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Abstract. Unsupervised sequence learning is important to many applications. A
learner is presented with unlabeled sequential data, and must disequensial
patterns that characterize the data. Popular approaches to suchdeadhie
statistical analysis and frequency based methods. We empirically certiypese
approaches and find that both approaches suffer from biasesiteivarter se-
quences, and from inability to group together multiple instances of the same p
tern. We provide methods to address these deficiencies, and evaluatextes-
sively on several synthetic and real-world data sets. The results shoificant
improvements in all learning methods used.

1 Introduction

Unsupervised sequence learning is an important task inhadilearner is presented
with unlabeled sequential training data, and must disceegquential patterns that char-
acterize the data. Applications include user modelingdhfymaly detection [2], data-
mining [3] and game analysis [4].

Two popular approaches to this task are frequency-baaeub6r) methods (e.g.,
[3]), and statistical dependence methods (e.g., [5]—setdBez for background). We
empirically compare these methods on several syntheticeaidvorld data sets, such
as human-computer command-line interactions. The reslutte that statistical depen-
dence methods typically fare significantly better than diestcy-based ones in high-
noise settings, but frequency-based methods do bettewimbise settings.

However, more importantly, the comparison uncovers séeeramon deficiencies
in the methods we tested. In particular, we show that they(ipk@ased in preferring
sequences based on their length; and (ii) are unable taretitiate between similar
sequences that reflect the same general pattern.

We address these deficiencies. First, we show a length nieaatiah method that
leads to significant improvements @l sequence learning methods tested (up to 42%
improvement in accuracy). We then show how to use clustédmggoup together sim-
ilar sequences. We show that previously distinguishedpaiterns are now correctly
identified as instances of the same general pattern, leédiadditional significant ac-
curacy improvements. The experiments show that the teabsiqre generic, in that
they significantly improve all of the methods initially tedt



2 Background and Related Work

In unsupervised learning of sequences, the learner is gixample streams, each a se-
quencexy, as, . . . , a;, Of some atomieventge.g., observed actions). The learner must
extract sequentialegmentgalso calledhatterng, consecutive subsequences with no in-
tervening events, which characterize the example stre@htaurse, not every segment
is characteristic of the streams, as some of the segmergstrefi more than a random
co-occurrence of events. Moreover, each observationmsto@a contain multiple seg-
ments of varying length, possibly interrupted in some fashiThus it is important to
only extract segments that signify invariants, made up eh&vthat are predictive of
each other. We provide the learner with as little assistasqaossible.

The literature reports on several unsupervised sequenceirlg techniques. One
major approach learns segments whose frequesiggpor) within the training data
is sufficiently high [3]. To filter frequent segments that dree to chance—segments
that emerge from the likely frequent co-occurrence of adfesq suffix and a frequent
prefix—support-based techniques are usually combined euittiidencewhich mea-
sures the likelihood of a segment suffix given its prefix. Inlsaombinations, the ex-
tracted segments are those that are more frequent than-spesgafiedminimal support
threshold, and more predictive than a user-specifiedmal confidence

Another principal approach is statistical dependencydtiete (DD) [5]. DD meth-
ods test the statistical dependence of a sequence suffig preifix, taking into account
the frequency of other prefixes and suffixes. To calculateahk of a given segmeist
of sizek, a2x2 contingency table is built for its:—1)-prefixp, and suffixa;, (Table 2).
In the top rowyn; reflects the count of the segmehtn., is the number of times we saw
a different event following the same prefix, i.8., ,, count(p-«;). In the second row,
ng is the number of segments of lendthn which oy, followed a prefix different than
Pr (O szp,. 512 |pn| COUNt(Sauk)). ny is the number of segments of lengttin which a
different prefix was followed by a different suffi¥ (., |5—j,.| 2oz cOuUnt(Sa;)).
The table margins are the sums of their respective rows anuas. A chi-square or G
test [6] is then run on the contingency table to calculate bmgmificant is the depen-
dency ofay, onp,.. This is done by comparing the observed frequencies to theated
frequencies under the assumption of independence. DD uiethave been utilized in
several data analysis applications, including analysexe€ution traces [5], time-series
analysis [7], and RoboCup soccer coaching [4].

Table 1. A statistical contingency table for segmentS, composed of a prefixp, =

ai1,az,...,a—1 and a suffixay. In all cases,|S| = |p-|-.
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We focus in this paper on support/confidence and DD. Howaiber technique
exist (see [8] for a survey), including statistical methedsh as interest ([9]) and con-
viction ([10]) that are often combined with support. We havecessfully applied our
methods to these, but do not discuss them here for lack oéspaaddition, Likewise,
we ignore here methods requiring human expert guidanceher pte-processing.

Also related to our work are [1] and [2], which use clustertaghniques to learn
the sequential behavior of users. A common theme is thaterlng is done based on
similarity between sequential pattern instances in thaitrg data. Bauer then uses the
resulting clusters as classes for a supervised learningitdm. Lane and Brodley use
the clusters to detect anomalous user behavior. Neithesiigates possible statistical
biases as we do.

3 A Comparison of Unsupervised Techniques

We conducted extensive experiments using synthetic dataparing support, confi-
dence, support/confidence and dependency-detection asBgest. In each run, the
techniques above were to discover five different re-ocagtrue segmentuniformly
distributed within a file of 5000 streams. We refer to the patage of the streams
that contain true segments pattern rate thus low pattern rates indicate high levels
of noise. The example streams might include additional semévents before, after,
or within a segment. We controllédtra-pattern noise ratethe probability of having
noise inserted within a pattern.
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Fig. 1. Accuracy of unsupervised sequence learning methods.

In each experiment, each technique reported its best 10esggrandidates, and
those were compared to the five true segments. The resuléssmemsured as the per-
centage of true segments that were correctly detecteddtad! of the technique, here-
inafter denotedaccuracy. The support/confidence technique requires setting manua



thresholds. To allow this method to compete, we set its lulels such that no true pat-
tern would be pruned prematurely. We refer to this technagé&Support/Confidence
Optimal”. We have also tested a more realistic version oétberithm, using fixed min-
imal confidence of 20% (“Support/Confidence”). While the supjeonfidence method
is meant to return all segments satisfying the thresholidh, vo ordering, we approxi-
mated ranking of resulting segments by their support (#dftexsholding).

We varied several key parameters in order to verify the ateiscy of the results.
For three different values of alphabet size, dendte, 10 and 26) and three ranges
of true-pattern sizes (2—3, 3-5 and 4-7) we have generatadéts of sequences with
incrementing values of pattern rate. Intra-pattern-naiagfixed at 0%. For each pattern
rate we have conducted 50 different tests. Overall, we rarieh of 4500 tests, each
using different 5000 sequences and different sets of 5 @ttenms.

The results are depicted in Figure 1. The X-axis measuregdtiern rate from
0.2% to 100%. The Y-axis measures the average accuracy diffaeent techniques
over the various combinations @fand pattern size. Each point in the figure reflects the
average ofi50different tests. The “Optimal Support/Confidence” teclueidgs denoted
"Sup/Conf Optimal", where the standard method, using a fixéimal confidence
value, is denoted "Sup/Conf". The dependency-detectidensted “DD".

The figure shows that dependency-detectiDD) outperforms all other meth-
ods for low and medium values of pattern rate. However, tselt® cross over and
support/confidence optimal outperforms DD at high pattates. The standard sup-
port/confidence, as well as the simple support techniqusjge relatively poor results.
Finally, confidence essentially fails for most pattern ratkies.

Figure 2 shows the results for the same experiment, focusingattern rates up to
5%. As can be clearly seen, DD quickly achieves relativeffhlzsiccuracy, at least twice
as accurate as the next best technique, support/confidptiogab A paired one-tailed
t-test comparing DD and support/confidence optimal forguattates of up to 5% shows
that the difference is significant at the 0.05 significangellé < 1 x 10719).
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Fig. 2. Accuracy at low pattern rates (high noise).



For lack of space, we only briefly discuss the effect of thénaljet sizel” on the
accuracy of the different algorithms. All methods achieedtdr results with greater
alphabet sizes. However, when the alphabet is sriiai(5), the results of DD are up
to 25 times more accurate than other methods, in high nofiegse

4 Statistical Biases

We analyzed the results of the different techniques andddhat all methods suffer
from common limitations: (i) Bias with respect to the lengtithe segments (Section
4.1); and (i) inability to group together multiple instaascof the same pattern (4.2).

4.1 Removing the Length Bias

The first common limitation of the approaches described abig\their bias with re-
spect to the length of the segments. Figure 3 shows the av&ragth of the segments
returned by the learning algorithms, in a subset of the w&®ts/n in Figure 1, for two
different values of pattern rate (0.5% and 75%), where thgtkeof the true patterns
was set to 3-5 (average 4) and alphabet size was fixed at 10. The figure shows that
the support algorithm prefers short segments. The optiapdart/confidence algorithm
behaves similarly, though it improves when pattern ratesiases (75%). DD is slightly
better, but also prefers shorter sequences at low noish (fagern rate) settings. In
contrast to all of these, Confidence prefers longer seqsence
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Fig. 3. Average segment length for two pattern rate values.

Different methods have different reasons for these big&agport-based methods
have a bias towards shorter patterns, because there arefitioeen: Given a target pat-
tern ABCD, the patternAB will have all the support oABCD with additional support
from (random) appearancesABE,ABC,ABG,.. Confidence has a bias towards longer



sequences, because their suffix can be easily predicted bagkeir prefix simply be-
cause both are very rare. Finally, DD methods prefer sheegments at higher pattern
rate settings. We found that this is due to DD favoring subeages of true patterns
to the patterns themselves. When pattern rate is high, signifpatterns also have sig-
nificant sub-patterns. Even more: The sub-patterns may Higher significance score
because they are based on counts of shorter sequences—whinbr frequent as we
have seen. This explains the degradation in DD accuracyhehpattern rates.

In order to overcome the length bias obstacle, we normatindidate pattern ranks
based on their length. The key to this method is to normalizamaking based on units
of standard deviation, which can be computed for all lengBigen the rank distribu-
tion for all candidates of length, let R* be the average rank, aritf be the standard
deviation of ranks. Then given a sequence of lerfgthwith rank r, the normalized
rank will be #. This translates the rankinto units of standard deviation, where
positive values are above average. Using the normalizdd are can compare pat-
tern candidates of different lengths, since all normalizgtks are in units of standard
deviation. This method was used in [7] for unsupervised sggation of observation
streams based on statistical dependence tests.

4.2 Generalizing from Similar Patterns

A second limitation we have found in existing methods is ilitgito generalize pat-
terns, in the sense that sub-segments of frequent or sigmifiatterns are often them-
selves frequent (or significant). Thus both segment andultsesgment receive high
normalized ranks, yet are treated as completely differattems by the learning meth-
ods. For instance, if a patterhBC D is ranked high, the algorithm is likely to also rank
high theshadow sub-patternd BC, BC, etc. Normalizing for length helps in estab-
lishing longer patterns as preferable to their shadowsthaushadows might still rank
sufficiently high to take the place of other true pattern$final pattern list.

We focus on a clustering approach, in which we group toggih#ern variations.
We cluster candidates that are within a user-specified Hbte<f edit distancefrom
each other. The procedure goes through the list of candidiapedown. The first candi-
date is selected as the representative of the first clusteh & the following candidates
is compared against the representatives of each of thérgxggtoups. If the candidate
is within a user-provided edit-distance from a represamaif a cluster, it is inserted
into the representative’s group. Otherwise, a new groupeiated, and the candidate is
chosen as its representative. The result set is composdidyobap representatives.

Generally, the edit-distance between two sequences isitiienal number of edit-
ing operations (insertion, deletion or replacement of glsievent) that should be ap-
plied on one sequence in order to turn it into the other. Famge, the editing distance
between ABC and ACC is 1, as is the editing distance betweeaWdCABC. A well
known method for calculating the edit distance betweeneecgs iglobal alignment
[11]. However, our task requires some modifications to theegd method. For exam-
ple, the sequence pai{siBCDE, BCDEF} and{ABCD, AEFD} have an edit-
distance of 2, though the former pair has a large overlappizequence5C DE),
and the latter pair has much smaller (fragmented) ovedtl&iD.



We use a combination of a modified (weighted) distance catlicud, and heuristics
which come to bear after the distance is computed. Our akgmimmethod classifies
each event (belonging to one sequence and/or the otherad three types: appearing
before an overlap between the patterns, appearing witkinvarlap, or appearing after
the overlap. It then assignsweightededit-distance for the selected alignment, where
the edit operations have weights that differ by the clashefdvents they operate on.
Edit operations within the overlap are given a high weiglatléd mismatch weight
Edit operations on events appearing before or after thdagvare given a low weight
(edge weight In our experiments we have used an infinite mismatch weigbaning
we did not allow any mismatch within the overlapping segmEeiatvever, both weight
values are clearly domain-dependent.

In order to avoid false alignments where the overlappingrsey is not a signifi-
cant part of the overall unification, we set a minimal thréddhgon the length of the
overlapping segment. This threshold is set both as an aksalue and as a portion of
the overall unification’s length.

5 Experiments

To evaluate the techniques we presented, we conductedsexdaxperiments on syn-
thetic (Section 5.1) and real data (5.2).

5.1 Synthetic Data Experiments

We repeated our experiments from Section 3, this time wighntlodified techniques.
Figure 4 and Table 2 show the accuracy achieved at differatenn rates, paralleling
Figures 1 and 2, respectively. Figure 4 shows all resultdgvliable 2 focuses on low
pattern rates (high noise). Every point (table entry) isaherage ofA50different tests,
contrasting standard, normalized (markédand normalized-clusteredC) versions
of DD, Support, and Optimal Support/Confidence (marked kirap Sup/Conf).

The results show that length normalization improa#igested algorithms. For in-
stance, the support technique has completely failed tatietee segments for a pattern
rate of 1%, while its normalized version has achieved aoyuod 39% at this rate.
Clustering the normalized results improved the resultér by notable margins.

The improvements derived from normalizing and clusterivgresults both proved
to be statistically significant for all learning techniquEer instance, a paired one-tailed
t-test shows that the normalized version of DD is signifitabétter than the standard
version p < 1 x 10~1%) and that the clustered-normalized version of DD signifiyan
outperforms the normalized versign € 1 x 10~19),

The improvements are such that after normalization andering), the simple sup-
port technique outperforms the standard DD method for afeparate values, includ-
ing 0.2%-0.5%. This is where standard DD performs signifigebetter than the other
standard techniques. Indeed, after length-based stdrdtiod and clustering, DD may
no longer be superior over the support/confidence approach.

Figure 5 shows the results from one specific setting, whetle hormalizing and
normalizing-clustering proved particularly effectiveadh point in the figure represents



Table 2. Accuracy at low pattern rates.

[Pattern Rate (%)0.2[0.5] 1 [ 2 [ 5 [10]

DD 2.7|26.841.145.951.954.4
N. DD 13.628.142.348.252.856.0
NC. DD 13.428.345.653.060.866.5

Sup/ Conf 1.3|10.220.319.633.034.9
N. Sup/ Conf |16.630.844.749.859.863.7
NC. Sup/ Conf |16.432.651.054.970.473.0

Sup 0.0/0.0/0.0/0.0|8.2|7.5
N. Sup 16.629.939.341.248.2 50
NC. Sup 16.429.7/47.047.1/58.466.0
Conf 0.0/0.0|/0.0/0.0/0.0/0.0
N. Conf 0.0/ 1.0|13.421.331.037.1
NC. Conf 0.011.2|14.4 22| 34 |42.0
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Fig. 4. Modified: All Pattern Rates, average results.

the average of 50 different tests, with an alphabet sizerbtrae patterns composed of
3-5 events. In the figure, the normalized version of the sugpohnique has achieved
accuracy of 78% for a pattern rate of 1%, comparing to 0% aoyuwf the standard ver-
sion. The normalized clustered versions of all algorithagehachieved more than 95%
accuracy for a pattern rate as low as 1%, where the accurahg sfandard techniques
was 0% for support, 66% for support/confidence and 82% for DD.

We have also evaluated the effects of intra-pattern noisth@muality of results.
In general, for all alphabet and pattern sizes, we have folaicthe Normalized Clus-
tered versions offer consistent improvements to accurédyoomalized methods, in
the presence of up to 25% intra-pattern noise.

We evaluated our techniques with an additional dataset.d#d the text of George
Orwell's 1984to test our modified techniques on data that was both moristiealet
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Fig. 5. Modified: T' = 26, Patterns of size 3-5

still allowed for controlled experiments. In one experipeme changed the original
text by introducing noise within the words and between thEor. instance, the first
sentence in the book - "It was a bright cold day in April* waplaeed by Tt oH714H
XywOct8M (...9 more noisy words) 6j@a2x imfG8elx (...2 more noisy words)
nBaorloL iWtHhTEgbright cT xcoldVuv vfdaylAp BsQG9pyK 8NxinXR 8 TGmx-
cXO EllenU2QApri ulxL". We inserted only fixed 8-character sequences, such that
each actual word that is shorter than 8 characters was pasdtiechoise, and words
longer than 8 characters were cut. We set pattern rate to 40%slerting 6 noisy
streams, for each 4 containing actual words. Intra patteisenwas set at 10%. We
then counted how many of the top 100 candidates returned dyteahnique are ac-
tual words appearing in the book. We hoped to find as many lastirds in the results
set as possible. The results, reflecting the average agcavac the first 8 chapters of
the book, are shown in Figure 6. Similar improvement resutéise achieved for other
settings of pattern rate and intra pattern noise.
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Fig. 6. Accuracy improvements: Orwell’'s 1984.



The results show that for each of the presented techniqeedubtered normalized
versions have significantly outperformed the standardmessincreasing accuracy by
up to 41% for the support algorithm. The normalized versioage typically outper-
formed the standard versions, except for the case of DD, eminer normalized results
contained various sequences that reflected the same weelSéstion 4.2), and were
then significantly improved by our clustering approach.eNaiso that among the stan-
dard techniques, DD has once again outperformed the othion®

5.2 Real World Experiments

We conducted real-world experiments on UNIX command lirgusaces. We utilized
9 data sets of UNIX command line histories, collected for f8edént users at Purdue
university over the course of 2 years [12]. In this case, waatknow in advance what
true patterns were included in the data, thus quantitatiauation of accuracy is not
possible. However, we hoped to qualitatively contrast thigepn candidates generated
by the different methods.

The results suggest again that among non-normalized e DD is superior.
While the results of support and confidence methods congisééaly of different vari-
ations ofls, cd andwvi, DD was the only algorithm to discover obviously-sequéntia
patterns (that were not necessarily frequent) suctgas “g <file>;a.out”, “| more’,

“Is -al’, “ ps -ef’, “xlock -modg “ pgp -kvw, etc.

The clustered-normalized versions of both DD and suppmrfidence detected
more complex user patterns, which were not detected by #melatd techniques. The
results clearly show the ability of the improved techniqgteediscover valuable sequen-
tial patterns, which characterize interesting user beiagind are overlooked by the
standard methods. Among these sequential patterns are:

1. ps -aux | grep <process>; kill -9-a user looking for a certain process id to kill.

2. tar <3 args>; cd; uuencode <2 args> > <file>; mailx—a user packaging a direc-
tory tree, encoding it to a file, and sending it by mail.

3. compress <arg>;quota;compress <arg>; quetsa user trying to overcome quota
problems by compressing files.

4. latex <arg>; dvips <arg>; ghostview—a latexwrite — compile — view cycle.

5. vi <arg>; gcc <arg>; a.out; vi <arg>; gcc—anedit — compile — run cycle.

6 Conclusions and Future Work

This paper tackles the problem of unsupervised sequencerigaThe challenge is ad-
dressed by improving sequence learning algorithms, whittaet meaningful patterns
of sequential behavior from example streams. We empiyicaimpared these algo-
rithms, to determine their relative strengths. Based ordineparison, we noted several
common deficiencies in all tested algorithms: All are susbépto a bias in preferring
pattern candidates based on length; and all fail to gezerglatterns, often taking a
high-ranked pattern candidate as distinct from its sha@uérpatterns.

We use a normalization method to effectively neutralizeléingth bias in all learn-
ing methods tested, by normalizing the frequency/sigmfiearankings produced by



the learning methods. Use of this method had improved acgumaup to 42% in test-

ing on synthetic data. We then use a clustering approachdasa modified weighted
edit-distance measure, to group together all patternsattgatlosely related. The use
of clustering in addition to normalization had further iraped accuracy by up to 22%
in some cases. We also show that the techniques are robusis®in and out of the

patterns. Finally, the improved methods were run on twotamtdil sets of data: se-
quences from Orwell’s 1984, and UNIX real-world commantkldata. The methods
successfully detected many interesting patterns in both.

A weakness with the methods that we presented is their useveily large data-
bases. For instance, normalization requires repeatediytic all the patterns in the
database, and would therefore be inefficient for large datang applications. How-
ever, the techniques we presented are well suited for tlypigent-observation data
(such as RoboCup soccer logs or UNIX command-line data). ldetp consider large
data-mining applications in our future work.
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