
In Proceedings of the Eighth Conference on Intelligent Autonomous Systems, March, 2004

Towards a Comprehensive Framework for
Teamwork in Behavior-Based Robots

Gal A. Kaminka, Yehuda Elmaliach, Inna Frenkel,
Ruti Glick, Meir Kalech, Tom Shpigelman

The MAVERICK Group
Computer Science Department

Bar Ilan University, Israel
galk@cs.biu.ac.il

Abstract. Teams of robots are increasingly deployed in real world applications. One
of the key challenges in building such teams is to automate the control of teamwork,
such that the designer can concentrate her efforts on the taskwork to be done. This
paper presents steps towards a novel framework addressing this challenge in teams of
behavior-based agents. The framework provides a rich representation that facilitates
management of teamwork knowledge, and separates behaviors that govern a robot’s
interaction with its task from behaviors that govern a robot’s interaction with its team-
mates. In addition, the paper presents a set of algorithms that control the execution and
communication of behaviors, to automate synchronization and allocation of behaviors
to sub-teams. We describe our implementation of the framework in the BITE architec-
ture, a distributed behavior-based architecture providing automated coordination and
collaboration services in a team of Sony AIBO robots.

1 Introduction

Teamwork in autonomous agents and robots is fast becoming an area of significant interest to
academic and industrial research groups, motivated by interest in deploying autonomous and
semi-autonomous teams of agents in real-world applications. Increasingly, algorithms and
associated representations are being developed to automate the interactions between team-
members, in order to facilitate robust deployment. Indeed, such algorithms have already been
used with robots and virtual robots to address important aspects of teamwork: synchronization
[9], task allocation [7, 12, 2], proactive communications [13], teamwork failure detection,
diagnosis and repair [9, 4, 3], anticipation of teammate needs [11], and human-in-the-loop
[8]. Unfortunately, to the best of our knowledge, no attempt has been made to synthesize these
important contributions into one coherent algorithmic framework. As a result, key questions
in teamwork remain open.

This paper presents our first steps towards a comprehensive framework for controlling
teams of behavior-based agents and robots, synthesizing and integrating many existing al-
gorithms, and adding novel capabilities. The framework relies on maintaining and linking
three graph structures: An organization hierarchy, a task/sub-task behavior hierarchy, and a
set of social behaviors. The social behaviors handle interactions between the agents, and are
triggered upon successful or failed termination of the individual behaviors of agents. The
key idea in the separation of these three components is to simplify team control algorithms



by decoupling control of individual behavior execution from the control of team-members’
interactions. Indeed, we show various teamwork algorithms that operate on these structures.

We describe BITE (Bar Ilan Teamwork Engine), an implementation of these algorithms
in a distributed control architecture. BITE provides several automated teamwork services to
behavior-based robots, and currently targets the Sony AIBO platforms, with additional do-
mains on the way. We demonstrate BITE’s capabilities in running formation-following tasks,
and show that it automatically enables coordinated activity without burdening the designer
with additional work.

This paper is organized as follows. Section 2 provides a brief survey of existing work
and motivates the framework. Section 3 presents the framework. Section 4 presents our im-
plementation of the framework in the BITE architecture, and results of experiments run with
BITE. Section 5 concludes.

2 Motivation and Background

Our work was inspired in particular by four investigations that have tackled teamwork at an
architectural level. Tambe’s work on the STEAM teamwork model [9] have explored the use
of automated decision-theoretic communications in synchronizing the selection and termina-
tion of hierarchical behaviors, and also the use of organizational repair behaviors that could
be triggered based on failures in the organizational structure (such as a teammate perma-
nently crashing). Parker’s work on the ALLIANCE architecture [7] has investigated a robust
distributed behavior-based control architecture in which robots dynamically allocated and
re-allocated themselves to tasks, based on their own sensed failures and those of their team-
mates. Yen et al.’s CAST architecture [13] demonstrated a mechanism for proactive commu-
nications, in which virtual robots anticipate the information needs of their teammates and
respond appropriately. SCORE [12] demonstrated the usefulness of using different protocols
within a single architecture.

All of these architectures are monolithic. They provided some capabilities but not others,
and do not allow the designer to add or subtract capabilities: STEAM provided synchroniza-
tion and some allocation services, but uses a fixed protocol to achieve coordinated activity.
SCORE uses multiple protocols, but lacks many of the fault-tolerance capabilities of STEAM
and ALLIANCE. ALLIANCE is extremely robust to failures, but does not explicitly synchro-
nize robots as they jointly take on tasks. CAST provides proactive communications, but does
not provide many of the services in STEAM.

To rapidly deploy robotic teams, we believe that a comprehensive framework is needed
which integrates many of these capabilities using representations and algorithms for team-
work. However, this integration must not be monolithic, in the sense that it must allow the
designer to explore alternative protocols and automated coordination capabilities, for the task
at hand. The framework we provide seeks to fulfill this vision. It can provide many, if not all,
of the capabilities of previous investigations, but teases apart coordination, control, and com-
munications. None of the previous investigations allows such separation, which we achieve
through the maintenance of separate social behaviors. Thus for instance, it is possible in our
framework to switch between multiple synchronization methods, to dynamically re-allocate
robots to tasks in more than one way, and to manage proactive communications. However,
our work still lacks the failure-recovery facilities of STEAM or ALLIANCE.

Additional recent work in multi-robot systems underscores the need for a comprehensive
framework that facilitates automation of teamwork services. Goldberg et al. explore a dis-



tributed architectures based on the traditional three-tier architecture, in which multiple robots
interact with each other at all three layers [2]. A key difference between this work and ours
is that Goldberg et al. makes a commitment to a market-based resource allocation scheme,
while we leave the allocation method in the hands of the designer. The designer may allow
robots to use a market-based approach, but may also direct them to using other methods.

3 A Framework for Teamwork

The framework uses hierarchical behaviors as the basis for a representation underlying the
controllers for the team members. We add two additional structures to this representation: a
set of social behaviors, and an associated team-hierarchy (described in Section 3.1). We then
describe a number of principal algorithms that use this representation to automate control and
communications of a team of robots (Section 3.2).

3.1 Representation

The first of the three structures specifies the sequential and hierarchical relationships between
behaviors that execute the task. The task behavior graph is an augmented connected graph
tuple < B, S, V, b0 >, where B is a set of task-achieving behaviors (as vertices), S, V sets
of directed edges between behaviors (S ∩ V = ), and b0 ∈ B a behavior in which execution
begins. Each behavior in B may have preconditions which enable its selection (the robot can
select between enabled behaviors, subject to the constraints described below), and termina-
tion conditions that determine when its execution must be stopped. S is a set of sequential
edges, which specify temporal order of execution of behaviors. A sequence of behaviors that
follows sequential edge is called an execution chain. A sequential edge from b1 to b2 speci-
fies that b1 must be executed before executing b2. V is a set of vertical task-decomposition
edges, which allow a single higher-level behavior to be broken down into execution chains
containing multiple lower-level behaviors. At any given moment, the robot is executing a
complete path—root-to-leaf—through the behavior graph. Task-behavior graphs such as this
(with some variations) are fairly popular in robotics and multi-agent systems [1, 7, 6]. We
impose several structural constraint on the behavior graph. The first is straightforward: se-
quential edges may form circles, but vertical edges cannot be a part of a circle. This allows
an execution chain to be repeated by choice, but does not allow hierarchical recursion where
a behavior is decomposed into executing itself.

However, we impose an additional constraint on the semantics of multiple outgoing edges.
Two outgoing sequential edges < a, b >, < a, c > signify a choice point between alterna-
tive execution chains: either b or c must be selected by the robot once its execution of a is
finished. In contrast, two outgoing decomposition edges < a, b >, < a, c > signify comple-
mentary execution chains: Both the execution chain beginning with b and the execution chain
beginning with c must terminate for a to be considered complete. By convention, vertical
edges in this case point only to the first behaviors of execution chains–since in any case such
behaviors must be executed before others in their respective chains. The motivation for these
two constraints will be discussed below.

Figure 1-b shows an example of a simple behavior graph, constructed for experimenting
with multi-robot formation maintenance tasks. Here, there are two formation behaviors—
triangle formation and line formation. Execution begins with triangle formation, and can
(under specific conditions) switch to the line formation. Both formations use one behavior–



{a,b,c}

Follow Right Follow Left Lead Follow

S2

S3
S1 Announce Voting Vote Tally Voting

Call Bidders Bidding Announce

Wait

S1

S2

S3
{b}{a}{c}

{a,c}

Triangle
Formation Formation

Line

LineWalkSearch Walk

S2

S1

S2

S1S1

S2 S2

S1
S3S1

S3

S2

S3

S1

(a) (b) (c)

Figure 1: Portions of the team hierarchy (a), behavior graph (b), and social behaviors (c) for a formation-
maintenance task. Links from (b) to social behaviors in (c) are denoted by S1–S3.

search–which causes robots to localize themselves with respect to others. Once localized,
the robots choose between the walk behavior (which implements walking in triangle) or the
linewalk behavior in which robots follow each other in a line. Selection between these options
must be synchronized across robots—as described below.

Behavior graphs (e.g., [1, 6]) have traditionally been used to proscribe individual behav-
iors, i.e., intra-robot control. Their use in teams of robots is seemingly straightforward: Each
robot has its own copy of the behavior graph. Behaviors whose selection must be coordinated
across the team (i.e., behaviors responsible for inter-robot control) issue appropriate commu-
nication actions to coordinate execution. Unfortunately, it was previously shown [9, 4] that
this simplicity is deceptive, as this approach breaks down in complex, dynamic environments,
and when the organizational structure of the team becomes more complex .

The two remaining structures directly represent organizational structure and organiza-
tional behavior, which seek to address these difficulties. The first of these is the organization
hierarchy, also called the team hierarchy in [4, 10]. This is a DAG (Directed Acyclic Graph)
whose vertices are associated with sub-teams of agents, and whose edges signify sub-team-
membership relationships. Several vertices appear in any organization hierarchy: Given the
complete set of robot team-members R, a vertex corresponding to R (and representing the
entire organization) is a part of the hierarchy, as are all the singleton sets {ri}, where ri ∈ R.
Other vertices correspond to multi-robot sub-teams of robots in R and are connected such that
if there exists an edge < R1, R2 > , then R2 ⊂ R1. The team hierarchy thus forms a partial
lattice, from the root team R which includes all team-members, to sub-teams corresponding
to each of the members by itself (i.e., to the individuals in the organization).

To allow behaviors to reason about the organization responsible for their execution, we
create links between the behavior graph and the team hierarchy, such that there is a link from
a behavior Bj to a sub-team Ri if Bj is to be jointly executed by Ri. Similarly, to allow
reasoning about allocated tasks, we link sub-teams to the behaviors they are responsible for,
such that there’s a link from a sub-team Ri to behavior(s) Bj if Ri is responsible for Bj.
For instance, in Figure 1-a, one can see a team hierarchy composed of three robots, simply
identified as a, b and c. Each team is linked with the behaviors associated with it, and the
behaviors are linked with their associated teams when these are known (shown in the figure
as bi-directional links).

Using these links between the behavior graph and the team hierarchy, a robot executing a
behavior may easily find out whom it should contact in order to coordinate execution of this
behavior. However, its actions to achieve this coordination remain unspecified. For instance,



suppose three robots are executing the formation task triangle formation (Figure 1-b) have
together finished execution of the behavior search, and have started on walk. We remind the
reader that we impose a semantic constraint whereby multiple decomposition edges signify
an allocation choice. The robots must jointly decide how to allocate the different roles of the
formation between them. One must lead the triangle at the front (the lead behavior), while the
others follow—one from the left (follow left) and the other from the right (follow right). To
negotiate this synchronized decision, the robots may communicate, for instance by executing
a bidding protocol where different robots bid on the behaviors they wish to execute. Once
this decision is made, links are created from each behavior to the appropriate vertices in the
team-hierarchy, to denote who is executing what.

True to the behavior-based approach, we allow the designer to define social behaviors,
i.e., control modules which address strictly inter-agent aspects of behavior, such as the voting
behavior previously described. These behaviors are collected together in the third structure,
which contains a set of (possibly unconnected) behavior graphs—each corresponding to a so-
cial behavior—that may have decomposition and sequential transitions leading to other social
behaviors. In order to facilitate the selection and execution of social behaviors in appropriate
points in execution, we link the task behaviors to social behaviors in three separate ways:
(a) synchronized selection of behaviors prior to their execution; (b) team-wide allocation of
robots and sub-teams to behaviors; and (c) synchronized termination of behavior execution.
Social behaviors typically control communication actions and execute interaction protocols
(e.g., voting) that govern coordinated activity.

Synchronized selection occurs when new team behaviors are selected for execution, in
particular when a decision is to be made between several sequential transitions. For instance,
in Figure 1-b, two sequential transitions leave the behavior Search—one going into the be-
havior Walk, and one going into the behavior LineWalk. A synchronized decision is to be
made between these (such that all robots select the same behavior), and execution must be-
gin simultaneously. An appropriate social behavior is used to coordinate this synchronized
selection. For instance, Figure 1-c shows a simple voting behavior (marked S1) in which one
pre-determined robot announces the call for votes and the candidate behaviors, then collects
the votes by all team members and announces the winning behavior. This behavior is then
selected for execution by each robot.

Allocation of sub-teams to behaviors occurs when a behavior is to be decomposed into
children behaviors. If only one decomposition transition exists, then the entire team selects it.
Otherwise, if multiple decomposition transitions exist, then this is taken to mean that the team
is to be split into sub-teams. The appropriate social behavior is called to carry out this alloca-
tion, for instance by using a market-based approach [2], or an agenda-based mechanism [7]
to divide up the work among robots. In Figure 1-c, behavior S2 marks the sequential phases
of a market-based protocol for use in allocating the children behaviors to different sub-teams.
Once this allocation is made, appropriate links are created between the allocated behaviors in
the behavior-graph and the sub-teams in the team-hierarchy responsible for executing them.

Finally, synchronized termination of behavior execution determines the social behav-
ior of robots as they reach the end of an execution chain. Normally, upon terminating an
execution chain, control is passed back to the parent behavior, which is then also terminated.
However, if a parent behavior is associated with a sub-team composed of several members,
then termination of the execution chain must be coordinated, so that teammates know that
it is done with its allocated execution chain. For instance, if the parent behavior has several
robots doing a distributed search for a target, then the first robot to find the target will neces-



sarily want to terminate the search and inform its teammates. To control this social behavior,
a synchronized termination behavior is called. In Figure 1-c, behavior S3 marks a very simple
synchronized termination behavior which is appropriate for the formation task. In the behav-
ior Wait, a robot that has terminated execution of a joint behavior waits for all other robots to
reach the end of their execution chains as well, before they all begin their joint execution of
a new behavior. Alternatively, an agenda-based synchronization mechanism could have been
used to assign the robot, now free of its previously-allocated behavior, to a new behavior.

3.2 Teamwork Algorithms

We now describe some of the principal algorithms that use the representation above. We begin
with the basic algorithm that controls the coordinated execution and selection of behaviors by
robots. As previously described, the control loop executes a behavior stack—root behavior
to leaf—where all behaviors on the stack are executed simultaneously with their currently
selected children.

Each of the robots executes Algorithm 1. Execution begin with putting the initial behavior
of the behavior graph (typically the root) on the execution stack (lines 1–2). Then the algo-
rithm essentially loops over four phases in order. First, it recursively expands the children
of the behavior, allocating them to sub-teams if necessary (lines 3a–3c). It then executes the
behavior stack in parallel, waiting for the first behavior to announce termination (lines 4a–
4c). All descendants of a terminating behavior are popped off the stack (i.e., their execution
is also terminated—line 4b), and then a synchronized termination takes place (line 6). This
can result in a newly-allocated behavior within the current parent context, in which case, it
will be put on the stack for expansion (line 7). Otherwise, this indicates that the robot should
select between any enabled sequential transitions from the terminated behavior (lines 8a–8e).
This process normally results in new behaviors put on the stack. Thus a final goto (line 9)
back to line 3 begins again with their recursive expansion and allocation to sub-teams.

The recursive allocation of children behaviors to sub-teams in lines 3a–3c relies on the
call to the Allocate() procedure. It takes the current execution context (i.e., current stack,
available children), and then first checks in the team hierarchy (via the links from the parent
behavior to the team hierarchy) whether the children are already allocated sub-teams (e.g., by
the designer). If this allocation is complete (all sub-teams have assignments) and correct (e.g.,
no sub-team is assigned to two different behaviors), then this allocation is taken to be pre-
defined by the designer, and transmitted to all other robots on the sub-team responsible for
the current parent (e.g., behavior on top of stack), until all members are in agreement about
how to split the parent’s sub-team into smaller sub-teams that are responsible for the children.
If the allocation is lacking in some way, the appropriate social behavior in O, (linked from
the current parent) is called to execute a procedure that will make this decision. Any current
allocation can then be used to guide the selection. The current execution stack is used to help
guide allocations—for instance by conveying information about where in the behavior graph
the allocation is taking place.

Once a final allocation is determined, Allocate() is responsible for updating the links
from the behavior graph to the team hierarchy (and vice versa) to reflect the allocation. It
then returns, for each robot, the child behavior for which it is responsible as part of the split
sub-team (or individually, if the sub-team is composed only of the individual robot).

Synchronized termination (line 5–7) and selection (lines 8a–8e) similarly rely on calls
to the procedures Terminate() and Decide(), respectively. Terminate() is responsible for
evoking the execution termination social behavior, which can return a new child behavior for



Algorithm 1 Control(behavior graph < B,S, V, bo >, team hierarchy T , social behaviors O)

1. s0 ← b0 // initial behavior for execution

2. push s0 onto a new behavior stack G

3. Let A← {bi| < s0, bi > is a decomposition transition in V } // Allocate sub-task behaviors
(a) if A has only one behavior b, push(G, b).
(b) else b← Allocate(G, s0, A, T,O), then push(G, b).
(c) s0 ← b.

4. execute in parallel for all behaviors bi on G: // Execution
(a) execute bi until it terminates
(b) while bi 6= top(G), pop(G)
(c) break parallel execution, goto 5.

5. b← pop(G) // Terminate joint execution:
6. c← Terminate(G, b, T,O)

7. if c 6= NIL, push(G, c)

8. else: // Select next behavior in execution chain
(a) Let Q← {si| < b0, si > is a sequential transition in S}
(b) if Q is empty, goto 5 // terminate parent
(c) if Q has one element s, push(G, s)
(d) else s← Decide(G, b0, Q, T,O)
(e) s0 ← s

9. If G not empty, goto 3.

execution under the current parent. If it doesn’t, then the next behavior in the execution chain
must be decided on by Decide(), which calls the appropriate social behavior. Since synchro-
nized selection involves all members of the current sub-teams selecting together, this social
behavior would communicate with the members of the sub-team assigned to the terminated
behavior. Note that in step 8b we also handle the case where no more behaviors are available
in the execution chain. This case signals a termination of an execution chain, which in turn
signals termination of the parent, thus the branching back to line 5. We omitted here the obvi-
ously needed check on whether a parent actually exists—if not, then the end of the behavior
graph has been reached, and execution halts.

Algorithm 2 presents provides the team with the capability to inform teammates of sensed
knowledge that is relevant to them. The algorithm is intended to run concurrently with the
control algorithm described above. It works in two phases. In the first phase (obligatory
communications—lines 1a–1c), each robot determines whether new information which af-
fects its current behavior stack has become available, such as newly-satisfied conditions.
These potentially affect the robot’s immediate teammates, and must therefore be commu-
nicated to them by finding out which sub-team is responsible for each behavior on the stack.
The second phase (proactive communications—lines 2a–2b) allows the robot to determine
whether newly sensed information may be relevant to a sub-teams that it is not a member of,
providing them with information even though it is not strictly its own responsibility to do so
(in the sense that it is not its own sub-team that requires this information).

For instance, suppose a team of robots is executing the formation task described above,
with the sub-team allocations as described in Figure 1. Suppose that the robots are currently
executing the Triangle Formation behavior, and are currently executing the Walk behavior.



Algorithm 2 Communicate(behavior graph < B,S, V, b0 >, team hierarchy T )

1. for all behaviors b on behavior stack G: // obligatory communications

(a) t← subteam(b) // sub-team responsible for behavior b
(b) if a termination condition of b is satisfied, inform all members of t
(c) if a precondition of a sequentially-next behavior f (< b, f >∈ S) is satisfied, inform all

members of t

2. for all teams t in the team hierarchy: // proactive communications

(a) C ← {b|b ∈ B, t currently linking to b}
(b) for all b ∈ C and not on the behavior stack:

i. if a termination condition of b is satisfied, inform all members of t
ii. if a precondition of a sequentially-next behavior f (< b, f >∈ S) is satisfied, inform

all members of t

Suppose now that one of the follower robots is currently executing the Follow Left behavior.
Phase 1 of Algorithm 2 guarantees that if this robot discovers that any of the termination
conditions of Follow Left, Walk, or Triangle Formation, then it will inform the appropriate
members of its team. Phase 2 guarantees that if the robot discovers a termination condition
for Lead, then it will inform the members of the sub-team associated with Lead, even though
they are not members of the same sub-team.

Additional algorithms can be derived based on analysis of the three structures and their
interacting links. For instance, it is fairly straightforward to adapt a behavior-recognition
algorithm such as RESL [4, 3] to recognize what behaviors other robots are executing, based
on their observable actions. This information can be very useful to monitor for coordination
failures that can occur if communication fails, and to focus communications only on what
others do not yet know. Similarly, straightforward analysis of the behavior graph can yield
anticipatory information about which behaviors are expected to be selected, thus allowing
robots to anticipate the needs of their teammates [11].

Finally, it is possible to extend the control algorithm to allow human-in-the-loop control
or guidance. This can be done in several ways. First, the social behaviors that govern se-
lection and allocation may appeal to human control. In other words, rather than executing a
voting protocol, a synchronization social behavior may consult the human operator on which
behavior the team should select. Second, the operator may pre-specify allocation of teams
to behaviors before execution. These will be reflected in the results of the Allocate() pro-
cedure as previously described. Third, when an operator takes over the control of a single
behavior (in other words, controlling the robot rather than letting the behavior doing it), the
other robots will still perceive it as acting as part of the team, and will therefore continue to
communicate with it and coordinate with it seamlessly.

4 BITE: An Instantiated Teamwork Architecture

The previous section argues for the benefits of the presented teamwork framework on the
basis of the capabilities it enables. It automates management of communications, both com-
munications obligatory to teammates on the same sub-team, as well as communications an-
ticipating information needs of teammates. It allows a robot team to easily manage sub-teams
and therefore to carefully control which information should be shared with whom. It teases
apart the coordination of behaviors from the execution of the same behaviors, thus facilitating
coordination mechanism re-use in a behavior-based task representation.



(a) Successful triangle formation (b) Failure to maintain triangle
formation. The top left robot has
gotten too close.

Figure 2: Successful and failing triangle formations, by Sony AIBO robots executing the BITE architecture.

Other aspects of the framework may be evaluated by using it on actual robot teams. For
this purpose, we have developed the BITE distributed team control architecture. BITE is an
implemented instantiation of the framework that currently targets the Sony AIBO family of
robots (a port for use in the GameBots domain [5] is on its way). We use BITE to manage
and automate the coordination of robots executing formation-maintenance tasks (Figure 2).

The formation behaviors themselves are built using simplistic algorithms, in which robots
maintain relative angles and positions to a lead robot. Color segmentation is used to identify
the angle to the lead robot, while each AIBO’s sole distance sensor (infra-red) is used to
maintain distance within some constraints.

Without a coordination mechanism, a simplistic algorithm like this is susceptible to sens-
ing failures. For example, if one of the follower robots loses track of the lead robot, it may
be left behind while the lead and the other follower robots move on. This can be fixed in
principle by having the designer of the behaviors also cover this special case in the behavior
itself. This, of course, requires the designer to anticipate this possible problem.

However, by implementing the behaviors in BITE, the burden of worrying about coor-
dination is put on the robots. When one of the loses track of the lead robot, the appropriate
termination condition is satisfied, and the robot switches to the Search behavior. Here BITE
is automatically triggered. Algorithm 2 automatically transmits the change in the termination
condition to the other teammates, thus causing them to stop as well, and also switch to the
Search behavior. This has two benefits: First, all the robots stop and start together. Second,
now that the other robots switch to the Search behavior, they in effect assist the failing robot
in identifying the leader. In fact, depending on whether this is a precondition for the Walk
behavior, the same Algorithm 2 may cause a robot that identifies the leader to automatically
transmit its finding to other robots who may still be searching for it.

Indeed, as with other behavior-selection approaches, the design of the preconditions and
termination conditions is key to a successful application. Behavior designs that do not make
their conditions explicit will not be able to fully utilize BITE’s coordination services. For in-
stance, suppose a follower robot gets too close to the lead robot, due to distance-measurement
errors (e.g., Figure 2-b). If the Follow Left and Follow Right behaviors treat this condition in-
ternally, and thus when a robot is to slow down, this is done without selecting a different
behavior. However, an alternative design would have made this failure an explicit termination



condition of the Follow behaviors. In this case, the other robots would have been automati-
cally informed of this by BITE, and would have been able to take recovery actions on their
own (such as speeding up). However, the design of behaviors is a complex topic outside the
scope of this paper.

5 Summary and Future Work

A key challenge in building robot teams is to automate teamwork, such that the designer can
focus on planning the robots’ taskwork. This paper presents a representation that enables such
automation for behavior-based robots by separating behaviors that control social interactions
from those that manage subtasks, and further distinguishing knowledge of the organizational
structure. We present algorithms for controlling social interactions and communications using
this representation, and an implementation of this framework in BITE, a distributed teamwork
architecture that targets Sony AIBO robots in our lab. We plan to focus our efforts in the future
on human-team interactions within the framework we presented.

Acknowledgments. We thank Avi Rosenfeld, Noam Hazon, and the anonymous reviewers
for useful comments. As always, we thank K. Ushi for her support.

References

[1] R. James Firby. An investigation into reactive planning in complex domains. In AAAI-87, 1987.

[2] Dani Goldberg, Vincent Cicirello, M. Bernadine Dias, Reid Simmons, Stephen Smith, and Anthony Stentz.
Market-based multi-robot planning in a distributed layered architecture. In Multi-Robot Systems: From
Swarms to Intelligent Automata: Proceedings from the 2003 International Workshop on Multi-Robot Sys-
tems, volume 2, pages 27–38. Kluwer Academic Publishers, 2003.

[3] Meir Kalech and Gal A. Kaminka. On the design of social diagnosis algorithms for multi-agent teams. In
IJCAI-03, 2003. socially-attentive monitoring, diagnosis, plan-recognition, belief ascription.

[4] Gal A. Kaminka and Milind Tambe. Robust multi-agent teams via socially-attentive monitoring. JAIR,
12:105–147, 2000.

[5] Gal A. Kaminka, Manuela M. Veloso, Steve Schaffer, Chris Sollitto, Rogelio Adobbati, Andrew N. Mar-
shall, Andrew Scholer, and Sheila Tejada. GameBots: A flexible test bed for multiagent team research.
Communications of the ACM, 45(1):43–45, January 2002.

[6] Monica Nicolescu and Maja J. Mataric. A hierarchical architecture for behavior-based robots. In AAMAS-
02, pages 227–233, Bologna, Italy, July 15–19 2002.

[7] Lynne E. Parker. ALLIANCE: An architecture for fault tolerant multirobot cooperation. IEEE Transac-
tions on Robotics and Automation, 14(2):220–240, April 1998.

[8] Paul Scerri, Lewis Johnson, David Pynadath, Paul Rosenbloom, Mei Si, Nathan Schurr, and Milind Tambe.
A prototype infrastructure for distributed robot-agent-person teams. In AAMAS-03, 2003.

[9] Milind Tambe. Towards flexible teamwork. JAIR, 7:83–124, 1997.

[10] Milind Tambe, David V. Pynadath, Nicholas Chauvat, Abhimanyu Das, and Gal A. Kaminka. Adaptive
agent integration architectures for heterogeneous team members. In ICMAS-00, pages 301–308, Boston,
MA, 2000.

[11] Manuela Veloso, Peter Stone, and Michael Bowling. Anticipation: A key for collaboration in a team of
agents. In SPIE Sensor Fusion and Decentralized Control in Robotic Systems II (SPIE-99), 1999.

[12] Thuc D. Vu, Jared Go, Gal A. Kaminka, Manuela M. Veloso, and Brett Browning. MONAD: A flexible
architecture for multi-agent control. In AAMAS-03, page In press, 2003.

[13] John Yen, Jianwen Yin, Thomas R. Ioerger, Michael S. Miller, Dianxiang Xu, and Ricahrd A. Volz. CAST:
Collaborative agents for simulating teamwork. In IJCAI-01, pages 1135–1144, 2001.


