequence of letters.
Mining this sequential data for frequent sequences produces
sequences of letters that may or may not be real words. The
reason we chose to mine text in this fashion is to show
how interesting the frequent sequences are in comparison to
norm-frequent sequences by testing how many real words are
discovered. In other words, we use real words from the text as
ground truth against which to evaluate the algorithms. We use
three sets of textual data, one is from Lewis Carroll's ”Alice's
Adventures in Wonderland” [32], another is Shakespeare's ”A
Midsummer Night's Dream” [33] and the third is a Linux
installation guide [34]. Evaluation is performed on segments
of the corpus. Each test is performed on �ve segments.

UPD: User Pattern Detection, is a data set composed of
real world data used for evaluation. UPD logs keyboard and
mouse activity of users on a computer as sequences. Sequences
mined from the UPD data can be used to model speci�c users
and applied to security systems as in [35], [36] and [20].
The experiments are run on 11 user sessions. The data is
collected throughout the whole work session and not just at
login. Each activity is logged along with the time and date it
occurs. The data is then converted into the following events:
pressing a key, time between key presses, key-name, mouse
click, mouse double click, time between mouse movements.
For each session the events are saved in sequences.

Zapping is composed of data that we gathered on remote
control usage. In each household members were asked to
identify themselves as they begin watching TV, by pressing
a designated button on the remote, and then the ”zapping

sequence” is saved, in other words the buttons they pressed
on the remote while they were watching. This sequence is
converted into the following events: Button pressed, Time
passed since last activity and Time of day. This interesting data
set in the domain of personalized television learns personal
usage patterns to provide personal services as in [37] and
[20]. Each zapping session generates a single long sequence.
Evaluation is performed on 10 sets.

For all these data sets the input is composed of long
sequences. In order to use REEF these sequences are cut into
smaller sequences using a sliding window thus creating man-
ageable sequences for mining. The size of the sliding window
is termedinput sequence lengthin our results. The comparison
made between REEF to SPADE is delicate since SPADE
usesminsupto de�ne how many sequences to mine whereas
REEF uses'best' as described in Section IV. Adjusting these
settings changes the runtime and may change the quality and
lengths of the mined sequences. Although these parameters
are similar in nature they cannot be set to be exactly the
same for experiments. We consistently use a single setting
of minsup=1%and 'k'=50 throughout all experiments and a
sample rate of 10% for the preprocessing sampling component.

B. Sampling Distortion Correction

We will demonstrate how to perform the distortion correc-
tion described in Section III-D3, for several data sets. We
found a single equation to model distortion for all the data sets
we investigated. Although this does not imply that the same
model �ts all possible data sets, it is a strong indication that
this may be the case. For data sets where this does not hold,
the same method we used can be applied to �nd other models.
The data sets we used are the TEXT data set the Zapping data
set and the UPD dataset (described in the previous section).

Figure 4 (a),(b),(c) displays the distortion ratio between
sampled average support to full data average support on all
three data sets. The data used for this analysis is excluded
from the experimental evaluation performed in Sections V-C,
V-D and V-E. We used approximately half the data for this
analysis and half for the experimental evaluation. Each point
is an instance of the dataset. The distortion is calculated on
each instance for various input sequence lengths and sample
rates. The distortion obviously has an orderly structure that
we want to �nd.

We modeled the distortion using non-linear regression. We
used R Project for Statistical Computing [30] in order to �nd a
general formula for calculating the correction factor. We need
two correction parameters: one for the average support, the
other for the standard deviation of support.

We �rst describe the average support correction. We noticed
that when we set the sample rate, the distortion ratio follows
a nonlinear function of the length, shown in Figure 5. On
the other hand, if we set the length, then the distortion
ratio follows a nonlinear function of the sample rate, shown
in Figure 6. Therefore, the distortion of average support is
dependent both on length and on sample rate and we are
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(c) UPD distortion
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(d) TEXT regression
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(e) Zapping regression
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(f) UPD regression

Figure 4: Distortion ratios of average support on sampled data in (a), (b) and(c). Regression surfaces of equation 4 in (d),(e)
and (f).

looking for a functionf (len; smp) where len is the length
of a sequence andsmpis the sample rate.

In previous research [20], we investigated the distortion
on the Zapping data alone. We tried to build a combination
of the power and logarithmic functions that we saw when
looking at each variable, into a single function. This led us
to investigating Equations (1), (2) and (3) in Section III-D3.
However, when we tried performing regression for other data
sets we discovered that for UPD these were not the best
candidates, and did not even converge on the TEXT data.
We suspect over-�tting of the regression on the Zapping data.
Realizing that the shape of the distortion is reminiscent of
a stretched paraboloid we tried regression with Equation (4)
in Section III-D3 and found that this best suits all three data
sets and was therefore selected as the distortion model. The
regression surfaces for Equation (4) in Section III-D3 appear
in Figure 4 (d),(e),(f). Values of the parameters for non linear
least of squares regression appear in Table I.

Standard deviation of distortion is linear relative to length
(see Figure 7), and is a nonlinear function of sample rate (see
Figure 8). Therefore, the only variable involved is the sample

num func RSE a b
Zapping 5 2 0.928601 -0.799307
Zapping 6 2 -0.101002 -0.776648

UPD 5 0.6055 1.027204 -0.835350
UPD 6 0.6057 0.043373 -0.843472
TEXT 5 2.053 1.059 -0.768

TABLE II: Regression parameter values for standard
deviation of support.

rate. The sampling distortion correction we found for zapping
in [20] �ts the UPD and TEXT data as well. The equations we
tested are Equations (5) and (6) in Section III-D3, we chose
Equation (5). Regression parameters appear in Table II.

C. REEF Runtime and Bound Pruning

We show how the use of the bound enables speedup.
Although the main focus of REEF is not speed but rather
output quality, we show that REEFs' runtime is comparable
with existing algorithms. We compare the runtime for two
versions of REEF to SPADE. REEF refers to the full algo-
rithm described in Section IV. NB-REEF refers to the same
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Figure 5: Length cross cut of distortion ratio for average support.

0.05 0.15 0.25 0.35 0.5

5
1
0

1
5

sample rate

d
is

to
rt

io
n

(a) TEXT

0.05 0.15 0.25 0.35 0.5

1
2

3
4

sample rate

d
is

to
rt

io
n

(b) Zapping

0.05 0.15 0.25 0.35 0.5
2

4
6

8
1
0

sample rate

d
is

to
rt

io
n

(c) UPD

Figure 6: Sample rate cross cut of distortion ratio for average support.

algorithm but without the use of the bound, or in other words
without pruning. The runtime includes both the sampling time
and the actual mining time for both REEF and NB-REEF. We
compare REEF in two versions, one with the use of the bound
and the other without. We added SPADE for completeness. We
knew in advance that SPADE is faster than our algorithm, but
displaying runtime for SPADE provides an order of magnitude
for the bound comparison. Results for all data sets appear in
Figure 9. There are four types of data sets as described in
Section V-A, however the TEXT dataset is composed of three
sets of textual data, thus in the results in Figure 9 there are 6
graphs. The x-axis represents input-sequence length. For the
synthetic data we had full control over input sequence length
and thus present results for all values. For the real data sets the
input sequence length is controlled by the number of attributes
in an event. This results in varying values along the x-axis
for the results. The y-axis displays runtime of the algorithm
in seconds. We tested the runtime for various input-sequence
lengths. Each point on the graph is the average of �ve runs.

The �rst important observation to make is the importance
of the pruning bound. For all data sets the pruning noticeably
reduces runtime and is an important component of REEF. This
is particularly noticeable on the synthetic data in Figure 9(d),
UPD data in Figure 9(e) and in the Zapping data in Figure
9(f). This difference grows with input sequence length and
becomes more important as input length grows.

The other important result is that the REEF runtime is
comparable with that of SPADE. Although SPADE is faster
than REEF they are close in runtime. The reason SPADE is
often faster than REEF is becauseminsupprovides a tighter
pruning bound than the one we use in REEF. However, faster
may not be better. The tight pruning results in the creation
of short sequences. In the next section, we show that there is
a tradeoff between runtime to the length of mined sequences,
and show how REEF although slightly slower than SPADE has
better performance. By overcoming the short sequence bias
REEF produces a better distributed set of mined sequences.



data set func RSE a b c d e
Zapping 1 0.3975 3.561935 0.183471 -3.438119
Zapping 2 0.3596 5.109377 0.751144 -0.528501 -5.712356
Zapping 3 0.3391 3.789649 0.703963 -0.465705 -4.124942
Zapping 4 0.3998 -1.664660 -0.229604 -0.067215 -0.087310 1.226132

UPD 1 1.21 4.935761 -0.009716 -6.576244
UPD 2 1.102 8.852121 0.648309 -0.302588 -15.3049
UPD 3 1.141 6.932194 0.476740 -0.220498 -10.9230
UPD 4 0.5916 -2.417082 -0.665367 0.037497 -0.392893 0.928968
TEXT 4 1.899 -1.416 -0.409 -0.559 1.387 2.719

TABLE I: Regression parameter values for average support.
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Figure 7: Length cross cut of distortion ratio for standard deviation.

D. Resolving Length Bias in Frequent Sequence Mining

In this section, we establish how REEF successfully over-
comes the short sequence bias that is present in the frequent
sequence mining techniques. We performedfrequentsequence
mining with SPADE andnorm-frequentsequence mining with
REEF. We compared the lengths of the mined sequences for
both algorithms. The results are displayed in Figure 10. Results
are shown for the Syn, UPD, Zapping and three TEXT data
sets. The x-axis shows the lengths of the mined sequences.
The y-axis displays the percentage of sequences found with
the corresponding length. For each possible length we counted
the percentage of mined sequences with this length.

The synthetic data set in Figure 10(d) displays the clearest
description of the algorithmic behavior. While SPADE outputs
mainly sequences with a length of 2, some with a length of 3,
very little with a length of 4 and no longer sequences, REEF
outputs sequences with lengths varying from 2 to 6 and with a
bell shaped distribution. REEF captures the real nature of the
synthetic data and the correct distribution of sequence length.

In the TEXT data set, the results on all three text corpora
show how SPADE mines mainly short sequences, while REEF
manages to mine a broader range of sequence lengths as
displayed in Figure 10(a),(c),(b). REEF results are much closer
to known relation between word length to frequency [38] than
the SPADE output. In the next section, we count how many of
these sequences are words to illustrate superiority of REEF.

For the Zapping and UPD data REEF again overcomes
the short sequence bias and provides output sequences of all
lengths in a more normal distribution than with SPADE. This
can be seen in Figure 10(e). Note that in contrast to the TEXT
corpora, there is no known ground truth as to what the length
of frequent sequences should be in this domain, and what their
distributions are. Thus, there is no way to con�rm whether we
have found the correct distribution. However, we do show that
we are not restricted to mining short sequences.

An interesting data set is the Zapping set. Although REEF
allows for fair mining of all lengths the sequences found
both with REEF and with SPADE are short, and there are no
sequences with lengths higher than 3 as shown in Figure 10(f).
This seems to imply that the frequent sequences in this set
really are short. For this data set it would be more bene�cial
to use SPADE than REEF since there is not much quality
to be gained from the slightly longer runtime with REEF.
The Zapping set is different to all other three sets, where the
extra runtime is clearly worthwhile, since the output sequences
tend to be better representatives of the data set. Results on all
four sets clearly show the tradeoff in the mining algorithms
between time to sequence quality. Frequent sequence mining
in support based algorithms such as SPADE generate short
frequent sequences quickly. In contrast, norm-frequent mining
such as the one we presented in REEF takes slightly longer,
but generates sequences with a broader length distribution as
we show in Section V-E.
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Figure 8: Sample rate cross cut of distortion ratio for standard deviation.
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Figure 9: Runtime. Comparing REEF (with bound), NB-REEF (without bound) and SPADE.
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Figure 10: Removal of length bias.

E. Mining Meaningful Sequences with REEF

The text domain was chosen speci�cally in order to illustrate
the quality of the output sequences. We wanted a domain
where the meaning of interesting sequences was clear. TEXT
is obviously a good domain for this purpose since words are
clearly more interesting than arbitrary sequences of letters.
We hope to �nd more real words when mining text than
nonsense words. Our evaluation is performed on three sets
of text as described above. Results appear in Figure 11. We
compare results onfrequentsequence mining using SPADE
with norm-frequentsequence mining using REEF. The x-axis
shows different input sequence lengths (window sizes). For
each input sequence length we calculated the percentage of
real words that were found in the mined sequences. This
is displayed on the y-axis. For example the top 15 mined
sequences in Shakespeare using REEF:f e he,or,e and,her,n
th,though,he,s and,her,thee,this,thou,you,love,willgand using
SPADE: f rth,mh,lr,sf,tin,op,w,fa,ct,ome,ra,yi,em,tes,t lg Using
REEF yields many more meaningful words than using SPADE.

For all text sets REEF clearly outdoes SPADE by far. REEF
manages to �nd substantially more words than SPADE for all
input lengths. The short input-sequence sizes of 2 does not
produce high percentages of real words for REEF or SPADE.
Using longer input sequence lengths exhibits the strength of

REEF in comparison to SPADE. For input lengths of 4,6,
and 8, REEF manages to �nd a much higher percentage of
words than SPADE. Clearly, for text REEF performs much
better mining than SPADE and the sequences mined are more
meaningful. Although the runtime for SPADE was shorter than
for REEF the tradeoff between runtime and output quality is
clearly illustrated on the textual data. For many data sets, as for
TEXT, it is worth spending more time to the more meaningful
sequences in the mining process.

VI. CONCLUSION AND FUTURE WORK

We developed an algorithm for frequent sequence mining
named REEF that overcomes the short sequence bias present
in many mining algorithms. We did this by de�ningnorm-
frequencyand using it to replace support based frequency used
in algorithms such as SPADE. In order to ensure scalability
of REEF we introduced a bound for pruning in the mining
process. This makes the runtime for REEF comparable to that
of SPADE.

The use of the bound requires a preprocessing stage to
calculate statistics on a sample of the data set. As this sampling
creates a distortion in the sampled measures, we present a
method to correct this distortion.

Our extensive experimental evaluation is performed on four
different types of data sets. They are a mixture of synthetic
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Figure 11: Percentage of real words found among sequences.

and various real world data sets, thus providing a broad
performance analysis of REEF. Our experimental results show
without doubt that the bias is indeed eliminated. REEF suc-
ceeds in �nding frequent sequences of various lengths and is
not limited to �nding short sequences. We show the scalability
of REEF and addressed the tradeoff between runtime to quality
of mined sequences. We illustrated that REEF produces a
more variant distribution of output pattern lengths. We also
clearly showed on textual data how REEF mines more real
words than SPADE. This seems to indicate that when mining
sequences are not textual, we can expect to mine meaningful
sequences as well. Although REEF requires slightly longer
runtime than SPADE the nature of the mined sequences makes
this worthwhile. In the future, we hope to improve the bound
used for mining. Thus, providing an algorithm that is more
ef�cient while still producing the high quality sequences we
found in REEF.
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