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Abstract—Classic support based approaches ef ciently address ~ Thus, removing the short sequence bias is a key issue in
frequent sequence mining. However, support based mining has nding meaningful patterns. One possible way to nd valuable
been shown to suffer from a bias towards short sequences. haiarns js to add weights to important items in the data. Yun
In this paper, we propose a method to resolve this bias when 12 id lqorithm for f t . .
mining the most frequent sequences. In order to resolve the [ JprOVI €s an algorithm o_r reque_n Se_quence mining using
length bias we de ne norm-frequency based on the statistical z- Weights. The drawback of this technique is that for many data
score of support, and use it to replace support based frequency. sets there is no knowledge of what weights to apply. Seno and
Our approach mines the subsequences that are frequent relative Karypis [13] propose eliminating the length bias by extracting
to other subsequences of the same length. Unfortunately, naive 5| patterns with a support that decreases as a function of

use of norm-frequency hinders mining scalability. Using norm- b L .
frequency breaks the anti-monotonic property of support, an the pattern length. This solution is based on the assumption

important part in being able to prune large sets of candidate that a short pattern must have a very high support to be
sequences. We describe a bound that enables pruning to provideinteresting, and a long pattern may be interesting even with

scalability. Calculation of the bound uses a preprocessing stage a lower support. Although this is a fair assumption in many
on a sample of the dataset. Sampling the data creates a distortion scenarios, it is challenging to nd a measure that can be used

in the samples measures. We present a method to correct this]c f t patt . ithout Ki i
distortion. We conducted experiments on 4 data sets, including or frequent pattern mining without making an assumption on

synthetic data, textual data, remote control zapping data and the relationship between frequency and length. Searching for
computer user input data. Experimental results establish that closed or maximal patterns [14]-[16] is another way to ap-

we manage to overcome the short sequence bias successfullyproach this bias. However, mining closed or maximal patterns
and to illustrate the production of meaningful sequences with may not be the best approach to solve the short sequence bias.

our mining algorithm. . ) . .
Index Terms—Frequent Sequence Mining; Data Mining; Z- Using closed and maximal sequences ignores shorter partial

score; Sampling; Multivariate Sequences sequences that may be of interest. Other approaches include
comparing the frequency of a sequence to its subsequences
|. INTRODUCTION [17], and testing for self suf cient sequences [18]. We propose

In a previous study [1] we discussed resolving the lengtin algorithm that mines sequences of all lengths without a
bias in frequent sequence mining. The frequent sequerias towards long or short sequences. Horman and Kaminka
mining problem was rst introduced by Agrawal and Srikanf10] proposed using a normalized support measure for solving
[2] and by Mannila et al. [3]. There are many possibléhe bias. However, their solution is not scalable. Furthermore,
applications for frequent sequential patterns, such as DNRey cannot handle subsequences that are not continuous or
sequence mining [4], text mining [5], anomaly detection [6fave multiple attributes. We allow holes in the sequence, for
[7], classi cation [8] and Web mining [9]. example: if the original sequence is ABCD, Horman and

Freguent sequential pattern generation is traditionally badédminka can nd the subsequences AB, ABC, ABCD, BC
on selecting those patterns that appear in a large enowgb, but cannot mine ACD or ABD, whereas our proposed
fraction of input-sequences from the database. This measuregthod can.
known assupport In support based mining a threshold termed In [1], we presented an algorithm fdREsolving [Ength
minsupis set. All sequences withsupporthigher thamminsup bias in Frequent sequence mining (REEF), this algorithm is
are considered frequent. expanded in the current paper. REEF is an algorithm for

Support based mining is known to suffer from a biamining frequent sequences that normalizes the support of each
towards short patterns [10]: short patterns are inherently maa@ndidate sequence with a length adjusted z-score. The use
frequent than long patterns. This bias creates a probleaf,the z-score in REEF eliminates statistical biases towards
since short patterns are not necessarily the most interestinding shorter patterns, and contributes to nding meaningful
patterns. Often, short patterns are simply random occurrenpasterns as we will illustrate. However, it challenges the
of frequent items. The common solution of lowering thscalability of the approach: z-score normalization lacks the
minsupresults in obtaining longer patterns, but generatesaati-monotonic property used in support based measures, and
large number of useless short sequences as well [11]. Usthgs supposedly forces explicit enumeration of every sequence
con dence measures lowers the number of output sequengethe database. This renders useless any support based pruning
but still results in short sequences. of candidate sequences, the basis for scalable sequence mining



algorithms, such as SPADE [19]. present is an extension of the mining component described
In order to provide a means for pruning candidate se [20].
qguences, we introduce a bound on the z-score of future seSupport based algorithms for frequent sequence mining
guence expansions. The z-score bound enables pruning inwlege rst introduced by Agrawal and Srikant [2], where
mining process to provide scalability while ensuring closur¢he algorithms AprioriAll, AprioriSome and DynamicSome
Details on how the bound is calculated will be described latarere introduced. These algorithms naturally expand frequent
in the paper. We use this bound with an enhanced SPADIEeEmset mining to frequent sequence mining. ltemsets do not
like algorithm to ef ciently search for sequences with higltontain a sequential ordering, whereas sequences do. The
z-score values, without enumerating all sequences. A previalgorithms perform pattern mining in sequences of itemsets
preliminary study [20] indicates that this bound assists ti{events) and nd frequent patterns in the input. The itemsets
speedup substantially, we add more proof of this in the curragpically contain multiple items. Later they introduced the
note. We use three text corpora, input from TV remote controlore ef cient GSP [22] which has been broadly implemented
usage and computer user input to demonstrate how RE&fR used since.
overcomes the bias towards short sequences. We also sho®ince the search space for these mining problems is in-
that the percentage of real words among the sequences miaedlibly large other support based algorithms were introduced
by REEF is higher than those mined with SPADE. to improve the speed and ef ciency of the mining process.
This paper enhances the previous work presented in BIPADE [19], introduced by Zaki, is an algorithm for frequent
in several ways. First, we present the method used for thequence mining that belongs to the family of support based
sampling of the data that we use for calculating the bound. W&ning algorithms. SPADE outperforms GSP, due to the use
also present an extensive evaluation of the parameter settiriga vertical layout for the database and a lattice-theoretic ap-
for this method using the various data sets. Second, we regamach for search space decomposition. We adopt the method
the runtime results for use of the bound and discuss thepresented in SPADE [19] and adapt it to use a normalized
Finally, we present the results of our experimental evaluatiesupport for nding frequent sequences.
on two extra data sets, TV remote control usage (Zapping)The key idea in many of these support based algorithms
and a synthetic data set, that were not reported in [1]. is the generation of candidate sequences. The candidate
The structure of the paper is as follows: Section Il desequences are subsequences of the input-sequences in the
scribes the related work. Section Il provides backgrourdhtabaseFrequentcandidate sequences are both placed in the
and notation and introduces Norm-Frequent Sequence Minisgt of minedrequentsequences, as well as used to generate the
Problem (with Sampling). In Section IV, the algorithm usedext generation of candidates. First, 2-sequences (sequences
for the Norm-Frequent Sequence Mining is described in detaiff length 2) are generated, then they are used to create 3-
Experimental evaluation is provided in Section V, and nallysequences etc: pairs bsequences with common pre xes are
Section VI concludes our paper. combined, to create alrl-sequence.
Generating all possible candidate sequences is infeasible
and results in an unscalable solution. Therefore, a pruning
The topic of frequent sequence mining is highly researchad.introduced to this process. Candidates thatrentefrequent
This essential data mining task has broad applications in maamg pruned. They are not used to generate the next generation
domains and is used for a variety of applications such as agehtcandidates. The reason this can be done is based on the
modeling. In multi-agent settings there are many usages aoti-monotonic property of support. Support has a nice anti-
modeling agents. A group of coordinating agents must haverenotonic property promising that it does not grow when a
clear model of each agent in the group and agents workingndidate sequence is expanded. This promises that candidate
in adversarial environments must be able to model theiequences that amot frequentwill never generatdrequent
opponent. In cases where there is no prior behavior library (@squences, and therefore can be pruned. Thus, the anti-
is often the case) it is necessary to use the observed behaw@notonic property is very important and ensures scalability
in order to deduce the model. This task can be performeflthe mining.
using the multivariate sequences generated by agents, mininglongside the rich variety of support based mining algo-
them for frequent patterns and using them for modeling. Aithms Mannila et al. [3] proposed an algorithm for mining
example to this type of application is presented by Kaminkeequent episodes, a type of frequent sequence, in an input
et al. [21] where the RoboCup soccer simulation games aremposed of a single long sequence. Fregegigodemining
used to model the various team behaviors. algorithms nd frequent items that are frequent within a single
One of the prominent applications of frequent sequensequence whereas frequent support based sequence mining
mining is classi cation of a sequential dataset. In [20], theearches for items that reoccur in multiple sequences. Tatti
behavior of people in a prede ned group is observed, arahd Cule [16] proposed mining closed episodes that are rep-
frequent patterns are mined. These patterns are used inriEgented as DAGs. This algorithm cannot handle multivariate
classifying a given behavior as belonging to a speci ¢ persosequences. Salam and Khayal [23] introduced a method for
The same application has been applied to a commercial settmoing top-k frequent patterns without the use of a minimum
in the personalized television domain. The work we wilkupport. They generate patterns of length 2, and then use a top-

Il. RELATED WORK



down mechanism that only generates the top maximal frequeme¢asure for normalization. We show how to use the z-score
itemsets. They build a graphical representation of the data andasure for scale-up in the mining task. To the best of our
search for maximal cycles in the graph. knowledge this application of z-score is novel, and has been

The problem of Frequent Sequence Mining has been solvagblied only in [10].
with many algorithms, an extended survey can be found inAlthough Horman and Kaminka [10] successfully solve the
[24]. Often, thefrequent sequences found are often insufstatistical bias using normalization, their method suffers from
cient. Unfortunately, support based mining methods suffahree problems. The rst dif culty with the method proposed
from a bias towards shorter sequences as has been showhyirHorman and Kaminka, solved in this paper involves the
[10]. This means that in the frequent sequence mining, shedalability of the algorithm. Using the normalized support
sequences are found more often than long sequences. Thisligs the anti-monotonic property used for pruning in support
very problematic since these short sequences are often not \eaged mining. Unfortunately, this makes pruning impossible
interesting as we will illustrate in Section V-E. and therefore the algorithm is unscalable. The second differ-

Several attempts have been made to address this b&rsce between this paper their work is that as opposed to [10]
One possibility is to force large patterns by searching favhere the mined sequences must be continuous in the original
closed patterns as in TSP [14] or maximal patterns such sequence, we allow holes in the sequence. An example would
MSPS [15]. However, mining closed or maximal patterns maye if the original sequence is ABCD, the previous method can
not be the best approach to solve the short sequence biad.the subsequences AB, ABC, ABCD, BC etc, but cannot
Using closed and maximal sequences ignores shorter panmhe ACD or ABD, whereas our algorithm mines both types.
sequences that may be of interest. We propose an algoritfitre third difference is that the previous method could not
that mines sequences of all lengths without a bias towards Idmandle multiple attributes, as opposed to our approach that
or short sequences. can.

In LPMiner [25] (itemset mining) and SLPMiner [13] (se- With the scalability spoiled it seems there is a need to
guence mining) Seno and Karypis introduce a length decreahoose between a scalable algorithm to one that can fully
ing support constraint in order to overcome the short sequerm&rcome the short sequence bias. In this paper, we propose
bias. This is based on the observance that an interesting slaortalgorithm that can do both. The algorithm we present
sequence must be very frequent (have a very high suppartes normalized support to overcome the short sequence bias
to be interesting. Long sequences on the other hand msyccessfully while using a pruning method with a sampling
be interesting with a lower support. SLPMiner is a heuristignit to solve scalability issues.
approach whereas in our work we attempt to nd a general
solution based on support normalization. 1. N ORM-FREQUENT SEQUENCEMINING

An alternative approach is taken by Yun and Legget in Norm-FrequeniSequence Mining solves the short sequence
WSpan [12]. They introduce a weighted mining algorithm, fdoias present in traditionaFrequent Sequence Mining. We
sequences with weighted items. Using weights in the minirgegin by introducing the notation and the traditioReéquent
process is very useful since it provides more input than usiggquence Mining problem in Section IlI-A. We then de ne
frequency alone. Unfortunately, this is of no assistance the Norm-FrequentSequence Mining problem in Section
domains where there is no information on what weights 1-B. We explain why the scalability is hindered by the
apply. Our solution requires no knowledge on what weightsive implementation of normalized support and how this is
should be used and can be implemented in any domain. resolved in Section IlI-C. Section IlI-C addresses scalability

The methods for solving the bias towards short subsky introducing a bound that enables pruning in the candidate
guences suggested in [12], [13], [25] are heuristic. They ageneration process and Section IlI-D describes the Sampling
based on forcing long sequences to be mined. In contrast, Hommponent. Finally, in Section 1V, we bring all parts together
man and Kaminka [10] proposed using a statistical normalize> compose the REEF algorithm.
tion of support. The support measure is normalized in relation . .
to sequence length. They showed how support normalizatifn Notation and Frequent Sequence Mining
enables nding frequent subsequences with different lengthsWe use the following notation in discussing Norm Frequent
in an unbiased fashion. Using normalized support makes Sequence Mining.
assumptions on the relation between length to support, or oreventLet | = flq;15;:::; 1,9 be the set of alitems An
the relative weights of the items in a database as were madent(also called antemse} is a non-empty unordered set
in the other methods. of items denoted ase= fiy;::;ing, wherei; 2 | is an

Normalization for frequent pattern mining has been peitem. Without loss of generality we assume they are sorted
formed in the past. SEARCHPATTOOL [4] uses z-score fdexicographically. For examples= fABC g is an event with
normalization of mined frequent patterns. It rst performs théemsA B andc.
sequence mining using a support based algorithm and themsequenceA sequencds an ordered list okvents with a
selects the signi cant sequences using the z-score measteenporal ordering. The sequense= e; ! e ! !l eqis
In [26] z-score is used to normalize the data in preprocessiogmposed ofj events. If event occurs before everd , we
stage, before any mining is performed. We also use the z-scdemnote it ass; < e;. e andeg do not have to be consecutive



events and no tweventscan occur at the same time. FoB. Norm-Frequent Sequence Mining using Z-Score
example, in the sequencefsaC g!f AEgwe may say that In this section, we de ne the problem diorm-Frequent

TABC g < fAE g SINCEfABC g OCCUIS beforg AE g. Sequence Mining. We use the statistical z-score for normal-
sequence size and lengtiihe size of a sequence is the jzation. The z-score for a sequence of lenptis de ned as

number of events in a sequencze(fABC g!f ABD g)=2. follows:

Thelengthof a sequence is the number of items in a sequencepe nition 3 (Z-score): Given a databasP and a sequence

including repeating items. A sequence with lengtis called s Let| = len(s) be the length of the sequenseLet | and

anl-sequencelength (fABC g ! f ABD g)=6.. | be the average support and standard deviation of support
subsequence and containA sequence s; is a for sequences of lengthin D. The z-scoreof s denoted (s)

subsequenceof the sequences;, denoted s; s;, if isgivenby (s)= %

8ec;e 2 si;9% m;e, 25 such thatex ey, andg e, We use the z-score because it normalizes the support
and if & <e| thene, <e,. We say thats; containss; if measure relative to the sequence length. Traditional mining,
si sj.E.Q.fABg!f DFg f ABCg!f BFg!f DEF g. where support is used to de ne frequency, mines sequences
database The databaseD used for sequence mining isthat appear often relative @l other sequences. This results
composed of a collection of sequences. in short sequences since short sequences always appear more

often than long ones. Using the z-score normalization of
support for mining nds sequences that are frequent relative
supp(s: D) to othersequences of the same lengtfThis provides an even
PRS; D). chance for sequences of all lengths to be found frequent.
This notation allows the description of multivariate sequence Based on the de nition of z-score for a sequence we de ne
problems. The data is Sequential in that it is Composed Qfsequence as beinuorm_l:requentif the z-score of the

ordered events. The ordering is kept within the subsequenegguence is among the top z-score values for sequences in
as well. The multivariate property is achieved by events beifige database. The formal de nition follows:

composed of several items. The notation enables discussion ofg pition 4 (Norm-Frequent): Given a databas®, a se-

mining sequences with gaps both in events and in items, @Fences of lengthl and an integek. Let Z be the set of the

long as the ordering is conserved. The mined sequences jfgghest z-score values for sequences irs B,norm-frequent

sometimes called patterns. if (s)2 Z. In other words, we perform top-K mining of the
In traditional support based mining, a user speci ed mirmost norm-frequent sequences.

imum support calledninsupis used to de ne frequency. A We introduce the problem oNorm-FrequentSequence

frequentsequence is de ned as a sequence with a suppdining. This new problem is de ned as searching for all

support The supportof a sequence in databaseD is the
proportion of sequences iD that contains. This is denoted

higher thanminsup formally de ned as follows: the norm-frequentsequences in a given database. The formal
De nition 1 (Frequent): Given a databasB, a sequence de nition follows and will be addressed in this paper.
and a minimum supporhinsup s is frequentif supp(s; D) De nition 5 (Norm-Frequent Sequence Mining§iven
minsup. a databaseD and integerk, nd all the norm-frequent
sequences.

The problem of frequent sequence mining is described as:In Figure 1, we provide a small example. The sequences
searching for all thdrequentsequences in a given database%.AB g fAg!f AgandfBg!f Ag, of length2, all have a

The formal de nition is: support of 0.4 and are the most frequent patterns using support

De nition 2 (Frequent Sequence Mining)siven a to de ne frequency. Notice that there are several sequences
databaseD, and a minimum supportminsup nd all  \ith this support, and no single sequence stands out. Consider
the frequentsequences. the sequencéAB g ! f Ag of length 3. This sequence only

In many support based algorithms such as SPADE [19jas a support of 0.3. However, all other sequences of length
the mining is performed by generating candidate s& have a support no higher than 0.1. Although there are
guences and evaluating whether they are frequent. In eeveral sequences of length with a higher support than
der to obtain a scalable algorithm a pruning is usddABg!f Ag, this sequence is clearly interesting when com-
in the generation process. The pruning is based on thared to other sequences of the same length. This example
anti-monotonic property of support. This property enprovides motivation for why support may not be a suf cient
sures that support does not grow when expanding a seeasure to use. The norm-frequency measure we de ned is
guence, e.gsupp(fABg!f Cg) supp(fABg!f CDg). aimed at nding this type of sequence.

This promises that candidate sequences thahatdrequent  Unfortunately, the z-score normalization test hinders
will never generatefrequent sequences, and therefore cathe anti-monotonic property: wecannot determine that

be pruned.Frequentsequence mining seems to be a solvedfABg!f Cg) (fABg!f CDg).

problem with a scalable algorithm. However, it suffers fronTherefore, pruning becomes dif cult; we cannot be sure that
a bias towards mining short subsequences. We provide the z-score of a candidate sequence with lergthill not
algorithm that enables mining subsequences of all lengths.improve in extensions of length+ 1 or in generall + n



seql:  fABg!f Ag can be pruned (not saved and not used for generating candi-
o 2 Ig%g o it dates). Fonorm-frequenimining we perform two evaluations
seq4: fABg!f Ag for each sequence. The rst is to decide whether the proposed
seqs:  fBCg!f Bg sequence isorm-frequent The second is to determine if it
222 ?; ;ﬁggi; ?\g should be expanded to generate more candidate sequences
seq8 fACg!f Cg for evaluation. There are two tasks since z-score is not anti-
seq9:  fBCg!f Cg monotonic and a sequence that is norm-frequentmay be
seq10: fACg!T Ag used to generataorm-frequentsequences. This second task
Figure 1: Example database. is where the bound is used for pruning. The bound on future

expansions of the sequences is calculated for all possible
lengths. If the bound on the z-score for all possible lengths is
for some positiven. Therefore, we cannot prune based on Z0wer than the top n z-scores then no possible expansion can
score and ensure nding aliorm-frequentsequences. This is ever benorm-frequentand the sequence can be safely pruned
a problem since without pruning our search space beconien the generation process. If for one or more lengths the
unscalable. bound is high enough to beorm-frequentwe must generate
Another prob|em with performinmorm_FrequenSequence candidates from the sequence and evaluate them in order
Mining is that the values for , and |, must be obtained to determine if they areorm-frequentor not. This process
for sequences of all lengths prior to the mining procesguarantees that aflorm-frequensequences will be generated.
This imposes multiple passes over the database and hindefdsing the bound enables pruning of sequences that are guar-
scalability. anteed not to generat®rm-frequenttandidates. The pruning
These important scalability issues are addressed and solgé@bled by using the bound resolves the rst scalability issue
in Section 1II-C resulting in a scalable frequent sequen&¥ sequence pruning in the generation process. The second

mining algorithm that overcomes the short sequence bias. scalability problem of calculating, and | is resolved by
calculating the values for; and | on a small sample of the

C. Scaling Up data in a preprocessing stage described below.
As we explained in Section IlI-B, pruning methods such
as those described in SPADE [19] cannot be used ndttm- D- Sampling for Norm-Frequent Mining

frequentmining. We propose an innovative solution that solves Norm-frequentnining uses the z-score de ned in De nition
the scalability problem caused by the inability to prune. 3 and the bound described in De nition 6. Both these measures

Our solution is to calculate a bound on the z-score ofiake use of the average and standard deviation of support
sequences that can be expanded from a given sequeficeeach subsequence length @nd ;). We must calculate
This bound on the z-score of future expansions of candiddteese values prior to the sequence mining. The naive way
sequences is used for pruning. We de ne the bound and thencalculate these values would be to generate all possible
explain how it is used. Z-score was de ned in De nition 3.subsequences and calculate these measures. However, this is
The bound on z-score is de ned in De nition 6. obviously irrelevant as making a full expansion completely

De nition 6 (Z-score-Bound):Given a databas® and a defeats the purpose of mining with the z-score pruning.
sequencs. Let 0 and (o be the average support and standard Therefore, we propose extracting a small sample of the
deviation of support for sequences of lengftin D. Thez- database and calculating these values on the sample. For the
score-boundof s, for length1° denoted B (s;19 is given by sample, full expansion is feasible and generates the necessary

B(s;19 = M measures while ensuring scalability.

We know that support is anti-monotonic, therefore, as the However, there is a problem that arises with the sampled
sequence length grows support can only get smaller. Givemmaasures. They do not re ect the full database measures
candidate sequenaeof lengthl with a support osupp(s) we correctly. It has been shown by [11], [15], [27], [28], that
know that for all sequences® generated froms with length there is a distortion, also termed overestimation, in the values
1°>1 the maximal support isupp(s). We can calculate the of support calculated on a sample of a database relative to
bound on z-score, B (s;19, for all possible extensions of asupport calculated over a full database. Similarly, the average
candidate sequence. Notice that for all sequersfdbat are and standard deviation of support suffer a distortion in the
extensions 06, (s9)  B(s;19. The ability to calculate this sampled data.
bound on possible candidate extensions is the basis for thd) Effects of Sampling DistortionWe use Figure 2 to
pruning. demonstrate how the distortion affects sequence mining. The

In order to minefrequent or norm-frequentsequences, norm-freq sequences that are mined using z-score and calcu-
candidate sequences are generated and evaluated. In tdatld with statistics from the full database are displayed in
tional frequentsequence mining there is only one evaluatiooolumn 1. The top most stripes (light) represent the most
performed on each sequence. If the sequence is found toneem-frequentsequences and the bottom (dark) represent
frequentit is both saved in the list ofrequentsequences and sequences that aret norm-frequenfrare). Column 3 shows
expanded to generate future candidates, if it isfrequentit the norm-frequentsequences discovered using averages and



standard deviations for z-score calculation from the sampled 1
database, the colors match the coloring in the full database, the
ordering is based on sampled results. One notices that the order
is confused and rare sequences in dark greys show up relatively
high in the list. Norm-frequent(light) sequences are pushed
down as rare. The black stripes at the side of the column
represent sequences that did not appear at all inntren-
frequentlist when using the full data set and appeared when
using the sampling. It is obvious that sequences are shifting
around anchorm-frequensequences are being chosen as rare
and vice versa. Therefore, the distortion badly affects sequence
mining. In column 2 we use the correction displayed in the
next section and improve this shifting. The rare sequences
show up further down with the correction than without, as do
the candidates that didn't appear in the original list. Although
this is just an example on one small set of data it conveys the
effects of the distortion and the correction.

2) Chernoff Bounds and Hoeffding Inequalitiedle would
like to evaluate how far off the sampled statistics are from the
real statistics. One might suggest using Chernoff bounds as in
[27], [29] or Hoeffding inequalities as in [28] for this task. In
[27]-[29], the aim is to show how far off sampled support is
from real support for a single subsequence. The appearance of Figure 2: Sampling distortion effect.
a subsequence in each sequence in the sample is described as
a random variable with a Bernoulli distribution. These random
variables arendependent and the Chernoff bounds or Ho-The variables in the equations aen (length of the input-
effding inequalities can be used. The scenario we are using@&guences) andmp (sampling rate). The coefcients that
different. Instead of looking at the accuracy of the support @ve determined in the non-linear regression are; c; d The
the sampled data we are looking at theerageandstandard functions we propose using are:

‘ IFIIII\ o

HFIHI. | 1IN

deviation of support for a subsequence of a speci c length. | 1)P log(smp) 1
Unlike the application of Chernoff and Hoeffding bounds in a  (len ) b smp+c ¢ smp @)
[271-[29], where the random variable was independent, the a (len) +d smp @)
random variable in our setting is the average of support of a (len 1)° s™*c+d smp 3)

sequences for a given length. This random variable is strongly (len 1)2+e smpP+c len+d smp 4)
dependentand therefore the known bounds are problematic
to apply. There are also situations where although ChernoffFor the standard deviation of support we perform distortion
bounds can be applied, it is problematic to apply them becalfsgrection .in a similar fashion using the following equations
a very large sample of the database is needed, as in [27]. f§rapproximation.
cases where Chernoff and Hoeffding bounds cannot be applied,
or situations where one chooses not to apply them we propose a (smp°) (5)
a method of distortion correction. b
3) Sampling Distortion Correction MethodWe introduce (smp) + a ©)
a method for correcting the distortion that can be used for A tool such as the R Project for Statistical Computing [30]
any data set. This method nds the model of the distortiois used to nd the correct parameters for these equations as
for various input sequence lengths and sample rates usi@monstrated in detail in Section V-B.
the non-linear regression functiomst() in the R Project  Once we have found the equations that represent the distor-
for Statistical Computing [30]. Once we have modeled thipn for average support and standard deviation of support, for
distortion, correcting it is immediate. The model provides aa certain type of data set, correction of this distortion is simple.
equation that determines the exact distortion value of averdgar new data in these sets we can select any sample rate
support or standard deviation for a given input sequence lengtid calculate the distortion correction of average and standard
and sample rate. A simple inverse multiplication provides thieviation for each possible sequence length. We multiply the
corrected value. sampled values by the inverse of the distortion and use the
In order to perform the regression we must propose funesults as the average and standard deviation of support in the
tions and then perform the non-linear regression to set thescore calculation fonorm-frequentmining.
parameters. We list the equations we propose using basetlVe found the proposed equations to be general and provide
on our experimental experience as described in Section Vdhod approximations for different data sets, as shown in



Section V-B, and therefore suggest they can be used for othey 1: for all X is a pre x in Sdo
data sets as well. However, for data sets where these equations 20 Tx = ;
do not provide good approximations the same method we used 3: Fr = fk empty sequences
can be applied while using different equations. 4: for all itemsA; 2 S do
Now that we have presented the full method for sampling | 5 for all iteqpgA; 2 S, withj i do
the data set and calculating the values forand | we 6: R=A; Aj (join Aj with Aj)
have a complete scalable algorithm that minesm-frequent 7 forall r 2R do
sequences without a bias to short sequences, Section IV puts 8 if (r)> (asegsin Fr) then
all the pieces together and describes the full algorithm. 9: Fr = Fr  rns //replaces with r
10: for all 1°= 1+1 toinput sequence length
IV. REEF ALGORITHM do
In this section, we combine all the components we have | 1i: if B(r;19> (asegsinFg) then
described in the previous sections and describe the implement 12: if Aj appegrs beford; then
tation of REEF. The REEF algorithm is composed of several | 13: Ti=Ti r
phases. The input to REEF is a database of sequences and 14 else
an integerk’ determining how many Z-scores will be used | 15: =T r
to nd norm-frequentsequences. The output of REEF is a | 16: enumerate-Frequent-Seq-Z-scdig(
set of norm-frequentsequences. Initially, a sampling phase | 17: Ti =

is performed to obtain input for the later phases. Next we Figure 3: Enumerate-Frequent-Seq-Z-sc8)e(

perform the candidate generation phase. First, norm—frequer\}\/hereS is the set of input sequences we are mining for
1-sequences and 2-sequences are generated. Once 2-sequ?nces

. . : requent subsequences, A setrmfrm-frequentsubsequences

have been generated, an iterative process of generating can- . . :

. ) is returned Fr is a list of sequences with the tk°

didate sequences is performed. The generated sequences arée 7-SCOres

evaluated, and if found to beorm-frequentare placed in the ’

output list of norm-frequentsequences. These sequences are

also examined in the pruning process of REEF in order to

determine if they should be expanded or not. words, for each sequeneaeplace the test of isupp(s; D) >
Sampling Phase -The sampling phase is performed a§linsup with the test of is (s) 2 Z whereZ is the set

a preprocessing of the data in order to gather statistics ¥f the %° highest z-score values for sequencesDin This

the average and standard deviation of support for sequent@lacement of the frequency test with the norm-frequency

of all possible lengths. This stage uses SPADE [19] with tgst is the essence of REEF and our main contribution.

minsupof 0 to enumerate all possible sequences in the sampled'he improved version of sequence enumeration including

data and calculate their support. For each length the supp$@ pruning is presented in Figure 3 and replaces the enumer-

average and standard deviation are calculated. These vaRié@n made in SPAPE. The joining dfsequences to generate

are distorted and corrected values are calculated using thé-sequencesA; A; found in line 6) is performed as in

technique described in Section IlI-D. These corrected valu8SADE [19].

provide the average support; and standard deviation of Pruning Phase using Bound -Obviously REEF cannot

support | that are used in z-score calculation and the bourghumerate all possible sequences for norm-frequency evalua-

calculation. tion. Furthermore, as we discussed in Section IlI-B, the z-score
Candidate Generation Phase -The candidate generationmeasure is not anti-monotonic and cannot be used for pruning

phase is based on SPADE along with important modi cation®hile ensuring that norm-frequent candidates are not lost. In

As in SPADE we rst nd all 1-sequence and 2-sequencéection IlI-C, we introduced the bound on z-score that is used

candidates. The next stage of the candidate generation pHasepruning.

involves enumerating candidates and evaluating their fre-The pruning in REEF calculates? (s;19 for all possible

guency. lengths1° > | of sequences than could be generated from
We make two modi cations to SPADE. The rst is movings. The key to this process that there is no need to actually

from setting aminsupto setting the’® value. %° determines generate the extensios8 that can be generated from It is

the number of z-score values that norm-frequent sequeneesugh to know thesupp(s), | and | for all 1°> | . If for

may have. Note that there may be several sequences with aing lengthl®>1 we nd that B(s;19 2 Z (in the list of 'k’

same z-score value. The reason for this modi cation is thatscores) we keep this sequence for candidate generation, if

z-score values are meaningful for comparison within the samet then we prune it. Using the bound for pruning reduces the

database but vary between databases. Therefore, settingsterch space while ensuring closure or in other words ensuring

%O value is of more signi cance than setting a min-z-scorall frequent sequences are found. The pruning is performed

threshold. as part of the enumeration described in algorithm Figure 3.
The second and major change we make is swapfieg This pruning is the key to providing scalablenorm-frequent

guencyevaluation withnorm-frequencyevaluation. In other algorithm.



V. EVALUATION sequence” is saved, in other words the buttons they pressed

In this section, we present an evaluation of REEF on sevefd) the remote while they were watching. This sequence is
data sets, described in Section V-A. We rst demonstrate hdg@pnverted into the following events: Button pressed, Time
to use our sampling distortion method in Section V-B. Next, iRassed since last activity and Time of day. This interesting data
Section V-C we compare runtime of the algorithms and justif§et in the domain of personalized television learns personal
the use of the bound that was introduced in Section IV. Then\§§2g€ patterns to provide personal services as in [37] and
Section V-D will show thainorm-frequentmining overcomes [20]. Each zapping session generates a single long sequence.
the short sequence bias presentréguentmining algorithms. EVvaluation is performed on 10 sets.

In Section V-E, we will provide evidence that the sequencesFor all these data sets the input is composed of long
mined with REEF are more meaningful than sequences ming@fuences. In order to use REEF these sequences are cut into

with SPADE. smaller sequences using a sliding window thus creating man-
. i ageable sequences for mining. The size of the sliding window
A. Data Sets and Experimental Settings is termedinput sequence length our results. The comparison

The evaluation is performed ohdata sets. One of these ismade between REEF to SPADE is delicate since SPADE
a synthetic data set, three use real world sequential data. usesminsupto de ne how many sequences to mine whereas
Syn is the synthetic data generated with the IBM QUESREEF usesbest' as described in Section IV. Adjusting these
Synthetic Data Generator [31]. QUEST generates data &#ttings changes the runtime and may change the quality and
various data mining tasks, including frequent sequence miengths of the mined sequences. Although these parameters
ing. We generated sequences with the following parametease similar in nature they cannot be set to be exactly the
Number of customers in database = 1000, Average numbersaine for experiments. We consistently use a single setting

intervals per sequence = 3, Average number of transactiafsminsup=1%and 'k'=50 throughout all experiments and a
per interval = 3, Number of items = 10, all other settings arsample rate of 10% for the preprocessing sampling component.
the default settings. The tests in the evaluation are performed
on 5 synthetic sets with these parameters. B. Sampling Distortion Correction

TEXT is a corpus of literature of various types. We treat
the words as sequences with letters as single item events/Ve will demonstrate how to perform the distortion correc-
We removed all formatting and punctuation from text (apaﬁpn described in Section IlI-D3, for several data sets. We
from space characters) resulting in a long sequence of lettdryind a single equation to model distortion for all the data sets
Mining this sequential data for frequent sequences produc#d investigated. Although this does not imply that the same
sequences of letters that may or may not be real words. TRedel ts all possible data sets, it is a strong indication that
reason we chose to mine text in this fashion is to shdifis may be the case. For data sets where this does not hold,
how interesting the frequent sequences are in comparisontl§ same method we used can be applied to nd other models.
norm-frequent sequences by testing how many real words e data sets we used are the TEXT data set the Zapping data
discovered. In other words, we use real words from the text 8&t and the UPD dataset (described in the previous section).
ground truth against which to evaluate the algorithms. We useFigure 4 (a),(b),(c) displays the distortion ratio between
three sets of textual data, one is from Lewis Carroll's "Alice'sampled average support to full data average support on all
Adventures in Wonderland” [32], another is Shakespeare's "iiree data sets. The data used for this analysis is excluded
Midsummer Night's Dream” [33] and the third is a Linuxfrom the experimental evaluation performed in Sections V-C,
installation guide [34]. Evaluation is performed on segmen¥D and V-E. We used approximately half the data for this
of the corpus. Each test is performed on ve segments. analysis and half for the experimental evaluation. Each point

UPD: User Pattern Detection, is a data set composed o an instance of the dataset. The distortion is calculated on
real world data used for evaluation. UPD logs keyboard ag@ch instance for various input sequence lengths and sample
mouse activity of users on a computer as sequences. Sequef@@s. The distortion obviously has an orderly structure that
mined from the UPD data can be used to model speci c usek want to nd.
and applied to security systems as in [35], [36] and [20]. We modeled the distortion using non-linear regression. We
The experiments are run on 11 user sessions. The dataised R Project for Statistical Computing [30] in order to nd a
collected throughout the whole work session and not just @neral formula for calculating the correction factor. We need
login. Each activity is logged along with the time and date fwo correction parameters: one for the average support, the
occurs. The data is then converted into the following evenwther for the standard deviation of support.
pressing a key, time between key presses, key-name, mousé/e rst describe the average support correction. We noticed
click, mouse double click, time between mouse movementbat when we set the sample rate, the distortion ratio follows
For each session the events are saved in sequences. a nonlinear function of the length, shown in Figure 5. On

Zapping is composed of data that we gathered on remotiee other hand, if we set the length, then the distortion
control usage. In each household members were askedrdtio follows a nonlinear function of the sample rate, shown
identify themselves as they begin watching TV, by pressing Figure 6. Therefore, the distortion of average support is
a designated button on the remote, and then the "zappidgpendent both on length and on sample rate and we are
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Figure 4: Distortion ratios of average support on sampled data in (a), (b) and(c). Regression surfaces of equation 4 in (d),(e)
and (f).

. . . . num func RSE a b
looking for a funcuon_f (len;smp) wherelen is the length Zapping | 5 > 0928601 0799307
of a sequence ansmpis the sample rate. Zapping | 6 2 -0.101002 | -0.776648

In previous research [20], we investigated the distortion BEB 2 8-2823 é-ggg%‘ -g-gigigg
on the Zapping data alone. We tried to build a combination TEXT 5 5053 | 1.089 0.768

of the power and logarithmic functions that we saw when
looking at each variable, into a single function. This led us
to investigating Equations (1), (2) and (3) in Section 111-D3.

However, when we tried performing regression for other data

sets we discovered that for UPD these were not the best _ . . . .
candidates, and did not even converge on the TEXT datate. The sampling distortion correction we found for zapping

We suspect over- tting of the regression on the Zapping dati&.[20] ts the UPD and TEXT data as well. The equations we
Realizing that the shape of the distortion is reminiscent ¢#sted are Equations (5) and (6) in Section 1lI-D3, we chose
a stretched paraboloid we tried regression with Equation (&yuation (5). Regression parameters appear in Table II.

in Section IlI-D3 and found that this best suits all three data

sets and was therefore selected as the distortion model. The
regression surfaces for Equation (4) in Section 11I-D3 appearWe show how the use of the bound enables speedup.

in Figure 4 (d),(e),(f). Values of the parameters for non line#&lthough the main focus of REEF is not speed but rather
least of squares regression appear in Table . output quality, we show that REEFs' runtime is comparable

Standard deviation of distortion is linear relative to lengttvith existing algorithms. We compare the runtime for two
(see Figure 7), and is a nonlinear function of sample rate (semsions of REEF to SPADE. REEF refers to the full algo-
Figure 8). Therefore, the only variable involved is the samptéhm described in Section IV. NB-REEF refers to the same

TABLE II: Regression parameter values for standard
deviation of support.

REEF Runtime and Bound Pruning
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algorithm but without the use of the bound, or in other words The rst important observation to make is the importance
without pruning. The runtime includes both the sampling timef the pruning bound. For all data sets the pruning noticeably
and the actual mining time for both REEF and NB-REEF. Weduces runtime and is an important component of REEF. This
compare REEF in two versions, one with the use of the bourgdparticularly noticeable on the synthetic data in Figure 9(d),
and the other without. We added SPADE for completeness. W@D data in Figure 9(e) and in the Zapping data in Figure
knew in advance that SPADE is faster than our algorithm, ba¢f). This difference grows with input sequence length and
displaying runtime for SPADE provides an order of magnitudeecomes more important as input length grows.
for the bound comparison. Results for all data sets appear in
Figure 9. There are four types of data sets as described in
Section V-A, however the TEXT dataset is composed of threeThe other important result is that the REEF runtime is
sets of textual data, thus in the results in Figure 9 there ar€@mnparable with that of SPADE. Although SPADE is faster
graphs. The x-axis represents input-sequence length. For tih@n REEF they are close in runtime. The reason SPADE is
synthetic data we had full control over input sequence lengafien faster than REEF is becausensupprovides a tighter
and thus present results for all values. For the real data setsphgning bound than the one we use in REEF. However, faster
input sequence length is controlled by the number of attributg®y not be better. The tight pruning results in the creation
in an event. This results in varying values along the x-ax{¥ short sequences. In the next section, we show that there is
for the results. The y-axis displays runtime of the algorithra tradeoff between runtime to the length of mined sequences,
in seconds. We tested the runtime for various input-sequeraggd show how REEF although slightly slower than SPADE has
lengths. Each point on the graph is the average of ve rundietter performance. By overcoming the short sequence bias
REEF produces a better distributed set of mined sequences.



data set| func RSE a b c d e
Zapping 1 0.3975| 3.561935| 0.183471 | -3.438119

Zapping 2 0.3596 | 5.109377 | 0.751144 | -0.528501| -5.712356

Zapping 3 0.3391 | 3.789649 | 0.703963 | -0.465705| -4.124942

Zapping 4 0.3998 | -1.664660| -0.229604 | -0.067215| -0.087310| 1.226132
UPD 1 1.21 4.935761 | -0.009716 | -6.576244

UPD 2 1.102 | 8.852121 | 0.648309 | -0.302588| -15.3049

UPD 3 1.141 | 6.932194 | 0.476740 | -0.220498| -10.9230

UPD 4 0.5916 | -2.417082| -0.665367 | 0.037497 | -0.392893| 0.928968
TEXT 4 1.899 -1.416 -0.409 -0.559 1.387 2.719

TABLE I: Regression parameter values for average support.
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Figure 7: Length cross cut of distortion ratio for standard deviation.

D. Resolving Length Bias in Frequent Sequence Mining For the Zapping and UPD data REEF again overcomes
) . ) the short sequence bias and provides output sequences of all
In this section, we establish how REEF successfully ovggngths in a more normal distribution than with SPADE. This
comes the short sequence bias that is present in the frequefi he seen in Figure 10(e). Note that in contrast to the TEXT
sequence mining techniques. We perforrfrequentsequence corpora, there is no known ground truth as to what the length
mining with SPADE andhorm-frequensequence mining with of frequent sequences should be in this domain, and what their
REEF. We compared the lengths of the mined sequences diributions are. Thus, there is no way to con rm whether we
both algorithms. The results are displayed in Figure 10. Resylige found the correct distribution. However, we do show that
are shown for the Syn, UPD, Zapping and three TEXT da{ge are not restricted to mining short sequences.
sets. The x-axis shows the lengths of the mined sequencesap interesting data set is the Zapping set. Although REEF
The y-axis displays the percentage of sequences found Wififbws for fair mining of all lengths the sequences found
the corresponding Iength. For each pos_S|bIe_Iength we countsih with REEF and with SPADE are short, and there are no
the percentage of mined sequences with this length. sequences with lengths higher than 3 as shown in Figure 10(f).
The synthetic data set in Figure 10(d) displays the clearesiis seems to imply that the frequent sequences in this set
description of the algorithmic behavior. While SPADE outputgeally are short. For this data set it would be more bene cial
mainly sequences with a length of 2, some with a length of & use SPADE than REEF since there is not much quality
very little with a length of 4 and no longer sequences, REEG be gained from the slightly longer runtime with REEF.
outputs sequences with lengths varying from 2 to 6 and withtde Zapping set is different to all other three sets, where the
bell shaped distribution. REEF captures the real nature of thgtra runtime is clearly worthwhile, since the output sequences
synthetic data and the correct distribution of sequence lengfénd to be better representatives of the data set. Results on all
In the TEXT data set, the results on all three text corpofaur sets clearly show the tradeoff in the mining algorithms
show how SPADE mines mainly short sequences, while REBEtween time to sequence quality. Frequent sequence mining
manages to mine a broader range of sequence lengthsinasupport based algorithms such as SPADE generate short
displayed in Figure 10(a),(c),(b). REEF results are much clodezquent sequences quickly. In contrast, norm-frequent mining
to known relation between word length to frequency [38] thasuch as the one we presented in REEF takes slightly longer,
the SPADE output. In the next section, we count how many bfit generates sequences with a broader length distribution as
these sequences are words to illustrate superiority of REEMe show in Section V-E.
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E. Mining Meaningful Sequences with REEF REEF in comparison to SPADE. For input lengths of 4,6,

and 8, REEF manages to nd a much higher percentage of
The text domain was chosen speci cally in order to illustrat@ords than SPADE. Clearly, for text REEF performs much
the quality of the output sequences. We wanted a domajgtter mining than SPADE and the sequences mined are more
where the meaning of interesting sequences was clear. TEEaningful. Although the runtime for SPADE was shorter than
is obviously a good domain for this purpose since words af§ REEF the tradeoff between runtime and output quality is
clearly more interesting than arbitrary sequences of letteggearly illustrated on the textual data. For many data sets, as for

We hope to nd more real words when mining text tharrexXT, it is worth spending more time to the more meaningful
nonsense words. Our evaluation is performed on three sgguences in the mining process.

of text as described above. Results appear in Figure 11. We

compare results ofrequentsequence mining using SPADE VI. CONCLUSION AND FUTURE WORK

with norm-frequentsequence mining using REEF. The x-axis We developed an algorithm for frequent sequence mining

shows different input sequence lengths (window sizes). Feamed REEF that overcomes the short sequence bias present

each input sequence length we calculated the percentaggnofnany mining algorithms. We did this by de ningorm-

real words that were found in the mined sequences. Thigquencyand using it to replace support based frequency used

is displayed on the y-axis. For example the top 15 minef algorithms such as SPADE. In order to ensure scalability

sequences in Shakespeare using REEFhe,or,e and,her,n of REEF we introduced a bound for pruning in the mining

th,though,he,s and,her,thee,this,thou,you,loveganill using process. This makes the runtime for REEF comparable to that

SPADE: f rth,mh,Ir,sf.tin,op,w,fa,ct,ome,ra,yi,em,tegtUsing of SPADE.

REEF yields many more meaningful words than using SPADE.The use of the bound requires a preprocessing stage to
For all text sets REEF clearly outdoes SPADE by far. REE¢alculate statistics on a sample of the data set. As this sampling

manages to nd substantially more words than SPADE for atfeates a distortion in the sampled measures, we present a

input lengths. The short input-sequence sizes of 2 does ma¢thod to correct this distortion.

produce high percentages of real words for REEF or SPADE.Our extensive experimental evaluation is performed on four

Using longer input sequence lengths exhibits the strength different types of data sets. They are a mixture of synthetic
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and various real world data sets, thus providing a broap]
performance analysis of REEF. Our experimental results show
without doubt that the bias is indeed eliminated. REEF sugp,
ceeds in nding frequent sequences of various lengths and is
not limited to nding short sequences. We show the scalabilit
of REEF and addressed the tradeoff between runtime to quaﬁi{[
of mined sequences. We illustrated that REEF produces a
more variant distribution of output pattern lengths. We also

clearly showed on textual data how REEF mines more r

words than SPADE. This seems to indicate that when mining
seguences are not textual, we can expect to mine meaningfél
sequences as well. Although REEF requires slightly longer

runtime than SPADE the nature of the mined sequences makes

this worthwhile. In the future, we hope to improve the bounid4]
used for mining. Thus, providing an algorithm that is more
ef cient while still producing the high quality sequences we

found in REEF.
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