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Abstract. This paper considers the problem of multi-robot patrolling

along an open polyline, for example a fence, in the presence of an ad-
versary trying to penetrate through the fence. In this case, the robots’
task is to maximize the probability of detecting penetrations. Previous

work concerning multi-robot patrol in adversarial environments consid-
ered closed polygons. That situation is simpler to evaluate due to its
symmetric nature. In contrast, if the robots patrol back and forth along
a fence, then the frequency of their visits along the line is coherently

non-uniform, making it easier to be exploited by an adversary. More-
over, previous work assumed perfect sensorial capabilities of the robots
in the sense that if the adversary is in the sensorial range of the robot
is will surely be detected. In this paper we address these two challenges.

We first suggest a polynomial time algorithm for finding the probability
of penetration detection in each point along the fence. We then show
that by a small adjustment this algorithm can deal with the more real-

istic scenario, in which the robots have imperfect sensorial capabilities.
Last, we demonstrate how the probability of penetration detection can
be used as base for finding optimal patrol algorithms for the robots in
both strong and weak adversarial environment.

Keywords. Multi-Robot systems, Adversarial/game domains, Multi-
robot path planning

1. Introduction

The problem of multi-robot patrol has been investigated during the past few years
[3,4,8]. The subject is of interest for a number of reasons, mainly its applicability
in various domains, for example floor cleaning or lawn mowing [6]. In this problem,
a team of robots is required to continuously visit the area, borders of a closed
area or an open polyline, while monitoring it in order to detect change in state.
Most of the studies in this area concentrated in assuring optimization of frequency
criteria [4, 8]. However, several studies considered the problem of multi-robot
patrol in adversarial environment, in which the robots are required to patrol along
a given area in order to maximize the probability of detecting an adversary which
attempts to penetrate through the patrol while trying to evade the robots. This
problem is applicable in many security applications [1, 2, 11].
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In this work we concentrate on multi-robot patrol in adversarial settings
along an open polyline, for example a fence. In such environments, the k robots
are required to travel back and forth along the line in order to maximize the
probability of detecting penetrations.

Recent studies of multi-robot patrol in adversarial environment concentrated
on patrolling around closed areas, i.e, a closed polyline (circle) [1]. The open
polyline environment is more complicated to analyze, due to several reasons. The
main reason lies in the fact that when a robot travels back and forth along a line,
the frequency is inherently non-uniform. Therefore in adversarial environments
the adversary can take advantage of this fact and manage to penetrate more
easily. This forces the robots to adopt an asymmetric behavior in the sense that
at each point along the line the best action of the robot might be different.

Another assumption made in previous work concerns the perfect sensorial
capabilities of the robots with respect to detecting the penetration. In [1, 2] the
authors assume that the robots detect penetrations with probability 1 once the
adversary lies within the sensorial range of a robot. However, in reality this might
not be the case. In many cases, the system can guarantee that the robot will
detect the adversary up to some percentage, i.e., with probability pd.

In this paper we tackle these two challenges. We first contrast the two envi-
ronments - patrol along closed and open polylines, and show the consequence of
the difference between the two with respect to the calculation of probability of
penetration detection along the polyline.

We provide a polynomial time algorithm for finding the probability of pene-
tration detection (ppd) in each segment along the open polyline, with respect to
the location and direction of the robots. We then consider robot with imperfect
detection, i.e., pd < 1, and describe an algorithm that finds the probability of
penetration detection in each segment with respect to this pd value.

Finally, we show that after establishing the probabilities of penetration de-
tection along the line, this information can be used as base for finding the optimal

patrol algorithm in different adversarial environments. We demonstrate how the
ppd functions are used in order to find the optimal patrol algorithm in a strong
adversarial model, in which the adversary has full knowledge of the patrol scheme.
We then show that if the robots are faced against a weak adversary that chooses
its penetration spot at random, the optimal patrol that maximizes the expected
ppd is no longer the deterministic algorithm as in the case of a closed polyline.

2. Related work

Systems of multiple robots engaged together in order to patrol in adversarial
environments has been studied in various contexts. The problem is related to the
multi-robot coverage (e.g. [5]), in which a team of robots is required to visit a
target area once. However, in the area patrol problem (e.g. [3, 8]) and the fence
patrol problem [9], the area is visited continuously by the team of robots while
usually attempting to maintain some frequency criteria.

Agmon et. al. [1] introduced the multi-robot perimeter patrol in adversarial
environments, along with the robotic model we base our work upon. In their work,
they make worst-case assumptions regarding the capabilities of the robots, i.e.,
they assume the adversary has full knowledge of the robots’ patrol algorithm.



They provide a polynomial time algorithm for finding the probability of pene-
tration detection throughout the perimeter, and describe a second algorithm for
using these probability functions in order to find the patrol algorithm that max-
imizes the minimal probability of penetration detection along the perimeter. As
mentioned previously, they assume that the detection of the adversary is perfect.

Agmon et. al. [2] further study the perimeter patrol problem in different ad-
versarial environments. They study the case in which the adversary has no knowl-
edge of the patrol algorithm, and chooses its penetration spot at random with
uniform distribution, and show that the simple deterministic algorithm maxi-
mizes the expected ppd in this case. They examine the compatibility of different
algorithms to different adversarial settings also empirically, and have shown that
the algorithm intended for the worst case scenario failed miserably when working
against a random adversary, and that the deterministic algorithm failed against
a strong adversary. Also in this work Agmon et. al. do not refer to imperfect
sensorial capabilities of the robots.

Other closely related work is the work by Paruchuri et. al. [11, 12], which
consider the problem of placing security checkpoints in adversarial environments.
They use policy randomization for the agents behavior in order to maximize their
rewards. In their work, the adversary has full knowledge of the agents, therefore
it uses it in order to minimize its probability of being caught in some checkpoint.

Elmaliach et. al [9] consider the fence patrol problem, however they aim to
maximize optimization criteria using a deterministic algorithm, and do not as-
sume the existence of an adversary. They provide a mathematical model that
takes into consideration drawbacks of the system, for example odometry prob-
lems, when trying to find a patrol algorithm that maximizes the optimization cri-
teria. Specifically, they show that overlapping the sections of responsibility given
to each robot can be advantageous, and the optimality of the patrol algorithm
is characterized by the extent of the overlap. In this paper, we show that in an
open fence the deterministic algorithm is no longer optimal for both adversarial
model, hence using this algorithm is not beneficial.

Theoretical work based on stochastic processes that is related to our work is
the cat and mouse problem [7], also known as the predator-prey [10] or pursuit

evasion [13]. In this problem, a cat is attempting to catch a mouse in a graph
where both are mobile. The cat has no knowledge about the mouse’s movement,
therefore as far as the cat is concerned, the mouse travels similarly to a simple
random walk on the graph. We, on the other hand, have different assumptions
about the adversary, consider a robotic model, in which the movement is correlated
to the movement of a robot, and in our model the robots travel along a fence,
rather than in a graph or an area.

3. Background

3.1. Robotic and environmental model

In our work, we assume to be given a team of k homogenous robots that are
required to patrol along an open polyline. The line is divided into N segments
(not necessarily of the same length or orientation - see figure 1c.), where each
robot travels through one segment per one time cycle. This allows us to consider
heterogenous domains, i.e., domains in which the velocity constraints along the



perimeter can change. Note that the polyline is not necessarily straight, but can
be of any open shape. We then divide the N segments into k sections, where each
section contains d = N/k segments. We therefore focus our analysis of the system
to analysis of a section, since the behavior in equivalent in all sections.

We assume the robots have directionality associated with their movement.
In each time cycle, the robots have to decide where they should go. Since this is
a line, they have the option to continue in their current course or turn around.
Turning around may be costly, hence we model this cost by the number of time
cycles it takes the system to stabilize after all robots turn around, denoted by τ .

The patrol algorithm of the robots is characterized by the probability p,
i.e., the robots go straight forward with probability p, and turn around with
probability q = 1− p.

In our adversarial models, the adversary had to decide at time 0 through
which segment to penetrate. We assume that the time it takes it to penetrate is
not instantaneous, and lasts t time units.

3.2. Patrolling along a closed polyline vs. an open polyline

As stated previously, recent studies in multi-robot patrol in adversarial environ-
ments [1,2] assume the robots travel around a closed, circular, area. In the follow-
ing, we describe why patrolling along an open polyline has a challenging nature
compared to patrolling in cyclic environments (closed polyline).

The first reason lies in the fact that the robots are required to go back and
forth along a part (or parts) of the open polyline, therefore the elapsed time
between two visits of a robot in each point along this line can be almost twice
as long as the elapsed time in a circular setting. In Figure 1, we are given two
environments: one closed polyline (circle) (a) and an open polyline (b). Note that
the open polylines b. and c. are equivalent in the sense that each robot travels
through one segment per time step, regardless of the shape of the section. Both
lines a. and b. are of the same total length l and with the same number of robots
(4). In the circular environment, if it takes an adversary more than l/4 time units
to penetrate - it will never be able to penetrate even if the robots simply travel
with uniform distance between them continuously. However, if the robots travel
along an open polyline (b), the maximal time duration between two visits of the
robot — even in the best case, is 2l/4− 2 [9]. Therefore a weaker adversary that
has penetration time which is almost twice as long as in the circular fence might
still be able to penetrate.

b. c.a.

Figure 1. Illustration of the difference between patrolling along a line and patrolling along a

circle, for different polylines

Another reason for the added complication in analyzing the probability of
penetration detection in open polyline environments lies in the asymmetric nature
of traveling in the segments along time. In a circular environment, if the robots



are coordinated and switch directions in unison, then the placement of the robots
is symmetric in each time unit. Therefore all segments in the same distance from
some robot (with respect to its direction) have the same probability of penetration
detection. Hence in order to calculate the optimal way of movement (in our case
the probability p of turning around), it is enough to consider only one section
of d segments, and the resulted p is equivalent throughout the execution [1]. In
an open polyline environment this is not the case. The probability of penetration
detection differs with respect to the current location and direction of the robot.
Therefore the algorithm that finds the ppd for each segment, needs to calculate
the ppd as a function of p for each segment si for each possible initial location of
the robot inside the section. Therefore it results with a matrix of size d×d of the
ppd functions (as opposed to a vector of d functions in the circular fence).

4. Patrol along an open polyline

The best patrol algorithm for a team of robots in adversarial environment requires
to find the algorithm that maximizes some function of the probability of pene-
tration detection (ppd). This function depends on the assumptions made on the
capabilities of the adversary [2]. However, the basic step upon which other calcu-
lations are made is finding the probability of penetration detection in all segments
along the fence. Therefore in this section we describe Procedure FindFencePPD

that finds the ppd in the segments.
The ppd in a segment si is determined by the probability of the first arrival

to si during t time units. This is due to the fact that we assume, at this stage,
that if the robot arrives at a segment that is currently occupied by the adversary,
it will detect it, hence it does not matter if the segment is visited more than once
during t time units. For simplicity, we discuss the case in which τ = 1.

Denote the ppd in segment si by ppdi. We describe the system as a Markov
chain (see Figure 2). Since the robots have directionality associated with their
movement, we create two states for each segment: the first for traveling in a seg-
ment in the clockwise direction, and the second for traveling in the counterclock-
wise direction. The probability of turning around at the end of each section is 1,
otherwise the robot is going straight with probability p, and turns around with
probability q = 1− p.

The algorithm is dynamic programming inspired, and uses the state transition
rules describes in Figure 2 in order to fill in a matrix M gradually, until reaching
the state of the system after t time units (last line). The algorithm works as
follows. Each segment si is associated with a “phantom” variable fi. Whenever
an element goes through si’s location in the matrix, it is multiplied by fi. At the
end, all visits to the segment are added, and all fantom variables are substituted
with 1 except for fi. Therefore the polynomial coefficients of f t

i is the probability
of the t’th visit to si, the coefficient of f t−1

i represents the probability of the t−1
visit, and so on. Hence ppdi in this case is the polynomial visit of f1

i , i.e., the
probability of first visit to si.

Recall that d = N/k. The returned value from Procedure FindFencePPD is a
matrix of size d × d, where each row i contains d functions representing the ppd

in each segment, given that the robot is currently in segment i.
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Figure 2. Description of the system as a Markov chain, as base for the FindFencePPD algorithm.

Algorithm 1 Procedure FindFencePPD(d, t)

1: for loc← 1 to d do

2: Create the matrix Res of size d× d, initialized with 0s.
3: Create the matrix M of size 2d× (t + 1) initialized with 0s.
4: Set M [1, scw

loc]← floc

5: Fill all entries in M gradually using the following rules.
6: for r ← 2 to t do

7: Set M [r, scw
1 ]← f1 ×M [r − 1, scc

1 ]
8: Set M [r, scc

d ]← f1 ×M [r − 1, scw
d ]

9: for all other entries in row r do

10: Set M [r, scw
i ]← vi × {p ·M [r − 1, scw

i+1] + q ·M [r − 1, scc
i ]}.

11: Set M [r, scc
i ]← vi × {p ·M [r − 1, scc

i−1] + q ·M [r − 1, scw
i ]}.

12: Create the vector V of size d
13: for j ← 1 to d do

14: V [j]←
∑t

i=1
M [i, scw

j ] + M [i, scc
j ]

15: For each entry i in V , substitute all fk, k 6= j with 1.
16: Set Res[loc, j]← polynomial coefficient of fj in V [j].
17: Set Resk ← V M .
18: Return Res.

Time complexity: The time complexity of Procedure FindFencePPD is O(d2t),
since we fill in the matrix M d times, where in each time it takes d · t time to fill
it. Hence the total time complexity is O(d · d · t) = O(d2t).

5. Imperfect detection

In many cases, even if the adversary passes through the sensorial range of the
robot, it still does not necessarily detect it. Assume that the robot is currently
monitoring some segment si. If the adversary penetrates through si while it is
monitored, then the probability that the robot actually detects the adversary
is pd. The major difference when considering this case compared to the case in
which pd = 1, is that revisiting a segment can increase the probability of detecting
the adversary. Therefore the probability of detection in a segment si (ppdi) is
not equivalent to the probability of first arriving at si, but the probability of



detecting the adversary during some visit m to si, assuming it was not previously
detected. Denote the probability of the y’th visit of some robot to segment si by
wy

i . Therefore ppdi is defined as follows.

ppdi = w1
i pd + w1

i (1− pd)× {w
2
i pd + w2

i (1− pd)× {. . . {w
t
i × pd}}} (1)

In other words, the probability of detecting the penetration is the probability
that it was detected in the first visit (w1

i · pd) plus the probability that it was
not detected then, but in later stages. This again is the probability that it was
detected in the second visit (w2

i · pd) or in later stages, and so on.
Note that in t time units, wt

i = 0 for all segments si currently unoccupied by
some robot, and if a robot resides in si, then this value is exactly pd(1− p)t.

Algorithm 2 Procedure ComputeProbPPD(d, t)

1: Run Procedure FindFencePPD(d, t) while returning the entire polynomial, i.e.,
skipping line 16 of the procedure.

2: for j ← 1 to d do

3: for i← 1 to d do

4: wy
i ← polynomial coefficient of fy

i .
5: PRes[j, i]← substitution of wy

i ,∀y in Equation 1.

Theorem 1. For each segment si, Procedure FindFencePPD computes ppdi.

Proof. In order to prove the theorem, we need to show that the algorithm com-
putes correctly the probability of the m’th arrival to si, for every 1 ≤ m ≤ t, i.e.,
the coefficient of fm is exactly wm

i . Since each path is multiplied by f each time
it passes through si, then necessarily if the path went through si m times, it is a
coefficient of fm. By adding all arrivals to scw

0 and scc
0 , we take into consideration

all visits to si, hence all paths going through si are taken into consideration, and
by using Equation 1, we generate exactly ppdi.

As in FindFencePPD, the returned value is a matrix of size d× d, where each
row i contains d functions representing the ppd in each segment, given that the
robot is currently in segment i.

6. Applying knowledge of ppd functions in determining the patrol algorithm

Finding the ppd in all segments of the section is the first step in determining the
best patrol algorithm for the robots. After obtaining this information, a suitable
function can be executed in order to meet the desired criteria which depends on
the adversarial model. The criteria could be maximizing the minimal ppd for a
strong adversarial model, or maximizing the expected ppd for a weak one [2].

In the case of a fence, the ppd value depends on the current location of the
robot, hence the optimal p value characterizing the patrol of the robots is different
for each segment si, where 1 ≤ i ≤ d. Note that there could be different optimal
p values with respect to both location and orientation of the robot (2d values).
However, it is enough to calculate the ppd values only d times - only for one
direction, as the other direction is a reflecting image of the first (see Figure 3).
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Figure 3. An illustration of the required output as a patrol algorithm, and where to use it.

6.1. Strong adversarial model - full knowledge

We demonstrate the use of Procedure FindFencePPD in the full knowledge adver-
sarial model. In this model, when the adversary has to decide where to penetrate,
it has full knowledge of the patrol algorithm and the current location of the roots.
Therefore it will necessarily choose to penetrate through the segment in which
the probability of penetration detection is minimal (the weak spot). Therefore in
this case the robots should choose an algorithm that maximizes the minimal ppd

along the section. For that we use algorithm FindP from [1] that finds the value
p such that the minimal ppd is maximized. FindP computes this point by finding
the maximal point in the integral intersection of all curves (ppdi). The complete
description of the algorithm is shown in Algorithm 3.

Algorithm 3 Procedure ComputeProbPPD(d, t)

1: M ← FindFencePPD(d, t)
2: for i← 1 to d do

3: OpP [i]← FindP(d, t) [1] with given additional input M [i] as vector of ppd

functions.
4: Return OpP

6.2. Weak adversarial model - random penetration

We now turn to examine the case in which the adversary does not have full
knowledge of the patrol algorithm. In this case, we assume the adversary chooses
at random with uniform distribution its penetration spot from all unoccupied
segments. Therefore we wish to maximize the expected ppd throughout the line.

In circular environments, it was proven that under this adversarial model,
the optimal patrol algorithm is the deterministic algorithm. However, if the robot
travels along a line - this is not the case any more. We show it by a counter
example. The logic behind this fact is that in some segments, it is worthwhile to
switch the direction of the robot before reaching the end of the section, and by
that cover more segments.

S5

possible

S3 S4

non−deterministic:

deterministic:

S1 S2

Figure 4. An illustration of a case in which the maximal expected ppd is obtained by a non
deterministic algorithm. Each arrow represent a movement in one time cycle.

Consider the case in which d = 5 and t = 5. If the robot is placed in segment
s4, then the ppd values are as follows. ppd1 = (1 − p)p4, ppd2 = (1 − p)p3,
ppd3 = (1− p)p2 + p5 + (1− p)3p2, ppd4 = 1 and ppd5 = p + (1− p)2p, and the



expected ppd is maximized for p = 0.418. The logic, as explained previously, is
illustrated in Figure 4. It demonstrates that the robot can profit from turning
around at s4, since it can reach four segments, where if it travels deterministically
through all segments, i.e., go straight to s5, it reaches only three segments.

This strengthens our need to find the actual ppd values in all segments, since
after obtaining these functions, it is possible to calculate the p value that maxi-
mizes the expected ppd throughout the line. This can be done using a procedure
similar to ComputeProbPPD, while replacing the call to FindP to a function that
calculates the p value that maximizes the expected ppd.

7. Conclusions and future work

This paper discusses the problem of multi-robot patrol along an open polyline in
adversarial settings. We show that this case is more challenging than the problem
of multi-robot perimeter patrol, which is symmetric by its nature. We provide a
polynomial-time algorithm for finding the probability of penetration detection in
each segment along the line. We then tackle another challenge posed by previous
studies, and show that this algorithm can be altered into considering also more
realistic cases in which the robots do not have perfect detection, i.e., the robot
will detect the adversary if it is in its sensorial range with probability pd. We then
demonstrate how the probability of penetration detection functions can be used
in order to find the optimal patrol algorithm in various adversarial models.

There are various points we wish to address as future work. First, we are
interested in incorporating more realistic considerations in the model, such that
it will better suit various practical systems, for example sensing ahead of the
segment with changing probabilities. Moreover, we intend to check the implica-
tions of the overlapping of sections on the optimal patrol algorithm in various
adversarial models. We are interested in using the ppd functions in order to find
game-theoretic solutions to the the problem. Last, we would like to see how this
algorithm can be adapted to patrol in other domains (area patrol, for example).
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