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Abstract

We present an approach for learning models that obtain accurate classification of data

objects, collected in large scale spatiotemporal domains. The model generation is struc-

tured in three phases: spatial dimension reduction, spatiotemporal features extraction,

and feature selection. Novel techniques for the first two phases are presented, with two

alternatives for the middle phase. We explore model generation based on the combina-

tions of techniques from each phase. We apply the introduced methodology to datasets

from the Voltage-Sensitive Dye Imaging (VSDI) domain, where the resulting classification

models successfully decode neuronal population responses in the visual cortex of behaving

animals. VSDI is currently the best technique enabling simultaneous high spatial (10, 000

points) and temporal (10ms or less) resolution imaging from neuronal population in the

cortex. We demonstrate that not only our approach is scalable enough to handle com-

putationally challenging data, but it also contributes to the neuroimaging field of study

with its decoding abilities. The effectiveness of our methodology is further explored on a

dataset from the hurricanes domain, and a promising direction, based on the preliminary

results of hurricane severity classification, is revealed.
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Chapter 1

Introduction

There is much interest in applying machine learning in domains with large scale

spatiotemporal characteristics. Examples range from learning patterns and discrim-

inating cognitive brain states using functional Magnetic Resonance Imaging (fMRI)

[1, 3, 12, 19, 21–23, 29, 42, 43], to developing techniques for classification of brain signals

in Brain Computer Interfaces (BCI) [4,16,28,31,41,44], performing automated video clas-

sification [39], computer worm detection [33] and many more.

However, many existing techniques prove insufficient when the data is temporal

(spanned over a time course) and spatially large (consists of a large number of locations

in space). Classification often becomes computationally infeasible. Raw data collected

along the time course in a high-resolutional space results in hundreds of thousands of fea-

tures, for which classical, straightforward machine learning approaches become ineffective

in practice. While there have been attempts at addressing these challenges [4, 43], they

have proven insufficient.

In this work we present a methodology for both overcoming the scalability challenge and

exploiting the spatiotemporal properties of the data for classification. Our methodology

is based on common machine learning elements, and is comprised of three phases. First,

we present a greedy pixel selection technique, i.e. choosing the most discriminative spatial

characteristics within the full spatial range in a sample’s space, based on the random

subspace method [15]. Second, we provide two alternatives for feature extraction, applied

1



Chapter 1: Introduction 2

on the spatially-reduced samples produced by the first phase: features as pixels in time

and spatial averaging of pixel groups based on inter-pixel correlation. Finally, we employ

a simple and yet effective feature selection based on information gain filtering.

Initially, we evaluate our methodology in the neuroimaging domain, and demonstrate

how it helps to decode neuronal population responses in the visual cortex of monkeys,

collected using Voltage-Sensitive Dye Imaging (VSDI) [30]. VSDI is capable of measuring

neuronal population responses at high spatial (10, 000 pixels of size 60×60 to 170×170µm2

each) and temporal (10ms or less) resolutions. The produced data consists of tens of

thousands of pixels (numeric values, correlated to locations in space), rapidly changing

during the time course. Our methodology makes it possible to process this massive amount

of data in a computationally feasible manner. It serves as a tool that aids to decode

these responses, as we show how to carefully pick and process those specific properties

of the data that carry the most discriminative nature. While first attempts to decode

neuronal population responses collected using VSDI were performed in [2], no machine

learning methods were used—a specially designed statistical approach of pooling rules was

developed (relying on the amplitude of the response and other neuronal characteristics).

To the best of our knowledge, this is the first time where machine learning techniques are

applied in this field.

Further in our research, we explore the effectiveness of our presented methodology in

its application to the hurricanes domain. While our introduced techniques were primarily

developed with the help of thorough evaluation and exploration of the VSDI data, our

approach is intended to be applicable in general spatiotemporal domains with analogous

characteristics. In the hurricanes domain, we analyze historical data of the Atlantic re-

gion—satellite images and hurricane tracks—in attempt to classify the hurricane severity

group by generating a dataset based on plain periodical satellite shots along the time

course. The kind of application we explore here examines how our methodology handles

the challenges proposed in a domain highly different than the VSDI.

The rest of this document is organized as follows: Chapter 2 contains a review of re-

lated work, briefly describing the machine learning tools used in our research; it provides

a literature review from both spatiotemporal domains and spatiotemporal techniques per-
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spectives. Chapter 3 is the core chapter of this work which describes our three phase

methodology for spatiotemporal classification modeling. Chapter 4 presents the empir-

ical evaluation techniques employed for the validation of our methodology in the VSDI

domain, and contains a thorough analysis of the experimental results. In Chapter 5 we

introduce the first results of applying our methods in the hurricanes domain, after pre-

senting the challenges and discussing the differences between the two domains. Chapter

6 concludes our work by discussing its implications and contributions, along with the

prospective directions for the future.





Chapter 2

Related work

In reviewing the related work, we separate the work on spatiotemporal domains from the

work on spatiotemporal techniques. For the domains analysis, we explore the machine

learning research related to VSDI—decoding in the neuroimaging field and classification

of brain-emitted signals. In domains with the appropriate characteristics, such as fMRI

and BCI, machine learning techniques are commonly employed. As for the survey of the

techniques, we analyze how machine learning is applied to either spatial, temporal or

spatiotemporal data—and explore the relevance of the analyzed methods to our work,

since our main focus is on the techniques, rather than on the domains.

2.1 Related domains

The studies discussed next analyze the progress done in the last decade in the neuroimag-

ing domains, and introduce the first work related to decoding in VSDI. This discussion

is essential for understanding how the machine learning is currently employed in the neu-

roimaging field, and for learning from it for the purpose of our study.

2.1.1 fMRI from a spatial perspective

A classic goal in machine learning application to fMRI is the discrimination between

different cognitive states—“decoding” of the states the brain is in. This is done by taking

5
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the fMRI brain images resulted from being in some state, and telling what the triggering

state was. In the case of [17], individual classifier was built for each human subject to

differentiate between states such as “observing a picture” or “reading a sentence”, yielding

an accuracy of either 80% or 96% (based on the experiment type). Same process was

carried on when the discrimination was done by training a single classifier, and using it

across different subjects [35]; or, by developing methods that can account for subject-

specific variations [24]. Both of these studies have produced accuracies in the range of

60% to 80%, depending on the experiment types and methods. Spatial patterns of brain

activity were also used for training classifiers applicable to lie detection [3], resulting in

accuracies of above 88% on the test data.

In cases of sparse, high dimensional problems—where the number of features greatly

exceeds the number of training examples per class—a hierarchical Bayesian framework

was developed in [23], resulting in precision in the range of 53% to 85% (depending on the

test subject and the experiment type).

A case study of visuo-motor sequence learning was presented in [29], yielding precisions

in the range of 62.5% to 80%. In [14], motor tasks were predicted with a misclassification

error ranging from 15% to 30%.

Multivariate pattern recognition algorithms, employing linear discriminant analysis us-

ing probabilistic methods, were applied for the decoding of mental states in [10]: these

included predicting the orientation of invisible stimuli [8] (resulting in up to 60% and up

to 80% accuracy rates in two different kinds of experiments) and predicting the stream

of consciousness [9] (exploring the “binocular rivalry” phenomenon, reaching accuracy of

80 − 85%). Decoding of visual contents of the human brain—of seen and attended mo-

tion directions—was performed in [11, 12], gaining accuracy of 63 − 66%. This study

consisted of classification of different visual orientations, including a “mind reading” ex-

periment—revealing the focus of subject’s attention on competing orientations.

2.1.2 Spatiotemporal fMRI

However, the studies presented until this point, did not model the fMRI as spatiotemporal

data, but rather as spatial data only, usually from a single time interval. While being
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the most common non-invasive technique for brain study in humans, its deficiency is that

it measures metabolic changes: the hemodynamic response occurring few seconds after

the onset of the visual stimulus. Whereas the temporal resolution of neuronal activity is

within tens of ms, the resolution of the fMRI signal is at least two orders slower. For this

reason, fMRI studies don’t usually take advantage of the temporal aspect.

In the work presented in [43], Zhang et al. claim that they took into account the

temporal dimension of the fMRI for the first time. It was used to discriminate drug-

addicts from non-drug-addicts, and an accuracy of up to 96% was reported. In [21], the

temporal information of fMRI was used along with the spatial, “to infer where (in the

brain) and when (in time) the discriminating information occurs”, producing accuracy of

90%. Temporal information was also used in [22, 36], showing the advantage of using the

temporal data. As well, a methodology was developed to offer the ability to locate spatial

regions with temporal differences between groups, while simultaneously accounting for and

identifying intergroup spatial and temporal variability [26], leading to accuracy of 85.71%.

At last, a new feature selection technique for multivariate time series was proposed in [42]

and successfully evaluated on fMRI datasets, for cases where the number of spatial features

is much larger than the number of temporal features.

2.1.3 EEG and ECoG in BCI

Brain Computer Interface (BCI) technology is an area where brain-controlled computer

systems are developed in order to operate the machine (e.g. prostheses, communication)

by a brain activity (e.g. imagining a hand movement will cause a prosthetic computer-

controlled arm to move). BCI is fundamentally based on techniques for classification of

brain signals. The common method to read brain activity for BCI is Electroencephalogram

(EEG), a multivariate time series data non-invasively collected from the scalp. Another

method is Electrocorticography (ECoG), having a higher signal-to-noise ratio, as well as

higher spectral and spatial resolutions, resulting from being invasive.

Machine learning based classification in EEG (e.g. hand movement imagery) was

successfully employed in [28,31,41,44] with the temporal aspect of the data being utilized:

in [44], for instance, a framework of feature extraction for classification of hand movement
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imagery EEG was proposed. Here, the best classification rate (88 − 94%, varying on

the subject) was achieved due to obtaining the optimal spatial and temporal features.

Supervised feature selection via dependence estimation was used on BCI datasets in [31],

resulting in highly varied error rates of 0.3− 37.9%. A polygon feature selection method

was developed in [28], for the classification of temporal EEG data from two or more

sources, on the basis of quantifying structural changes with time—producing accuracy of

90− 99%.

As for the high-dimensional multi-channel BCI data, a hybrid wavelet feature selection

method, employing the mutual information filter and genetic algorithms, was proposed

in [4]. This method was developed for the design of a multi-channel BCI system (as

opposed to only one or two EEG channels), coping with the system’s high dimensionality.

In ECoG, extremely small training data sets were handled in [25], where the problem of

robust classification of ECoG signals for designing a closed-loop BCI control was examined.

ECoG changes during movement of two different body parts were examined. The reported

average error was 13.7% across nine subjects.

2.1.4 SPECT perfusion imaging

Another related domain, discussed in [32], is the spatial-only Single Photon Emission Com-

puted Tomography (SPECT) domain. It studied the use of SPECT perfusion imaging for

differentiation between images of healthy subjects and of Alzheimer’s disease patients. The

presented approach incorporates proximity information about the features and generates

a classifier that selects the most relevant “areas” for classification, rather than the most

relevant voxels (the analogous to pixels, but in three dimensional space). This approach

resulted in success rates above 90%.

2.1.5 Decoding in VSDI

In addition to the temporal deficiency of fMRI, it samples the space in voxels of one to

a few millimeters (only a few thousands of voxels, or well defined regions of interest). As

opposed to it, VSDI is capable of measuring neuronal population responses at high spatial

and temporal resolutions. Therefore, it provides a true insight as to the neuronal dynamics
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from both spatial and temporal aspects.

The first reference we have on the decoding of neuronal population responses to visual

detection tasks using VSDI is [2]. A specially designed method based on six neuronal pop-

ulation responses pooling rules was used here, with no machine learning use whatsoever.

This method relied on the amplitude of the response, and other neuronal characteris-

tics—tailored strictly for VSDI. While this method has produced nearly perfect results, it

incorporates a domain-specific knowledge—rendering it as not general enough for use in

spatiotemporal domains other than VSDI.

2.2 Related techniques

The techniques described next are used for feature extraction and feature selection of

problems that handle either spatial, temporal or spatiotemporal data. We explore the

methods relevant for our work, and survey the classification algorithms being used.

2.2.1 Spatial machine learning

While the focus of our work is classification in large scale spatiotemporal domains, some

techniques for spatial domains alone—which either don’t take advantage of the temporal

aspect, or don’t inherently have it—are worth mentioning.

For the reasons presented above, in 2.1.2, fMRI studies don’t usually take advantage

of the temporal aspect. Such studies included picking the top n most active voxels based

on t-test [17] or on average between the voxels [35]; picking the top n most discriminating

voxels, based on training a classifier per each voxel [19]; or, picking the n most active

voxels per Region Of Interest (ROI) [19]. The classifiers in this case were mostly Gaussian

Naïve Bayes (GNB), Support Vector Machine (SVM), and k-Nearest Neghbor (kNN).

While these studies managed to produce moderate to high accuracy results, they relied on

relatively small resolutions of data (where training a classifier per voxel was admissible),

or on expert knowledge (defining an ROI). The methods we present in our work require

no prior knowledge, are aimed at very high resolutional data, and exploit both temporal

and spatial dimensions.
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When a higher resolutional data was faced in fMRI, a use of uniform sampling of the

data was employed in [3], utilizing SVM with Gaussian kernel. While sampling is indeed

a reasonable tool when handling high resolutional data, a uniform sampling is lacking in

a sense that it does not choose the more discriminative data-points, in favor of the less

discriminative ones. Hence, while our pixel selection technique is also based on sampling,

it adopts elements from the random subspace method presented in [15] rather than basing

its selection on uniform sampling.

Last, we present a domain in which a classification of very high resolution panchromatic

images from urban areas was done. In [5], an area filter was used to extract information

about the inter-pixel dependency. Using a linear composition of kernels, a kernel was

defined using both the spectral (i.e. the original gray level of each pixel) and the spatial

information, reaching partial success in some types of areas. While this domain resembles

the domains in our focus only in its spatial nature, we liked the idea of exploring the

inter-pixel dependency, and further developed it for our feature extraction technique.

2.2.2 Temporal analysis and reduction techniques

Classification in large scale spatiotemporal domains often requires both spatial and tempo-

ral dimensionality reduction. When the temporal reduction is due, the methods described

below provide a good base to rely on. While the methodology we present in Chapter 3 in

our work uses much simpler temporal reduction techniques than the methods surveyed be-

low, we introduce these methods for the purpose of the future work discussion in Chapter

6.

Discrete Wavelet Transform (DWT) was used in [34] for dimensionality reduction of

time series. The objective here was to find a representation at a lower dimensionality that

preserves the original information, describing the original shape of the time series data as

closely as possible. An improved version of k-means clustering algorithm introduced here

was shown to have results superior to k-means.

DWT and Discrete Fourrier Transform (DFT) were also successfully employed in [20]

for time series data mining, where each time series was compressed with wavelet or Fourier

decomposition, but instead of using only the first coefficients, a method of choosing the



11 2.2 Related techniques

best coefficients for a set of time series was presented.

A different approach was presented in [33], a study for improving computer worm detec-

tion using Artificial Neural Networks (ANN). The temporal analysis techniques described

here involved a simple sliding window, a simple exponential compression and a Poisson

exponential compression. Even when the temporal dimension was reduced, implying the

apparent loss of data (some of which is essential for successful classification) this study

has still managed to achieve 85% as its best accuracy result.

2.2.3 Spatiotemporal machine learning

In fMRI exploiting the temporal dimension, the following heuristic was employed in [22]:

features were defined as voxel-timepoint pairs, ranked by how well they individually clas-

sify a training set, and the top 100 features for the final classifier were chosen. While

individual training of classifiers for all time-space combinations is computationally unfea-

sible in large scale domains, we chose to adopt the time-space combination approach in

our work. Additional work that has inspired us is [43], in which one of the introduced

techniques for feature selection was defining voxel-specific time-series analysis, by rank-

ing features by mutual information with respect to the class variable. From the ranked

features, the n highest ranked were selected, and closeness of each pair of voxels’ time

series was measured. Despite the high reported success rates, the techniques in [43] are

computationally expensive in large scale domains such as ours.

The method presented in [41], utilized in the BCI domain, maintains the correlation

information between spatial time-series items by utilizing the correlation coefficient matrix

of each such item as features to be employed for classification. Then, the Recursive Feature

Elimination (RFE) is being used for feature subset selection of time-series datasets. RFE

was first proposed in gene selection problem in [6], where the SVM’s weight factor was used

as ranking criterion for features, and the features with the smallest ranking criterion were

recursively eliminated. However, applying RFE or an RFE-like procedure, in a similar

manner on our type of data is computationally expensive1—nevertheless, we do adopt the

approach of correlation between spatial elements in one of our feature extraction techniques
1As shown in our experiments in Chapter 4.



Chapter 2: Related work 12

The approach in [41] has also inspired the work carried out in [29], which selected voxel-

pairs based on their ability to discriminate the target classes. In turn, the correlation value

between these pairs was used as feature vector to train the GNB, SVM and kNN classifiers.

A last example from spatiotemporal domains is automated video genre classification

[39]. In this case, the problem was investigated by first computing a spatiotemporal

combined audio-visual “super” feature vector (of very high dimensionality). Then, the

feature vector was further processed using Principal Component Analysis (PCA) to reduce

the spatiotemporal redundancy while exploiting the correlations between feature elements.

This method yielded a 86.5% accuracy on average. However, the PCA-based techniques

in multivariate time-series datasets are known to be problematic in regard to scalability

(Yang and Shahabi [40] attempted to address this problem), which is more than evident

in our domain.



Chapter 3

Spatiotemporal classification

modeling

In this chapter, we present a three phase methodology for building scalable models for

spatiotemporal data classification. To describe our methodology, we first formalize the

problem in Section 3.1. In Section 3.2, we provide a brief overview of the main phases of

our methodology. In the sections following it, we describe each of the phases in detail.

3.1 Problem formalization

A spatiotemporal domain contains n pixels that constitute the global pixel set P =

{p1, p2, . . . , pn}. Every pixel pi, i ∈ {1, . . . , n} represents a concrete location in space,

in which a series of m contiguous values in time is measured. The intervals between each

two consequent values in time are equal. In turn, pti, i ∈ {1, . . . , n} , t ∈ {1, . . . ,m} indi-

cates the specific timeframe t along the time course, at which the value of pi is measured.

In fact, pti represents the pixel-in-time combination of pixel pi and time t.

A finite training samples set of size k in the spatiotemporal domain is defined as:

S = {s1, s2, . . . , sk}, where a single sample sl, l ∈ {1, . . . , k} is a set of vectors: sl =

{p1, . . . , pn}, where a vector pi =
〈
vi1, . . . , v

i
m

〉
, vit ∈ R, t ∈ {1, . . . ,m} denotes the actual

m values along the time course, measured for the pixel pi in the sample sl. Each training

13
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sample sl ∈ S is labeled with a class label c ∈ C. For an infinitely large universal set U

of all possible unlabeled samples u = {p1, . . . , pn} , u ∈ U , the classification problem is to

build a model that approximates classification functions of the form f : U −→ C, which

map unclassified samples from U to the set of class labels C.

3.2 Methodology overview

In the next sections, we describe each of the phases of our methodology in detail. Section

3.3 presents GIRSS, a technique for selecting the pixels that have the most discriminative

characteristics within the full spatial range of a sample’s space. Next, in Section 3.4, we

introduce two alternative techniques for extracting the features from the pixels selected in

the first phase—the PIT , a simple pixel-in-time approach, and the IPCOSA, an inter-

pixel correlation based spatial averaging method. The third phase described in Section 3.5

presents an effective application of feature selection on the product of the second phase,

to further improve the abilities of the remaining features that constitute the generated

models. Figure 3.1 sketches the outline for our methodology.

3.3 Pixel selection via greedy improvement of random

spatial subspace

The technique described here uses common machine learning tools in order to reveal the

most informative pixels, which will define the features to be used with our model. The

discriminative nature of the selected pixels stems from analyzing their measured values

along the time course. Due to the high spatial and temporal resolutions of the domains in

question, our data is comprised of hundreds of thousands of basic data-points. Hence, using

the most granular, basic values of the sample’s space as features will lead to an extremely

high dimensional feature space, rendering classification, or even feature dimensionality

reduction techniques, unfeasible. We present here a greedy approach based on the random

subspace method [15] for selecting by iterative refinement, the set of pixel subsets from

which we can eventually derive the sought-after pixel set.
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Figure 3.1: The outline of the classification modeling methodology.

3.3.1 The GIRSS algorithm

In Algorithm 3.1, we randomly generate r pixel subsets of a requested size u (number of

pixels in a subset). Handling small pixel subsets yields an easier handling of a reduced

spatial dimension. However, in order to cover a large portion of pixels (inherently, features)

in the data and to establish credibility for the selected pixels, we need to rely on a wide-

enough selection of such subsets1.

The classification capabilities of each of the generated pixel subsets are then roughly

evaluated using our pixel set evaluation method (Algorithm 3.2). This method is a heuris-

tic for giving an evaluation score to a pixel subset, which in fact builds a small classification

model based on it. Here, pixel values in time (all pixel-time pairs) are defined as features
1From our experience, having u · r ≈ 1.5n, u and r being of about the same order of magnitude (see

Table 4.1), is usually more than enough—as it provides a broad coverage of the pixels space, and at
the same time a fast-enough handling of individual subsets (of course, sensitivity analysis for these two
parameters is due when refining our technique).
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(step 2), as was done in [22]. Then an Information Gain (InfoGain) based feature selec-

tion [38] is applied to select only the features with positive InfoGain scores (step 3). Our

usage of InfoGain for ranking features by mutual information with respect to the class is

inspired by [43], an fMRI study exploiting the temporal dimension. The resulting feature

set is cross-validated using linear-kernel SVM (WEKA’s implementation of the SMO algo-

rithm, [38]) to obtain an evaluation score (cross-validation accuracy of the evaluated set).

The produced scores are then ordered in a descending order, and the greedy phase begins.

Algorithm 3.1 Greedy Improvement of Random Spatial Subspace—GIRSS (S,C, u, r)
Input: Sample set S, label set C, size of random spatial subspace u, number of random
spatial subspaces r

1. Initialize pixel subsets evaluation scores vector: Z [1 : r]←− 0

2. for i = 1 to r do:

(a) Generate the random permutation vector: ni = permute ({1, 2, . . . , n})
(b) Generate the index vector: di =

{
ni1, n

i
2, . . . , n

i
u

}
(c) Select pixel subset (random spatial subspace) indicated by di: P̃ d

i ⊂ P
(d) Save the pixel subset’s evaluation score:

Z [i]←− evaluateP ixelSet
(
S, Y, P̃ d

i

, u
)

3. Produce sorted indices vector IZ [1 : r]←− indices (sort (Z [1 : r])) to contain indices
of Z [1 : r] in the order matching the sorted scores of Z [1 : r] (highest scores leading).

4. Initialize the set of pixel subsets Γ with the highest-ranked pixel subset:
Γ←−

{
P̃ d

IZ [1]
}

5. Initialize z with the score of the highest-ranked pixel subset: z ←− Z [IZ [1]]

6. for j = 2 to r do:

(a) Γ
′ ←− Γ ∪

{
P̃ d

IZ [j]
}

(b) P
′ ←−extractHighestRankedP ixels

(
S,C,Γ

′
, |Γ′ |, Z [1 : r]

)
(c) z

′ ←− evaluateP ixelSet
(
S,C, P

′
, u
)

(d) if z
′
> z, update the Γ and its score: z ←− z′ , Γ←− Γ

′
.

7. P ∗ ←− extractHighestRankedP ixels (S,C,Γ, u, Z [1 : r])

Output: Pixel set P ∗ = {p∗1, p∗2, ..., p∗u} (top u spatial subspace representatives).

During the greedy phase, we maintain a set Γ of pixel subsets, of which the desirable
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pixel set can be derived at any time. Initially, Γ is initialized with the highest-ranked pixel

subset (along with its evaluation score). In each iteration over the ranked pixel subsets

list, the next subset in the list joins Γ. A set of pixels of size u is then extracted from Γ

(refer to Algorithm 3.3), and evaluated (again, using Algorithm 3.2). The greedy step: if

the resulting evaluation score is higher than the existing evaluation score of Γ, the current

pixel subset remains in Γ. Otherwise, it is discarded. This way Γ maintains only those

pixel subsets along the way which are capable to produce a highly evaluated pixel subset

(whose size is equal to the size of any of the pixel subsets in Γ), in any requested time.

Finally, when the iteration over the pixel subsets is over, the desirable set of pixels is

extracted from Γ to serve as the pixel selection.

Algorithm 3.2 Pixel Set Evaluation—evaluateP ixelSet
(
S,C, P

′
, u
)

Input: Sample set S, label set C, sorted pixel set P ′, size of the random spatial subspace
u.

1. P
′′ ←− pi ∈ P

′ | i ∈
{

1, . . . ,min
(
u, |P ′ |

)}
.

2. Extract feature-set: F =
{
ptj | t ∈ {1, . . . ,m} , ∀pj ∈ P

′′
}

over the sample set S.

3. Perform feature-selecton in F to obtain reduced feature set F
′
, using

InfoGain (S, F,C), producing scores: IG
(
ptj
)
, ∀ptj ∈ F . Select only features

having IG
(
ptj
)
> 0.

4. z ←− Accuracy score of a 10-fold cross-validation of F
′
applied on S using

SVM
(
S, F

′
, C
)
.

Output: Evaluation score z.

The extraction of the highest ranked pixels set from Γ (Algorithm 3.3), at any stage of

GIRSS, is done as follows: each individual pixel subset in Γ is turned into a feature set,

where pixel values in time are defined as features (step 2a). An InfoGain based feature

selection is applied on this feature set, and the InfoGain scores for each feature are taken

(step 2b). The score for each individual pixel is calculated by averaging (along the number

of pixel instances) the weighted averages of InfoGain scores (along the pixel’s time course

in each of the feature sets) (step 2c). The evaluation score of each pixel subset in Γ is used

as the weight for computing the grand-average, effectively giving higher weight to pixels
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and features stemmed from highly evaluated pixel subsets.

Algorithm 3.3 Highest Ranked Pixels Extraction—
extractHighestRankedP ixels (S,C,Γ, u, Z [1 : r])
Input: Sample set S, label set C, set of pixel subsets Γ = {P1, P2, . . .}, size of the random
spatial subspace u, pixel subsets score vector Z [1 : r].

1. Initialize pixels score vector: ρ [1 : n]←− 0 and pixels instances vector: ι [1 : n]←−
0.

2. for ∀Pi ∈ Γ do:

(a) Extract feature-set: F =
{
ptj | t ∈ {1, . . . ,m} , ∀pj ∈ Pi

}
over the sample set

S.

(b) Rank features in F using InfoGain (S, F,C) producing scores:
IG
(
ptj
)
, ∀ptj ∈ F .

(c) for ∀pj ∈ Pi do: ρ [j] = ρ[j]·ι[j]+Z[i]·
∑m
t=1 IG(ptj)

m

ι[j]+1 , ι [j] = ι [j] + 1.

3. Produce sorted pixel indices vector Iρ [1 : n] ←− indices (sort (ρ [1 : n])) to contain
indices of ρ [1 : n] in the order matching the sorted scores in ρ [1 : n] (highest scores
leading).

Output: Top u ranked pixels pIρ[l] ∈ P, l ∈ {1, . . . , u}.

3.3.2 Complexity analysis

The time and space complexity of Algorithm 3.2, the evaluateP ixelSubset, is linear in

the number of all combinations of pixel-in-time pairs per sample—i.e., in the number of

basically defined features. Therefore, the first two steps in the algorithm have a cost of

O (kmu), and so is the InfoGain feature selection step (which is linear in the number of

features). An efficient, state of the art SVM implementation, is linear in the number of

samples (inherently, features), so our cross-validation using the SVM also has a bound of

O (kmu). Thus, the overall time and space complexity of Algorithm 3.2 is O (kmu).

In extractHighestRankedP ixels, Algorithm 3.3, the size of Γ is bounded by r, so the

algorithm’s single loop is performed at most r times. The cost of each iteration of the

loop is O (kmu), for the reasons stated earlier in the analysis of Algorithm 3.2 (feature

set extraction, InfoGain ranking and values averaging). Besides the loop, we initialize and

sort a vector of length n. This results in the overall time complexity of the algorithm of

O (n log n+ rkmu). The space complexity is different: we only need O (n) storage for the
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scores vector, and an additional O (kmu) space for a single loop iteration. Therefore, the

space complexity of the algorithm is O (n+ kmu).

The time complexity of the main Algorithm 3.1, the GIRSS, is analyzed as fol-

lows. Each iteration of the first loop, repeated r times, has a cost of O (n) added

to the cost of Algorithm 3.2, the evaluateP ixelSubset, resulting in an iteration cost

of O (n+ kmu). Therefore, the loop’s total cost is O (r (n+ kmu)). Each iteration

of the second loop, which is also repeated r times, has a cost of Algorithm 3.3, the

extractHighestRankedP ixels, added to the cost of evaluateP ixelSubset—resulting in the

total cost of O (r (n log n+ rkmu)). Lastly, we sort a vector of length r once, a step that

costs O (r log r). Overall, the time complexity of GIRSS is O (r (log r + n log n+ rkmu)).

As for the space complexity of GIRSS, it is O (r + n) for the evaluation scores vector

and random permutation vectors generation, O (n+ kmu) for the calls to Algorithm 3.3,

and O (kmur) for the maintenance of the data structures during the executions of the loops

inside the GIRSS. Altogether, this results in the space complexity of O (n+ rkmu).

We believe that there is space for further complexity reduction. However, we were

satisfied with the performance of the presented version during the experimental evaluation,

as detailed in Chapter 4, so the current implementation was retained.

3.4 Feature extraction

Methods described here are applied on the pixel selection results of the first phase (Section

3.3). We present two alternative feature extraction approaches in order to cope with

variability evident in different spatiotemporal datasets. Even when the datasets originate

from the same domain, they can bear different spatial characteristics, expressed in the

noise level and the resolution of the signal collected during the dataset construction. The

alternatives provided here are each aimed at a different datasets sector.

3.4.1 Features as pixels in time—the PIT

The straightforward approach for extracting a feature set F from a given pixel set P ∗ =

{p∗1, p∗2, . . . , p∗u} over the sample set S, is to define it as all pixel-in-time combinations
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F =
{
ptj | t ∈ {1, . . . ,m} , ∀pj ∈ P ∗

}
, yielding u · m features. We used this approach in

Section 3.3 for ranking pixel subsets and feature sets. While for simpler classification

tasks this is satisfactory—fast, simple and effective (Chapter 4), a method described next

is suggested for more complex tasks.

3.4.2 Spatial averaging of pixel groups based on inter-pixel cor-

relation

The motivation for this method is to overcome the negative effects of a possibly noisy data

by performing a spatial-level averaging of pixels that share a common nature. This requires

that the trends of their change along the time course will have similar characteristics. Two

questions raised here are:

• How to measure similarity between the pixels?

• How to choose “similar” pixels in space, designated for averaging?

The way we measure similarity is by employing Pearson’s product moment coefficient [7]

between pairs of pixels. This method is simple, suitable with the type of data we have,

and was successfully used for calculation of correlation scores in multivariate time series

(where correlation is employed for discrimination of target classes [29,41]).

As for the second question, we perform pixel averaging within groups of “similar”

neighboring pixels. The reason for this lies in the nature of our data—a non-trivial negative

correlation exists between all pixel-pairs correlations and all pixel-pairs distances2, showing

that higher distances between pixels lead to lower correlations between them. Therefore,

choosing neighboring groups of pixels as a whole, having a high inter-group similarity,

has the potential to reveal stronger discriminative characteristics—rather than picking

individual pixels from the same group.

3.4.2.1 The IPCOSA algorithm

In Algorithm 3.4 we show how the neighborhood formation for pixel groups generation is

done. This formation is based on a given pixel set, a product from the previous phase
2During the experimental evaluation of all VSDI datasets (Chapter 4), the coefficient between all

pixel-pairs correlations and all pixel-pairs distances was within the range of ≈ −0.45± 0.5.
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introduced in Section 3.3—we refer to this set as “the seeds”. First, we calculate a correla-

tion coefficient matrix C and a distances matrix D between all pixel pairs (step 3); these

matrices are symmetric (only one triangle above or below the diagonal is essential). Then

we define the set of pixel subsets ∆, which will eventually hold the groups of neighbor-

ing pixels that share a similar nature. Next, we employ a graded group formation phase

(step 5), where the correlation strength dictates the group formation order: groups hav-

ing the strongest inter-similarity are generated first, ensuring that the eventually formed

groups exploit the similarity property to its full extent (only positive correlation coefficient

thresholds are used)3.

The group formation is subject to the following guidelines: a group of pixels must

contain at least one seed within it to base the group on. Once chosen, the seed’s proximate

neighbors’ correlation scores are examined. Neighbors with scores that fit the graded

correlation threshold join the seed’s group. Recursively, the correlation scores of the

neighbors of each of the newly-joined group members are tested, and additional pixels

conforming to the correlation and the proximity requirements join the group. Eventually,

a group stops expanding once none of the group members’ neighbors fits the requirements.

At this step, a formed group joins ∆, and its members are no longer available for formation

of new groups. A group may consist of a sole seed (step 6). At the end of the group

formation phase, ∆ contains groups of neighboring pixels, each based on one or more

seeds. Some groups have stronger inter-similarity than the others, but due to our graded

group formation phase, even the weaker groups are generally based on non-negligible

positive correlation scores4.

At the final phase of our algorithm, the feature extraction is based on ∆’s pixel groups:

pixel values at each of the points in time are averaged along their spatial dimension—across

all pixels within each of the groups of ∆5. The resulting features represent the average-

in-time of similar pixels, as opposed to the pixel-in-time approach presented in Subsection

3.4.1. For seeds pixel set of size u, there will be at most u ·m features (number of formed
3Our choice of τ was 0.05 in all our experiments.
4As our empirical evaluation of VSDI data shows (Chapter 4), in most cases the weakest formed groups

are based on a correlation coefficient of at least 0.4.
5Various seeds-based spatial averaging methods were tested during our empirical evaluation of VSDI

data, in order to choose the most appropriate method. Please refer to Section 4.5 for additional details.
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groups will not exceed the number of seeds, as each group must contain at least one seed).

3.4.2.2 Complexity analysis

For the analysis of time complexity, the IPCOSA has three major parts: the initialization

and the calculation of the correlation and the distance matrices, the groups formation and

the maintenance of ∆, and the spatial average calculations. The first part has a cost of

O
(

(knm)2
)
. The second part has a complexity of O (n), thanks to the fact that the

groups formation in grids is done by exploring the finite and bounded set of only the

closest neighbors of each of the pixels, where each pixel relation evaluation is done only

once—resulting in the number of such evaluations being linear in the number of pixels.

Since ∆ contains at most u groups (due to the property of at least one seed per group),

the cost of the third part is simply O (um) , u << n. Overall, the time complexity of

IPCOSA is O
(

(knm)2
)
.

The space complexity of IPCOSA is, therefore, O
(
n2
)
for building the matrices in the

first part, O (n) for storing the group formation information in ∆ during the execution of

the second part, and O (um) for the feature generation step in the third part. Altogether,

the space complexity is O
(
n2 + um

)
.

However, it is easy to notice that the version of the algorithm presented here is sub-

optimal, mainly for the purpose of clarity—there is no need for the initial calculation, nor

the storage, of the correlation and the distance matrices. Their values can be computed

on demand, while the calculations spread pattern in the grid-formatted space guarantees

that only O (n) calculations will be performed (during the second part of the algorithm).

Thus, the actual optimal implementation of IPCOSA has complexities of O (knm) for

time and O (n+ um) for space.
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Algorithm 3.4 Inter-Pixel COrrelation based Spatial Averaging—IPCOSA (S,C, P ∗, τ)
Input: Sample set S, label set C, seeds pixel set P ∗ of size u, correlation threshold step
τ ∈ [0, 1].

1. Set neighboring distance threshold µ (e.g. for spatially grid-formatted domains:
µ =
√

2). p1 and p2 are neighbors iff distance (coords (p1) , coords (p2)) ≤ µ.

2. Initialize correlation coefficient matrix: C = 0n×n and distance matrix: D = 0n×n
(symmetric).

3. for ∀pi ∈ P do:

(a) Vectorize all pi values of pi over the sample set S = {s1, s2, . . . , sk} to produce
super-vector of length m · k with all of concatenated pi values:
qi =

〈〈
vi1, . . . , v

i
m

〉
s1
· · ·
〈
vi1, . . . , v

i
m

〉
sk

〉
(b) for ∀pj ∈ P, pi 6= pj do (for every pair pi, pj):

i. Vectorize all pj values of pj over the sample set S = {s1, s2, . . . , sk} to
produce super-vector of length m · k with all of concatenated pj values:

qj =
〈〈

vj1, . . . , v
j
m

〉
s1
· · ·
〈
vj1, . . . , v

j
m

〉
sk

〉
ii. Compute correlation coefficient: C(i,j) = correlation (qi, qj).
iii. Compute distance: D(i,j) = distance (coords (pi) , coords (pj)).

4. Initialize ∆, the set of pixel subsets: ∆ ←− ∅, and R, the retaining pixel set:
R←− P .

5. for r ∈ {1, 1− τ, 1− 2τ, . . . , τ} do:

(a) while ∃p ∈ R s.t. p ∈ P ∗ (p is a seed) and ∃p̂ ∈ R s.t. C(p̂,p) ≥ r − τ and
D(p̂,p) ≤ µ:
i. Initialize G, pixel subset group, G←− {p}.
ii. R←− R \ {p}
iii. while ∃p′ ∈ R and ∃p̃ ∈ G s.t. C(p̃,p′) ≥ r − τ and D(p̃,p′) ≤ µ:

A. G←− G ∪
{
p
′
}

B. R←− R \
{
p
′
}

iv. ∆←− ∆ ∪ {G}

6. for ∀p ∈ R s.t. p ∈ P ∗ (p is a remaining seed in R) do:

(a) R←− R \ {p}, G←− {p}, ∆←− ∆ ∪ {G}

7. Initialize feature-set F ∗ over the sample set S, F ∗ ←− ∅.

8. for t = 1 to m do:

(a) Define f t—the average of values of all pixels in G at time t:

f t =
∑|G|
i=1 v

i
t

|G| , s.t. pi =
〈
vi1, . . . , v

i
m

〉
, vit ∈ R, t ∈ {1, . . . ,m} , ∀pi ∈ G

(b) F ∗ ←− F ∗ ∪ {f t}

Output: Feature set F ∗ over the sample set S.
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3.5 Feature selection

To further improve model quality and reduce the feature-space dimensionality, feature

selection is applied on the extracted features. InfoGain-based feature selection [38] is

applied on the given feature set F of the samples set S, producing scores: IG (S, f) , ∀f ∈

F . Then, only the features with positive InfoGain scores: IG (S, f) > 0 are selected.

The motivation: the features produced in Section 3.4 are based on pixel selection from

Section 3.3, where the whole time-spectrum of pixels or pixel groups is preserved. However,

points along the time course exist, during which the spatial discriminative nature is not

realized (e.g. long before the onset of the signal in VSDI). Not only that these points

in time are ineffective for the emphasis of the spatial characteristics, but they sometimes

obscure their discriminating potential. InfoGain filtering drops those unwanted features

with negligible scores, whose contribution is neutral or negative.



Chapter 4

Empirical evaluation of VSDI

data

The primary goal in our work is to suggest a combination of effective techniques for

obtaining scalable and accurate classification in large scale spatiotemporal domains. To

reach this goal, we demonstrate how our techniques are evaluated in the VSDI domain and

applied to VSDI datasets. The accuracy of the classification is validated by the evaluation

of our classification performance. The scalability of our methods is shown by exploring

their feasibility from the run-time perspective. This is done by emphasizing the lessons

learned from the experience we had with applying approaches similar in nature to the

ones reviewed in Chapter 2. Many of these approaches use the most granular values of

the sample’s space for feature selection and classification, which eventually leads to an

extremely high dimensional feature space. Our failure in employing these approaches is

compared to the success of showing the feasibility of our methodology. We additionally

compare our results to those achieved by a domain expert faced with the same tasks.

4.1 Datasets

Each evaluated dataset is based on a single imaging experiment performed in the visual

cortex of one animal and composed from multiple trials. In each experiment, the monkey

25
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was shown a set of different visual stimuli, one specific stimulus per trial. Each stimulus

presentation was repeated 20-30 times. Neuronal population responses in the visual cortex

evoked by the stimulus, were recorded using VSDI. The imaged area was divided into a

grid of pixels, and population response (summed membrane potentials of all neuronal

elements) of each pixel was recorded during the time window of the trial [30]. Each trial

in an experiment is a sample in our sample space. A sample consists of all pixels of the

recorded area, where a pixel is a time-series of values collected along the time course of the

trial1. These values represent the rawest possible data-points—with no averaging across

trials, whether in time or space, therefore directly reflecting unprocessed measurement

points. Hence, the VSDI decoding we did was performed at a single trial level. Each

sample is labeled with a class that represents the appropriate stimulus. The datasets

differ in the number and the type of the presented stimuli, both affecting the complexity

of the decoding. Being able to perform successful classification of these datasets, is being

able to “read” what the monkey has seen without seeing it ourselves.

4.1.1 Dataset 1: Oriented Gratings (simple)

The monkey was presented with two different drifted square gratings at horizontal and

vertical orientations, and a blank control image with no stimulus (Figure 4.1). Each of the

293 samples in the dataset had 2162 pixels (a 46× 47 matrix) along 51 time points. The

three classes had almost uniform distribution where the mode class constitutes 34.13% of

the population (setting the baseline accuracy, i.e. ZeroR [38]).

Figure 4.1: Stimuli for the Oriented Gratings dataset: (1) Drifted square gratings at
vertical orientations; (2) Drifted square gratings at horizontal orientations; (3) Blank
control image (not presented).

1Please refer to Section 4.2 for visualization examples of the raw VSDI data.
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4.1.2 Dataset 2: Gabors (complex)

The monkey was presented with five different Gabor based orientations in space and a

blank control image (Figure 4.2). Each of the 153 samples had 10, 000 pixels (a 100× 100

matrix) along 51 time points. The six classes had almost uniform distribution where the

mode class constitutes 18.95% of the population (ZeroR baseline accuracy).

Figure 4.2: Stimuli for the Gabor dataset (the numbers and the degrees on the white
axes are not part of the stimuli; blank control image not presented). The yellow point
represents the fixation point location.

4.1.3 Dataset 3: Contours (hard)

The monkey was presented with four different Gabor-based Contours in space and a blank

control image (Figure 4.3). The four Gabor-based Contours divide into two pairs, where



Chapter 4: Empirical evaluation of VSDI data 28

the differences between the classes in each pair are very subtle and hardly noticeable. Each

of the 124 samples had 10, 000 pixels (a 100× 100 matrix) along 61 time points. The five

classes had almost uniform distribution where the mode class constitutes 23.39% of the

population (ZeroR baseline accuracy).

Figure 4.3: Example of stimuli for the Contour dataset: (1) Circle 1; (2) Masked circle 1;
(3) Circle 2; (4) Masked circle 2; (5) Blank control image (not presented).

4.2 Raw VSDI data visualization

Visualizing data composed of thousands of pixels is not an easy task. Thus, we chose to

present only a small number of pixels, taken from a single sample for each of the stimuli

types, of the dataset which is the easiest for classification. In Figures 4.4, 4.5 and 4.6 below

we display the values of ∼ 12% from 2162 pixels close to the ROI1 area of the Oriented

Gratings dataset. Each Figure is based on a single sample out of 293 samples, each of
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Figure 4.4: Visualization of a sample labeled with Class 1 from the Oriented Gratings
dataset. Only the values of ∼ 12% of the pixels close to the ROI1 area are displayed along
the full time course.

which represents one specific stimulus out of the three possible types. Visual comparison

of the different stimuli samples of the Oriented Gratings by a naked eye, hints that the

classification of this dataset will not be a hard task—which, in practice, turned out to be

the case—unlike the two other datasets (whose data we chose not to visualize here for the

same very reason).

4.3 Experiments methodology

4.3.1 Defining the Oracle

As a part of the evaluation methodology for the pixel selection technique presented in Sec-

tion 3.3, we define the Oracle: a pixel selection method, a best-effort attempt by a human

expert to provide a pixel set which, in her professional opinion, has the most potential

to successfully discriminate between the different classes of the training samples set. The

Oracle is asked to manually pick a set of pixels of some size: Ω = {p1, p2, . . .} , Ω ⊆ P ,

also known as the ROI (Region Of Interest). This set is referred to as the “gold standard”,

where the aim is to build an accurate classification model using the most discriminating

pixels. The success rates achieved by using Ω for pixel selection are compared to the
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Figure 4.5: Visualization of a sample labeled with Class 2 from the Oriented Gratings
dataset. Only the values of ∼ 12% of the pixels close to the ROI1 area are displayed along
the full time course.

Figure 4.6: Visualization of a sample labeled with Class 3 (blank control image) from the
Oriented Gratings dataset. Only the values of ∼ 12% of the pixels close to the ROI1 area
are displayed along the full time course.
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success rates of using the pixel set selected by GIRSS, our pixel selection technique.

4.3.2 Experimental setup

In the experimental setup, the domain expert was requested to provide an ROI(s) of pixels

for each dataset:

• For the Oriented Gratings dataset, we were given a single ROI along the time course

of our experiments, the ROI1.

• In the case of the Gabors, after the first line of experiments with ROI1—the original

ROI— we were given ROI2, an improved version based on the results of using ROI12.

• With the Contours case, three different ROIs of pixels were given in advance, each

for individual evaluation by our techniques.

We constructed classification models using both pixel selection techniques in the first

phase, in combination with the two feature extraction techniques in the second phase:

{Oracle,GIRSS} × {PIT, IPCOSA}, and with the application of the feature selection

(Section 3.5) in the third phase. Figure 4.7 sketches the outline of our experimental

methodology model construction. The resulting models were evaluated using a 10-fold

cross-validation of the multi-class SMO implementation of SVM with linear kernel [38].

Each model’s evaluation was performed a number of times (each trial yielding a different

random 10-fold division), as specified in the results Table 4.1.

4.4 Results

The results are presented in Table 4.1. The table is divided into three sections where

each section presents the experimental results for each of the VSDI datasets. Inside each

section, the results are divided by the method used for the pixel selection phase—the

GIRSS technique and the Oracle approach. For each of the compared pixel selection

methods, displayed are the accuracy results of combining the method with each of the

feature extraction techniques—the PIT and the IPCOSA (refer to the table caption
2Please see results of ROI2 pixel set of Gabors dataset in Table 4.1, compared to the results of ROI1.
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Figure 4.7: The outline of the experimental methodology model construction. An addi-
tional Oracle node is added to the classification modeling methodology outlined in Figure
3.1. With the help of the Oracle, we evaluate the performance of our pixel extraction
technique—the GIRSS.
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for the legend of the table entries). These results are discussed in depth in the next

subsections.

Table 4.1: The results of applying each of the combinations: {Oracle,GIRSS} ×
{PIT, IPCOSA} on each dataset. ROIx (y) is an ROI pixel set x of size y. The numbers
in brackets for u (number of pixels in a random pixel subset) and r (number of random
pixel subsets) are their respective values. The results of the form µ ± σ% (n) have µ
representing the average accuracy between the trial runs, σ representing the standard de-
viation and n representing the number of trial runs. The entries in bold represent the best
accuracies obtained per each pixel selection method of each of the datasets.

ORIENTED GRATINGS
baseline: 34.13%

Oracle GIRSS
ROI1 (154) u (154) , r (20)

PIT 95.4± 0.4% (10) 94.9± 1.3% (10)
IPCOSA 79.3± 3.2% (10) 88.5± 4.0% (10)

GABORS
baseline: 18.95%

Oracle
ROI1 (104) ROI2 (218)

PIT 55.0± 1.5% (10) 68.8± 1.1% (10)
IPCOSA 57.2± 3.3% (10) 71.0± 2.4% (10)

GIRSS
u (100) , r (150) u (100) , r (125) u (100) , r (100)

PIT 79.1± 1.7% (10) 78.4± 2.1% (10) 79.0± 1.8% (10)
IPCOSA 81.8± 1.4% (10) 81.8± 2.3% (10) 80.7± 1.7% (10)

CONTOURS
baseline: 23.39%

Oracle
ROI1 (151) ROI2 (227) ROI3 (155)

PIT 44.9± 2.3% (10) 50.6± 2.4% (10) 73.3± 1.6% (10)
IPCOSA 40.2± 3.1% (10) 47.6± 3.0% (10) 65.7± 1.8% (10)

GIRSS
u (151) , r (100) u (500) , r (100)

PIT 71.9± 2.8% (10) 69.6± 2.8% (10)
IPCOSA 72.4± 2.7% (10) 73.1± 2.1% (10)

4.4.1 Performance evaluation

In regard to the classification performance, besides aspiring to achieve the most accurate

results, it also was as much as important for us to show that the results we acquire are

not inferior to the ones achieved by exploiting the domain expert’s guidelines. Indeed, we
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have shown that for two types of data (Oriented Gratings, Contours), our pixel selection

technique is capable of producing pixel sets having as good discriminative abilities as the

best of provided ROI sets. Moreover, for the Gabors data type, our results were superior

not only to the initially provided ROI1, but also to the revised ROI2. The high accuracy

of the Oriented Gratings dataset is somehow expected due to the apparent differences

between its visual stimuli, but it is not for granted considering the baseline of 34.13%.

The accuracies in running GIRSS on the other two datasets provide results considerably

above the baselines.

4.4.2 GIRSS vs. the ROI

With the Gabors case, we see major differences when our selected pixel sets are compared

to the ROI pixel sets. These differences are expressed by comparing the Figure 4.8 to

Figures 4.9 and 4.10. While both of the ROI sets (and specifically the improvedROI2) were

defined within the V1 area (primary visual cortex), our sets (of the same size) show a wide

spread of pixels among numerous sites, including V2 (secondary visual cortex). One can

claim that the comparison is not adequate, since the ROI was limited to V1. Nevertheless,

we claim the opposite—our results reveal that while the initial working hypothesis of

a neuroimaging expert can be restricted to a specific cortical site (e.g. V1 activity is

sufficient for decoding the Gabors’ visual stimuli), in practice, a collaboration between

the representative populations from numerous sites shows much higher contribution to

classification.

Major differences with resembling characteristics can be also observed in the Contours

case. Here, the pixels selected by GIRSS cover a wide area spread, again, along multiple

sites in the visual cortex. The comparison of ROI3, the best performing Contours ROI,

to the results of our technique, is demonstrated in Figure 4.11 vs. the Figures 4.12 and

4.13.

With the rather simplistic case of the Oriented Gratings, where the types of the visual

stimuli are noticeably different, and the decoding task at hand is far from being complex,

the pixel sets produced by GIRSS show a wide spread across the cortical area (which

is almost five times smaller than the tested area in the other datasets). This spread of
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Figure 4.8: Gabors dataset, ROI2(218)—the best performing Oracle’s ROI pixel set. The
imaged area of pixels is depicted on the grid (all pixels are in V1).

pixels, being 7.1% of the complete pixel range, seems to almost uniformly cover the whole

area. Comparing the accuracies of the pixels selected by GIRSS to those provided in the

ROI (concentrating in one specific spot), we reveal approximately the same high accuracy

results. These findings only strengthen the claim that the Oriented Gratings dataset is a

comparatively easy task. The differences are shown in Figures 4.14 and 4.15.

4.4.3 Spatial averaging contribution

Due to the high resolution of the signal in the Oriented Gratings, we see that the spa-

tial averaging only worsens the results instead of improving them. This is an expected

result—the signal in this case arises from small orientation columns, while averaging over

space smears them out, causing the loss of signal—hence, the loss of the data’s essential
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Figure 4.9: Gabors dataset, sample fold result—the imaged area of pixels depicted on
the grid. Applied GIRSS with u(100) and r(125) to produce “seeds” pixel set (large
circles). Applied IPCOSA to improve the accuracy of PIT from 81.25% to 93.75%.
Neighborhoods of pixels for averaging are formed around the seeds (small circles, having
the seeds’ colors). The different sizes of pixels between the neighborhoods express the
strength of the inter-correlation within each neighborhood, compared to the other ones.

properties. However, with the Gabors and the Contours, we see quite the opposite—spatial

averaging provides additional enhancement to the classification abilities. Being much

harder to distinguish than with the first dataset case, the types of the visual stimuli of

these two datasets lead to collection of data in which the activation has, at least partially,

low spatial frequency characteristics, as opposed to the Oriented Gratings (some of the

information in this case has to do with the retinotopic activation). In conclusion, the

spatial averaging role depends on the size of the neuronal spatial modules that encode it,

leaving space for improvement by the advanced feature extraction technique in datasets

characterized by low spatial frequency.
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Figure 4.10: Gabors dataset, sample fold result—the imaged area of pixels depicted on the
grid. Applied GIRSS with u(100) and r(125) to produce “seeds” pixel set (large circles).
Applied IPCOSA to improve the accuracy of PIT from 87.67% to 100%. Neighborhoods
of pixels for averaging are formed around the seeds (small circles, having the seeds’ colors).
The different sizes of pixels between the neighborhoods express the strength of the inter-
correlation within each neighborhood, compared to the other ones.

4.4.4 Validation of the results

To further establish the credibility of our results and disproof the likelihood of “free of

charge” high accuracy rates or of possible overfitting, we proceeded with additional val-

idation of the results produced by using our three phase methodology. In VSDI data in

particular, the significance of each of the stimuli conditions is realized only after the vi-

sual stimulus onset, that is to say—the discrimination between the different stimuli (i.e.

the classification of the different classes), is only possible after the stimuli were shown to

the monkey, and the appropriate neuronal population responses were provoked. Had we
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Figure 4.11: Contours dataset, ROI3(155)—the best performing Oracle’s ROI pixel set.
The imaged area of pixels is depicted on the grid.

observed the responses of the same neuronal populations, solely before the onset of the

stimuli, we would not expect to have the ability to discriminate between them—simply

because of the fact that the behavior of these responses is expected to be similar to the

ones provoked by the blank control image, where no stimulus is presented (which is exactly

the case).

The logic discussed above lays the foundations of our validation procedure. We carried

the same experiments as detailed in Section 4.3, with two differences. First, in all our

datasets, the time course was reduced to only the first consecutive points in time where

we know for sure that the onset of the stimuli was not present. Second, pixel selection

via the Oracle was not included in this procedure—knowing that GIRSS has at least

as good classification capabilities as the Oracle, such type of comparison at this stage is
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Figure 4.12: Contours dataset, sample fold result—the imaged area of pixels depicted
on the grid. Applied GIRSS with u(151) and r(100) to produce “seeds” pixel set (large
circles). Applied IPCOSA to improve the accuracy of PIT from 69.23% to 84.62%.
Neighborhoods of pixels for averaging are formed around the seeds (small circles, having
the seeds’ colors). The different sizes of pixels between the neighborhoods express the
strength of the inter-correlation within each neighborhood, compared to the other ones.

redundant.

That being the case, we would expect the classification results to be close to baseline

accuracies of each of the datasets. These results are presented in Table 4.2. The table is

divided into three sections where each section presents the experimental results for each

of the VSDI datasets. Inside each section, displayed are the accuracy results of combining

the GIRSS pixel selection method with each of the feature extraction techniques—the

PIT and the IPCOSA (refer to the table caption for the legend of the table entries).

Indeed, we can safely say that the results of this stage are as expected—roughly the same

as the chance level.
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Figure 4.13: Contours dataset, sample fold result—the imaged area of pixels depicted
on the grid. Applied GIRSS with u(151) and r(100) to produce “seeds” pixel set (large
circles). Applied IPCOSA to improve the accuracy of PIT from 84.62% to 92.31%.
Neighborhoods of pixels for averaging are formed around the seeds (small circles, having
the seeds’ colors). The different sizes of pixels between the neighborhoods express the
strength of the inter-correlation within each neighborhood, compared to the other ones.

4.4.5 Scalability and feasibility

All early attempts to handle the data before basing our pixel selection on random subspace

[15], such as employing techniques that base their feature extraction, selection and classi-

fication on the full spatiotemporal range (resembling methods proposed in [17,19,22,35]),

ended with impractical running times, I/O and memory requirements.

Examples for the said above include, among the rest, the following scenario: The ROI1

set of the Gabors dataset, which includes 104 pixels, was turned into a feature-set using

the PIT approach (Subsection 3.4.1), resulting in 5304 features. The features were ranked
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Figure 4.14: Oriented Gratings dataset, ROI1(154)—the single Oracle’s ROI pixel set.
The imaged area of pixels is depicted on the grid.

with InfoGain scores (as in Algorithm 3.3, step 2b), and sorted from top down—with the

lowest ranked feature at the bottom of the list. Iteration over the feature set was performed

in an RFE-like [6] manner (but with a different feature weighting mechanism): first, the

whole feature set was preserved, the dataset was trained using the SMO classifier, either

InfoGain filtered as in Section 3.5 or not filtered at all, and 10-fold cross-validated; the

evaluation score of this step was written down. In the second iteration, the lowest ranked

feature was removed from the feature set, training and validation was repeated, and a new

evaluation score was written down. In this recursive manner, the process was repeated for

all the features, until the last and only, top ranked feature, remained in the feature set.

The number of top-ranked features to choose for the model construction was the one with

the highest evaluation score collected during the execution of this procedure.
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Figure 4.15: Oriented Gratings dataset, sample fold result—the imaged area of pixels
depicted on the grid. Applied GIRSS with u(154) and r(20) to produce “seeds” pixel set
(large circles). Applied IPCOSA to improve the accuracy of PIT from 96.55% to 100%.
Neighborhoods of pixels for averaging are formed around the seeds (small circles, having
the seeds’ colors). The different sizes of pixels between the neighborhoods express the
strength of the inter-correlation within each neighborhood, compared to the other ones.
This is a rare case where IPCOSA improves accuracy for Oriented Gratings.

Without judging the quality or the motivation for the above scenario, the magnitude of

its running times is roughly the same as of the methods having a resembling nature, such

as [19,22]—where a classifier is trained for each pixel-time combination during the process.

The running times of this scenario applied to the Gabors ROI1 is between 25 to 50 hours,

depending on whether the InfoGain filtering was applied. Had we managed to run this

scenario on the full Gabors pixel set rather than on ROI1, this would at first seem like

it would have taken between 10 to 20 days; however, this relation is not linear—although

these estimates are for classifier training and evaluation based on 10000 pixels, as opposed
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Table 4.2: The validation procedure results of applying each of the combinations:
{GIRSS}×{PIT, IPCOSA} on each dataset, with the time course reduced to the first 10
points in time before the visual stimulus onset for the Oriented Gratings and the Gabors,
and the first 3 points in time for the Contours. The numbers in brackets for u (number
of pixels in a random pixel subset) and r (number of random pixel subsets) are their
respective values. The results of the form µ ± σ% (n) have µ representing the average
accuracy between the trial runs, σ representing the standard deviation and n representing
the number of trial runs. The entries in bold represent the best accuracies obtained per
each dataset.

ORIENTED GRATINGS
baseline: 34.13%, chance: 33.33%

GIRSS
u (154) , r (20)

PIT 31.6± 1.8% (5)
IPCOSA 34.0± 1.3% (5)

GABORS
baseline: 18.95%, chance: 16.67%

GIRSS
u (100) , r (150)

PIT 17.5± 1.6% (5)
IPCOSA 15.4± 2.1% (5)

CONTOURS
baseline: 23.39%, chance: 20.00%

GIRSS
u (151) , r (100) u (500) , r (100)

PIT 21.0± 2.3% (5) 19.0± 2.9% (5)
IPCOSA 22.7± 0.6% (5) 22.4± 0.6% (5)

to only 104, they are based on a recursion that starts from 104 pixels only. A more correct

estimate would be based on running times of ∼ 30 minutes per pixel on average, resulting

in an initial estimate of, and easily surpassing, 200 days.

Moreover, we were not even able to run this scenario, neither a few other ones having a

resembling pixel-time pairs based iterative nature, due to the impractical I/O and memory

requirements. The basic instances initialization during the initial loading of the Gabor

dataset would take tens of minutes due to an intensive I/O, only to crash later on insuffi-

cient memory (albeit using a 32 bit architecture OS); this would happen before completing

the initialization—not to speak of moving to the next step of basic low profile operations

such as InfoGain based filtering. While the Contours dataset has about the same imprac-

tical magnitudes, with Oriented Gratings the experience is slightly different. Here, the
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loading of a dataset based on only 2 out of 3 available classes, having a 5 times smaller

pixels number, but having twice as bigger number of samples, would succeed after less than

a few minutes. After additional few minutes of cross-validation though, approximately at

the 5th fold, the process would crash—yet again—on insufficient memory.

Finally, the memory obstacle remains relevant even if we remove the run-time chal-

lenges of training classifiers for each pixel-time combination. It is enough to see that we

cannot load the initial data based on all the available raw values, even before moving to

any feature selection or classifier training steps.

However, with GIRSS and IPCOSA we were able to build models using a single-

threaded Java application on a Core 2 Duo machine with 2GB of RAM, in less than 2

hours for the Oriented Gratings, roughly 8 hours for the Gabors, and between 8 to 13

hours for the Contours datasets. Using the PIT instead of the IPCOSA lowers these

times by up to an order of magnitude. Truly, our proposed models are not only feasible,

but practical.

4.5 Seed based spatial averaging comparison

When designing our feature extraction technique, the IPCOSA, presented in Subsubsec-

tion 3.4.2.1, we examined a number of spatial averaging tools for calculating the average

value. The question of how to calculate the average of a pixel group having one or more

seeds within it, and formed in a phase that has a particular graded correlation threshold

(the τ), was examined in six different ways, and compared.

Each pixel group is a pixel set P
′

=
{
p
′

1, p
′

2, . . .
}
. The seeds group is a pixel subset

P ∗ = {p∗1, p∗2, . . .} of P
′

: P ∗ ⊆ P
′
. The group P− =

{
p−1 , p

−
2 , . . .

}
is defined as: P− =

P
′ \P ∗. Each pixel p in any of the defined sets has only one value in time: p = 〈vT 〉 , vT ∈

R, T ∈ {1, . . . ,m} (since the averaging is done in a specific fixed point in time T ), so for

simplicity we will refer to the pixel’s single value in time using the pixel’s notation (e.g.

p will denote vT ). The averaging methods are:

1. Plain average:
∑
p
′∈P ′ p

′

|P ′ |

2. Weighted average:
∑
p∗∈P∗ p

∗+τ
∑
p−∈P− p

−

|P∗|+τ |P−|
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3. Square weighted average:
∑
p∗∈P∗ p

∗+τ2 ∑
p−∈P− p

−

|P∗|+τ2|P−|

4. Group and seeds splitted weighted average:
|P−|
|P∗|

∑
p∗∈P∗ p

∗+
∑
p−∈P− p

−

2|P−|

5. Thresholded group and seeds splitted weighted average:
|P−|
|P∗|

∑
p∗∈P∗ p

∗+τ
∑
p−∈P− p

−

(1+τ)|P−|

6. Seeds only average:
∑
p∗∈P∗ p

∗

|P∗|

The results of the comparison are presented in Figure 4.16, depicting the average accuracies

of methods applied on each of the 7 experimental runs executed on the Gabors dataset (the

results slightly differ from the presented in Table 4.1 due to variations in the r parameter).

The selected method is the plain average method.

Figure 4.16: Comparison of seed based pixel groups averaging methods: (0) Accuracy of
applying the PIT ; (1) Accuracy of applying the IPCOSA with plain average; (2) Accuracy
of applying the IPCOSA with weighted average; (3) Accuracy of applying the IPCOSA
with square weighted average; (4) Accuracy of applying the IPCOSA with group and
seeds splitted weighted average; (5) Accuracy of applying the IPCOSA with thresholded
group and seeds splitted weighted average; (6) Accuracy of applying the IPCOSA with
seeds only average.
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4.6 Sliding windows: averaging along the time course

During our work, we performed various experiments with a time-course reduction using a

simple Sliding Window (SW) technique. The motivation for this kind of work comes from

two reasons. First, applying SW technique is appropriate with datasets in which the time

dimension poses a dimensionality threat. In such cases, effective reduction of the time

dimension makes the classification modeling more feasible. In addition, this technique

can reduce the influence of a noisy data along the time course. However, the first reason

was irrelevant, having the number of time points in our data significantly lower than the

number of pixels. In regard to the second reason, one of the experimental techniques is

detailed below.

When using a SW, two parameters are defined: the time window size w and the

overlap factor o. The w specifies the number of consecutive points in time along which

the averaging is performed. The o specifies the extent of the overlap between each two

consecutive time windows. For instance, having w = 3 and o = 1, indicates averaging in

the following manner:

average (timepoint1, timepoint2, timepoint3)

average (timepoint3, timepoint4, timepoint5)

...

average (timepointm−4, timepointm−3, timepointm−2)

average (timepointm−2, timepointm−1, timepointm)

Note that the following will always hold: w ≥ 2, o ≤ w − 1; we have also defined that

overlap must exist: o ≥ 1.

Given the 51 time points in the Gabor dataset, we have tried every possible combination

conforming to the following definition: 2 ≤ w ≤ 10, 1 ≤ o ≤ w−1 (resulting in 45 different

combinations). We then randomly generated 70 pixel subsets, each having a 100 pixels

in a subset. For each of these subsets, and for each of its SW variations (resulting in
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(1 + 45) · 70 = 3220 of both regular and time-averaged pixel subsets), we have applied

a slight variation of our pixel set evaluation method (Algorithm 3.2), one that handles

the values averaged over the time course. The evaluation scores produced by this method

were then compared and analyzed, and a comparison between the “regular” (baseline) pixel

subsets and the time-averaged pixel subsets was made.

The following conclusion was reached: while the sliding window can significantly im-

prove the evaluation score of an arbitrary pixel subset by up to 11.1% (the improvement

gain), this improvement will be significant only for the weaker pixel subsets—the ones

that in the first place, prior to averaging, were producing low evaluation scores. In fact,

the higher the evaluation score of a baseline pixel subset was, the lower was the gain in

accuracy (the delta) of applying any of the 45 sliding window variations. The highest

ranked baseline pixel subsets do not benefit from the application of the sliding window.

To support this claim, we checked the correlation between the evaluation scores of the

baseline pixel subsets, compared to the maximal delta among all 45 possible deltas of the

same subset, and revealed a negative correlation coefficient of −0.62. Figure 4.17 illus-

trates these findings. Nevertheless, it is important to mention that the SW had never

decreased the evaluation score of the time-averaged pixel subsets—there were no negative

deltas.

In a different type of experiment, a wide variety of sliding windows was applied on the

Gabors ROI1 subset (as opposed to applying them on randomly generated pixel subsets).

While the evaluation of this subset, along with the evaluation of its SW variations, was

different than the techniques introduced in this work (e.g. different usage of InfoGain,

application of a feature discretization technique, etc.), the comparison still showed that the

maximal gained evaluation score of ROI1 of ∼ 57% could not be surpassed by any of the

tested SW variations. When a computationally intensive, RFE-like procedure (resembling

the one demonstrated in Subsection 4.4.5) was applied on every SW variation, after much

effort and weeks of waiting, a combination of features was found that had produced an

evaluation score of 60.8%. While this may show that an apparent benefit can be gained

from applying SW, finding this appropriate feature combination using these methods is

impractical, for the reasons detailed in Subsection 4.4.5. Moreover, even if there exists a
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Figure 4.17: Comparison of the evaluation scores of baseline pixel subsets to the maxi-
mal improvement gained (maximal delta) in the evaluation scores of these subsets, after
applying the 45 sliding window variations. The chart is ordered by ascending evalution
scores of the baseline pixel subsets. A linear trendline is displayed for the maximal delta
series.

practical way of extracting the appropriate feature combination, the conclusion from the

previous type of experiment discussed above shows that the gain in the evaluation score

is apparent only for the more inferior pixel subsets, such as ROI1.



Chapter 5

Application to the hurricanes

domain

In Chapter 4, we have demonstrated how our techniques were evaluated in the VSDI

domain by applying them to VSDI datasets. We have shown the effectiveness of our

methods by validating the classification accuracies of the generated classification models,

and argued about their scalability. However, while our methodology was developed based

on the VSDI data, it is intended to be effective in general spatiotemporal domains with

resembling characteristics. In this chapter we present the first results of applying our

methods in a completely different area—the hurricanes. By analyzing periodical satellite

images of the Atlantic region, along the time course, we classify the hurricane severity.

5.1 Hurricanes data

In this section, we describe the nature of the data originated from the hurricanes domain.

First, we provide a brief background about hurricanes, relevant to the type of the presented

classification. Later, we discuss the source data used for dataset generation. Finally, we

list the challenges arising in using this data—compared to the VSDI domain.

Following the data description and based on its main aspects, we detail the design of

the suggested dataset generation method.

49
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5.1.1 Atlantic hurricanes

Tropical cyclones [37] are storm systems that originate in tropical areas near the equator,

over large bodies of warm water. During their life time, tropical cyclones change intensity

(strength) and location. Hurricane is a term used in most of the Western Hemisphere,

specifically in the Atlantic and in the Northeast Pacific regions, for a tropical cyclone

that has exceeded certain intensity. Their path of motion, caused by the streams in the

Earth’s atmosphere and by the Earth’s rotation, is called a track. They produce extremely

powerful winds, heavy rain and flood, and when near coastal regions, they are able to cause

severe damage. Tropical cyclones in the Atlantic and in the Northeast Pacific are classified

into three main groups of ascending severity: tropical depressions, tropical storms and

hurricanes. Within the hurricanes group, the Saffir-Simpson Hurricane Scale [27] divides

the hurricanes into five categories by the intensities of their sustained winds. Hurricanes

are formed during the hurricane season. This season mostly occurs from June to November

in the Northern Atlantic Ocean.

In conclusion, a hurricane in the Atlantic region is formed over the Atlantic ocean

during the hurricane season. It begins as a low severity tropical cyclone, then moves along

its track for an unexpected number of days, while changing its strength (respectively, its

severity) during its life course, and finally dissipates. The severities of the hurricanes are

thus, from low to high: tropical depression (TD), tropical storm (TS), and categories 1 to

5 according to the Saffir–Simpson Hurricane Scale.

5.1.2 Source images data

The source images data we use in our study are taken from the Global ISCCP B1 Browse

System (GIBBS) repository1 [13], a comprehensive weather satellites data resource. The

relevant Atlantic area satellite imagery is the “full disk” images (i.e. the actual shots of the

full earth) taken by the consecutively launched Geostationary Operational Environmental

Satellite (GOES) satellites, the GOES-8 and GOES-12, operating in two sequential periods

of time. The infrared images produced by these two satellites are taken from the same

angle and centered over the Atlantic region of the globe. All images are aligned with the
1The GIBBS repository is available at http://www.ncdc.noaa.gov/gibbs/.
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same longitude, latitude and political lines. GIBBS images from GOES-8 and GOES-12

are available from the beginning of the hurricane season of 1995 to the current day, and

taken every 3 hours; the size of each image is 1200 × 1200 pixels. An example of a full

sized image is presented in Figure 5.1. Images from various points in time may appear

missing, some may occur corrupted, and some of them are incomplete. An example of a

partial, incomplete image appears in Figure 5.2.

Figure 5.1: GOES-12 infrared (IR) image of the Atlantic region. Famous hurricane Ka-
trina from the 2005 season can be seen in the South area of the United States, affecting
Louisiana, Mississippi, South Florida, etc.
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Figure 5.2: Incomplete GOES-8 infrared (IR) image of the Atlantic region.

5.1.3 Challenges and comparison to VSDI

The nature of the data taken from the hurricanes domain is substantially different from

the VSDI data in a few major issues, yielding quite a few challenges on the classification

task. The main differences and the resulting challenges are detailed below.

1. Technical issues affecting model generation:

(a) Size and scale: The satellite images are of much higher spatial resolution than
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the VSDI, and if the complete time span of the hurricane is taken into account,

they also have a higher temporal resolution. The produced datasets are between

40 to 80 times larger than VSDI2. Nevertheless, our modeling methodology was

designed to answer this challenge.

(b) Missing, incomplete and corrupted images: Our chosen source of data is very

comprehensive. However, it has been manually compiled during a long period

of time, based on various sources. Therefore, there are many cases of missing

data and corrupted or incomplete images, the reason for which can be simply

human mistakes. With VSDI, all the data was complete and precise.

(c) Lack of knowledge and expertise in dataset generation: While with the VSDI

data we had the privilege of having a domain expert, who has provided us the

professionally prepared datasets, in the hurricanes case the dataset generation

method was defined on our own, on a trial and error basis. It is a research task

in itself to define what a properly generated dataset is.

2. Hurricane properties, compared to VSDI:

(a) Spatial spread pattern: As opposed to the VSDI data, where the most discrim-

inating pixels selected for the model generation are revealed in specific static

areas, the hurricane tracks begin in a wide variety of geographic locations, and

move unpredictably all over the area—implying that a selection of one location

in the pixel selection phase is not much better than a selection of the other.

(b) Nonuniform time span: While all samples of the VSDI data have a concrete

beginning and ending times (as the neuronal population responses appear to

take approximately the same amount of time as a reaction to stimuli, at least

for the same stimuli type), each hurricane takes a different time—the variability

is large. Naturally, hurricanes of lower severities last shorter, and hurricanes of

higher severities last longer—but even in the same severity group, the differences

between the life spans of individual hurricanes are large.
2Please refer to Subsection 5.1.4 for further details.
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(c) Overlapping : Each sample of VSDI data reflects the neuronal population re-

sponses to a single, isolated type of stimuli. However, different hurricanes of

different severities tend to coexist, fully or partially, at the same time, and

sometimes even in the same location—they overlap.

(d) Severity change during the time course: The life of the hurricane begins with

one of the lowest severities, but during its life span, the severities change (usu-

ally rise to their peak and then drop). The time of change and the new severity

following the change are unpredicted, and vary highly between every two hur-

ricanes.

3. Class and sample definition task—as opposed to the naturally well defined problem

in the VSDI domain (classifying the different visual stimuli in a single imaging ex-

periment), the question of how to build a learning sample and how to define its class

in the hurricanes domain is much harder when taking into account the hurricane

properties:

(a) Sample and its class: The natural thing to do is to define each hurricane as a

single sample, and to specify the sample’s class as the hurricane’s severity (i.e.

its maximal severity during its life time). However, the overlapping and the

severity change during the time course properties change this tendency.

(b) Sample start time: While we strive to define alignment along the time course, as

with the case of VSDI (where the neuronal population responses react approx-

imately at the same time after being exposed to the visual stimuli), the spatial

spread pattern and the nonuniform time span properties make the alignment

task harder.

(c) Sample end time: Mainly because of the nonuniform time span and the over-

lapping properties, it is not trivial to define the end time of a sample. Provided

that a sample is defined based on a specific hurricane, it cannot end just where

the hurricane ends, as the durations of the hurricanes highly vary—and all

samples used by our technique must have a uniform length.
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5.1.4 Dataset generation method

Taking into account the points listed in Subsection 5.1.3, we have designed the hurricane

dataset generation method in the following way.

The sample and the time course: Each sample was defined to start at the precise start

time of an individual hurricane, and to end after exactly 15 days—based on a series of

120 consecutive images (the number of points in time). The grayscale values (0-255)

of the pixels in the image were taken as the basic values in a sample. The hurricanes

that define each sample were manually picked to have minimal overlapping with other

hurricanes within the time range of 15 days since their start time—however, overlapping

was still allowed. The motivation behind allowing the overlapping is simply because the

overlapping cannot be discarded; on one hand, it frequently exists in practice, and on the

other hand, time alignment and normalization is crucial.

The geography of the sample: From each “full disk” image in the series of the sample’s

images, an area of interest of size 540×300 was identified as the sample’s spatial dimension.

This area within the image was defined according to the geographic location which most

of the hurricane tracks pass through. This area is depicted in Figure 5.3. The remaining

part of the image is mostly irrelevant, as the biggest part of it does not contain hurricane

tracks most of the time.

The class of the sample: The sample’s class was defined as follows—if the severity of

the hurricane is between tropical depression and category 2, and the other overlapping

hurricanes in its time range do not surpass category 2, the sample was labeled LOW ; if

the severity of the hurricane is category 3 and above, disregarding the severity of the other

overlapping hurricanes, the sample was labeled HIGH. The reason for binning each of

the individual seven severities into only two classes, the LOW and the HIGH, is mainly

because of the overlapping property, and because of a highly non-uniform distribution of

hurricanes from different severities. For instance, as detailed in Figure 5.4, there were

93 tropical storm severity cyclones in the years of 1995 to 2008 (inclusive), but only 8

category 5 hurricanes and only 15 category 2 hurricanes in the same period.

Handling the missing data: Coping with the missing data begins in the pixel level, and

goes all the way through all phases of our modeling methodology. Once an area of pixels
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Figure 5.3: GOES-12 infrared (IR) image of the Atlantic region from Figure 5.1, with the
area of interest defined by the red square.

Figure 5.4: Hurricanes distribution (count) by duration (in days) and severity, for the
Atlantic region, years 1995 to 2008 (inclusive).
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appears missing or corrupt in an image, the pixels from this area at the corresponding

image time are marked as missing. As such, they are not accounted when basic operations

on pixels are done during the modeling process—only the existing pixels are taken into

account. This includes, among the rest, feature set generation for all classification purposes

with feature values marked as missing when using our selected SMO implementation of

SVM [38] (which is capable of handling missing data), correlation calculation (by ignoring

missing data) during the execution of Algorithm 3.4, the IPCOSA, and spatial averaging

of pixel groups in IPCOSA (feature values are marked as missing and ignored). In a case

where a whole image is missing, we treat each of the pixels in the image as individually

missing (an edge case of a missing area of pixels, that covers the whole image).

5.2 Experimental setup

With the guidelines outlined in Subsection 5.1.4, we have constructed a dataset consisting

of 55 samples labeled as LOW and of 45 samples labeled as HIGH, from the years of

1995 to 2008 (inclusive). That being the case, the baseline accuracy of this dataset (i.e.

ZeroR [38]) is 55%.

In resemblance to what we have done in Chapter 4, we have generated classification

models using only the GIRSS pixel selection technique—for the lack of an Oracle—in the

first phase of our methodology, in combination with the two feature extraction techniques

in the second phase: {GIRSS}×{PIT, IPCOSA}, and with the application of the feature

selection (Section 3.5) in the third phase. The resulting models were evaluated using a 5-

fold cross-validation of the multi-class SMO implementation of SVM with linear kernel [38].

Using 5-fold cross-validation instead of using the standard 10-fold cross-validation is due

to the long running times of each experiment. When the time allowed, model’s evaluation

was performed more than once (each trial yielding a different random 5-fold division), as

specified in the results Table 5.1.
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5.3 Preliminary results

The experimental results for the hurricanes dataset, presented in Table 5.1, show the

accuracies resulted from combining the GIRSS pixel selection method with each of the

feature extraction techniques—the PIT and the IPCOSA (refer to the table caption for

the legend of the table entries).

Despite the apparently low accuracy of the results, they are statistically significant

when compared to the baseline, and appear well above the chance level. When we take into

account the principal differences between the VSDI and the hurricanes domains, and review

the challenges listed in Subsection 5.1.3, we discover that in practice, even though the two

domains share common spatiotemporal characteristics, these key differences between them

are fundamental. Nevertheless, these initial, preliminary results, which were achieved in

a considerably smaller amount of time than the amount of time invested in VSDI, imply

that the potential of the methodology presented in our work is probably large enough to

handle classification tasks that originate in extremely varied spatiotemporal domains.

As with the results of the Oriented Gratings dataset from VSDI, presented in Section

4.4, we see that the IPCOSA spatial averaging produces accuracies lower than the ones

produced by using the PIT approach. The reason for this behavior in VSDI was related

to high spatial frequency of the data, for which averaging over space has caused the loss

of signal. In the case of the hurricanes, this hypothesis for a possible explanation has yet

been verified.

Table 5.1: The results of applying each of the combinations: {GIRSS}×{PIT, IPCOSA}
on the hurricanes dataset. The numbers in brackets for u (number of pixels in a random
pixel subset) and r (number of random pixel subsets) are their respective values. The
results of the form µ± σ% (n) have µ representing the average accuracy between the trial
runs, σ representing the standard deviation and n representing the number of trial runs.
The entry in bold represents the best accuracy obtained.

HURRICANES
baseline: 55%

GIRSS
u (1620) , r (150) u (2430) , r (100) u (3300) , r (70)

PIT 66.5± 1.5% (2) 60.0± 0.0% (1) 63.0± 0.0% (1)
IPCOSA 63.0± 1.0% (2) 56.0± 0.0% (1) 60.0± 0.0% (1)
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Discussion

In this chapter, we first discuss the implications of our work on the neuroimaging field

of study. We then draw conclusions about the results of the presented work. Finally, we

introduce the directions we foresee and present the ideas we have for the future work based

on our research.

6.1 Neuroimaging implications

Some questions arise in light of these results with respect to the neuroimaging perspective

and neural decoding in particular. Our results show that machine learning can definitely

be applied on fields such as VSDI for decoding and possibly other tasks. Without prior

knowledge in neuroimaging, we can successfully classify (to some extent) different neuronal

population responses with respect to the provoking stimuli. We can support neuroimaging

researchers in revealing the dominant areas in the brain responsible for visual processing.

Can our results shed new light on the dynamics of the neuronal populations? We believe

it can, for two reasons. First, the support of our domain expert, who believes that these

results look interesting and promising, and that a further and deeper study is necessary

in order to advance in their interpretation. Second, by analyzing the differences revealed

between the expert’s ROI pixel sets to the ones selected by our technique. Not only

that the pixels selected by a non-expert technique provide at least as good results as the
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expert’s ROIs, but they also provide new findings on their significance.

6.2 Conclusions and future work

We presented a combination of methods that employ machine learning techniques to handle

large scale spatiotemporal data. Initially, our techniques were developed based on the field

of VSDI, and were successfully evaluated there. We consider this work as pioneering, in

terms of combining these two perspectives to produce an interdisciplinary AI research,

applied for the first time to the VSDI domain. VSDI technology is novel and revolutional,

from the viewpoint of its spatial and temporal resolutions, therefore its potential has

yet to be explored to its full extent. With this advanced neuroimaging technology and

our proposed tools, we foresee further progress in the development of visual perception

decoding algorithms to aid in decoding novel visual stimulus, such as movies or real-time

streaming visual data. We plan to compare different decoding mechanisms over different

cortical areas and behavioral conditions. Having advanced decoding abilities will allow

greater understanding of the visual pathway functionality and will allow progress in the

revelation of cognitive brain states—helping promote computer-aided control of artificial

prostheses by patients’ brain activity, diagnosing cognitive activity in paralyzed patients,

or directly contributing to development of vision prostheses.

Furthermore, we have examined the applicability of our methodology to the hurricanes

domain. Although at first we have expected our techniques to yield analogous behavior in

both the VSDI and the hurricanes fields—which apparently share common spatiotemporal

characteristics—we have later revealed a great deal of principal differences between the

two domains. Nevertheless, in applying our methods to the hurricanes domain, despite

being of a very different nature, we have managed to achieve initial results that show a

promising direction—even in a field as different as this one. The kind of application we

have explored here demonstrates the extent of the potential of our methodology.

In addition to our intent of doing advanced VSDI decoding—as discussed at the begin-

ning of this section, our immediate focus is to achieve more accurate classification results

with the hurricanes. As we have just begun initial experimentation in the hurricanes do-
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main, we believe that producing substantially higher accuracies is possible by examining

a broader variety of dataset generation techniques. On top of all that, we also plan to

apply our methodology in other spatiotemporal domains with resembling characteristics.

We are excited to see how well it will behave in new domains.

We ought to mention that our methods do not treat the time dimension as a dimension-

ality threat, thus not taking an effort to effectively reduce it. However, we did preliminary

attempts to apply various sliding window techniques for temporal reduction, but without

any apparent advantage (as expected with potential data loss; details provided in Section

4.6). Expecting future data to have a much higher temporal resolution obligates tem-

poral reduction. For this purpose, we believe that using the methods for dimensionality

reduction of time series discussed in Subsection 2.2.2—such as Discrete Fourier Transform

(DFT) or Discrete Wavelet Transform (DWT), as reported in [20,34]—will help us find a

lower dimensionality time-course representation that preserves the original information.





Appendix A

Machine learning glossary

Presented in this appendix are brief descriptions of the concepts and the machine learning

tools discussed and utilized in our work.

A.1 Supervised learning and classification

Classification as a supervised learning task is a machine learning technique [18] for learning

a function from a classified (labeled) training data, which is capable of predicting the class

of an unclassified sample (whose origin is outside of the training data set).

Given a training sample set S and a class label set C, where each training sample s ∈ S

is labeled with a class label c ∈ C, and an infinitely large universal set U of all possible

unlabeled samples u ∈ U , the standard classification problem is to build a model that

approximates classification functions of the form f : U −→ C, which map unclassified

samples from U to the set of class labels C.

A.2 Support Vector Machines

The Support Vector Machine (SVM) [38] is a systematic and reproducible supervised

learning approach, properly motivated by statistical learning theory. The training of

SVM involves optimization of a convex cost function. SVMs are well-known for using the
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idea of kernel substitution (kernel methods). The SVM and the kernel methodology are

well-suited for machine learning and data mining tasks. With SVMs, overfitting is unlikely

to occur, and no false local minima complicates the learning process. The classification

task using the SVM approach produces elegant mathematical models, both geometrically

intuitive and theoretically well-founded. SVMs are based on two alternative principles: the

convex hull approach, or finding the maximum margin hyperplane.

The convex hull of a set of points is the smallest convex set containing the points. For

two linearly separable classes, we can examine the convex hull of each class’ training data,

and then find the closest points in the two convex hulls. Then we can construct the plane

that bisects these two points, resulting in finding a classifier. The closest points in the

two convex hulls can be found by solving a quadratic problem (QP). The example for this

approach is presented in Figure A.1.

As an alternative, we can find the plane furthest from both sets of points, also known

as the maximum margin hyperplane—the one that gives the greatest separation between

the classes. To do this, we need to maximize the distance (the margin) between the

support planes for each class. The support planes are “pushed” apart until they “bump”

into a small number of data points (the support vectors) from each class. Maximizing

the distance (the margin) between the supporting planes can also be found by solving a

quadratic problem. Figure A.2 presents an example for this principle.

The solutions found by both presented methods are identical. In the maximum margin

method, the solution depends on the support vectors. In the convex hull method, same

data points determine the closest points in the two convex hulls. This is due to the

mathematical programming concept of duality. Either of the quadratic problems (primal

or dual) of the two methods can give the same solution. These optimization problems

(also known as constrained quadratic optimization problems) are relatively straightforward

from a mathematical programming perspective (belong to a well-studied class of convex

quadratic programs). Many effective robust algorithms for such tasks exist.

However, for two datasets that are not linearly separable, the convex hull strategy will

fail. The solution for this is to use reduced convex hulls to restrict the influence of each

point, in such way that the convex hulls would not intersect. An appropriate modification
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Figure A.1: The convex hull. The red
circles and the black squares represent
two different classes. The dotted lines
are convex hulls of each class. c and d
are the closest points in the convex hulls.
The three boldly circled points are the
support vectors. The bisecting plane is
the classifier.

Figure A.2: The maximum margin hy-
perplane. The red circles and the black
squares represent two different classes.
The blue dotted lines are the support
planes for each class. The solid blue line
is the plane farthest from both sets—the
classifier. The three boldly circled points
are the support vectors.

for the QP problem needs to be applied. The supporting plane method will also fail in

this case. To cope with the infeasibility of the QP task here, the constraints that insure

that each point is on the appropriate side of its supporting plane need to be relaxed. Since

any point falling on the wrong side of the supporting plane is considered to be an error,

we want to simultaneously maximize the margin and minimize the error, thus introducing

minor changes to the supporting plane QP problem.

Nevertheless, in some cases even that is not enough. If the linear discriminants are

inappropriate for the data set—resulting in high training set errors—SVM methods would

not perform well. In this case, the SVM approach needs to be generalized to construct

highly nonlinear classification functions. To convert a linear classification algorithm into

a nonlinear classification algorithm, the principle is to add additional attributes to the

data, that are nonlinear functions of the original data. Then, existing linear classification

algorithms can be applied to the expanded dataset in feature space, producing nonlinear

functions in the original input space.

While doing this will cause the exponential explosion of the dimensionality of the fea-
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ture space, causing the computation to become impractical, using the kernel methods to

substitute the original dot products of the QP problems will solve the problem. We can

get different highly nonlinear classifiers by employing various kernels. Robust, efficient

algorithms, that have no problem with local minima, can be used for training highly non-

linear classification functions. Using kernel substitution allows turning a linear algorithm,

only capable of handling separable data, into a general nonlinear algorithm.

The WEKA machine learning framework [38] we employ in the implementation of the

techniques presented in our work, makes use of the SMO variation of the SVM. SMO

implements the Sequential Minimal Optimization algorithm for training a support vector

classifier, using polynomial or Gaussian kernels. Missing values are replaced globally,

nominal attributes are transformed into binary ones, and attributes can be normalized.

Pairwise classification is used for multiclass problems, where the predicted probabilities

are coupled pairwise. Please refer to [38] for a more detailed description of SVM, and

SMO in particular.

A.3 Information Gain (InfoGain) based filtering

The Information Gain (InfoGain) measure [38] is borrowed from the Information Theory

field. It is based on measuring the relative reduction in entropy. The classic entropy

measure is defined as: E (S) =
∑
c∈C −

|Sc|
|S| log2

|Sc|
|S| , where S is the entire training dataset,

C is the class label set and Sc is a subset of S in which the training samples are labeled

with class c ∈ C.

The InfoGain rank (IG) is defined as: IG (S, f) = E(S) −
∑
v∈V (f)

|Sv|
|S| E (Sv), and

shows how much information is gained by splitting the dataset relative to the feature f .

Here, V (f) is the set of unique values of the feature f and Sv is the subset of S in which

the value of the feature f is v.

The feature evaluation based on the Information Gain measure evaluates features by

measuring their information gain with respect to the class. The filtering approach imple-

mented in WEKA [38] discretizes numeric attributes first using the Minimum Description

Length (MDL)-based discretization method. The techniques we have presented in Chapter
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3 use this InfoGain based filtering method.

A.4 Stratified cross-validation

The stratified cross-validation method [38] is used for predicting the error rate of a learning

technique—and specifically, for evaluating a classification model—given a fixed, limited

amount of data.

Reserving a certain amount of data for testing, and using the remainder for training, is

known as the holdout method. The sample data used for training or testing might not be

representative. Hence, each class in the full dataset should be represented in approximately

the right proportion in the training and testing sets. The random sampling needs to be

done in such a way that it is guaranteed that each class is properly represented in both

training and testing sets—procedure known as stratification.

Repeating the whole process (training and testing) several times with different random

samples is a general way to mitigate any biases caused by any particular samples of data

chosen for holdouts. In each iteration, a certain proportion of the data is randomly

selected for training, and the remainder is used for testing. In a k-fold cross-validation

procedure, the data is randomly partitioned into k parts, or folds, in each of which the

class is represented in approximately the same proportions as in the full dataset. Each

part is held out in turn, and the clasification model is built using the remaining k − 1

parts. The error rate of the held out data part is calculated. The learning procedure is

executed a total of k times on the different training sets. Finally, the k error estimates

are averaged to yield an overall error estimate.

Setting the k to a value of 10, i.e. using a 10-fold cross-validation, is in fact the stan-

dard way of predicting the error rate of a learning technique [38], and specifically of a

classification model. By adding stratification, the stratified 10-fold cross-validation has in

practice become the standard evaluation technique. We have employed this technique in

Chapters 3 and 4 to evaluate our classification models.
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A.5 Pearson’s product moment coefficient

The correlation coefficient [7] between vectors a and b of length n is defined as follows:

ρ =
∑n
i=1(ai−µa)(bi−µb)

(n−1)σaσb
, where µa and µb are the respective means of vectors a and b,

and σa and σb are their respective standard deviations. The coefficient ρ represents how

strongly the variables imply each other. If ρ > 0, a and b are positively correlated—the

values of a increase as the values of b increase. Symmetrically, if ρ < 0, a and b are

negatively correlated. The coefficient ρ ranges from −1 (perfect negative correlation) to

1 (perfect positive correlation), whereas 0 indicates no correlation (in which case a and b

are independent).

A.6 ZeroR as baseline accuracy

The ZeroR (or 0-R) described in [38] is a basic classification rule: it predicts the test data’s

majority class (if nominal) or average value (if numeric). We have employed ZeroR in our

experimental evaluation in Chapter 4, for setting the baseline classification accuracy to

which our results are compared.
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