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Abstract. Unsupervised sequence learning is important to many applications. A
learner is presented with unlabeled sequential data, and must discover sequential
patterns that characterize the data. Popular approaches to such learning include
statistical analysis and frequency based methods. We empirically compare these
approaches and find that both approaches suffer from biases toward shorter se-
quences, and from inability to group together multiple instances of the same pat-
tern. We provide methods to address these deficiencies, and evaluate them exten-
sively on several synthetic and real-world data sets. The results show significant
improvements in all learning methods used.

1 Introduction

Unsupervised sequence learning is an important task in which a learner is presented
with unlabeled sequential training data, and must discoversequential patterns that char-
acterize the data. Applications include user modeling [1],anomaly detection [2], data-
mining [3] and game analysis [4].

Two popular approaches to this task are frequency-based (support) methods (e.g.,
[3]), and statistical dependence methods (e.g., [5]—see Section 2 for background). We
empirically compare these methods on several synthetic andreal-world data sets, such
as human-computer command-line interactions. The resultsshow that statistical depen-
dence methods typically fare significantly better than frequency-based ones in high-
noise settings, but frequency-based methods do better in low-noise settings.

However, more importantly, the comparison uncovers several common deficiencies
in the methods we tested. In particular, we show that they are(i) biased in preferring
sequences based on their length; and (ii) are unable to differentiate between similar
sequences that reflect the same general pattern.

We address these deficiencies. First, we show a length normalization method that
leads to significant improvements inall sequence learning methods tested (up to 42%
improvement in accuracy). We then show how to use clusteringto group together sim-
ilar sequences. We show that previously distinguished sub-patterns are now correctly
identified as instances of the same general pattern, leadingto additional significant ac-
curacy improvements. The experiments show that the techniques are generic, in that
they significantly improve all of the methods initially tested.



2 Background and Related Work

In unsupervised learning of sequences, the learner is givenexample streams, each a se-
quenceα1, α2, . . . , αm of some atomicevents(e.g., observed actions). The learner must
extract sequentialsegments(also calledpatterns), consecutive subsequences with no in-
tervening events, which characterize the example streams.Of course, not every segment
is characteristic of the streams, as some of the segments reflect no more than a random
co-occurrence of events. Moreover, each observation stream can contain multiple seg-
ments of varying length, possibly interrupted in some fashion. Thus it is important to
only extract segments that signify invariants, made up of events that are predictive of
each other. We provide the learner with as little assistanceas possible.

The literature reports on several unsupervised sequence learning techniques. One
major approach learns segments whose frequency (support) within the training data
is sufficiently high [3]. To filter frequent segments that aredue to chance—segments
that emerge from the likely frequent co-occurrence of a frequent suffix and a frequent
prefix—support-based techniques are usually combined withconfidence, which mea-
sures the likelihood of a segment suffix given its prefix. In such combinations, the ex-
tracted segments are those that are more frequent than a user-specifiedminimal support
threshold, and more predictive than a user-specifiedminimal confidence.

Another principal approach is statistical dependency detection (DD) [5]. DD meth-
ods test the statistical dependence of a sequence suffix on its prefix, taking into account
the frequency of other prefixes and suffixes. To calculate therank of a given segmentS
of sizek, a2×2 contingency table is built for its(k−1)-prefixpr and suffixαk (Table 2).
In the top row,n1 reflects the count of the segmentS. n2 is the number of times we saw
a different event following the same prefix, i.e.,

∑
i6=k count(prαi). In the second row,

n3 is the number of segments of lengthk in which αk followed a prefix different than
pr (

∑
S 6=pr,|S|=|pr|

count(Sαk)). n4 is the number of segments of lengthk in which a
different prefix was followed by a different suffix (

∑
S 6=pr,|S|=|pr|

∑
i6=k count(Sαi)).

The table margins are the sums of their respective rows or columns. A chi-square or G
test [6] is then run on the contingency table to calculate howsignificant is the depen-
dency ofαk onpr. This is done by comparing the observed frequencies to the expected
frequencies under the assumption of independence. DD methods have been utilized in
several data analysis applications, including analysis ofexecution traces [5], time-series
analysis [7], and RoboCup soccer coaching [4].

Table 1. A statistical contingency table for segmentS, composed of a prefixpr =
α1, α2, . . . , αk−1 and a suffixαk. In all cases,|S| = |pr|.

αk ¬αk

pr n1 n2

∑
i
count(prαi)

¬pr n3 n4

∑
S 6=pr,i

count(Sαi)
∑

S
count(Sαk)

∑
S,i6=k

count(Sαi)



We focus in this paper on support/confidence and DD. However,other technique
exist (see [8] for a survey), including statistical methodssuch as interest ([9]) and con-
viction ([10]) that are often combined with support. We havesuccessfully applied our
methods to these, but do not discuss them here for lack of space. In addition, Likewise,
we ignore here methods requiring human expert guidance or other pre-processing.

Also related to our work are [1] and [2], which use clusteringtechniques to learn
the sequential behavior of users. A common theme is that clustering is done based on
similarity between sequential pattern instances in the training data. Bauer then uses the
resulting clusters as classes for a supervised learning algorithm. Lane and Brodley use
the clusters to detect anomalous user behavior. Neither investigates possible statistical
biases as we do.

3 A Comparison of Unsupervised Techniques

We conducted extensive experiments using synthetic data, comparing support, confi-
dence, support/confidence and dependency-detection usinga G-test. In each run, the
techniques above were to discover five different re-occurring true segments, uniformly
distributed within a file of 5000 streams. We refer to the percentage of the streams
that contain true segments aspattern rate; thus low pattern rates indicate high levels
of noise. The example streams might include additional random events before, after,
or within a segment. We controlledintra-pattern noise rate: the probability of having
noise inserted within a pattern.
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Fig. 1. Accuracy of unsupervised sequence learning methods.

In each experiment, each technique reported its best 10 segment candidates, and
those were compared to the five true segments. The results were measured as the per-
centage of true segments that were correctly detected (the recall of the technique, here-
inafter denotedaccuracy). The support/confidence technique requires setting manual



thresholds. To allow this method to compete, we set its thresholds such that no true pat-
tern would be pruned prematurely. We refer to this techniqueas “Support/Confidence
Optimal”. We have also tested a more realistic version of thealgorithm, using fixed min-
imal confidence of 20% (“Support/Confidence”). While the support/confidence method
is meant to return all segments satisfying the thresholds, with no ordering, we approxi-
mated ranking of resulting segments by their support (afterthresholding).

We varied several key parameters in order to verify the consistency of the results.
For three different values of alphabet size, denotedT (5, 10 and 26) and three ranges
of true-pattern sizes (2–3, 3–5 and 4–7) we have generated data sets of sequences with
incrementing values of pattern rate. Intra-pattern-noisewas fixed at 0%. For each pattern
rate we have conducted 50 different tests. Overall, we ran a total of 4500 tests, each
using different 5000 sequences and different sets of 5 true patterns.

The results are depicted in Figure 1. The X-axis measures thepattern rate from
0.2% to 100%. The Y-axis measures the average accuracy of thedifferent techniques
over the various combinations ofT and pattern size. Each point in the figure reflects the
average of450different tests. The “Optimal Support/Confidence” technique is denoted
"Sup/Conf Optimal", where the standard method, using a fixedminimal confidence
value, is denoted "Sup/Conf". The dependency-detection isdenoted “DD”.

The figure shows that dependency-detection (DD) outperforms all other meth-
ods for low and medium values of pattern rate. However, the results cross over and
support/confidence optimal outperforms DD at high pattern rates. The standard sup-
port/confidence, as well as the simple support technique, provide relatively poor results.
Finally, confidence essentially fails for most pattern ratevalues.

Figure 2 shows the results for the same experiment, focusingon pattern rates up to
5%. As can be clearly seen, DD quickly achieves relatively high accuracy, at least twice
as accurate as the next best technique, support/confidence optimal. A paired one-tailed
t-test comparing DD and support/confidence optimal for pattern rates of up to 5% shows
that the difference is significant at the 0.05 significance level (p < 1 × 10−10).
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Fig. 2. Accuracy at low pattern rates (high noise).



For lack of space, we only briefly discuss the effect of the alphabet sizeT on the
accuracy of the different algorithms. All methods achieve better results with greater
alphabet sizes. However, when the alphabet is small (T = 5), the results of DD are up
to 25 times more accurate than other methods, in high noise settings.

4 Statistical Biases

We analyzed the results of the different techniques and found that all methods suffer
from common limitations: (i) Bias with respect to the lengthof the segments (Section
4.1); and (ii) inability to group together multiple instances of the same pattern (4.2).

4.1 Removing the Length Bias

The first common limitation of the approaches described above is their bias with re-
spect to the length of the segments. Figure 3 shows the average length of the segments
returned by the learning algorithms, in a subset of the testsshown in Figure 1, for two
different values of pattern rate (0.5% and 75%), where the length of the true patterns
was set to 3–5 (average≈ 4) and alphabet size was fixed at 10. The figure shows that
the support algorithm prefers short segments. The optimal support/confidence algorithm
behaves similarly, though it improves when pattern rate increases (75%). DD is slightly
better, but also prefers shorter sequences at low noise (high pattern rate) settings. In
contrast to all of these, Confidence prefers longer sequences.
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Fig. 3. Average segment length for two pattern rate values.

Different methods have different reasons for these biases.Support-based methods
have a bias towards shorter patterns, because there are moreof them: Given a target pat-
ternABCD, the patternAB will have all the support ofABCDwith additional support
from (random) appearances ofABE,ABC,ABG,.... Confidence has a bias towards longer



sequences, because their suffix can be easily predicted based on their prefix simply be-
cause both are very rare. Finally, DD methods prefer shortersegments at higher pattern
rate settings. We found that this is due to DD favoring subsequences of true patterns
to the patterns themselves. When pattern rate is high, significant patterns also have sig-
nificant sub-patterns. Even more: The sub-patterns may havehigher significance score
because they are based on counts of shorter sequences—which are more frequent as we
have seen. This explains the degradation in DD accuracy at higher pattern rates.

In order to overcome the length bias obstacle, we normalize candidate pattern ranks
based on their length. The key to this method is to normalize all ranking based on units
of standard deviation, which can be computed for all lengths. Given the rank distribu-
tion for all candidates of lengthk, let R̄k be the average rank, and̂Sk be the standard
deviation of ranks. Then given a sequence of lengthk, with rank r, the normalized
rank will be r−R̄k

Ŝk
. This translates the rankr into units of standard deviation, where

positive values are above average. Using the normalized rank, one can compare pat-
tern candidates of different lengths, since all normalizedranks are in units of standard
deviation. This method was used in [7] for unsupervised segmentation of observation
streams based on statistical dependence tests.

4.2 Generalizing from Similar Patterns

A second limitation we have found in existing methods is inability to generalize pat-
terns, in the sense that sub-segments of frequent or significant patterns are often them-
selves frequent (or significant). Thus both segment and its subsegment receive high
normalized ranks, yet are treated as completely different patterns by the learning meth-
ods. For instance, if a patternABCD is ranked high, the algorithm is likely to also rank
high theshadow sub-patternsABC,BC, etc. Normalizing for length helps in estab-
lishing longer patterns as preferable to their shadows, butthe shadows might still rank
sufficiently high to take the place of other true patterns in the final pattern list.

We focus on a clustering approach, in which we group togetherpattern variations.
We cluster candidates that are within a user-specified threshold of edit distancefrom
each other. The procedure goes through the list of candidates top-down. The first candi-
date is selected as the representative of the first cluster. Each of the following candidates
is compared against the representatives of each of the existing groups. If the candidate
is within a user-provided edit-distance from a representative of a cluster, it is inserted
into the representative’s group. Otherwise, a new group is created, and the candidate is
chosen as its representative. The result set is composed of all group representatives.

Generally, the edit-distance between two sequences is the minimal number of edit-
ing operations (insertion, deletion or replacement of a single event) that should be ap-
plied on one sequence in order to turn it into the other. For example, the editing distance
between ABC and ACC is 1, as is the editing distance between ACand ABC. A well
known method for calculating the edit distance between sequences isglobal alignment
[11]. However, our task requires some modifications to the general method. For exam-
ple, the sequence pairs{ABCDE,BCDEF} and{ABCD,AEFD} have an edit-
distance of 2, though the former pair has a large overlappingsubsequence (BCDE),
and the latter pair has much smaller (fragmented) overlapA??D.



We use a combination of a modified (weighted) distance calculation, and heuristics
which come to bear after the distance is computed. Our alignment method classifies
each event (belonging to one sequence and/or the other) as one of three types: appearing
before an overlap between the patterns, appearing within the overlap, or appearing after
the overlap. It then assigns aweightededit-distance for the selected alignment, where
the edit operations have weights that differ by the class of the events they operate on.
Edit operations within the overlap are given a high weight (called mismatch weight).
Edit operations on events appearing before or after the overlap are given a low weight
(edge weight). In our experiments we have used an infinite mismatch weight, meaning
we did not allow any mismatch within the overlapping segment. However, both weight
values are clearly domain-dependent.

In order to avoid false alignments where the overlapping segment is not a signifi-
cant part of the overall unification, we set a minimal threshold upon the length of the
overlapping segment. This threshold is set both as an absolute value and as a portion of
the overall unification’s length.

5 Experiments

To evaluate the techniques we presented, we conducted extensive experiments on syn-
thetic (Section 5.1) and real data (5.2).

5.1 Synthetic Data Experiments

We repeated our experiments from Section 3, this time with the modified techniques.
Figure 4 and Table 2 show the accuracy achieved at different pattern rates, paralleling
Figures 1 and 2, respectively. Figure 4 shows all results, while Table 2 focuses on low
pattern rates (high noise). Every point (table entry) is theaverage of450different tests,
contrasting standard, normalized (markedN) and normalized-clustered (NC) versions
of DD, Support, and Optimal Support/Confidence (marked simply as Sup/Conf).

The results show that length normalization improvesall tested algorithms. For in-
stance, the support technique has completely failed to detect true segments for a pattern
rate of 1%, while its normalized version has achieved accuracy of 39% at this rate.
Clustering the normalized results improved the results further, by notable margins.

The improvements derived from normalizing and clustering the results both proved
to be statistically significant for all learning techniques. For instance, a paired one-tailed
t-test shows that the normalized version of DD is significantly better than the standard
version (p < 1 × 10−10) and that the clustered-normalized version of DD significantly
outperforms the normalized version (p < 1 × 10−10).

The improvements are such that after normalization and clustering, the simple sup-
port technique outperforms the standard DD method for all pattern rate values, includ-
ing 0.2%-0.5%. This is where standard DD performs significantly better than the other
standard techniques. Indeed, after length-based standardization and clustering, DD may
no longer be superior over the support/confidence approach.

Figure 5 shows the results from one specific setting, where both normalizing and
normalizing-clustering proved particularly effective. Each point in the figure represents



Table 2. Accuracy at low pattern rates.

Pattern Rate (%)0.2 0.5 1 2 5 10

DD 2.7 26.841.145.951.954.4
N. DD 13.628.142.348.252.856.0
NC. DD 13.428.345.653.060.866.5

Sup/ Conf 1.3 10.220.319.633.034.9
N. Sup/ Conf 16.630.844.749.859.863.7
NC. Sup/ Conf 16.432.651.054.970.473.0

Sup 0.0 0.0 0.0 0.0 8.2 7.5
N. Sup 16.629.939.341.248.2 50
NC. Sup 16.429.747.047.158.466.0

Conf 0.0 0.0 0.0 0.0 0.0 0.0
N. Conf 0.0 1.0 13.421.331.037.1
NC. Conf 0.0 1.2 14.4 22 34 42.0
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Fig. 4. Modified: All Pattern Rates, average results.

the average of 50 different tests, with an alphabet size 26, and true patterns composed of
3–5 events. In the figure, the normalized version of the support technique has achieved
accuracy of 78% for a pattern rate of 1%, comparing to 0% accuracy of the standard ver-
sion. The normalized clustered versions of all algorithms have achieved more than 95%
accuracy for a pattern rate as low as 1%, where the accuracy ofthe standard techniques
was 0% for support, 66% for support/confidence and 82% for DD.

We have also evaluated the effects of intra-pattern noise onthe quality of results.
In general, for all alphabet and pattern sizes, we have foundthat the Normalized Clus-
tered versions offer consistent improvements to accuracy of Normalized methods, in
the presence of up to 25% intra-pattern noise.

We evaluated our techniques with an additional dataset. We used the text of George
Orwell’s 1984to test our modified techniques on data that was both more realistic, yet
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still allowed for controlled experiments. In one experiment, we changed the original
text by introducing noise within the words and between them.For instance, the first
sentence in the book - "It was a bright cold day in April" was replaced by "It oH7l4H
XywOct8M (. . . 9 more noisy words) 6jOwas2x imfG8e1x (. . . 2 more noisy words)
nBaor1oL iWtHhTEqbright cT xcoldVuv vfday1Ap BsQG9pyK 8NxfinXR 8TGmx-
cXO E1IenU2QApri ulxL". We inserted only fixed 8-character sequences, such that
each actual word that is shorter than 8 characters was paddedwith noise, and words
longer than 8 characters were cut. We set pattern rate to 40% by inserting 6 noisy
streams, for each 4 containing actual words. Intra pattern noise was set at 10%. We
then counted how many of the top 100 candidates returned by each technique are ac-
tual words appearing in the book. We hoped to find as many actual words in the results
set as possible. The results, reflecting the average accuracy over the first 8 chapters of
the book, are shown in Figure 6. Similar improvement resultswere achieved for other
settings of pattern rate and intra pattern noise.
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The results show that for each of the presented techniques the clustered normalized
versions have significantly outperformed the standard versions, increasing accuracy by
up to 41% for the support algorithm. The normalized versionshave typically outper-
formed the standard versions, except for the case of DD, where the normalized results
contained various sequences that reflected the same words (see Section 4.2), and were
then significantly improved by our clustering approach. Note also that among the stan-
dard techniques, DD has once again outperformed the other methods.

5.2 Real World Experiments

We conducted real-world experiments on UNIX command line sequences. We utilized
9 data sets of UNIX command line histories, collected for 8 different users at Purdue
university over the course of 2 years [12]. In this case, we donot know in advance what
true patterns were included in the data, thus quantitative evaluation of accuracy is not
possible. However, we hoped to qualitatively contrast the pattern candidates generated
by the different methods.

The results suggest again that among non-normalized techniques, DD is superior.
While the results of support and confidence methods consistedmainly of different vari-
ations ofls, cd andvi, DD was the only algorithm to discover obviously-sequential
patterns (that were not necessarily frequent) such as “g++ -g <file>;a.out”, “ | more”,
“ ls -al”, “ ps -ef”, “ xlock -mode”, “ pgp -kvw”, etc.

The clustered-normalized versions of both DD and support/confidence detected
more complex user patterns, which were not detected by the standard techniques. The
results clearly show the ability of the improved techniquesto discover valuable sequen-
tial patterns, which characterize interesting user behavior, and are overlooked by the
standard methods. Among these sequential patterns are:

1. ps -aux | grep <process>; kill -9—a user looking for a certain process id to kill.
2. tar <3 args>; cd; uuencode <2 args> > <file>; mailx—a user packaging a direc-

tory tree, encoding it to a file, and sending it by mail.
3. compress <arg>;quota;compress <arg>; quota—a user trying to overcome quota

problems by compressing files.
4. latex <arg>; dvips <arg>; ghostview—a latexwrite → compile → view cycle.
5. vi <arg>; gcc <arg>; a.out; vi <arg>; gcc—anedit → compile → run cycle.

6 Conclusions and Future Work

This paper tackles the problem of unsupervised sequence learning. The challenge is ad-
dressed by improving sequence learning algorithms, which extract meaningful patterns
of sequential behavior from example streams. We empirically compared these algo-
rithms, to determine their relative strengths. Based on thecomparison, we noted several
common deficiencies in all tested algorithms: All are susceptible to a bias in preferring
pattern candidates based on length; and all fail to generalize patterns, often taking a
high-ranked pattern candidate as distinct from its shortersub-patterns.

We use a normalization method to effectively neutralize thelength bias in all learn-
ing methods tested, by normalizing the frequency/significance rankings produced by



the learning methods. Use of this method had improved accuracy by up to 42% in test-
ing on synthetic data. We then use a clustering approach, based on a modified weighted
edit-distance measure, to group together all patterns thatare closely related. The use
of clustering in addition to normalization had further improved accuracy by up to 22%
in some cases. We also show that the techniques are robust to noise in and out of the
patterns. Finally, the improved methods were run on two additional sets of data: se-
quences from Orwell’s 1984, and UNIX real-world command-line data. The methods
successfully detected many interesting patterns in both.

A weakness with the methods that we presented is their use with very large data-
bases. For instance, normalization requires repeatedly counting all the patterns in the
database, and would therefore be inefficient for large data-mining applications. How-
ever, the techniques we presented are well suited for typical agent-observation data
(such as RoboCup soccer logs or UNIX command-line data). We plan to consider large
data-mining applications in our future work.
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