
Monitoring Large-Scale
Multi-Agent Systems using

Overhearing

Gery Gutnik

Department of Computer Science

Ph.D. Thesis

Submitted to the Senate of Bar-Ilan University

Ramat Gan, Israel

January 2006

This work was carried out under the supervision of Dr. Gal A. Kaminka,

Department of Computer Science, Bar-Ilan University.

Acknowledgments

Writing this acknowledgement, I have realized that the list of people I should be

thanking is quite long. Obviously, the first person I would like to express my grati-

tude is my advisor Dr. Gal A. Kaminka. I would like to thank Gal for the challeng-

ing research topics, motivating debates and instructive guidance. More than that,

I would like to thank Gal for his warmth and kind nature, not just as an advisor,

but also as a human being. Indeed, working with Gal was a pleasure. At this point,

I would also like to thank Gal’s wife, Oshra Kaminka, for her patience (to our late

meetings) and her hospitality.

I would like to show my respect and appreciation to my Master thesis advisor,

the late Dr. Yuri Zlotnikov. It was his parental guidance that convinced me to

proceed to the Ph.D. studies in the first place.

Next, I would like to thank Prof. Sarit Kraus: Although Sarit was not directly

involved in my thesis, her silent support (in matters concerning scholarships, publi-

cations and travels) has taken some of the pressure off my shoulders. Also, I would

like to thank Dr. Onn Shehory, Dr. Ely Porat and Dr. Moshe Lewenstein for

offering useful assistance and advice at different stages of my research.

Special thanks go to Dr. Meirav Hadad. I would like to thank Meirav not just for

introducing me to Gal, but also for all her help throughout my Ph.D. and especially

in writing this thesis.

I want to thank everyone on the Maverick group for creating such a friendly

environment in the lab and also for their informative remarks and comments on

my research. Also, I would like to thank Dafna and the Administrative Stuff of

the Computer Science Department. Indeed, their help in administrative matters,

supplementary to the research itself, eased up the long period of my studies in Bar-

Ilan.

Finally, last but not least, I would like to express my appreciation to my family–

my parents, my sister and her spouse, my grandmother–and all my friends for their

patience, support and encouragement both in the good times and in the times of

crisis.

i

Contents

1 Introduction 1

1.1 Monitoring in Multi-Agent Systems 1

1.2 Monitoring via Overhearing . 2

1.3 Motivation: Overhearing Building Blocks 4

1.4 Challenges Addressed & Contributions 6

1.5 Publications . 10

1.6 Thesis Overview . 11

2 Related Work 13

2.1 Overhearing Applications . 13

2.2 Overhearing Communications . 14

2.3 Representing Conversations . 15

2.4 Conversation Recognition . 18

2.5 Selective Overhearing . 19

I Representing Conversations for Scalable Overhearing 23

3 Classification & Analysis of Conversation Representations 26

3.1 Message monitoring vs. state monitoring 26

3.2 Representing a Single Conversation 28

3.3 Representing Multiple Concurrent Conversations 29

4 Representing Various Aspects of Conversations 33

4.1 Basic Conversation Building Blocks 33

4.2 Conversation Attributes . 41

4.3 Nested & Interleaved Conversations 47

4.4 Temporal Aspects of Conversations 50

4.5 A Complex Conversation Protocol . 53

ii

5 Transforming AUML Diagrams to CP-net Representation 58

5.1 Transformation Algorithm . 58

5.2 Transformation Example . 60

II Conversation Recognition 66

6 A Formal Model of Overhearing 68

6.1 Conversation Protocols . 69

6.2 Conversation Systems . 71

6.3 Overhearing Conversations . 74

7 Algorithms for Conversation Recognition 75

7.1 The Naive Algorithm . 76

7.2 The Random Loss Algorithm . 77

7.3 The Systematic Loss Algorithm . 78

7.4 Discussion . 80

III Selective Overhearing 83

8 Selective Overhearing of Hierarchical Organizations 85

8.1 Modelling Selective Overhearing of Hierarchical Organizations 85

8.1.1 Hierarchical Communication 85

8.1.2 Selective Overhearing Policies 88

8.1.3 Evaluating Overhearing Policies 89

8.2 Simulating Selective Overhearing of Hierarchical Organizations 90

8.2.1 Generating conversations . 91

8.2.2 Comparing Overhearing Policies 93

9 Empirical Study of Centralized Policies 95

9.1 Static vs. Active Policies . 95

9.2 Value vs. Volume Policies . 97

9.2.1 The Overhearing Coverage . 98

9.2.2 The Height of the Hierarchy 98

9.2.3 The Organizational Structure. 100

9.2.4 The Importance of Importance 102

9.3 Heterogeneous Policies . 103

iii

9.3.1 Fixed Heterogeneous Policies 104

9.3.2 Dynamic Heterogeneous Policies 106

9.4 Discussion . 109

10 Empirical Study of Distributed Policies 111

10.1 Centralized vs. Distributed Policies 111

10.2 Memory Dimension . 113

10.3 Visibility Dimension . 114

10.3.1 Full vs. Group Visibility . 114

10.3.2 Group vs. Agent Visibility . 116

10.4 Collision Avoidance Dimension . 118

10.4.1 None vs. Full Collision Avoidance 118

10.4.2 Partial Collision Avoidance 119

10.5 Discussion . 120

11 Final Remarks 122

11.1 Representing Conversations for Overhearing 123

11.2 Conversation Recognition . 124

11.3 Selective Overhearing . 125

A A Brief Introduction to Petri Nets 127

iv

List of Figures

1.1 Overhearing Concept. 3

1.2 Overview of Related Work on Overhearing. 5

1.3 Thesis Structure. 11

4.1 Asynchronous message interaction. 34

4.2 Synchronous message interaction. 36

4.3 XOR-decision messages interaction. 37

4.4 OR-parallel messages interaction. 38

4.5 AND-parallel messages interaction. 39

4.6 Sequence messages interaction. 40

4.7 Synchronized messages interaction. 40

4.8 Message guard-condition . 41

4.9 Broadcast sequence expression. 43

4.10 FIPA Query Interaction Protocol - AUML representation. 45

4.11 FIPA Query Interaction Protocol - CP-net representation. 46

4.12 AUML nested and interleaved protocols examples. 47

4.13 Nested protocol implementation using hierarchical CP-nets. 48

4.14 Deadline sequence expression. 51

4.15 Interaction duration. 52

4.16 FIPA Brokering Interaction Protocol - AUML representation. 53

4.17 FIPA Brokering Interaction Protocol - CP-net representation. 55

5.1 FIPA Contract Net Interaction Protocol using AUML. 61

5.2 FIPA Contract Net Interaction Protocol using CP-net after the 2nd

iteration. 62

5.3 FIPA Contract Net Interaction Protocol using CP-net after the 4th

(and final) iteration. 64

9.1 Static vs. Active Policies . 96

v

9.2 Value vs. Volume Policies . 97

9.3 Effect of Coverage . 99

9.4 Effect of Hierarchy Levels . 100

9.5 Effect of Organizational Structure . 101

9.6 Effect of Conversations Value Ratio 103

9.7 Fixed Heterogeneous Policies - Value 75% & Volume 25% 104

9.8 Fixed Heterogeneous Policies - Value 50% & Volume 50% 105

9.9 Fixed Heterogeneous Policies - Value 25% & Volume 75% 106

9.10 Dynamic Heterogeneous Policies . 107

9.11 Dynamic Heterogeneous Policies using Hierarchy Average Conversa-

tion Values . 108

10.1 Centralized vs. Distributed Policies 112

10.2 Full Visibility - Memory Effect . 114

10.3 Group Visibility - Memory Effect . 115

10.4 Group Visibility - Shared vs. Individual Memory - Coverage Effect . . 116

10.5 Group vs. Agent Visibility - Individual Memory - Coverage Effect . . 117

10.6 Agent Visibility - Collision Avoidance Effect 119

10.7 Agent Visibility - Collision Avoidance % Effect 120

A.1 A PT-net example. 128

vi

List of Algorithms

1 Create Conversation Net(input:AUML,output:CPN) 59

2 FindMatchingProtocols

(input: observed sequence o∗ = o1o2...om,

output: protocol set ⊆ P) . 76

3 CheckObsMsgMatch (of the Random Loss Algorithm)

(input: observed message o = (sen, rcv, σ, λ, t),

control protocol pp = (p, CS,AG) where p = (R,Σ, S, s0, F, δ),

output: bool) . 77

4 PropIgnLostMsg

(input: conversation state scurr,

observed message o = (sen, rcv, σ, λ, t),

agent-role mapping AG,

output: conversation state set NS) 78

5 CheckObsMsgMatch (of the Systematic Loss Algorithm)

(input: observed message o = (sen, rcv, σ, λ, t),

control protocol pp = (p, CLR) where p = (R,Σ, S, s0, F, δ)

and CLR = ({(LR,CS,AG)|∀LR ∈ LRS}),

output: bool) . 79

6 PropIgnLostRoles

(input: conversation state scurr,

conversation role set LR ⊆ R,

output: conversation state set NS) 80

7 Simulate Conversation Generation at Time t 92

8 Calculate Policy Overhearing Value 93

9 Calculate Optimal Overhearing Value 94

vii

Abstract

Overhearing is fast gaining attention as a generic method for monitoring open, dis-

tributed multi-agent systems. In such settings, agents’ internal structure is not

generally known to a monitoring agent, but overhearing does not require such knowl-

edge. Instead, the monitoring agent uses the overheard routine communications as

a basis for inference about the other agents. Our work focuses on cooperative over-

hearing, in which the overheard agents usually know they are being overheard, and

do not in any way intend to disrupt the monitor.

Previous work on overhearing investigated an extensive set of techniques and

implementations of overhearing. However, focusing mainly on its potential applica-

tions, those investigations often rely on assumptions related to the fundamentals of

overhearing. In contrast, we dedicate our research to a comprehensive study of the

fundamental building blocks that allow overhearing in the first place. In doing so,

we systematically tackle various assumptions made by previous investigations. In

particular, our study focuses on overhearing in large-scale multi-agent systems and

addresses the specific challenges and limitations that characterize such settings.

The first overhearing building block, addressed by our research, is the represen-

tation of multi-agent conversations. Various formalism have been proposed for that

purpose. In particular, recent investigations showed Petri nets to provide a viable

representation approach for modelling multi-agent interactions. By analyzing the

strengths and weaknesses of the rather radical Petri net approaches introduced by

previous work, we propose a novel representation technique especially suitable for

overhearing. Furthermore, we show this representation to be more scalable than

previous representations, and thus more appropriate for monitoring conversations

in large-scale settings. We show that this new representation offers a comprehen-

sive coverage of essentially all conversation features needed to represent complex

multi-agent conversations. We also present a procedure for transforming human-

readable AUML conversation protocol diagrams to our machine-readable Petri net

representation.

Next, we addressed the building block of conversation recognition. Conversation

recognition is the process of identifying the actual conversation based on a sequence

of overheard messages. In the process, the overhearing agent extracts various pa-

rameters of the overheard conversation such as the set of conversing agents, the

corresponding conversation protocol, etc. In addition, it also handles possible errors

caused by differences between the conversation as it was overheard and as it was

viii

actually carried out by the agents (e.g., in cases where the overhearer was not able

to overhear some of the exchanged messages).

Although conversation recognition is a key step in overhearing prior to any pos-

sible inference based on overheard communications, it is often discarded by previous

investigations. Our work addresses the challenges related to conversation recogni-

tion by first introducing a formal model of overhearing. Most previous works focus

on potential applications of overhearing. Therefore, the proposed model was the

first to formalize the general problem of overhearing unrelated to any specific task.

Then, based on this model, we provide a skeleton algorithm for conversation

recognition, and provide instantiations of it for lossless and lossy settings. Since in

large-scale multi-agent systems overhearing agent has to process large quantities of

intercepted messages, conversation recognition algorithms must be efficient. Accord-

ingly, the time-complexity of these algorithms was analyzed. We show that handling

conversation recognition of systematic message loss, which is unique to overhearing,

is significantly more efficient than handling the general case of randomly lost mes-

sages (which is intractable).

The final building block addressed in this work is selective overhearing, i.e. over-

hearing under the restriction of selectivity. The restriction of selectivity is mainly

compelled by the specific characteristics of large-scale multi-agent systems. In such

settings, it is reasonable to assume that the overhearing resources will be essentially

limited, thus allowing the overhearing agent to overhear only a subset of inter-agent

communications carried out in the monitored settings. Accordingly, the overhearer

must be careful in choosing which targets to overhear on account of other potential

targets.

Most previous investigations on overhearing ignore the limitation of selectivity,

assuming that all relevant inter-agent communications can be overheard. Tack-

ling this problematic assumption, our work provides an empirical study of selective

overhearing focusing on widely common hierarchical organizations. Here, we first

propose a model for selective overhearing of such organizations. Then, using a

simulation of this model, we perform an extensive set of experiments in which we

empirically evaluate and compare performance of various overhearing policies taking

into consideration both the limitations of selectivity and the specific characteristics

of hierarchical organizations.

We empirically study both centralized and distributed selective overhearing poli-

cies. In doing so, we tackle another problematic assumption by previous investi-

ix

gations. Those investigations either assume a single overhearer or a group of non-

cooperative overhearing agents that perform overhearing out of their own interest.

In contrast, our work considers overhearing committed by a group of collaborative

overhearers. First, we consider centrally-coordinated overhearing groups which are

equivalent to a single centrally-located overhearer. But, then, we empirically study

the transition to a group of overhearing agents acting collaboratively in a distributed

manner.

Based on the performed experiments, we were able to isolate the factors influ-

encing the behavior of those policies and reach several qualitative conclusions. With

respect to centralized overhearing policies, we have found a classical value-volume

tradeoff. This tradeoff was found to be surprisingly robust to many characteristics

of hierarchical organizations. However, what was more surprising is that the combi-

nation of two types of policies (value and volume) in addition to being fully robust,

outperformed each of the policies separately.

Addressing distributed policies, we considered the transition from effective cen-

tralized policies to distributed ones by gradually decreasing the level of collaboration

between the overhearing agents. Here, we found some factors to significantly influ-

ence the performance of the examined policies, while finding that others can simply

be neglected or only partially solved.

x

Chapter 1

Introduction

Over recent years, we have witnessed an increasing interest in multi-agent systems

(MAS). In particular, open, distributed MAS have gained much attention. In such

settings, multiple agents often perform mutually-dependent tasks. These agents are

geographically distributed and independently built, and may thus be heterogeneous

in terms of design. Consequently, in order to allow each MAS application designer

to focus on the design of its agents, the coordination of the performed activities is

often accomplished through inter-agent communications.

1.1 Monitoring in Multi-Agent Systems

One of the key challenges in MAS applications has always been, and still remains,

the task of monitoring. The goal of monitoring is to provide information about

the monitored agents. In turn, this information can further be used for a variety

of tasks such as performance analysis [Turner and Jennings, 2000], adaptation to

changes [Guessoum et al., 2004], diagnosis [Kalech and Kaminka, 2005], visualiza-

tion and debugging [Ndumu et al., 1999] and so on.

Monitoring can be done both by an external operator (human or agent) or by

one of the application agents. An external monitor can be used, for example, to

ascertain the correct and effective execution of MAS application. Using the gath-

ered information, the monitor may act based on the state of the monitored system.

Its actions can either be reactive, e.g., in adapting to changes in the environment

[Guessoum et al., 2004], or proactive, such as when identifying opportunities for of-

fering assistance [Aiello et al., 2001, Busetta et al., 2001, Busetta et al., 2002].

1

Similarly to the external monitor, an application agent is often required to

monitor its environment and peers. In most MAS applications, and in particu-

lar those that involve teamwork, an application agent can not solely achieve its

goal. Achieving their goals, application agents often inter-depend on other agents

and their collaboration [Cohen and Levesque, 1991, Jennings, 1993, Parker, 1993,

Grosz and Kraus, 1996, Tambe, 1997, Kaminka and Tambe, 2000]. Thus, applica-

tion agents monitor their peers using them as information sources, finding opportu-

nities and needs for collaborations, etc [Kaminka, 2000].

1.2 Monitoring via Overhearing

The distinct characteristics of open distributed multi-agent settings make it difficult

to monitor MAS applications. Various monitoring techniques have been developed

[Jennings, 1993, Tambe, 1997, Klein and Dellarocas, 1999, Kaminka et al., 2002].

The traditional technique is a report-based monitoring [Jennings, 1993,

Tambe, 1997, Klein and Dellarocas, 1999]. It requires application agents to re-

port their status to the monitor agent under a predefined set of conditions (e.g.

at a regular interval, whenever an agent changes its state, etc). However, this

monitoring technique is not suitable for open distributed multi-agent systems

[Kaminka et al., 2002]. First, the reports may require a significant overhead in

communications, and, thus, affect the agents’ performance. Second, report-based

monitoring requires compliance by all agents to support the variety of reports that

may be needed. The continued maintenance of such capability is not feasible in

large-scale settings and particularly not in settings where the agents can be built by

unknown sources.

Fortunately, routine inter-agent communications present a basis for a promising

alternative. Given the ongoing standardization in inter-agent communications, an

opportunity exists for monitoring agents by overhearing their conversations. The

work by [Kaminka et al., 2002] introduced this technique referring to it as monitor-

ing by overhearing. A schematic description of monitoring by overhearing is shown

in Figure 1.11.

Using monitoring by overhearing, an overhearing agent listens to the routine

inter-agent communications and overhears exchanged communication messages be-

1Although in Figure 1.1 the overhearing agent is shown as an external monitor, the overhearer

can be one of the application agents as well.

2

tween application agents. The latter usually know that they are being overheard

but do not care. This is the case of cooperative overhearing studied by all previous

investigations on overhearing. Here, the communicating agents are assumed to be

cooperative with the overhearer by not trying to disguise their routine communi-

cations. Similarly to those previous works, this thesis assumes that the monitored

agents do not in any way intend to disrupt the monitor from overhearing their com-

munications.

����� ��� �
	���
������������

�������	����

 "! ���#� ��
$� ���%
 ��&���
����
'(! ���)����� ' &*�#� ! �*� !*+
 �,
�& � �*�

&���
-�(�

!*+
 �,
�& %. � ���

 �#&��*
����
'(! ���/����� ' &*�#� ! �*�

&�0�0��1� ' &*�#� ! �
&*��
����

Figure 1.1: Overhearing Concept.

Given the cooperative assumption, it can be claimed that more simple and direct

solutions can be used. Specifically, communicating agents can actively assist the

monitor to gather necessary information (e.g., by broadcasting specifics of their

communications). However, this sort of collaboration brings back the drawbacks

of the report-based monitoring discussed at the beginning of this section. On the

other hand, cooperative overhearing solely requires an assistance by neutrality, i.e.

not caring that the communications are being overheard. In turn, the overhearing

agent uses the observed communications to independently assemble and infer the

monitoring information. Accordingly, monitoring via overhearing does not require

any changes in the behavior of application agents and thus is more suitable for open

distributed multi-agent systems.

Overhearing is a generic monitoring technique that relies only on the abil-

ity to overhear inter-agent communications. Thus, just as with general mon-

3

itoring discussed in the previous section, overhearing can be done both by

an external monitor [Aiello et al., 2001, Busetta et al., 2001, Kaminka et al., 2002,

Poutakidis et al., 2002, Rossi and Busetta, 2004, Rossi and Busetta, 2005] and by

an application agent that overhears it peers [Novick and Ward, 1993, Legras, 2002].

1.3 Motivation: Overhearing Building Blocks

Previous investigations on overhearing have demonstrated a range of overhearing

techniques as summarized by Figure 1.2. The bulk of existing work addresses ap-

plications implemented based on inference made from overheard routine inter-agent

communications. These applications include maintaining situational and organi-

zational awareness [Novick and Ward, 1993, Legras, 2002, Rossi and Busetta, 2004,

Rossi and Busetta, 2005], monitoring progress [Kaminka et al., 2002], debugging

and detecting inconsistencies [Poutakidis et al., 2002, Rossi and Busetta, 2004,

Rossi and Busetta, 2005] and discovering opportunities for providing advice

[Aiello et al., 2001, Busetta et al., 2001]. A detailed discussion of these investiga-

tions is provided in Chapter 2, Section 2.1. However, focusing on specific implemen-

tations, these investigations leave open many of the overhearing fundamentals.

In contrast to these investigations, our research focuses on the fundamental

building blocks that enable these overhearing applications in the first place. Those

building blocks tackle different problematic assumptions made by overhearing ap-

plications, and their implementation is a key step in allowing overhearing. The

investigations on overhearing building blocks include our work in this thesis (Fig-

ure 1.2 also contains citations of our previous publications as shown later in Sec-

tion 1.5) and works by [Busetta et al., 2002, Platon et al., 2004, Platon et al., 2005,

Fan and Yen, 2005]. In this section we provide a brief explanation of the concept

behind each of the overhearing building blocks, while a detailed discussion on their

related work is found in Chapter 2, Sections 2.2-2.5.

Figure 1.2 above summarizes the four overhearing building blocks addressed in

literature. These building blocks are (i) overhearing communications; (ii) repre-

senting conversations; (iii) conversation recognition and (iv) selective overhearing.

Below, we provide a discussion on each of these building blocks.

Overhearing building block (i): Overhearing communications . Accessibil-

ity of relevant inter-agent communications is crucial for monitoring and inference

based on overhearing. Accordingly, overhearing applications assume that the com-

4

���������	��
���
�����������������
 ��
���
����	�

 ��!��"���#���$�%
����������$�&���'��
��%
����	�

�����$�&���'�	
&�%
(��� ���#�)�*��
 ��
(���

+,�*- �.�/��
 ���0���	�*���	��
��%
����

132�4�576�498�57:<;.=0>@?A?*B<:DC)8)EF:DGH;)I

JLK
MNO
MPN
Q�R
S
TVUQW
XQ�R
S
TW YZ
[�\

] ^`_ a�b c3aed	f�b�gih#jkjmlon
]Dp.qirsaedtdDf3aed	f�b�gLush#j#j�lvn

]Dw)c&qxdDf&yx_ z�_ r{a|d�f�b�gLush$j#jehen

]D}�ce~k_ �ky��@��f&�Dz&u	lx�#�k�|n

]D�sak�&�Dfkr#u�h#j#jeh/n
]D��ckrxrk_v��p�qsrxa/dtdDfmuxh	jkjs�9u(h�jkj/�en

�������
� � �)��� � �

� � �
�%��� �

���m��� �t�
¡&¢�£

¤ � � £.¥
¦¨§ §�©«ª

¬ ¦ § §®­ ª
¯

� � � �
� � ��� � �

� � �
� �°� �

�±� � � � �
¡&¢�£

¤ � � £�¥
¦ § §k² ª

¯

��³ £
� ¡k´�µ

� ¥
¦ § § ©

¯

� � � �
� �±� � �

� � �
� � � �

� �)� � �L�
¡ ¢ £

¤ � � £ ¥
¦ § § ² £

¬

¦¶§ §%© £
¬ ¦ § §¨­ £

¯

· ¸)¹»º
¼t½ ½'¾

¼ ½ ¾�¿&À
ÁÃÂ Â Á'Ä

· Å ¿ ¾ ½"Æ"Ç
¼È½ ¾ ¿ À É

Á Â Â|Ê É
Á®Â Â�Ë Ä

]±Ì�f&Í�_�Î#yof3aed	f�b�gLush#jkj/hen

ÏÐ Ñ
Ò ÓÔ Õ
ÖÓ
Ò Ó Õ
× ØÓ
×Ù

Figure 1.2: Overview of Related Work on Overhearing.

municative acts exchanged between overheard agents can be obtained. The inves-

tigations, addressing this building block, consider different techniques for obtaining

exchanged communications.

Overhearing building block (ii): Representing conversations. Overhearing

relies on routine inter-agent conversations carried out by the overheard agents. Lis-

tening to the conversations between the monitored agents and tracking them, the

overhearer must be able to represent those overheard conversations.

Overhearing building block (iii): Conversation recognition. Being able

to represent conversations and to obtain exchanged communicative acts, overhear-

ing agent uses these capabilities to perform conversation recognition. Conversation

recognition is a key step in overhearing often discarded by previous investigations.

It enables overhearer to identify the actual conversations carried out in the moni-

tored settings based on a set of overheard messages. In the process, the overhearing

5

agent identifies various parameters of overheard conversations (e.g. a set of con-

versing agents, its corresponding conversation protocol, etc) and handles problems

caused by possible differences between the actual conversation between agents and

the conversation as it was overheard by the monitor (e.g. losses).

Overhearing building block (iv): Selective overhearing. Another problem-

atic assumption, made by existing applications using overhearing, is the ability to

overhear all inter-agent communications. This assumption is often challenged in

real-world settings, and in particular, in large-scale MAS. Instead, the overhearing

agent has limited resources, and may only overhear a subset of conversations car-

ried out in monitored settings. Consequently, the overhearer must be selective in

choosing which conversations must be overheard.

1.4 Challenges Addressed & Contributions

In our research, we focus on overhearing building blocks (ii)-(iv). We attempt to

systematically cover various aspects related to these building blocks, tackling prob-

lematic assumptions made by previous investigations.

In doing so, we particularly focus on overhearing large-scale settings nowadays

widely used both in multi-agent community and the real-world. Overhearing large-

scale MAS raises a variety of specific challenges caused by the size, the large number

of agents and conversations to overhear and other factors.

Contributions with respect to building block (ii):

Scalable Conversation Representation for Overhearing

Overhearing is based on monitoring routine inter-agent communications. To

monitor those communications successfully, we must first be able to represent multi-

agent conversations. Addressing this general challenge (which is important not

only in context of overhearing), various formalisms and techniques have been pro-

posed, each having its own advantages and weaknesses [Smith and Cohen, 1996,

Parunak, 1996, Odell et al., 2000, AUML site, 2005].

In particular, Petri nets [Petri Nets site, 2005] have been found useful in

representing multi-agent conversations [Cost, 1999, Nowostawski et al., 2001,

Purvis et al., 2002, Mazouzi et al., 2002]. However, even here, rather dif-

ferent approaches have been introduced [Cost, 1999, Cost et al., 1999,

Cost et al., 2000, Lin et al., 2000, Nowostawski et al., 2001, Purvis et al., 2002,

6

Cranefield et al., 2002, Mazouzi et al., 2002, Poutakidis et al., 2002]. We classify

and analyze these previous Petri net approaches for representing multi-agent

conversations.

Based on the insights gained from this analysis, we propose a novel Petri net rep-

resentation which has two major advantages with respect to previous works. First, it

is particularly suitable for monitoring by overhearing. Second, and more important,

it is more scalable in terms of the number of agents, the number of exchanged mes-

sages and the number of concurrent conversations that can be represented. Thus, it

is especially appropriate for representing multi-agent communications in large-scale

settings.

Using the proposed representation, we addressed two additional challenges left

by previous investigations. First, we systematically covered a variety of conversation

aspects needed to represent complex multi-agent interactions. We have shown how

this representation can be used to represent essentially all features of FIPA AUML

conversation standards, including simple and complex interaction building blocks,

communicative act attributes such as message guards and cardinalities, nesting, and

temporal aspects such as deadlines and duration. Although some of those have been

addressed before, no previous work showed a comprehensive coverage of all these

aspects.

Finally, as our last contribution in context of conversation representation, we for-

malized the conversion of AUML protocol diagrams to their equivalent Petri nets rep-

resentation. Even though AUML is a widespread human-readable representation, it

can not be used in automatic procedures of debugging [Poutakidis et al., 2002], val-

idation [Desel et al., 1997], deadlock detection [Khomenco and Koutny, 2000], etc.

In contrast, these can be applied on machine-readable Petri net representations. Our

work takes the first steps in this direction providing a semi-automatic procedure for

transforming conversation protocols in AUML to their Petri net form.

Contributions with respect to building block (iii):

Formal Model & Algorithms for Conversation Recognition

The next research topic addressed in our work was the topic of conversation

recognition based on the representation of inter-agent communications studied ear-

lier. Conversation recognition is a key step in monitoring via overhearing. Further-

more, it is a preliminary step to any further inference possible based on overheard

information. Overhearing inter-agent communications, an overhearing agent has ac-

cess only to separate communicative acts exchanged between the monitored agents.

7

However, the actual conversations and their different parameters are still have to be

recognized and extracted from the sequence of overheard messages. This process is

called conversation recognition.

With respect to the process of conversation recognition, some key assumptions

made by previous works on overhearing are difficult to extract. For instance, all

previous investigations assume that the overhearing agent can match intercepted

messages to a conversation protocol. Most make the assumption that all messages

in a conversation are overheard (i.e. no losses). Yet both assumptions can be

challenged in real-world settings. Our work on conversation recognition tackles

these problematic assumptions.

Furthermore, all previous investigations addressed overhearing in context of spe-

cific applications without any formalization of the general problem. Given that,

our first contribution was to provide a comprehensive formal model of overhearing

unrelated to any specific task.

As our second contribution, we have formalized the problem of conversation

recognition using the proposed model. Then, based on this formalization, we pro-

vided a set of algorithms solving the problem of conversation recognition for both

lossless and lossy settings. Since in large-scale multi-agent systems overhearing agent

has to process large quantities of intercepted messages, conversation recognition al-

gorithms must be efficient. Accordingly, the time-complexity of these algorithms

was analyzed. We have shown that handling the general lossy case is computation-

ally hard. On the other hand, handling a more specific case of losses, common in

monitoring via overhearing, is computationally possible.

Contributions with respect to building block (iv):

An Empirical Study of Selective Overhearing in Multi-Agent Organizations

In our research on conversation recognition, we addressed the cases where some

messages of overheard conversations might not be accessible to the overhearing agent

(due to noise, overhearer’s position, etc). In the final research topic, addressed in

this thesis, we consider the case where complete conversations are unknown to the

overhearing agent, rather than messages.

In large-scale MAS settings, it is reasonable to assume that overhearing resources

are bound to be limited. Accordingly, the assumption that all relevant inter-agent

communications can be overheard, made by all previous investigations on overhear-

ing, is problematic in such settings. Instead, an overhearing agent must be selective

8

in choosing its targets. Thus, while being able to overhear some of the conversations,

others will necessarily remain unknown to the overhearer.

Under the restriction of selectivity, the main challenge is to effectively choose

overhearing targets from all the potential ones. Our work reports on an empirical

study of selective overhearing, making these choices based on organizational knowl-

edge of the monitored settings. We focus on hierarchical organizations, which are

both common in multi-agent applications [So and Durfee, 1996, Yadgar et al., 2003]

and in real-world corporates.

We first propose a theoretical model of selective overhearing in hierarchical orga-

nizations. This model extends the formal model of overhearing proposed in context of

conversation recognition with respect to aspects of selectivity and specific character-

istics of hierarchical organizations [Dewan et al., 1997, Gannon and Newman, 2001,

Best et al., 2003, Jensen, 2003, Friebel and Raith, 2004].

Based on this model, we simulate inter-agent communications in hierarchical or-

ganizations and empirically evaluate and compare various selective overhearing poli-

cies. Both centralized and decentralized selective policies are studied. In contrast

to previous investigations on overhearing, which either assume a single overhearing

agent or a group of self-interested non-collaborating overhearers, we study overhear-

ing performed by a group of cooperating overhearing agents. First, we consider

centrally-coordinated overhearing groups which are equivalent to a single centrally-

located overhearer. But, then, we empirically study the transition to a group of

overhearing agents acting collaboratively in a distributed manner.

Our experiments on centralized selective overhearing policies showed a classical

value-volume tradeoff. This tradeoff was found to be surprisingly robust to many

characteristics of the monitored organizations. Further studying centralized policies,

we have come to another surprising conclusion: Combining the two types of policies

(such that some agents follow the value type policy, while others follow the volume

type policy) improves their individual performance. Moreover, the combined policies

have been found to be effective unrelated to any characteristic of the monitored

organization (even those that influence each policy separately).

Then, we have studied the transition from centralized to distributed selective

overhearing policies. We identified the various factors influencing the coordination

of the overhearing agents in effective centralized policies, and considered the effects

of decreasing their inter-dependence with respect to those collaboration factors.

Here, we found that the various collaboration factors differ significantly in their

9

influence on the performance of the examined policies. In particular, we have found

that the decrease in visibility–knowledge on where and when the monitored agents

converse–causes a significant degradation in the policies’ performance. In contrast,

the use of the highly-maintained shared memory has been found to have no effect

over the use of an individual memory which is easily maintained. The last factor

considered was collision avoidance, i.e. avoiding the situations where the same target

overheard by two or more overhearers. We have found that this time consuming

activity can be only partially solved.

1.5 Publications

Subsets of the results that appear in this dissertation were published in the proceed-

ings of the following refereed journals, conferences, books and workshops:

Conversation Representation for Overhearing:

• [Gutnik and Kaminka, 2006a] Gutnik, G. and Kaminka, G. A. Represent-

ing Conversations for Scalable Overhearing. Journal of Artificial Intelligence

(JAIR). To Appear, 2006.

• [Gutnik and Kaminka, 2005a] Gutnik, G. and Kaminka, G. A. A Scalable

Petri-Net Representation of Interaction Protocols for Overhearing. In van

Eijk, R. M., Huget, M.P. & Dignum, F. (Eds.), Agent Communication, LNAI

vol. 3396, pages 50–64. Springer-Verlag, 2005. An earlier version appeared in

the AAMAS-04 Workshop on Agent Communications.

• [Gutnik and Kaminka, 2004a] Gutnik, G. and Kaminka, G. A. A Scalable Petri-

Net Representation of Interaction Protocols for Overhearing. In Proceedings

of AAMAS-04 (poster), pages 1246–1247, 2004.

Formal Model & Conversation Recognition:

• [Gutnik and Kaminka, 2004b] Gutnik, G. and Kaminka, G. A. Towards a

Formal Approach to Overhearing: Algorithms for Conversation Identification.

In Proceedings of AAMAS-04, pages 78–85, 2004.

Selective Overhearing:

• [Gutnik and Kaminka, 2006b] Gutnik, G. and Kaminka G. A. Experiments

in Selective Overhearing of Hierarchical Organizations. In van Eijk, R. M.,

10

Flores, R. & Huget, M. P. (Eds.), Agent Communication, LNAI Book, In

Press, Springer-Verlag, 2006. An earlier version appeared in the AAMAS-05

Workshop on Agent Communications.

• [Gutnik and Kaminka, 2005b] Gutnik, G. and Kaminka, G. A. An Empirical

Study of Selective Overhearing in Hierarchical Organizations. In Proceedings

of the IJCAI-05 Workshop on Modelling Others from Observations (MOO-05),

Edinburgh, Scotland, 2005.

1.6 Thesis Overview

This dissertation is constructed of eleven chapters and one appendix, where the

core chapters of the thesis are organized in three main parts (see Figure 1.3). This

chapter constitutes the introduction to this thesis, while the next chapter surveys

the related work. �
���������
	��
�������������������������

! ��"��#�$���&%'�(�*)+�$���������,���
-�

! �����,�
.������/�0��12�3����4����,.��5�/�6�7��.98��
�;:<�
��"���=�">�@?A4��������
���*�0��12��B;���,�
�

CED FHGIGKJ LMJ NOFQPRJ S
T�UWVXTQFYD Z[GKJ G3S[L
CXS\T[]K^_MGOF[PMJ SYT+`�^\a_0^QGO^
TIPRFQPRJ SYTQG3b0Cdc[F
aIPR^_#eQf
`;^\a_R^QGI^
TOPMJ TQg�h�F
_MJ S
i[G�VXGOaQ^QNjP0G3S[L
CXS\T[]K^_0GOFQPMJ SYTQG3bMC<c[F
aIPR^_5k\f
l _MFYTQGmL�S
_MnoJ TQg3Vdp;qsrot;J FHg
_0F\n�GEP0SoCdu�v$T[^QP�`
^\a_0^QGO^
TIPRF[PwJ S
Txb0C<cQF\a[PR^_
yQf

�3����4����,.��#���6�7� ! ������1
���z�/�6�(����B
���$�
�6�

{ S
_wnAF
DOq�SQ|\^\DjSQL\}E]K^_�c[^\F_MJ~T[gsbMC<c[F
aIPR^_\�\f
V<D g\S_MJ PRc\n�GEL6S
_
CXS
TI]K^_MGIFKPMJ S\T�`�^QNIS\gYT\J PMJ SYT�b0C<c[F
aIPR^
_
�[f

:<��"����
�/� 4��@?A4����*�������*�6��1��/B7���,�
�R�0�

qxSH|\^\DmU��
J noi\D F[PwJ S
T�SQL\��^\D ^\NjPRJ]K^o}�]K^
_McQ^QF
_MJ TKg+J Ts�
J ^
_0F
_0NKcQJ NIF
Dj}3_MgHF
TQJ �[FQPwJ S\TQG�bMC�c[F
aOP0^_
�Qf
� noa\J _MJ NIF5Dm��Pwi[|QZ�S[L
CX^\T[PR_MF\D J �K^\|�u�S\D J NOJ ^QG�b0C<cQF\a[P�^
_#�Kf
� noa\J _MJ NIF5Dm��Pwi[|QZ�S[L�t
J GjPR_�J �Qi[P0^H|+u�SYD�J NKJ ^QG�b0C�cQFYa[P0^_��I�[f
� �0����" ! ��������)\.
��:<	��2�&���,�������
����"R	�.��6�
��.������ � 	��/	�����%����*)����������������d�#�
 � �����������~� � � ��� ���6�\8

�
���������
	��
�������&�$��B7�
�/�������#��.

Figure 1.3: Thesis Structure.

The core chapters of the dissertation, Chapters 3 to 10, are organized in three

parts. Each part corresponds to our work with respect to a separate overhearing

11

building block as presented in Section 1.4. The first part of the thesis (Part I) ad-

dresses our Petri net representation for scalable overhearing. Its chapters discuss

different contributions by our research in context of conversation representation.

Chapter 3 presents the classification and analysis of existing conversation represen-

tations based on which we propose our novel representation approach. We show

our representation to be especially suitable for overhearing and more scalable than

previously proposed approaches, and thus more appropriate for representing con-

versations in large-scale settings. Using this representation, we show, in Chapter 4,

a comprehensive coverage of various aspects needed to represent complex multi-

agent conversations. Finally, Chapter 5 introduces the semi-automatic conversion of

human-readable AUML protocol diagrams to their machine-readable Petri net form.

Part II of the thesis presents our work related to conversation recognition. Chap-

ter 6 of this part presents the proposed formal model of overhearing. Then, Chapter 7

uses this model to formalize the problem of conversation recognition and provide a

set of algorithms addressing this problem. The complexity of these algorithms is an-

alyzed to determine their appropriateness for conversation recognition in large-scale

settings.

In the third part of the thesis (Part III) the problem of selective overhearing is ad-

dressed. As mentioned, the problem of selectivity rises while overhearing large-scale

settings. Our work empirically studies overhearing under the restriction of selectiv-

ity of hierarchical organizations. Accordingly, in Chapter 8, we propose a model for

overhearing such organizations taking into consideration limitations compelled by

selectivity and specific characteristics of hierarchical organizations. Based on this

model, we simulate inter-agent communications in hierarchical organizations and

empirically evaluate and compare various centralized (Chapter 9) and distributed

(Chapter 10) selective overhearing policies.

Rounding up, Chapter 11 presents the final remarks to this thesis providing a

brief summary of our work, the main conclusions and possible directions for future

research. Finally, in Appendix A, we provide a brief introduction to Petri nets which

are the main target of our research in Part I.

12

Chapter 2

Related Work

Section 1.3 of the previous chapter presented a brief overview of related work on

overhearing in order to clarify the contributions by our work as shown then in

Chapter 1, Section 1.4. In this chapter, we present a detailed discussion on related

work following the division shown in Figure 1.2 (see Chapter 1, Section 1.3). Ac-

cordingly, Section 2.1 presents previous investigations on overhearing applications,

while Sections 2.2-2.5 show the related work on different overhearing building blocks.

2.1 Overhearing Applications

This section discusses in details previous work on applications of monitoring via

overhearing. Focusing on overhearing building blocks, our work is fundamental to

all of these investigations.

[Novick and Ward, 1993] show an early use of cooperative overhearing to model

interactions between pilots and air-traffic controllers. In this model, pilots main-

tain mutuality of information with the controller not only by dialogue, but also

by listening to the conversations of other pilots. While each pilot and controller

act cooperatively, the other pilots are not necessarily collaborating on a joint task.

Rather, they use overhearing to maintain their situational awareness out of their

own self-interest.

Similarly, [Legras, 2002] uses overhearing as a method that allows agents to

maintain organizational knowledge. In this approach, agents broadcast changes in

their organizational memberships. Other agents use this information to track these

changes and maintain organizational awareness.

[Rossi and Busetta, 2004, Rossi and Busetta, 2005] also apply overhearing for in-

ferencing organizational knowledge. Here, overhearing agent monitors changes in

13

MAS settings caused by transition from one state to another. The information

about agents’ state, together with overheard communications, is used to deduce

the organizational roles of monitored agents based on a predefined set of social

rules. However, social knowledge is not the sole use of overhearing in this research.

Tracking exchanged messages and state transitions, overhearer detects suspected in-

consistencies and possible losses. This information is used to alert communicating

agents and initiate recovery if necessary.

The latter use of overhearing is also investigated in [Poutakidis et al., 2002].

Here, overhearing is applied for debugging. Using a Petri net representation of

inter-agent interactions (which we further discuss in Section 2.3), the authors use

overheard messages to detect failures in conversations between agents.

In contrast, investigations by [Aiello et al., 2001, Busetta et al., 2001] describe

collaborative settings in which the overhearing agent may act on overheard messages

to assist the communicating agents. The settings they describe involve communi-

cating agents, who are engaged in problem solving. An overhearing agent monitors

their conversations, and offers expert assistance.

[Kaminka et al., 2002] used plan recognition in overhearing a distributed team

of agents, which are collaborating to carry out a specific task. Knowing the plan of

this task and its steps, the monitor uses overheard messages as clues for inferring

the state of different team-members. The authors presented a scalable probabilistic

representation (together with associated algorithms) supporting such inference, and

showed that knowledge of the conversations that take place facilitates a significant

boost in accuracy.

2.2 Overhearing Communications

Overhearing applications use routine inter-agent communications as a basis for

inference. Thus, they assume that messages, exchanged between agents, can

be obtained. [Novick and Ward, 1993] assume pilots to overhear communications

between other pilots and air-controller by listening to a known radio-frequency.

[Kaminka et al., 2002] assume obtaining exchanged messages by eavesdropping.

On the other hand, a more collaborative approach was proposed by other investi-

gations [Legras, 2002, Busetta et al., 2002, Platon et al., 2004, Platon et al., 2005].

The work by [Legras, 2002] uses broadcast assuming overhearer to be one of the

designated recipients. However, in case overhearing agent is an external listener,

broadcast can be problematic [Platon et al., 2005].

14

As a solution, a mediated approach to overhearing was proposed. In the work

by [Busetta et al., 2002], communications between agents are carried out through

communication channels. Overhearing agents, as do other agents, have the ability

to register to specific channels and receive all messages communicated through them,

no matter to whom those messages are addressed.

In contrast, [Platon et al., 2004, Platon et al., 2005] use an active environment

as a mediator. Here, all communications are compelled to pass through the envi-

ronment, which in turn, decides the targets of the corresponding communications.

Thus, a message, in addition to its intended recipients, can be also forwarded to an

overhearer if necessary.

Throughout this thesis, we also assume that the exchanged messages can be

obtained. Thus, building on top of this building block, our work is consistent with

any of the introduced approaches.

2.3 Representing Conversations

The importance of modelling inter-agent communications is not limited to the scope

of overhearing alone. Instead, their representation is essential in open, distributed

multi-agent systems. In such settings, agents’ coordination is often accomplished

using standardized communications. Thus, representations of inter-agent commu-

nications can be used for visualization [Ndumu et al., 1999], automated analysis

[Turner and Jennings, 2000], validation and verification [Desel et al., 1997], online

monitoring [Kaminka et al., 2002], etc.

The multi-agent community has been investing a significant effort in develop-

ing standardized Agent Communication Languages (ACL) to facilitate sophisti-

cated multi-agent systems [Finin et al., 1997, Kone et al., 2000, ChaibDraa, 2002,

FIPA site, 2005]. Such standards define communicative acts, and on top of them,

interaction protocols, ranging from simple queries as to the state of another agent

(e.g. FIPA Request Interaction Protocol [FIPA Specifications, 2005e]), to complex

negotiations by auctions or bidding on contracts (e.g. FIPA Contract Net Inter-

action Protocol [FIPA Specifications, 2005b]). Using these interaction protocols,

agents carry out conversations with each other and coordinate their activities.

Various formalisms have been proposed to describe ACL interaction protocols

including Finite State Machines (FSM) [Smith and Cohen, 1996], Dooley Graphs

[Parunak, 1996], AUML [Odell et al., 2000, Odell et al., 2001b, AUML site, 2005],

15

etc. In particular, AUML–Agent Unified Modelling Language–is currently used in

the FIPA-ACL standards [Odell et al., 2001a, FIPA site, 2005]. In addition, UML

2.0 [AUML site, 2005], a new emerging standard based on AUML, has the poten-

tial to become FIPA-ACL standard in the future. However, a large set of FIPA

specifications remain currently formalized using AUML.

Lately, there is increasing interest in using Petri nets [Petri Nets site, 2005]

for representing multi-agent interaction protocols [Cost, 1999, Cost et al., 1999,

Cost et al., 2000, Lin et al., 2000, Nowostawski et al., 2001, Purvis et al., 2002,

Poutakidis et al., 2002, Cranefield et al., 2002, Mazouzi et al., 2002]. These Petri

net models are extremely important in view of a broad literature on using

Petri nets to analyze the various aspects of conversations in open, distributed

multi-agent systems. These aspects include dynamic interpretation of interac-

tion protocols [Cranefield et al., 2002, de Silva et al., 2003], validation and testing

[Desel et al., 1997], automated debugging and monitoring [Poutakidis et al., 2002],

interaction protocols refinement allowing modular construction of complex conver-

sations [Hameurlain, 2003] and modelling agents behavior induced by their partici-

pation in a conversation [Ling and Loke, 2003].

Our work, in Part I of this thesis, also uses Petri nets to represent conversations

with respect to overhearing. The proposed Petri net representation stems from a

comprehensive analysis and comparison of the broad literature on using Petri nets

for modelling multi-agent conversations (see Part I, Chapter 3). Accordingly, we

dedicate the remaining part of this section for a detailed discussion of these previous

investigations. In this discussion, we use Petri net terminology assuming the reader

to be familiar with the Petri net formalism. Nevertheless, we also refer the reader

to a brief introduction to Petri nets provided in Appendix A.

We start with publications by [Purvis et al., 2002, Cranefield et al., 2002,

Ramos et al., 2002]. In this approach, the authors provide a separate Petri net for

each conversing agent. Thus, in order to represent a complete conversation, these

different Petri nets are coordinated using a synchronization mechanism.

[Purvis et al., 2002, Cranefield et al., 2002] use separate Colored Petri nets (CP-

nets) to represent different agents involved in a conversation. Here, places denote

both interaction messages and states, while transitions represent operations per-

formed on the corresponding communicative acts such as send, receive, and process.

Special in/out places are used to pass net tokens between the different CP-nets,

through special get/put transitions, simulating the actual transmission of the corre-

16

sponding communicative acts.

[Ramos et al., 2002] propose to use hierarchy graphs (see hierarchical CP-nets

in Appendix A) for modular representation of multi-agent conversations. Differ-

ent agents are modelled using separate hierarchy graphs, in which nodes denote

fragments of represented conversations. These separate hierarchy graphs are syn-

chronized using fusion places–a single conceptual place drawn on different Petri

nets.

The works by [Cost, 1999, Cost et al., 1999, Cost et al., 2000, Lin et al., 2000,

Mazouzi et al., 2002] presented a similar Petri net approach. Again, each conversing

agent is initially modelled separately. However, the separate Petri nets are then

connected into a single net corresponding to the entire multi-agent conversation.

[Cost et al., 1999, Cost et al., 2000] used CP-nets for representing KQML and

FIPA interaction protocols. In this approach, transitions represent message events,

and CP-net features, such as token colors and arc expressions, are used to represent

AUML message attributes and sequence expressions. The authors also point out that

deadlines (a temporal aspect of interaction) can be modelled, but no implementa-

tion details are provided. [Cost, 1999] also proposed using hierarchical CP-nets to

represent complex multi-agent conversations.

In [Lin et al., 2000], transitions are used to represent communicative acts, while

a combination of net places and color tokens describe the current state of represented

conversation. Here, the individual CP-nets, representing separately each conversing

agent, are connected using intermediate collective places.

[Mazouzi et al., 2002] presented a similar concept. However, in their represen-

tation, places and transitions have slightly different semantics: places represent

interaction states and transitions describe actions performed on the corresponding

communicative acts (e.g. send, receive and process). The individual CP-nets are

connected using synchronization places which connect a send transition of one CP-

net to a receive transition of another CP-net. In addition, the authors introduce

a recursive CP-net model for representing complex multi-agent interactions. The

authors demonstrate its use for recursive modelling of complex communicative acts

and interaction sub-protocols.

Finally, investigations by [Nowostawski et al., 2001, Poutakidis et al., 2002]

model the entire conversation using a single Petri net corresponding to all con-

versing agents. In [Nowostawski et al., 2001], places represent message containers,

containing communicative acts denoted as color tokens, while transitions describe

17

message events. On the other hand, [Poutakidis et al., 2002] use places to represent

both messages and interaction states, whereas transitions are used to model the

transmission of the corresponding communicative acts.

As shown in this section, different Petri net representations have been proposed

to model multi-agent conversations. However, their relative strength and weak-

nesses have not been analyzed. In our work, we provide a comprehensive analysis

of these previous investigations addressing their scalability and appropriateness for

overhearing (see Part I, Chapter 3).

We propose a scalable Petri net representation for modelling multi-agent con-

versation protocols. This representation is particularly suited for monitoring via

overhearing. Using the proposed Petri net representation, we cover a variety of con-

versation features not covered by previous investigations. These features include

representation of a full set of FIPA interaction building blocks, communicative act

attributes (such as message guards, sequence expressions, etc.), compact modelling

of concurrent conversations, nested and interleaved interactions, and temporal as-

pects. This work is presented throughout Part I of this thesis.

2.4 Conversation Recognition

Conversation recognition, as a concept, is inspired by existing investigations on plan

recognition [Kautz and Allen, 1986, Charniak and Goldman, 1993, Carrbery, 2001,

Kaminka et al., 2002, Geib and Harp, 2004, Avrahami and Kaminka, 2005]. In plan

recognition, agents model other agents unobservable plans using their observable ac-

tions. Similarly, conversation recognition is used to recognize conversations between

agents based on their overheard communications.

Although certain similarity exists between the two approaches, plan recognition

and conversation recognition differ significantly. The main focus of plan recognition

is the interactions of an agent and its surrounding environment, whereas conversation

recognition focuses on interactions between agents. Furthermore, plan recognition

uses the observable actions of an agent to determine its state within the monitored

settings, while conversation recognition considers the multi-agent state of all agents

participating in the monitored conversation.

Conversation recognition is a key step in overhearing. It is a preliminary

step to all possible inference based on overhearing (see overhearing applications

in Section 2.1). Unfortunately, it is often ignored by previous investigations on

18

overhearing assuming that conversations can easily be recognized based on their

intercepted messages. In addition, most previous works assume that conversa-

tions are overheard just as they are carried out between the conversing agents,

i.e. all exchanged messages are accessible to the overhearing agent. How-

ever, this assumption can be challenged in real-world settings where a differ-

ence may exist between the actual and the overheard conversation. For in-

stance, some messages may not reach the overhearing agent due to noise, a tem-

porary malfunction, etc. Furthermore, even investigations addressing such lossy

cases [Kaminka et al., 2002, Rossi and Busetta, 2004, Rossi and Busetta, 2005] as-

sume conversation recognition to be possible, but do not provide any algorithms for

handling these non-trivial cases.

Our work was the first to tackle conversation recognition in context of overhear-

ing. This work is presented in Part II of this thesis. We first propose a formal model

for the general problem of overhearing. Then, using this model, we formalize the

process of conversation recognition providing algorithms for handling both lossless

and lossy cases of overhearing.

However, our work on conversation recognition constituted only the first steps

in that direction. Conversation recognition algorithms, presented in Chapter 7, ad-

dressed conversations where each agent is performing a certain role throughout the

conversation. This is not the case in multi-party communications recently gain-

ing interest in multi-agent systems [Kumar et al., 2000, Traum and Rickel, 2002,

Dignum and Vreeswijk, 2003]. In such communications, every agent, participating

in a conversation, can implement any given role at any given time. Thus, conver-

sation recognition algorithms should be adapted for handling multi-party dialogues.

Later work by [Fan and Yen, 2005], based on our investigation, studies conversation

recognition for multi-party communications. However, this still remains a challeng-

ing problem open for future research.

2.5 Selective Overhearing

All existing applications using overhearing assume the ability to overhear all inter-

agent communications. This assumption is often challenged in real-world settings,

and in particular, in large-scale MAS. Instead, the overhearing agent has limited

resources, and may only overhear a subset of conversations carried out in the mon-

itored settings. Consequently, the overhearer must be selective in choosing which

conversations must be overheard.

19

Few previous investigations have touched overhearing where some conversations

may not be accessible. However, these focused on lossy cases, where due to noise

or some other factors, some messages may not reach the overhearing agent. The

work by [Kaminka et al., 2002] used plan recognition in overhearing a distributed

team of agents. They evaluated the use of their system in lossy settings, and showed

that the performance of the overhearing agent drops when messages are lost. The

investigations by [Rossi and Busetta, 2004, Rossi and Busetta, 2005] applied over-

hearing to monitor changes in MAS settings caused by transition from one state

to another. They mention that lost messages can cause inconsistencies. Also, our

work on conversation recognition (see Part II of the thesis) presents algorithms for

conversation recognition, that are robust to lost messages.

In contrast to all of these, we deal here with the case where complete conver-

sations are unknown to the overhearing agent, rather than messages. Moreover,

in selective overhearing, the number of conversations unknown to the overhearer is

typically much greater than the number of conversations overheard, while in lossy

settings, the reverse is typically true.

Our work in Part III of the thesis takes the first steps in this direc-

tion. Here, we address selective overhearing based on organizational knowledge

of the monitored settings. Organizations have long been studied in the vari-

ous disciplines of social science [Selznick, 1948, Morgenstern, 1951, Friedell, 1967].

In the multi-agent community, agent-organizations have only recently re-

gained interest [Corkill and Lander, 1998, Dignum, 2003, Horling and Lesser, 2004,

Grossi et al., 2005].

In our study, we focus on selective overhearing of hierarchical organizations.

Hierarchical organizations are common both in the real-world settings (e.g., many

corporates) and in the implementations of multi-agent systems. In the latter settings,

hierarchical structures are mainly used for decomposition of complex tasks (e.g., in

[So and Durfee, 1996, Yadgar et al., 2003]).

Overhearing hierarchical organizations, we take into consideration both their

specific characteristics and the limitation of selectivity implied by overhearing

large-scale settings. Thus, we first propose a model of communications in hi-

erarchical organizations (see Part III, Chapter 8). This model is based on

investigations of hierarchical communications taken from the different fields of

social science [Dewan et al., 1997, Best et al., 2003, Gannon and Newman, 2001,

Jensen, 2003, Friebel and Raith, 2004].

20

Moreover, selective overhearing assumes that conversations may differ in the

value of information derived from overhearing them. Otherwise, a random deci-

sion, on choosing which conversations to overhear, would be sufficient. To ex-

press the possible differences between the overhearing value of conversations, we

utilize the concept of value of information commonly used in information theory

[Packel et al., 1992, Traub and Werschulz, 1998]. Recently, this concept has also

been applied in various investigations on distributed artificial intelligence and multi-

agent systems. For instance, [Horty and Pollack, 2001] used it as a basis for decision

making in context of plans, while [Wilkins et al., 2003] applied value of information

to decide on importance of alerts.

Our work in Part III of the thesis utilizes the concept of value of information

in context of selective overhearing: It describes the value of information derived

from overhearing conversations carried out in monitored organization. Based on

this value, the overhearing agent chooses which conversations it would overhear,

and which it would not. In hierarchical organizations, which are the focus of our

research in this thesis, conversations in different levels of organization vary both

in their quantity [Jensen, 2003] and their quality (i.e., in terms of their value)

[Best et al., 2003, Gannon and Newman, 2001]. Taking these differences into con-

sideration, we study how to effectively overhear hierarchical organizations under the

limitation of selectivity.

Based on the proposed model, we simulate communications in hierarchical or-

ganizations and empirically study different centralized and distributed overhearing

policies. In doing so, we tackle another problematic assumption made by previous

investigations on overhearing assuming the use of a single overhearing agent. This

assumption can be challenged in open distributed multi-agent settings. In such set-

tings, monitored agents are often geographically distributed. Therefore, unless some

sort of report-based policy is enforced, a single overhearer will be able to overhear

only a small subset of potential targets.

Multiple overhearing agents can be deployed to increase the coverage of over-

heard targets. Few previous investigations addressed the case of multiple overhearing

agents [Novick and Ward, 1993, Legras, 2002]. However, these works assume over-

hearing agents to be non-collaborative entities, committing overhearing out of their

own self interest. A non-collaborative overhearer is equivalent to a single overhearer

working on its own. Accordingly, these multiple non-collaborative overhearers are

still facing the problems of a single centrally-located overhearing agent.

21

In contrast, we examine teams of overhearing agents collaboratively overhearing

multi-agent settings. Indeed, centralized overhearing policies, examined initially in

Chapter 9, can be seen as equivalent to a single overhearing agent. However, the

later study of distributed overhearing policies in Chapter 10 tackles the assumption

of a single centrally-located overhearer.

22

Part I

Representing Conversations for

Scalable Overhearing

23

Lately, Petri net formalism has been gaining acceptance in multi-agent com-

munity. In particular, a variety of Petri net approaches have been proposed to

represent multi-agent conversations as shown in Section 2.3. However, address-

ing those representations, some key questions remain open. First, while radically

different approaches to representation using Petri nets have been proposed, their

relative strengths and weaknesses have not been investigated. Second, many investi-

gations have only addressed restricted subsets of the features needed in representing

complex conversations such as those standardized by FIPA (Foundation for Intelli-

gent Physical Agents) [FIPA site, 2005]. Finally, no procedures have been proposed

for translating human-readable AUML protocol descriptions into the corresponding

machine-readable Petri nets.

This part of the thesis addresses these open challenges in the context of scal-

able overhearing. Here, an overhearing agent passively tracks many concurrent

conversations involving multiple participants, based solely on their exchanged mes-

sages, while not being a participant in any of the overheard conversations itself

[Aiello et al., 2001, Busetta et al., 2001, Kaminka et al., 2002, Legras, 2002]. For

instance, an overhearing agent may monitor the conversation of a contractor agent

engaged in multiple contract-net protocols with different bidders and bid callers, in

order to monitor for any failures.

We begin with an analysis of Petri net representations, with respect to scalability

and overhearing (Chapter 3). We classify previous representation choices along

two dimensions affecting scalability: (i) the technique used to represent multiple

concurrent conversations; and (ii) the choice of representing either individual or joint

conversation states. While the run-time complexity of monitoring conversations

using different approaches is the same, choices along these two dimensions have

significantly different space requirements, and thus some choices are more scalable

(in the number of conversations) than others. We also argue that representations

suitable for overhearing require the use of explicit message places, though only a

subset of previously-explored techniques utilized those.

Building on the insights gained, we propose a novel representation that uses

Colored Petri nets (CP-nets) in which places explicitly denote messages, and valid

joint conversation states (Chapter 4). This representation is particularly suited for

overhearing as the number of conversations is scaled-up. We show how this represen-

tation can be used to represent essentially all features of FIPA AUML conversation

standards, including simple and complex interaction building blocks, communica-

24

tive act attributes such as message guards and cardinalities, nesting, and temporal

aspects such as deadlines and duration.

To realize the advantages of machine-readable representations, such as for debug-

ging [Poutakidis et al., 2002], existing human-readable protocol descriptions must be

converted to their corresponding Petri net representations. As a final contribution of

our work in this part of the thesis, we provide a skeleton semi-automated procedure

for converting FIPA conversation protocols in AUML to Petri nets, and demonstrate

its use on a complex FIPA protocol (Chapter 5). While this procedure is not fully

automated, it takes a first step towards addressing this open challenge.

25

Chapter 3

Classification & Analysis of

Conversation Representations

Overhearing involves monitoring conversations as they progress, by tracking mes-

sages that are exchanged between participants. We are interested in representations

that can facilitate scalable overhearing, tracking many concurrent conversations, be-

tween many agents. We focus on open settings, where the complex internal state and

control logic of agents is not known in advance, and therefore exclude discussions

of Petri net representations which explicitly model agent internals (e.g. the works

by [Moldt and Wienberg, 1997, Xu and Shatz, 2001]). Instead, we treat agents as

black boxes, and consider representations that commit only to the agent’s conversa-

tion state (i.e., its role and progress in the conversation).

The suitability of a representation for scalable overhearing is affected by several

facets. First, since overhearing is based on tracking messages, the representation

must be able to explicitly represent the passing of a message (communicative act)

from one agent to another (Section 3.1). Second, the representation must facili-

tate tracking of multiple concurrent conversations. While the tracking runtime is

bounded from below by the number of messages (since in any case, all messages

are overheard and processed), space requirements may differ significantly (see Sec-

tions 3.2–3.3).

3.1 Message monitoring vs. state monitoring

We distinguish two settings for tracking the progress of conversations, depending on

the information available to the tracking agent. In the first type of setting, which

26

we refer to as state monitoring, the tracking agent has access to the internal state

of the conversation in one or more of the participants, but not necessarily to the

messages being exchanged. The other settings involves message monitoring, where

the tracking agent has access only to the messages being exchanged (which are exter-

nally observable), but cannot directly observe the internal state of the conversation

in each participant. Overhearing is a form of message monitoring.

Representations that support state monitoring use places to denote the con-

versation states of the participants. Tokens placed in these places (the net mark-

ing) denote the current state. The sending or receiving of a message by a par-

ticipant is not explicitly represented, and is instead implied by moving tokens

(through transition firings) to the new state places. Thus, such a representation

essentially assumes that the conversation state of participants is directly observ-

able by the monitoring agent. Previous work utilizing state monitoring includes

investigations by [Cost, 1999, Cost et al., 1999, Cost et al., 2000, Lin et al., 2000,

Mazouzi et al., 2002, Ramos et al., 2002].

The representation we present in this work is intended for overhearing tasks,

and cannot assume that the conversation states of overheard agents are observable.

Instead, it must support message monitoring, where in addition to using tokens

in state places (to denote current conversation state), the representation uses mes-

sage places, where tokens are placed when a corresponding message is overheard.

A conversation-state place and a message place are connected via a transition to a

state place denoting the new conversation state. Tokens placed in these originating

places–indicating a message was received at an appropriate conversation state–will

cause the transition to fire, and for the tokens to be placed in the new conversa-

tion state place. Thus the new conversation state is inferred from ”observing” a

message. Previous investigations, that have used explicit message places, include

work by [Cost, 1999, Cost et al., 1999, Cost et al., 2000, Nowostawski et al., 2001,

Purvis et al., 2002, Cranefield et al., 2002, Poutakidis et al., 2002]1. These are dis-

cussed in depth below.

1[Cost, 1999, Cost et al., 1999, Cost et al., 2000] present examples of both state- and message-

monitoring representations.

27

3.2 Representing a Single Conversation

Two representation variants are popular within those that utilize conversation places

(in addition to message places): Individual state representations use separate places

and tokens for the state of each participant (each role). Thus, the overall state of the

conversation is represented by different tokens marking multiple places. Joint state

representations use a single place for each joint conversation state of all participants.

The placement of a token within such a place represents the overhearing agent’s belief

that the participants are in the appropriate joint state.

Most previous representations use individual states. In these, different mark-

ings distinguish a conversation state where one agent has sent a message, from

a state where the other agent received it. The net for each conversation role is

essentially built separately, and is either merged with the other nets [Cost, 1999,

Cost et al., 1999, Cost et al., 2000, Lin et al., 2000, Mazouzi et al., 2002], or con-

nected to them via fusion places, special I/O places and transitions or similar means

[Purvis et al., 2002, Ramos et al., 2002, Cranefield et al., 2002].

In principle, individual-state representations require two places in each role, for

every message. For a given message, there would be two individual places for the

sender (before sending and after sending), and similarly two more for each receiver

(before receiving and after receiving). All possible conversation states–valid or not–

can be represented. For a single message and two roles, there are two places for

each role (four places total), and four possible conversation states: message sent

and received, sent and not received, not sent but incorrectly believed to have been

received, not sent and not received. These states can be represented by different

markings. For instance, a conversation state where the message has been sent but

not received is denoted by a token in the ’after-sending’ place of the sender and

another token in the ’before-receiving’ place of the receiver. This is summarized in

the following proposition:

Proposition 1 Given a conversation with R roles and a total of M possible mes-

sages, an individual state representation has space complexity of O(MR).

While the representations above all represent each role’s conversation state sepa-

rately, many applications of overhearing only require representation of valid conver-

sation states (message not sent and not received, or sent and received). Indeed, spec-

ifications for interaction protocols often assume the use of underlying synchroniza-

tion protocols to guarantee delivery of messages [Paurobally and Cunningham, 2003,

28

Paurobally et al., 2003]. Under such an assumption, for every message, there are

only two joint states regardless of the number of roles. For example, for a single

message and three roles–a sender and two receivers, there are two places and two

possible markings: A token in a before sending/receiving place represents a conver-

sation state where the message has not yet been sent by the sender (and the two

receivers are waiting for it), while a token in a after sending/receiving place denotes

that the message has been sent and received by both receivers.

[Nowostawski et al., 2001] utilize CP-nets where places denote joint conversation

states. They also utilize places representing communicative acts. The work by

[Poutakidis et al., 2002] proposed a representation based on Place-Transition nets

(PT-nets)–a more restricted representation of Petri nets that has no color. They

presented several interaction building blocks, which could then fit together to model

additional conversation protocols. In general the following proposition holds with

respect to such representations:

Proposition 2 Given a conversation with R roles and a total of M possible mes-

sages, a joint state representation that represents only legal states has space com-

plexity of O(M).

The condition of representing only valid states is critical to the complexity anal-

ysis. If all joint conversation states–valid and invalid–are to be represented, the

space complexity would be O(MR). In such a case, an individual-state representa-

tion would have an advantage. This would be the case, for instance, if we do not

assume the use of synchronization protocols, e.g., where the overhearing agent may

wish to track the exact system state even while a message is underway (i.e., sent

and not yet received).

3.3 Representing Multiple Concurrent Conversa-

tions

Propositions 1 and 2 above address the space complexity of representing a single

conversation. However, in large scale systems an overhearing agent may be re-

quired to monitor multiple conversations in parallel. For instance, an overhear-

ing agent may be monitoring a middle agent that is carrying multiple parallel

instances of a single interaction protocol with multiple partners, e.g., brokering

[FIPA Specifications, 2005a].

29

Some previous investigations [Nowostawski et al., 2001, Poutakidis et al., 2002]

propose to duplicate the appropriate Petri net representation for each monitored

conversation. In this approach, every conversation is tracked by a separate Petri-

net, and thus the number of Petri nets (and their associated tokens) grows with the

number of conversations (Proposition 3). For instance, [Nowostawski et al., 2001]

shows an example where a contract-net protocol is carried out with three differ-

ent contractors, using three duplicate CP-nets. This is captured in the following

proposition:

Proposition 3 A representation that creates multiple instances of a conversation

Petri net to represent C conversations, requires O(C) net structures, and O(C) bits

for all tokens.

Other investigations take a different approach, in which a sin-

gle CP-net structure is used to monitor all conversations of the

same protocol. The tokens (on the same CP-net structure) associ-

ated with different conversations are distinguished by their token color

[Cost, 1999, Cost et al., 1999, Cost et al., 2000, Lin et al., 2000, Purvis et al., 2002,

Ramos et al., 2002, Mazouzi et al., 2002, Cranefield et al., 2002]. For example, by

assigning each token a color of the tuple type 〈sender, receiver〉, an agent can

differentiate multiple tokens in the same place and thus track conversations of

different pairs of agents2. Color tokens use multiple bits per token; up to logC

bits are required to differentiate C conversations. Therefore, the number of bits

required to track C conversations using C tokens is C logC. This leads to the

following proposition.

Proposition 4 A representation that uses color tokens to represent C multiple in-

stances of a conversation, requires O(1) net structures, and O(C logC) bits for all

tokens.

Due to the constants involved, the space requirements of Proposition 3 are in

practice much more expensive than those of Proposition 4. Proposition 3 refers to

the creation of O(C) Petri networks, each with duplicated place and transition data

structures. In contrast, Proposition 4 refers to bits required for representing C color

tokens on a single CP net. Moreover, in most practical settings, a sufficiently large

constant bound on the number of conversations may be found, which will essentially

reduce the O(logC) factor to O(1).

2See Section 4.2 to distinguish between different conversations by the same agents.

30

Representing Multiple Conversations

(of Same Protocol)

Multiple CP- or Using color tokens,

PT-nets single CP-net

(Proposition 3) (Proposition 4)

Space: O(MR + C logC)

[Cost, 1999, Cost et al., 1999],

Individual [Cost et al., 2000, Lin et al., 2000],

States Space: O(MRC) [Cranefield et al., 2002],

(Proposition 1) [Ramos et al., 2002]

[Purvis et al., 2002]

[Mazouzi et al., 2002]

Joint Space: O(MC) Space: O(M + C logC)

States [Nowostawski et al., 2001], Our work

(Proposition 2) [Poutakidis et al., 2002]

Table 3.1: Scalability of different representations

Based on Propositions 1–4, it is possible to make concrete predictions as to

the scalability of different approaches with respect to the number of conversations,

roles. Table 3.1 shows the space complexity of different approaches when modelling

C conversations of the same protocol, each with a maximum of R roles, and M

messages, under the assumption of underlying synchronization protocols. The table

also cites relevant previous work.

Building on the insights gained from Table 3.1, we propose a representation using

CP-nets where places explicitly represent joint conversation states (corresponding to

the lower-right cell in Table 3.1), and tokens color is used to distinguish concurrent

conversations (as in the upper-right cell in Table 3.1). As such, it is related to the

works that have these features, but as the table demonstrates, is a novel synthesis.

Our representation uses similar structures to those found in the investigations

by [Nowostawski et al., 2001, Poutakidis et al., 2002]. However, in contrast to these

previous investigations, we rely on token color in CP-nets to model concurrent con-

versations, with space complexity O(M + C logC). We also show (Chapter 4) how

it can be used to cover a variety of conversation features not covered by these in-

vestigations. These features include representation of a full set of FIPA interaction

31

building blocks, communicative act attributes (such as message guards, sequence

expressions, etc.), compact modelling of concurrent conversations, nested and inter-

leaved interactions, and temporal aspects.

32

Chapter 4

Representing Various Aspects of

Conversations

Chapter 3 presented the motivation for our work analyzing the previous Petri net

representations of multi-agent conversations in terms of their scalability and appro-

priateness for overhearing. In this chapter, we present the proposed representation,

based on the analysis found in the previous chapter, addressing all FIPA conversation

features including basic interaction building blocks (Section 4.1), message attributes

(Section 4.2), nested & interleaved interactions (Section 4.3), and temporal aspects

(Section 4.4). To conclude this chapter, based on these features, Section 4.5 presents

a Petri net of a complex conversation protocol, which integrates many of the features

of the developed representation technique.

4.1 Basic Conversation Building Blocks

This section introduces the fundamentals of our representation, and demonstrates

how various simple and complex AUML interaction messages, used in FIPA conversa-

tion standards [FIPA Specifications, 2005c], can be implemented using the proposed

CP-net representation. We begin with a simple conversation, shown in Figure 4.1-a

using an AUML protocol diagram. Here, agent1 sends an asynchronous message

msg to agent2.

To represent agent conversation protocols, we define two types of places, corre-

sponding to messages and conversation states. The first type of net places, called

message places, is used to describe conversation communicative acts. Tokens placed

in message places indicate that the associated communicative act has been over-

33

��������� � �������	�

�
�	�
��� � �

���� �

(a) AUML representation

������� ������ �"!
#%$'&
(!�)*!+# , (.-

�/�"!
#%$'&
(!0)*!
#

1 �
2 3	4 1 �+2 354

1 3�2 �64
�879�:7

;�<>= < 3 ��?�@%A%BDCFEHG
;�<>= < 3JI A%B.@LKLMON�B>�LB8@PC

3	Q ;�< 3SRUTWVYX �Z?"@.A%B�[
T
\]X ��?^@.A%B%G

;�<>= < 3>_ N%?`C 3SQ ;]< 3SR
�+X �Z?"@.AJBa[35X ��?^@.A%B%G

b Tc3W�+2 3�X �Z?"@%ALBLG

(b) CP-net representation

Figure 4.1: Asynchronous message interaction.

heard. The second type of net places, agent places, is associated with the valid joint

conversation states of the interacting agents. Tokens placed in agent places indicate

the current joint state of the conversation within the interaction protocol.

Transitions represent the transmission and receipt of communicative acts between

agents. Assuming underlying synchronization protocols, a transition always origi-

nates within a joint-state place and a message place, and targets a joint conversation

state (more than one is possible–see below). Normally, the current conversation state

is known (marked with a token), and must wait the overhearing of the matching mes-

sage (denoted with a token at the connected message place). When this token is

marked, the transition fires, automatically marking the new conversation state.

Figure 4.1-b presents CP-net representation of the earlier example of Figure 4.1-

a. The CP-net in Figure 4.1-b has three places and one transition connecting them.

The A1B1 and the A2B2 places are agent places, while the msg place is a message

place. The A and B capital letters are used to denote the agent1 and the agent2

individual interaction states respectively (we have indicated the individual and the

joint interaction states over the AUML diagram in Figure 4.1-a, but omit these

annotations in later figures). Thus, the A1B1 place indicates a joint interaction

state where agent1 is ready to send the msg communicative act to agent2 (A1) and

agent2 is waiting to receive the corresponding message (B1). The msg message place

corresponds to the msg communicative act sent between the two agents. Thus, the

transmission of the msg communicative act causes the agents to transition to the

A2B2 place. This place corresponds to the joint interaction state in which agent1

has already sent the msg communicative act to agent2 (A2) and agent2 has received

it (B2).

34

The CP-net implementation in Figure 4.1-b also introduces the use of token

colors to represent additional information about interaction states and commu-

nicative acts. The token color sets are defined in the net declaration, i.e. the

dashed box in Figure 4.1-b. The syntax follows the standard CPN ML notation

[Wikstrom, 1987, Milner et al., 1990, Jensen, 1997a]. The AGENT color identifies

the agents participating in the interaction, and is used to construct the two com-

pound color sets.

The INTER-STATE color set is associated with agent places, and represents

agents in the appropriate joint interaction states. It is a record 〈a1, a2〉, where a1

and a2 are AGENT color elements distinguishing the interacting agents. We apply

the INTER-STATE color set to model multiple concurrent conversations using the

same CP-net. The second color set is MSG, describing interaction communicative

acts and associated with message places. The MSG color token is a record 〈as, ar〉,

where as and ar correspond to the sender and the receiver agents of the associ-

ated communicative act. In both cases, additional elements, such as conversation

identification, may be used. See Section 4.2 for additional details.

In Figure 4.1-b, the A1B1 and the A2B2 places are associated with the INTER-

STATE color set, while the msg place is associated with the MSG color set. The

place color set is written in italic capital letters next to the corresponding place.

Furthermore, we use the s and r AGENT color type variables to denote the net arc

expressions. Thus, given that the output arc expression of both the A1B1 and the

msg places is < s, r >, the s and r elements of the agent place token must correspond

to the s and r elements of the message place token. Consequently, the net transition

occurs if and only if the agents of the message correspond to the interacting agents.

The A2B2 place input arc expression is < r, s > following the underlying intuition

that agent2 is going to send the next interaction communicative act.

Figure 4.2-a shows an AUML representation of another interaction building

block, synchronous message passing, denoted by the filled solid arrowhead. Here,

the msg communicative act is sent synchronously from agent1 to agent2, meaning

that an acknowledgement on msg communicative act must always be received by

agent1 before the interaction may proceed.

The corresponding CP-net representation is shown in Figure 4.2-b. The inter-

action starts in the A1B1 place and terminates in the A2B2 place. The A1B1 place

represents a joint interaction state where agent1 is ready to send the msg com-

municative act to agent2 (A1) and agent2 is waiting to receive the corresponding

35

���������
	 ����������

�����

(a) AUML representation

������� ������ � �"!$#&%
' �)(*�"! + '$,

� � �-!.#&%
' �)(*�-!

/ �-0 132 / �-0�142

/ 150 �"2
� �76 � �76

8:9";�< �����
+ '=,

/ �-0 132

���>�-!�#?%
' �)(*�-!

/ �-0 142

/ �-0 142
��@)�A@

9�BDC B 1 �?EGF.H.IKJMLON
9�BDC B 1�P H.I�F$Q <5R IA�=I�FSJ 13T 9�B 1VU

8 ��W �?E F�H�IYX 8 @ W �?E F�H�I�N
9�BDC B 1YZ R E[J 1VT 9�B 1VU\� W �?EGF$H.IYX 1 W �]E F�H^I=N
_ 8 1`�-0 1 W �]E>F$H.I�N

(b) CP-net representation

Figure 4.2: Synchronous message interaction.

message (B1). The A2B2 place denotes a joint interaction state, in which agent1 has

already sent the msg communicative act to agent2 (A2) and agent2 has received it

(B2). However, since the CP-net diagram represents synchronous message passing,

the msg communicative act transmission cannot cause the agents to transition di-

rectly from the A1B1 place to the A2B2 place. We therefore define an intermediate

A′

1B
′

1 agent place. This place represents a joint interaction state where agent2 has

received the msg communicative act and is ready to send an acknowledgement on it

(B1’), while agent1 is waiting for that acknowledgement (A′

1). Taken together, the

msg communicative act causes the agents to transition from the A1B1 place to the

A′

1B
′

1 place, while the acknowledgement on the msg message causes the agents to

transition from the A′

1B
′

1 place to the A2B2 place.

Nevertheless, transitions in a typical multi-agent interaction protocols are often

not as simple as those described above. Thus, the remaining part of this section

is dedicated to the complex interaction transitions that may appear in a standard

multi-agent conversation.

We begin with the XOR-decision interaction. The AUML representation to this

building block is shown in Figure 4.3-a. The sender agent agent1 can either send

message msg1 to agent2 or message msg2 to agent3, but it can not send both msg1

and msg2. The non-filled diamond with an ’x’ inside is the AUML notation for this

constraint.

36

�������

�����	�

	����
����
�����
�� �
��	��
��

�

(a) AUML representation

�������
� � �"!$#&%
' ��()�"!$%�*

+ '-,

� �.�/!0#1%
' �2(.�3!

4 �"5 6 �	7 4 �/5 68�	5 6�9 7

4 6 � 5 � 7

: 9�;�9

+ '0,

4 �"5 6 927

� �.�"!$#1%
' ��()�"!

4 6 9 5 � 7

: 9�<-9

����� 9

4 �"5 6=�>5 6�9 7

: � ; � < �
?�@�A @B6 :&C.D$EGFIHKJML
?�@�A @B6GN E0F$DGO&P8Q�F�:$F0DRH 6TSU?2@B6WV

X ��Y :&C.D$EGF[Z X 92Y :1C.DGE$F0L
?�@�A @B6GN E0F$DGO&P8Q�F�:$F0D�P8\BH 6]S"?�@B6]V

X�� Y :&C.D$EGF[Z X"9 Y :&C.DGE$F
Z X"^ Y :1C.D0E$FGL

?�@�A @B6�_ Q0C`H 6]SU?�@B6�V
� Y :1C)D-EGF�Z 6 Y :aC.D$EGF0L

b XB6��"5 6]cd5 6 e Y :&C.DGE$F0L

(b) CP-net representation

Figure 4.3: XOR-decision messages interaction.

Figure 4.3-b shows the corresponding CP-net. Again, the A, B and C capital

letters are used to denote the interaction states of agent1, agent2 and agent3, respec-

tively. The interaction starts from the A1B1C1 place and terminates either in the

A2B2 place or in the A2C2 place. The A1B1C1 place represents a joint interaction

state where agent1 is ready to send either the msg1 communicative act to agent2 or

the msg2 communicative act to agent3 (A1); and agent2 and agent3 are waiting to

receive the corresponding msg1/msg2 message (B1/C1). To represent the A1B1C1

place color set, we extend the INTER-STATE color set to denote a joint interaction

state of three interacting agents, i.e. using the INTER-STATE-3 color set. The

msg1 communicative act causes the agents to transition to A2B2 place. The A2B2

place represents a joint interaction state where agent1 has sent the msg1 message

(A2), and agent2 has received it (B2). Similarly, the msg2 communicative act causes

agents agent1 and agent3 to transition to A2C2 place. Exclusiveness is achieved

since the single agent token in A1B1C1 place can be used either for activating the

A1B1C1 → A2B2 transition or for activating the A1B1C1 → A2C2 transition, but

not both.

A similar complex interaction is the OR-parallel messages interaction. Its AUML

representation is presented in Figure 4.4-a. The sender agent, agent1, can send

message msg1 to agent2 or message msg2 to agent3, or both. The non-filled diamond

is the AUML notation for this constraint.

Figure 4.4-b shows the CP-net representation of the OR-parallel interaction. The

interaction starts from the A1B1C1 place but it can be terminated in the A2B2 place,

or in the A2C2 place, or in both. To represent this inclusiveness of the interaction

protocol, we define two intermediate places, the A′

1B1 place and the A′′

1C1 place.

The A′

1B1 place represents a joint interaction state where agent1 is ready to send

37

�������

�����	�

	����
����
�����
�� �
��	��
��

(a) AUML representation

�������
�����

 !�"$#&%('
�("�)*"+#

, �$- . ��/

, . � - � /

0�1	231
 !4"$#�%('
��"�)5"$#

, �$- . 1 /

, . 1 - � /

0�1�6�1

, ��- .7�8- . 1 /

 !4"$#�%('
��"�)5"$#&':9 0 � 2 � 6 �

, �$- .:� / , ��- . 1 /

 !4"+#&%('
��"�)*"$#

 !4"�#�%('
�("�)4"�#

0 ��; 2 � 0 ��; < 6 � �=��� 1
�����

, �$- . � / , �$- . 1 /

>�?�@ ?A. 0CB�D�E&FHGJILK
>�?�@ ?A.NM E&F�D&O�P:Q3FR0�F�DHG .TS$>�?A.TU

V �XW 0YB4D�E&FNZ V 1 W 0YB4D�E&F�K
>�?�@ ?A.NM E&F�D&O�P:Q3FR0�F�D3P\[+G .]S+>�?^.]U

V � W 0(B4D�E&F_Z V 1 W 0(B4D�E&F
Z V+` W 0(B�D&E&F�K

>�?�@ ?A.Ra Q�BbG .�S+>�?^.�U
� W 0CB�D&E�FNZ . W 0CB�D&E�F&K

c VA.��$- .Tde- .]f W 0YB5D�E&F�K

(b) CP-net representation

Figure 4.4: OR-parallel messages interaction.

the msg1 communicative act to agent2 (A′

1) and agent2 is waiting to receive the

message (B1). The A′′

1C1 place has similar meaning, but with respect to agent3.

As normally done in Petri nets, the transition connecting the A1B1C1 place to the

intermediate places duplicates any single token in A1B1C1 place into two tokens

going into the A′

1B1 and the A′′

1C1 places. Consequently, the two parts of the OR-

parallel interaction can be independently executed.

Next, the AND-parallel messages interaction is presented. Its AUML representa-

tion is shown in Figure 4.5-a. Here, the sender agent1 sends both the msg1 message

to agent2 and the msg2 message to agent3. However, the order of the two commu-

nicative acts is unconstrained.

The representation of AND-parallel in our CP-net representation is shown in Fig-

ure 4.5-b. The A1B1C1, A2B2, A2C2, msg1 and msg2 places are defined similarly to

Figures 4.3-b and 4.4-b above. However, we also define two additional intermediate

agent places, A′

1B2C1 and A′′

1B1C2. The A′

1B2C1 place represents a joint interac-

tion state where agent1 has sent the msg1 message to agent2 and is ready to send

the msg2 communicative act to agent3 (A1’), agent2 has received the msg1 message

(B2) and agent3 is waiting to receive the msg2 communicative act (C1). The A′′

1B1C2

place represents a joint interaction state in which agent1 is ready to send the msg1

message to agent2 and has already sent the msg2 communicative act to agent3 (A′′

1),

agent2 is waiting to receive the msg1 message (B1) and agent3 has received the msg2

communicative act (C2). These places enable agent1 to send both communicative

acts concurrently. Four transitions connect the appropriate places respectively. The

behavior of the transitions connecting A′

1B2C1 → A2B2 and A′′

1B1C2 → A2C2 is sim-

ilar to described above. The transitions A1B1C1 → A′

1B2C1 and A1B1C1 → A′′

1B1C2

38

�������

�����	�

��
�������
�������� �
��	���
�

(a) AUML representation

������� � ��� �"!$#
% ��&��'�(#*)+ %(,

� �-�'�"!.#
% ��&/�0�1#2)

3 �04 56�
7 3 �04 58�
4 5:9;7

+ %(,

3 � 4 5 9;7

� ��� �"!<#
% ��&/�'�(#8)

����� 9

3 � 4 5*��4 5 9;7

= �	>1��?$�

@;A�B AC5 =$DFE1G1HJILKNM
@;A�B AC5�O G1H"E"PRQ*STHC=RH1EUI 5WVX@�AY5�Z\[��] =.D�E1G1H�^ [9�] =.DFE1G"H"M
@;A�B AC5�O G1H"E"PRQ*STHC=RH1E_Q*`CI 5WVX@�AX5WZ\[�
] =$DFE(G1H_^ [9�] =<DFE(G"H_^ [ba] =<D�E(G1H1M
@;A�B AC5dc S(DeI 5:VX@;AC5:Zf�] =<D�E"G"H_^ 5] =.D/E(G1H1M
g [C5�� 4 56h�4 5 i] =<D�E1G(H1M

� ���0�1!$#
% ��&/�0� = 9 > 9

� �-�'�1!.#
% ��&��'� = 9 ? 9

3 5 � 4 �'7 3 5 9 4 �'7

= �kj >_9�?$� = � j l > � ? 9

3 � 4 5 � 7 3 �04 5 9 7
3 �04 5 � 4 5 9 73 �04 5 � 4 5 9 7 3 � 4 5 � 4 5 9 7 3 �04 5 � 4 5 9 73 �04 5 � 7 3 �04 5 9 7

3 �04 5 � 4 5 9 73 �04 5 � 4 5 9 7

(b) CP-net representation

Figure 4.5: AND-parallel messages interaction.

are triggered by receiving messages msg1 and msg2, respectively. However, these

transitions should not consume the message token since it is used further for trigger-

ing transitions A′

1B2C1 → A2B2 and A′′

1B1C2 → A2C2. This is achieved by adding

an appropriate message place as an output place of the corresponding transition.

The fourth complex AUML interaction building block, shown in Figure 4.6-a, is

the message sequence interaction, which is similar to AND-parallel. However, the

message sequence interaction defines explicitly the order between the transmitted

messages. Using the 1/msg1 and 2/msg2 notation, Figure 4.6-a specifies that the

msg1 message should be sent before sending msg2.

Figure 4.6-b shows the corresponding CP-net representation. The A1B1C1, A2B2,

A2C2, msg1 and msg2 places are defined as before. However, the CP-net implemen-

tation presents an additional intermediate agent place–A′

1B2C1–which is identical

to the corresponding intermediate agent place in Figure 4.5-b. A′

1B2C1 is defined as

an output place of the A1B1C1 → A2B2 transition. It thus guarantees that the msg2

communicative act can be sent (represented by the A′

1B2C1 → A2C2 transition) only

upon completion of the msg1 transmission (the A1B1C1 → A2B2 transition).

The last interaction we present is the synchronized messages interaction, shown in

Figure 4.7-a. Here, agent3 simultaneously receives msg1 from agent1 and msg2 from

agent2. In AUML, this constraint is annotated by merging the two communicative

act arrows into a horizontal bar with a single output arrow.

39

��� �������

	
� ������	

� ��
���� � � ��
���� 	 � ��
����

(a) AUML representation

����������� ����� �
! "$#&%�')(
* #�+,#-%.(�/

0 *21

! "�#-%.'�(
* #�+,#-%

3 �-4 5 � 4 576�8 3 �94:5 � 8

3 5;��4 �&8
��<=�><

?=@>A @ 5 �CB�D2E.FHGJILK
?=@>A @ 5NM E�F�D�O2P�Q�F���F2DHG 5SR ?=@ 5UT$V ��W ��BXD�E2FZY V < W �CB�D.E[F.K
?=@>A @ 5NM E�F�D�O2P�Q�F���F2DZP]\^G 5_R ?=@ 57T`V ��W �)B�D.E�FaY V < W �CB�D.E.FaY V^b W ��BXD�E.F2K
?=@>A @ 5>c Q.BdG 5UR ?=@ 5STe� W �)B�D.E.FaY 5 W �CB�D.E�F2K
f Vg5 �94:5 � 4 5_6 W �)B,D2E.F�K

� �
h � < � � ����� 6

! "i#&%.')(
* #�+X#9%�(j/ 0 *k1

! "l#&%2'C(
* #=+X#&%

3 �94:5 6 8

3 5_6
4 �&8
��<m�2<

3 �94:5 � 4:5 6 8
3 �94:5U��4:5 6 8

(b) CP-net representation

Figure 4.6: Sequence messages interaction.

n�o�p�q�r s n�o�p�q�r t n�o�p�q�u

v w�o�t

v>w�o�s

(a) AUML representation

xCy�zCy {,|=}^~
� �����a���
� ���,���

� �2�

� �X�&�a�C�
� �=���&�

� |�~�� �;� � | ~ � �;�

� |&~�� �U�
x2��z)y��

�=� � � � xk�X�a�a�����H�
�=� � � �N� �a�a���� ;¡Z� x2�a��� �_¢ �m� �_£$¤ y�¥ x��,�a�.�Z¦ ¤ �m¥ xk�,�a�.�.�
�=� � � �N� �a�a���� ;¡Z� x2�a�Z S§^� �U¢ �m� �U£$¤ y ¥ x����.�a��¦ ¤ � ¥ x����.�.�>¦ ¤©¨ ¥ x����.�.�a�
�=� � � �>ª ¡��«� �_¢ �=� �U£¬| ¥ xk�,���a��¦ � ¥ x��,�a�a���
­ ¤^�g|&~j� |�®�� � ¥ x��,�a�.�.�

¯ y z y {�|=} ®� �X�9�a�k�
� �=���9� � �[�

� �X���.�k�
� �=�����

� | ® � �U�

� | ® � �S�
¯ � z y � °

� |�®�� �S�

� �X�9�a�k�
� �m�,�=���;± x � ¯ � z �

� |&~j� �;� � |�®�� �U�
� |�~�� |�®�� �U�

(b) CP-net representation

Figure 4.7: Synchronized messages interaction.

Figure 4.7-b illustrates the CP-net implementation of synchronized messages

interaction. As in previous examples, we define the A1C1, B1C1, msg1, msg2 and

A2B2C2 places. We additionally define two intermediate agent places, A2C
′

1 and

B2C
′′

1 . The A2C
′

1 place represents a joint interaction state where agent1 has sent

msg1 to agent3 (A2), and agent3 has received it, however agent3 is also waiting to

receive msg2 (C ′

1). The B2C
′′

1 place represents a joint interaction state in which

40

agent2 has sent msg2 to agent3 (B2), and agent3 has received it, however agent3 is

also waiting to receive msg1 (C ′′

1). These places guarantee that the interaction does

not transition to the A2B2C2 state until both msg1 and msg2 have been received by

agent3.

4.2 Conversation Attributes

We now extend our representation to allow additional interaction aspects, useful in

describing multi-agent conversation protocols. First, we show how to represent in-

teraction message attributes, such as guards, sequence expressions, cardinalities and

content [FIPA Specifications, 2005c]. We then explore in depth the representation

of multiple concurrent conversations (on the same CP net).

Figure 4.8-a shows a simple agent interaction using an AUML protocol diagram.

This interaction is similar to the one presented in Figure 4.1-a in the previous sec-

tion. However, Figure 4.8-a uses an AUML message guard-condition–marked as

[condition]–that has the following semantics: the communicative act is sent from

agent1 to agent2 if and only if the condition is true.

��������� � �����	�
� �

��
��
����������� ��� �����

(a) AUML representation

���! "� #%$'&(�)+*-,".0/
1 *�23*-, 4 165

(�)7*8,9.:/
1 *�27*8,

; $�<�=�> ; $-<�=?< @�< A�>

; =?< $8>
�CBD EB

F A'GIH-JLK @�K GIH-M

ANGIO GI= �0P7Q"R"SUTWVYX
ANGIO GI= S�Z\["QWTWVYX
ANGIO GI=^]0_ R"S"Q9R`SWTaVYX
ANGIO GI="b R"S"Qdc9e�fgS��CS"QWT =ihjA'GI=iJ

kIlnm �0P7Q9R"S^o k8pNm �6P+Q9R`SdX
ANGIO GI=^q f9PrT =ihjANG�=
J

$ m ��P+Q`R"Sgo = m �0P7Q"R"Sgo
@ m SEZ�["Qgo A m]:_ R"S9Q"R`S9X

s k =L$�<�= m ��P7Q"R"S9X s k =I@ m SEZ�[9Q"X
s k =LA m]0_ R"S"Q9R`S"X

(b) CP-net representation

Figure 4.8: Message guard-condition

The guard-condition implementation in our Petri net representation uses transi-

tion guards (Figure 4.8-b), a native feature for CP nets. The AUML guard condition

is mapped directly to the CP-net transition guard. The CP-net transition guard is

indicated on the net inscription next to the corresponding transition using square

brackets. The transition guard guarantees that the transition is enabled if and only

if the transition guard is true.

In Figure 4.8-b, we also extend the color of tokens to include information about

the communicative act being used and its content. We extend the MSG color

set definition to a record < s, r, t, c >, where the s and r elements has the same

41

interpretation as in previous section (sender and receiver), and the t and c elements

define the message type and content, respectively. The t element is of a new color

TY PE, which determines communicative act types. The c element is of a new color

CONTENT , which represents communicative act content and argument list (e.g.

reply-to, reply-by and etc).

The addition of new elements also allows for additional potential uses. For

instance, to facilitate representation of multiple concurrent conversations between

the same agents (s and r), it is possible to add a conversation identification field to

both the MSG and INTER-STATE colors. For simplicity, we refrain from doing so

in the examples in this paper.

Two additional AUML communicative act attributes that can be modelled in

the CP-net representation are message sequence-expression and message cardinality.

The sequence-expressions denote a constraint on the message sent from sender agent.

There are a number of sequence-expressions defined by FIPA conversation standards

[FIPA Specifications, 2005c]: m denotes that the message is sent exactly m times;

n..m denotes that the message is sent anywhere from n up to m times; ∗ denotes

that the message is sent an arbitrary number of times. An additional important

sequence expression is broadcast, i.e. message is sent to all other agents.

We now explain the representation of sequence-expressions in CP-nets, using

broadcast as an example (Figure 4.9-b). Other sequence expressions are easily de-

rived from this example. We define an INTER-STATE-CARD color set. This color

set is a tuple (< a1, a2 >, i) consisting of two elements. The first tuple element

is an INTER-STATE color element, which denotes the interacting agents as pre-

viously defined. The second tuple element is an integer that counts the number

of messages already sent by an agent, i.e. the message cardinality. This element

is initially assigned to 0. The INTER-STATE-CARD color set is applied to the

S1R1 place, where the S and R capital letters are used to denote the sender and

the receiver individual interaction states respectively and the S1R1 indicates the

initial joint interaction state of the interacting agents. The two additional colors,

used in Figure 4.9-b, are the BROADCAST-LIST and the TARGET colors. The

BROADCAST-LIST color defines the sender broadcast list of the designated re-

ceivers, assuming that the sender must have such a list to carry out its role. The

TARGET color defines indexes into this broadcast list.

According to the broadcast sequence-expression semantics, the sender agent

sends the same msg1 communicative act to all the receivers on the broadcast list.

42

���������	� � ��
����
����

�������
�����������������

�������

(a) AUML representation

 �!#"$!
%'&�(!

) *,+.-�/$0
1 +	2,+3-�0
4 25/$6

7 158

) *,+9-�/$0
1 +	2:+9-

;=< &9> ?A@�> B C %'&	(

< ?D> &3@

 FE�"GE

%H&�(E
7 1�8

%H&�(

) *,+9-�/$0
1 +�2I+9-

< &9> ?=@

< ?J> &3@
 FK�"LK

M3NA;=< &9> O�P "5QSR O
;UT CV@�> T C

;=< &9> OWP "$QIR O
; B X M C=@�> B X M C

Y B < &9B Z.[]\

^�_�` _a?]P QSRGb Odcfehg
^�_�` _a?aOWikj R cfehg
^�_�` _a?ml$n b O R�b Ofcfeog
^�_�` _a?Gp b O R�"�qV OWP5O R cr?U[s^�_a?Ut'u !#v P QSRGb OFw

u E v P QSRGb O�g
^�_�` _a?ml�P "$x cyB z�{Vg
^�_�` _a?Gp b O R�"�qV OWP5O RFq l�P "$x c}|s?U_]t]~s^�{

p b O RG"�qD O�P�O R w�l�P "$x g
^�_�` _a?m� �Q c�?U[s^�_a?=tH& v P QSR�b O�w�? v P QSRGb OGw

{ v Omi�j R w�^ v l$n b O R�b O�g
^�_�` _a?F� " n�P x l�P O qJ� p Ofc,P Q,R�b O��HB {=�mehg
� u�`�&9B Z.[�cfehg
^�_�` _a?aOWP "LQ,R O�c�B z.ts[.��� " n�P x l�P O q�� p O

�HB {=� Ta� � � &9B Z.[q M g
� ua?�&9> ? v P QSR�b O�g � ua?�%H&�(v � �Q g � ua?FB v l�P "$x g

(b) CP-net representation

Figure 4.9: Broadcast sequence expression.

The CP-net introduced in Figure 4.9-b models this behavior.1 The interaction starts

from the S1R1 place, representing the joint interaction state where sender is ready

to send the msg1 communicative act to receiver (S1) and receiver is waiting to

receive the corresponding msg1 message (R1). The S1R1 place initial marking is

a single token, set by the initialization expression (underlined, next to the corre-

sponding place). The initialization expression 1‘(< s, TARGET (0) >, 0)–given in

standard CPN ML notation–determines that the S1R1 place initial marking is a

multi-set containing a single token (< s, TARGET (0) >, 0). Thus, the first desig-

nated receiver is assigned to be the agent with index 0 on the broadcast list, and

the message cardinality counter is initiated to 0.

The msg1 message place initially contains multiple tokens. Each of these tokens

represents the msg1 communicative act addressed to a different designated receiver

on the broadcast list. In Figure 4.9-b, the initialization expression, correspond-

ing to the msg1 message place, has been omitted. The S1R1 place token and the

appropriate msg1 place token together enable the corresponding transition. Conse-

quently, the transition may fire and thus the msg1 communicative act transmission

is simulated.

The msg1 communicative act is sent incrementally to every designated receiver

on the broadcast list. The incoming arc expression (< s, r >, i) is incremented

by the transition to the outgoing (< s, TARGET (i + 1) >, i + 1) arc expression,

1We implement broadcast as an iterative procedure sending the corresponding communicative

act separately to all designated recipients.

43

causing the receiver agent with index i + 1 on the broadcast list to be selected.

The transition guard constraint i < size, i.e. i < |broadcast list|, ensures that the

msg1 message is sent no more than |broadcast list| times. The msg1 communicative

act causes the agents to transition to the S2R2 place. This place represents a joint

interaction state in which sender has already sent the msg1 communicative act to

receiver and is now waiting to receive the msg2 message (S2) and receiver has

received the msg1 message and is ready to send the msg2 communicative act to

sender (R2). Finally, the msg2 message causes the agents to transition to the S3R3

place. The S3R3 place denotes a joint interaction state where sender has received

the msg2 communicative act from receiver and terminated (S3), while receiver has

already sent the msg2 message to sender and terminated as well (R3).

We use Figure 4.9-b to demonstrate the use of token color to represent multiple

concurrent conversations using the same CP-net. For instance, let us assume that the

sender agent is called agent1 and its broadcast list contains the following agents:

agent2, agent3, agent4, agent5 and agent6. We will also assume that the agent1

has already sent the msg1 communicative act to all agents on the broadcast list.

However, it has only received the msg2 reply message from agent3 and agent6.

Thus, the CP-net current marking for the complete interaction protocol is described

as follows: the S2R2 place is marked by < agent2, agent1 >, < agent4, agent1 >,

< agent5, agent1 >, while the S3R3 place contains the tokens < agent1, agent3 >

and < agent1, agent6 >.

An Example. We now construct a CP-net representation of the FIPA Query Inter-

action Protocol [FIPA Specifications, 2005d], shown in AUML form in Figure 4.10,

to demonstrate how the building blocks presented in Sections 4.1 and 4.2 can be

put together. In this interaction protocol, the Initiator requests the Participant

to perform an inform action using one of two query communicative acts, query-if

or query-ref. The Participant processes the query and makes a decision whether

to accept or refuse the query request. The Initiator may request the Participant

to respond with either an accept or refuse message, and for simplicity, we will as-

sume that this is always the case. In case the query request has been accepted,

the Participant informs the Initiator on the query results. If the Participant fails,

then it communicates a failure. In a successful response, the Participant replies

with one of two versions of inform (inform-t/f or inform-result) depending on the

type of initial query request.

44

� ��� ��� ���	��
 �
��
 ��� ��� �������

�����
 ����� �

�����
 ����
 � �

 � � �����

���
 ���

� ��� ! �
 �

� �"����
$#%�	� &'�$(� ������
$#

� ��� ��
$#%�)
 ����� ! �)(� ��� ��
	#

*
 � � ���+��,�-

* ���
 ����, ��� , �����	� ��� �"����� ���
� � � ����� ��
 � -

* �.� � �
 �"�/� � -

* ���+�
 �"�/
 � � -

* �+�.
 ����,�-

0
� � 12��3 ���
 ���/�4
����	���"��!

Figure 4.10: FIPA Query Interaction Protocol - AUML representation.

The CP-net representation of the FIPA Query Interaction Protocol is presented

in Figure 4.11. The interaction starts in the I1P1 place (we use the I and the P cap-

ital letters to denote the Initiator and the Participant roles). The I1P1 place rep-

resents a joint interaction state where (i) the Initiator agent is ready to send either

the query-if communicative act, or the query-ref message, to Participant (I1); and

(ii) Participant is waiting to receive the corresponding message (P1). The Initiator

can send either a query-if or a query-ref communicative act. We assume that these

acts belong to the same class, the query communicative act class. Thus, we imple-

ment both messages using a single Query message place, and check the message type

using the following transition guard: [#t msg = query-if or #t msg = query-ref].

The query communicative act causes the interacting agents to transition to the I2P2

place. This place represents a joint interaction state in which Initiator has sent

the query communicative act and is waiting to receive a response message (I2), and

Participant has received the query communicative act and deciding whether to send

an agree or a refuse response message to Initiator (P2). The refuse communica-

tive act causes the agents to transition to I3P3 place, while the agree message causes

the agents to transition to I4P4 place.

45

� ����� ���	��

�
� ���	�����
� �����	� � ���

���	�
! " ��#

�
 � � $ #
!�	�

� ���
" ��#" ��#

�
 � �
� %&�'%

()+* " ��#�,�- �	��
 �/.10 2�3�
)+* " ��#�,4- �	��

�/.5

�/2!6
7 �/28� � �

� ���
� �9�:���;�
� �&�9�:� � <&�=<

���	�
> ���/�
!

���	�
8
� �9�	���;�
� ���?�	� � @��=@� �9�	���;�

� �A���	�

B 3=C 3�
 $�D?E�FHG ,JILK
B 3=C 3�
 GNM;��E ,O- �	��

�/.8
!�/2>P - �:��

�/.50 28P QRQ Q K
B 3=C 3�
NS�T FHG�E�FHG ,JILK
B 3=C 3�
 � FHG�E�7 .1U GN$HGHE ,

� B 3�
!V�W ��X $�D?EHF�GZY

W <�X $;D?EHF�G K
B 3=C 3�
N[OU D ,
!� B 3�
!V � X $\D?EHF�GZY
 X $�D9E�F�GZY* X G�M;��E'Y B X S�T F�G�E�FHG K
] W�
 �	�
 X $�D?EHF�G K] W�
 " ��# X [^U D K
] W�
 * X G=M_��E K

� F � F

T?` G

�
 � �
� a��=a� �9�	�H���

� �����	�
T?` G

�
 � �
� b&�'b� �9�	���;�

� ���?�	�
T?` G

� ���
" ��#c W+0 C �	
!�

���	�
! ���	�
> � �d�
" ��#

� e 2f3�
 "

�'g+h��

Ti
>0 # 0 e W=CA[9� ��� W # �G �4j	�
)4* " ��#

*

(k)+* " ��#�, 0 e 2
3�
 " . * l 2=W e V * ,4- �	��
 �/.m0 2>n3�
 kR)4* " ��#�, 0 e 2!3�
 " .>
f� � �+C * W e V* ,�- �	��
R�/.>
!�:2>n
6

Figure 4.11: FIPA Query Interaction Protocol - CP-net representation.

The Participant decision on whether to send an agree or a refuse commu-

nicative act is represented using the XOR-decision building block introduced earlier

(Figure 4.3-b). The I3P3 place represents a joint interaction state where Initiator

has received a refuse communicative act and terminated (I3) and Participant has

sent a refuse message and terminated as well (P3). The I4P4 place represents a joint

interaction state in which Initiator has received an agree communicative act and

is now waiting for further response from Participant (I4) and Participant has sent

an agree message and is now deciding which response to send to Initiator (P4). At

this point, the Participant agent may send one of the following communicative acts:

inform-t/f, inform-result and failure. The choice is represented using another XOR-

decision building block, where the inform-t/f and inform-result communicative acts

are represented using a single Inform message place. The failure communicative

act causes transitioning to the I5P5 place, while the inform message causes a tran-

sition to the I6P6 place. The I5P5 place represents a joint interaction state where

Participant has sent a failure message and terminated (P5), while Initiator has

received a failure and terminated (I5). The I6P6 place represents a joint interaction

state in which Participant has sent an inform message and terminated (P6), while

Initiator has received an inform and terminated (I6).

46

The implementation of the [query-if] and the [query-ref] message guard condi-

tions requires a detailed discussion. These are not implemented in a usual manner

in view of the fact that they depend on the original request communicative act.

Thus, we create a special intermediate place that contains the original message type

marked ”Original Message Type” in the figure. In case an inform communicative

act is sent, the transition guard verifies that the inform message is appropriate to

the original query type. Thus, an inform-t/f communicative act can be sent only if

the original query type has been query-if and an inform-result message can be sent

only if the original query type has been query-ref.

4.3 Nested & Interleaved Conversations

In this section, we extend the CP-net representation of previous sections to model

nested and interleaved interaction protocols. We focus here on nested interaction

protocols. Nevertheless, the discussion can also be addressed to interleaved interac-

tion protocols in a similar fashion.

FIPA conversation standards [FIPA Specifications, 2005c] emphasize the impor-

tance of nested and interleaved protocols in modelling complex interactions. First,

this allows re-use of interaction protocols in different nested interactions. Second,

nesting increases the readability of interaction protocols.

���������
	 ����

 ���
	

� ����������� ����������� �������������

� ����������� �
������� � �����!�����

"$#&%'%'()*%,+&-�)

. "/#&%'%,()10

(a) Nested protocol

243 5�6�7�3 8&7�9 :�; < 7�3

=�> ?

? 3 5 ? 5�@�7

A'B�5�< 7�@�7�< < 7�3

3 7�C�D�7�@�9

; E > 5$31F

(b) Interleave protocol

Figure 4.12: AUML nested and interleaved protocols examples.

The AUML notation annotates nested and interleaved protocols as round corner

rectangles [Odell et al., 2001a, FIPA Specifications, 2005c]. Figure 4.12-a shows an

47

example of a nested protocol, while Figure 4.12-b illustrates an interleaved protocol.

Nested protocols have one or more compartments. The first compartment is the

name compartment. The name compartment holds the (optional) name of the nested

protocol. The nested protocol name is written in the upper left-hand corner of the

rectangle, i.e. commitment in Figure 4.12-a. The second compartment, the guard

compartment, holds the (optional) nested protocol guard. The guard compartment

is written in the lower left-hand corner of the rectangle, e.g. [commit] in Figure 4.12-

a. Nested protocols without guards are equivalent to nested protocols with the [true]

guard.

Figure 4.13 describes the implementation of the nested interaction protocol pre-

sented in Figure 4.12-a by extending the CP-net representation to using hierarchies,

relying on standard CP-net methods (see Appendix A). The hierarchical CP-net

representation contains three elements: a superpage, a subpage and a page hierarchy

graph. The CP-net superpage represents the main interaction protocol containing a

nested interaction, while the CP-net subpage models the corresponding nested in-

teraction protocol, i.e. the Commitment Interaction Protocol. The page hierarchy

graph describes how the superpage is decomposed into subpages.

�����������
���
	��
�
�����
���
�
�

� � ������� ��� � ������� � � �� !�

�"�$#%���&#

� ���'�(� � � �� !�") !���
*$+
��� � � �,�* � � � � �.-
�"�����������&/0���1�2�43
���
	��
�
����� �5�
�
� �&/6�2�
	��7�
����� �8�
��� 3
�"�9#:���9#:�&/0�.#;�"#<3

=>�

� � � �

�@?<�.?

�0#%�.#

���
	��7�
�����
�8���
�

���
	@�!�
�����
,"+!A

)CB
)CB

DFEHG

I'+ � J) K����*$+
��� � � (,"* � � � � ��- � �@�'�(� � � �
 !�
) !���
*$+
��� � � �,�* � � � � �.-

� ���L�(� � � �@ !�
) M���@*�+���� � � (,"* � � � � ��-

IN+ � J) O����*$+
��� � �
,"* � � � � �0-

� ������� � � �� O�

Figure 4.13: Nested protocol implementation using hierarchical CP-nets.

Let us consider in detail the process of modelling the nested interaction pro-

tocol in Figure 4.12-a using a hierarchical CP-net, resulting in the net described

in Figure 4.13. First, we identify the starting and ending points of the nested in-

teraction protocol. The starting point of the nested interaction protocol is where

48

Buyer1 sends a Request-Good communicative act to Seller1. The ending point is

where Buyer1 receives a Request-Pay communicative act from Seller1. We model

these nested protocol end-points as CP-net socket nodes on the superpage, i.e.

Main Interaction Protocol: B11S11 and Request-Good are input socket nodes and

B13S13 is an output socket node.

The nested interaction protocol, the Commitment Interaction Protocol, is rep-

resented using a separate CP-net, following the principles outlined in Sections 4.1

and 4.2. This net is a subpage of the main interaction protocol superpage. The

nested interaction protocol starting and ending points on the subpage correspond to

the net port nodes. The B1S1 and Request-Good places are the subpage input port

nodes, while the B3S3 place is an output port node. These nodes are tagged with

the IN/OUT port type tags correspondingly.

Then, a substitution transition, which is denoted using HS (Hierarchy and Substi-

tution), connects the corresponding socket places on the superpage. The substitution

transition conceals the nested interaction protocol implementation from the net su-

perpage, i.e. the Main Interaction Protocol. The nested protocol name and guard

compartments are mapped directly to the substitution transition name and guard

respectively. Consequently, in Figure 4.13 we define the substitution transition name

as Commitment and the substitution guard is determined to be [commit].

The superpage and subpage interface is provided using the hierarchy inscription.

The hierarchy inscription is indicated using the dashed box next to the substitu-

tion transition. The first line in the hierarchy inscription determines the subpage

identity, i.e. the Commitment Interaction Protocol in our example. Moreover,

it indicates that the substitution transition replaces the corresponding subpage de-

tailed implementation on the superpage. The remaining hierarchy inscription lines

introduce the superpage and subpage port assignment. The port assignment relates

a socket node on the superpage with a port node on the subpage. The substitution

transition input socket nodes are related to the IN-tagged port nodes. Analogously,

the substitution transition output socket nodes correspond to the OUT-tagged port

nodes. Therefore, the port assignment in Figure 4.13 assigns the net socket and port

nodes in the following fashion: B11S11 to B1S1, Request-Good to Request-Good and

B13S13 to B3S3.

Finally, the page hierarchy graph describes the decomposition hierarchy (nesting)

of the different protocols (pages). The CP-net pages, theMain Interaction Protocol

and the Commitment Interaction Protocol, correspond to the page hierarchy graph

49

nodes (Figure 4.13). The arc inscription indicates the substitution transition, i.e.

Commitment.

4.4 Temporal Aspects of Conversations

Two temporal interaction aspects are specified by FIPA

[FIPA Specifications, 2005c]. In this section, we show how timed CP-nets

(see also Appendix A) can be applied for modelling agent interactions that involve

temporal aspects, such as interaction duration, deadlines for message exchange, etc.

A first aspect, duration, is the interaction activity time period. Two periods

can be distinguished: transmission time and response time. The transmission time

indicates the time interval during which a communicative act, is sent by one agent

and received by the designated receiver agent. The response time period denotes

the time interval in which the corresponding receiver agent is performing some task

as a response to the incoming communicative act.

The second temporal aspect is deadlines. Deadlines denote the time limit by

which a communicative act must be sent. Otherwise, the corresponding commu-

nicative act is considered to be invalid. These issues have not been addressed in

previous investigations related to agent interactions modelling using Petri nets.2

We propose to utilize timed CP-nets techniques to represent these temporal

aspects of agent interactions. In doing so, we assume a global clock.3 We begin with

deadlines. Figure 4.14-a introduces the AUML representation of message deadlines.

The deadline keyword is a variation of the communicative act sequence expressions

described in Section 4.2. It sets a time constraint on the start of the transmission

of the associated communicative act. In Figure 4.14-a, agent1 must send the msg

communicative act to agent2 before the defined deadline. Once the deadline expires,

the msg communicative act is considered to be invalid.

Figure 4.14-b shows a timed CP-net implementation of the deadline sequence

expression. The timed CP-net in Figure 4.14-b defines an additional MSG-TIME

color set associated with the net message places. The MSG-TIME color set extends

the MSG color set, described in Section 4.2, by adding a time stamp attribute to the

2[Cost et al., 1999, Cost et al., 2000] mention deadlines without presenting any implementation

details.
3Implementing it, we can use the private clock of an overhearing agent as the global clock for

our Petri net representation. Thus, the time stamp of the message is the overhearer’s time when

the corresponding message was overheard.

50

��������� 	 ���
�����

�����
��������� � ���

(a) AUML representation

������� "!�#$&%('�)�*,+
- '/.0'�)

1 -32 +
'4$516)

$7%6'8)3*,+
- '9.6'�)

: !�;&<
= : !�;&<�; >
;@?�=BADC@EF>G!�H

�JIK�LI
C@EF>G! : ENM4O�P4MRQ S T�O4H

?9UVQ UB< �XW6Y�Z E\[^]`_
?9UVQ UB<VEVacb Y [d]`_
?9UVQ UB<feXg Z E Y3Z Ed[^]`_
?9UVQ UB<ih Z E Y3j3k
l E � E Y [m<GOn?9UB<�M

PBoqp �XW(Y3Z ELrsP�t�p �XW(Y3Z E�_
?9UVQ UB<fu l3W [v<GO4?�UB<wM

!�p ��W(Y�Z ENrs<�p �XW(Y�Z ENr
>
p ERa�b Y r�?�p&e,g Z E Y�Z E3_

?9UVQ UB<fu l3Wxk Eyh u Y [Bu l�W >
S (O4MR_
z Pn<F!�;7<
p ��W(Y�Z E3_ z PB
p ERa�b Y _
z Pn<F?�p7eXg Z E Y3Z Ei_
z PVQ{MnO4P4MRQ S T�O|[d]`_

(b) CP-net representation

Figure 4.14: Deadline sequence expression.

message token. Thus, the communicative act token is a record < s, r, t, c > @[Tts].

The @[..] expression denotes the corresponding token time stamp, whereas the token

time value is indicated starting with a capital ’T’. Accordingly, the described message

token has a ts time stamp. The communicative act time limit is defined using the

val deadline parameter. Therefore, the deadline sequence expression semantics is

simulated using the following transition guard: [Tts < Tdeadline]. This transition

guard, comparing the msg time stamp against the deadline parameter, guarantees

that an expired msg communicative act can not be received.

We now turn to representing interaction duration. The AUML representation

is shown in Figure 4.15-a. The AUML time intensive message notation is used

to denote the communicative act transmission time. As a rule communicative act

arrows are illustrated horizontally. This indicates that the message transmission time

can be neglected. However, in case the message transmission time is significant, the

communicative act is drawn slanted downwards. The vertical distance, between the

arrowhead and the arrow tail, denotes the message transmission time. Thus, the

communicative act msg1, sent from agent1 to agent2, has a t1 transmission time.

The response time in Figure 4.15-a is indicated through the interaction thread

length. The incoming msg1 communicative act causes agent2 to perform some task

before sending a response msg2 message. The corresponding interaction thread

duration is denoted through the t2 time period. Thus, this time period specifies the

agent2 response time to the incoming msg1 communicative act.

The CP-net implementation to the interaction duration time periods is shown

in Figure 4.15-b. The communicative act transmission time is illustrated using the

51

��������� � ���	�
��� �

������

���

������

�
�

(a) AUML representation

������� ��� � �! "$#&%('*)
+ #-,$#.%/)
#0!21�%

1 +/3)
#4! 1�%

! "$#&%('*)
+ #5,$#0%/)
#&!21�%

687:9<;=�

�(>
�<>

?-@<A @:B ��C�D(E�9GFIHKJ
?-@<A @:B 9�L�M/DIFIHKJ
?-@<A @:B�N*O E(9/D�E(9GFIHKJ
?-@<A @:B�P E�9/D(Q/RTSU9U�(9/DVF BXW4? @&BXY

Z<[�\ �*C�D�E(9^] Z0_ \ �`C�D(E�9/J
?-@<A @:B�P E�9/D(Q/RTSU9U�(9/DUR=9 P a D^F

P E�9/D(Q/RTSU9��/9/Db;�c � W4Y J
?-@<A @:B�a S�CdF BXW4?-@:B=Y

� \ �*C�D/E�9e] B�\ ��C$D/E�9U]
; \ 9fLgM�DU] ?0\ N�O E�9(D/E�9(J

?-@<A @:B�a S�ChR=9 P a D^F a S/Ci;�c � W4Y J
j Z:B �0k B�\ �`ClD�E/9�J j Z:B ; \ 9UL�M�D/J
j Z:B<?0\ N*O E(9/D�E(9/J

m-nXo �0k BTp 6rq 9U; � ��sm

mtnTo �0k B k ; k ? p 68q 9U; � > sm
�u� � >
1 +`3)
#4!21h%

! "�#&%�'*)
+ #-,$#.%/)
#0!21�%

�wv	��v

(b) CP-net representation

Figure 4.15: Interaction duration.

timed CP-nets @+ operator. The net transitions simulate the communicative act

transmission between agents. Therefore, representing a transmission time of t1, the

CP-net transition adds a t1 time period to the incoming message token time stamp.

Accordingly, the transition @ + Tt1 output arc expression denotes a t1 delay to the

time stamp of the outgoing token. Thus, the corresponding transition takes t1 time

units and consequently so does the msg1 communicative act transmission time.

In contrast to communicative act transmission time, the agent interaction re-

sponse time is represented implicitly. Previously, we have defined a MSG-TIME

color set that is amenable to indicate message token time stamps. Analogously,

in Figure 4.15-b we introduce an additional INTER-STATE-TIME color set. This

color set is associated with the net agent places and it presents the possibility to

attach time stamps to agent tokens as well. Now, let us assume that A2B2 and

msg2 places contain a single token each. The circled ’1’ next to the corresponding

place, together with the multi-set inscription, indicates the place current marking.

Thus, the agent and the message place tokens have a ts1 and a ts2 time stamps

respectively. The ts1 time stamp denotes the time by which agent2 has received the

msg1 communicative act sent by agent1. The ts2 time stamp indicates the time by

which agent2 is ready to send msg2 response message to agent1. Thus, the agent2

response time t2 (Figure 4.15-a) is ts2 − ts1.

52

4.5 A Complex Conversation Protocol

In this section, we present an example of a complex 3-agent AUML conversation

protocol modelled using our CP-net representation. This example incorporates many

advanced features of our CP-net representation technique and would have been

beyond the scope of many previous investigations.

The conversation protocol addressed here is the FIPA Brokering Interaction Pro-

tocol [FIPA Specifications, 2005a]. This interaction protocol incorporates many ad-

vanced conversation features of our representation such as nesting, communicative

act sequence expression, message guards and etc. Its AUML representation is shown

in Figure 4.16.

� ��� ��� ���	��
 �

�������

��� ��������
�������
	� �������

����	�������

���!#"�$
���!�� �&%��'����()()*���� ������� +&�#�
���,��-�����������%.��/��#
	� �	� �0��-
���!#"��

������%0� ��� ����1

2��3�*�/&�

�#��
2���

3���� � *�
��#���#�#��(4���5�#6
7 �#�0
����#%�-#���0���#����3	� ��%8����"

�	��
2�����0����������/�9

3���� � *�
��#�
��#!�"�: 32�0� � *�
;�

� ��32�0
;(<�'%����#���
���!#"=: � ��3���
	(7 �#��
2���#%�-�3	� ��%
����">�5��
5���#�
�#���0���2/�9

�� � "���(?�#/�/#�#�����	/&*�@��
��������A�0�

3���� � *�
��#��@�
�������
	� ����: 3���� � *�
��
7 /�*�@
��#���������,3���� � *�
2��9

7 � �#32��
	(4�#%
���!#"��	%����#�0-
/#*�@
����	�������
��������#%�9

���!�� ��%��
����(B()*���� �����	� +����C���D�
7 �&�0
;����%�-�35� ��%8����"
�	��
2�����0����������/�9

7 ���,�	� ������������%0� ��� ���#9

�� � "���(4�#/�/#�#���
7 /�*�@��
2�#���������

;�������#%�9

/�*�@��
����	�������

E�F2F �

(

Figure 4.16: FIPA Brokering Interaction Protocol - AUML representation.

53

The Initiator agent begins the interaction by sending a proxy message to the

Broker agent. The proxy communicative act contains the requested communicative

act, i.e. proxied-communicative-act, as part of its argument list. The Broker agent

processes the request and responds with either an agree or a refuse message. Com-

munication of a refuse message terminates the interaction. If the Broker agent

has agreed to function as a proxy, it then locates the agents matching the Initiator

request. If no such agent can be found, the Broker agent communicates a failure-no-

match message and the interaction terminates. Otherwise, the Broker agent begins

m interactions with the matching agents. For each such agent, the Broker informs

the Initiator, sending either an inform-done-proxy or a failure-proxy communicative

act. The failure-proxy communicative act terminates the sub-protocol interaction

with the matching agent in question. The inform-done-proxy message continues the

interaction. As the sub-protocol progresses, the Broker forwards the received re-

sponses to the Initiator agent using the reply-message-sub-protocol communicative

acts. However, there can be other failures that are not explicitly returned from the

sub-protocol interaction (e.g., if the agent executing the sub-protocol has failed). In

case the Broker agent detects such a failure, it communicates a failure-brokering

message, which terminates the sub-protocol interaction.

A CP-net representation of the FIPA Brokering Interaction Protocol is shown

in Figure 4.17. The Brokering Interaction Protocol starts from I1B1 place. The

I1B1 place represents a joint interaction state where Initiator is ready to send a

proxy communicative act (I1) and Broker is waiting to receive it (B1). The proxy

communicative act causes the interacting agents to transition to I2B2. This place

denotes an interaction state in which Initiator has already sent a proxy message

to Broker (I2) and Broker has received it (B2). The Broker agent can send, as a

response, either a refuse or an agree communicative act. This CP-net component is

implemented using the XOR-decision building block presented in Section 4.1. The

refuse message causes the agents to transition to I3B3 place and thus terminate

the interaction. This place corresponds to Broker sending a refuse message and

terminating (B3), while Initiator receiving the message and terminating (I3). On

the other hand, the agree communicative act causes the agents to transition to I4B4

place, which represents a joint interaction state in which the Broker has sent an

agree message to Initiator (and is now trying to locate the receivers of the proxied

message), while the Initiator received the agree message.

54

� ����� ���	��
��

 ���������
� ������� � ���

� ��! �	" # ��$

� � ! � " % $ �	&�&� ���

��$

��$
� � ! � "

� '(�)'

* &,+	- � &
� ���
 �.�/���0�

� �1�.�/� � 21�)2
�3�,! �4"� ��! �	"

�5��! �	"

 ���������
� ���6���

� 7��87
 ���������
� �1�6���

9 �;: �3� %0<.=�>�?A@CBED
9 �;: �3� ?;F � =G@IH �J�/
/� K �	&/+4- � &;K L L L D
9 �;: �3�8MON >�?�=�>�?C@CBED
9 �;: �3� � >�?�=�*QPSR)?;%�?Q=G@ �	& 9 � �	T

U �WV %0<�=�>�?)X U 2 V %0<.=�>�?QD
9 �;: �3� � >�?�=�*QPSR)?;%�?Q=)P4YI@ � & 9 �3�	T

U � V %0<�=�>�?)X U 21V %0<.=�>�?�X
U ' V %0<�=�>�?�D

9 �;: �3�8MON *OZ[@]\ ^/_	D
9 �;: �3� � >�?�=�*QPSR)?;%�?Q=)P4Y P M %`*0Z[@

�	& 9 ���	T � >�?�=Q*�P4R�?5%a?�=�P	Y X
M %O*�ZOD

9 �;: �3�8b R�<6@ �J& 9 �3� T � V %�<.=�>�?)X
� V %0<c=�>�?�XS_ V ?5F � =�X
9 V M�N >�?�=�>�?�D

9 �;: �3� ?;%O*a<.=8?)Ped5� R)?�@�%�<.=�>�?gfc\ _	h L L D
i U : # @�BED
9 �;: �3� ?;%O*a<.=8?�@8\ ^ T &/
 ?5%�*Q<.=;?�Pd � R�?jfj\ _Jhjk L L L # Pml,D
i U � # ��$ V b R�<.D
i U � ��! � ! H V %�<.=�>�?QD
i U � _ V ?;F � =�D
i U � \ V M %O*�Z0D

n \ � # U ^ T _J@,o3_ # ��$ p

 �.�����0�
� �1�.�/���4q��
r �a�0s

� � ! � "
� t1�)t
 ���������

� ���6���

� �Q�

��$

u U \ : -3�	& P> � P
b U _ 9 h

�3�,! �4" �3�,! �4"

�8v3w��

���	��
 \ &�T P
M�� #x# - ^5\ 9�U _4\ i & P% 9 _JPJ? � H &o8H �J�/
 \ & T P 9 � #j# - ^5\ 9�U _S\ i & P

U 9 _ y o 9 # ��$3z

_

� �Q�

���J�/
 \ & T P
Ma� #x# - ^5\ 9�U _S\ i & P% 9 _y �3�,! ?5%�*Q<.=;?�y k ze! �	" ! k z

� 71�){ � �
y �3�,! ?;%O*a<.=5?�y|\ })l zS! H " ! \ }8l z

y �3�,! � ! H " ! \ z # ��$

� � ! �,! H "

� { �)~ � �

 ���������
� ���6�,���Sq

� �Q�
��$

u U \ : -,�4& P�)�4�/
��

 �c�/���O�
� ���������Sq

� 7 �8� � �

� ��! � ! H "

�3�,! � ! H "

�3��! � ! H "
� ���

��$

� ^ + �5� # P|Z � ^ & P���J�/
��
 �c�/���O�
� �����/�

� ��! �	" # ��$

� ���

���	�/
 \ & T P
Ma� #x# - ^5\ 9�U _S\ i & P% 9 _�;{ � �

�3�,! �	" # ��$
�QR

� -�&3� � PSR - � P
���	� _ � 9 �;:� ��! � ! H "

 ���������
� ���6�����Sq

� � �)� � 2

� ���

u U \ : - �	& P� �J�3�1&3� \ ^ $

� � ! ��! H "

� ~ � ��� � 2

 �.�,���0�
� �1�.�/���4q

��$ �3�,! � ! H "

 ���/�Q���
� �1���/�
� �e� � '

�3�,! �4"

� � ! ��! H "

� � ��� 2 � '

 �.�/���0�
� �1�6�����Sq

� ��! � ! H "
� ��! H " # ��$ � �Q�* & H : � P

b.& ��� U $ & PR - � P
���	� _ � 9 �;:

� -�& � � P�� ^�_ &3� U 9 _	\ � ^�P �)�4� _ � 9 �8:�;� ��� P " � ����� D
���	�/
 \ & T P M�� #x# - ^5\ 9�U _4\ i & P% 9 _JP " � -�&3� � D� �4���8� P " � ���5� D
� �4���8� P " � � � ��D
� �4���8� P " � � � ��D

��$

��$

� -�&3�J� P4R -�� P ���	� _ � 9 �;:

Figure 4.17: FIPA Brokering Interaction Protocol - CP-net representation.

The Broker agent’s search for suitable receivers may result in two alternatives.

First, in case no matching agents are found, the interaction terminates in the I5B5

agent place. This joint interaction place corresponds to an interaction state where

Broker has sent the failure-no-match communicative act (B5), and Initiator has

55

received the message and terminated (I5). The second alternative is that suit-

able agents have been found. Then, Broker starts sending proxied-communicative-

act messages to these agents on the established list of designated receivers, i.e.

TARGET-LIST. The first such proxied-communicative-act message causes the inter-

acting agents to transition to I4B6P1 place. The I4B6P1 place denotes a joint inter-

action state of three agents: Initiator, Broker and Participant (the receiver). The

Initiator individual state remains unchanged (I4) since the proxied-communicative-

act message starts an interaction between Broker and Participant. The Broker in-

dividual state (B6) denotes that designated agents have been found and the proxied-

communicative-act messages are ready to be sent, while Participant is waiting to re-

ceive the interaction initiating communicative act (P1). The proxied-communicative-

act message place is also connected as an output place of the transition. This mes-

sage place is used as part of a CP-net XOR-decision structure, which enables the

Broker agent to send either a failure-no-match or a proxied-communicative-act, re-

spectively. Thus, the token denoting the proxied-communicative-act message, must

not be consumed by the transition.

Thus, multiple proxied-communicative-act messages are sent to all Participants.

This is implemented similarly to the broadcast sequence expression implementation

(Section 4.2). Furthermore, the proxied-communicative-act type is verified against

the type of the requested proxied communicative act, which is obtained from the

original proxy message content. We use the Proxied-Communicative-Act-Type mes-

sage type place to implement this CP-net component similarly to Figure 4.11. Each

proxied-communicative-act message causes the interacting agents to transition to

both the I4B7P1 and the B6P1 places.

The B6P1 place corresponds to interaction between the Broker and the Partic-

ipant agents. It represents a joint interaction state in which Broker is ready to

send a proxied-communicative-act message to Participant (B6), and Participant

is waiting for the message (P1). In fact, the B6P1 place initiates the nested in-

teraction protocol that results in B10P3 place. The B10P3 place represents a joint

interaction state where Participant has sent the reply-message communicative act

and terminated (P3), and Broker has received the message (B10). In our example,

we have chosen the FIPA Query Interaction Protocol [FIPA Specifications, 2005d]

(Figures 4.10–4.11) as the interaction sub-protocol. The CP-net component, im-

plementing the nested interaction sub-protocol, is modelled using the principles de-

scribed in Section 4.3. Consequently, the interaction sub-protocol is concealed using

56

the Query-Sub-Protocol substitution transition. The B6P1, proxied-communicative-

act and B10P3 places determine substitution transition socket nodes. These socket

nodes are assigned to the CP-net port nodes in Figure 4.11 as follows. The B6P1

and proxied-communicative-act places are assigned to the I1P1 and query input port

nodes, while the B10P3 place is assigned to the I3P3, I5P5 and I6P6 output port

nodes.

We now turn to the I4B7P1 place. In contrast to the B6P1 place, this place

corresponds to the main interaction protocol. The I4B7P1 place represents a joint

interaction state in which Initiator is waiting for Broker to respond (I4), Broker is

ready to send an appropriate response communicative act (B7), and to the best of the

Initiator’s knowledge the interaction with Participant has not yet begun (P1). The

Broker agent can send one of two messages, either a failure-proxy or an inform-done-

proxy, depending on whether it has succeeded to send the proxied-communicative-act

message to Participant. The failure-proxy message causes the agents to terminate

the interaction with corresponding Participant agent and to transition to I6B8P1

place. This place denotes a joint interaction state in which Initiator has received a

failure-proxy communicative act and terminated (I6), Broker has sent the failure-

proxy message and terminated as well (B8) and the interaction with the Participant

agent has never started (P1). On the other hand, the inform-done-proxy causes the

agents to transition to I7B9P2 place. The I7B9P2 place represents an interaction

state where Broker has sent the inform-done-proxy message (B9), Initiator has

received it (I7), and Participant has begun the interaction with the Broker agent

(P2). Again, this is represented using the XOR-decision building block.

Finally, the Broker agent can either send a reply-message-sub-protocol or a

failure-brokering communicative act. The failure-brokering message causes the in-

teracting agents to transition to I8B11P2 place. This place indicates that Broker

has sent a failure-brokering message and terminated (B11), Initiator has received

the message and terminated (I8), and Participant has terminated during the inter-

action with the Broker agent (P2). The reply-message-sub-protocol communicative

act causes the agents to transition to I9B12P3 place. The I9B12P3 place indicates

that Broker has sent a reply-message-sub-protocol message and terminated (B12),

Initiator has received the message and terminated (I9), and Participant has suc-

cessfully completed the nested sub-protocol with the Broker agent and terminated

as well (P3). Thus, the B10P3 place, denoting a successful completion of the nested

sub-protocol, is also the corresponding transition input place.

57

Chapter 5

Transforming AUML Diagrams to

CP-net Representation

Our final contribution in this part of the thesis is a skeleton procedure for trans-

forming a human-readable AUML conversation protocol diagram of two interacting

agents to its machine-readable CP-net representation (Section 5.1). The procedure is

semi-automated–it relies on the human to fill in some details–but also has automated

aspects. We apply this procedure on a complex multi-agent conversation protocol

that involves many of the interaction building blocks already discussed (Section 5.2).

5.1 Transformation Algorithm

The procedure is shown in Algorithm 1. The algorithm input is an AUML pro-

tocol diagram and the algorithm creates, as an output, a corresponding CP-net

representation. The CP-net is constructed in iterations using a queue. The algo-

rithm essentially creates the conversation net by exploring the interaction protocol

breadth-first while avoiding cycles.

Lines 1-2 create and initiate the algorithm queue, and the output CP-net, re-

spectively. The queue, denoted by S, holds the initiating agent places of the current

iteration. These places correspond to interaction states that initiate further con-

versation between the interacting agents. In lines 4-5, an initial agent place A1B1

is created and inserted into the queue. The A1B1 place represents a joint initial

interaction state for the two agents. Lines 7-23 contain the main loop.

We enter the main loop in line 8 and set the curr variable to the first initiating

agent place in S queue. Lines 10-13 create the CP-net components corresponding

58

Algorithm 1 Create Conversation Net(input:AUML,output:CPN)

1: S ← new queue

2: CPN ← new CP− net

3:

4: A1B1 ← new agent place with color information

5: S.enqueue(A1B1)

6:

7: while S not empty do

8: curr ← S.dequeue()

9:

10: MP ← CreateMessageP laces(AUML, curr)

11: RP ← CreateResultingAgentP laces(AUML, curr,MP)

12: (TR,AR)← CreateTransitionsAndArcs(AUML, curr,MP,RP)

13: FixColor(AUML,CPN,MP,RP, TR,AR)

14:

15: for each place p in RP do

16: if p was not created in current iteration then

17: continue

18: if p is not terminating place then

19: S.enqueue(p)

20:

21: CPN.places = CPN.places
⋃

MP
⋃

RP

22: CP.transitions = CPN.transitions
⋃

TR

23: CPN.arcs = CPN.arcs
⋃

AR

24:

25: return CPN

to the current iteration as follows. First, in line 10, message places, associated with

curr agent place, are created using the CreateMessageP laces procedure. This pro-

cedure extracts the communicative acts that are associated with a given interaction

state, from the AUML diagram. These places correspond to communicative acts,

which take agents from the joint interaction state curr to its successor(s). Then

in line 11, the CreateResultingAgentP laces procedure creates agent places that

correspond to interaction state changes as a result of the communicative acts as-

sociated with curr agent place (again based on the AUML diagram). Then, in

CreateTransitionsAndArcs procedure (line 12), these places are connected using

59

the principles described in Sections 4.1–4.4 of Chapter 4. Thus, the CP-net struc-

ture (net places, transitions and arcs) is created. Finally, in line 13, the FixColor

procedure adds token color elements to the CP-net structure, to support deadlines,

cardinality, and other communicative act attributes.

Lines 15-19 determine which resulting agent places are inserted into the S queue

for further iteration. Only non-terminating agent places, i.e. places that do not

correspond to interaction states that terminate the interaction, are inserted into the

queue in lines 18-19. However, there is one exception (lines 16-17): a resulting agent

place, which has already been handled by the algorithm, is not inserted back into

the S queue since inserting it can cause an infinite loop. Thereafter, completing

the current iteration, the output CP-net, denoted by CPN variable, is updated

according to the current iteration CP-net components in lines 21-23. This main

loop iterates as long as the S queue is not empty. The resulting CP-net is returned–

line 25.

5.2 Transformation Example

To demonstrate this algorithm, we will now use it on the FIPA Contract Net In-

teraction Protocol [FIPA Specifications, 2005b] (Figure 5.1). This protocol allows

interacting agents to negotiate. The Initiator agent issues m calls for proposals

using a cfp communicative act. Each of the m Participants may refuse or counter-

propose by a given deadline sending either a refuse or a propose message respec-

tively. A refuse message terminates the interaction. In contrast, a propose message

continues the corresponding interaction.

Once the deadline expires, the Initiator does not accept any further Participant

response messages. It evaluates the received Participant proposals and selects one,

several, or no agents to perform the requested task. Accepted proposal result in the

sending of accept-proposal messages, while the remaining proposals are rejected using

reject-proposal message. Reject-proposal terminates the interaction with the corre-

sponding Participant. On the other hand, the accept-proposal message commits a

Participant to perform the requested task. On successful completion, Participant

informs Initiator sending either an inform-done or an inform-result communicative

act. However, in case a Participant has failed to accomplish the task, it communi-

cates a failure message.

60

���������	��

���������������

������������
����������������

� ��� � �����

� � � �����
"!������$#%� � � �����

� � � �����&
���������� �"#'� � � �����

� (���

)

)+*��

�������������

�
��� � �,���� * �

�-(���

�

� � � �

. ��� ��� ������� /0������� ��� �������

Figure 5.1: FIPA Contract Net Interaction Protocol using AUML.

We now use the algorithm introduced above to create a CP-net, which represents

the FIPA Contract Net Interaction Protocol. The corresponding CP-net model is

constructed in four iterations of the algorithm. Figure 5.2 shows the CP-net rep-

resentation after the second iteration of the algorithm, while Figure 5.3 shows the

CP-net representation after the fourth and final iteration.

The Contract Net Interaction Protocol starts from I1P1 place, which represents

a joint interaction state where Initiator is ready to send a cfp communicative act

(I1) and Participant is waiting for the corresponding cfp message (P1). The I1P1

place is created and inserted into the queue before the iterations through the main

loop begin.

First iteration. The curr variable is set to the I1P1 place. The algorithm creates

net places, which are associated with the I1P1 place, i.e. a Cfp message place,

and an I2P2 resulting agent place. The I2P2 place denotes an interaction state in

which Initiator has already sent a cfp communicative act to Participant and is

now waiting for its response (I2) and Participant has received the cfp message

61

and is now deciding on an appropriate response (P2). These are created using the

CreateMessageP laces and the CreateResultingAgentP laces procedures, respec-

tively.

Then, the CreateTransitionsAndArcs procedure in line 12, connects the three

places using a simple asynchronous message building block as shown in Figure 4.1-b

(Section 4.1). In line 13, as the color sets of the places are determined, the algorithm

also handles the cardinality of the cfp communicative act, by putting an appropriate

sequence expression on the transition, using the principles presented in Figure 4.9-b

(Section 4.2). Accordingly, the color set, associated with I1P1 place, is changed

to the INTER-STATE-CARD color set. Since the I2P2 place is not a terminating

place, it is inserted into the S queue.

� �����
���	�

 �
�������������������
� �����

����
!#"%$�& ')(*&,+ -/. $�0

"%'1& $2(�3')4 � 4�$�5
���� ��
�6
7��� . $�0%8:9 ;=<>$�?. $@0*8A9 ;=<>$@?

"B'#& $2(
� CD�EC

FHG�!	"I$�& ;*JLK�MONB;�!7P%-	(*& P*-

97+ " . ?
!)"6$�& ;BJ�K�MON=;
!#+ QRF�-	(*&,+ QEF�-
KS5 �	T $�5

�U�� ��
�6
7���

 �
�2�����
���H�O�2� � V��BV

"I$�& ')("I$�& ')(

9 ;E<,$2"
;EWI56XIW%Y + Z25I?

9 ;*<>$�"
;3WI5�X6W*Y + Z�56? "%'1& $�(

 �
�������
���@�����

� [��B[
 �
�������
���@�����

\ 4*Y 4%'6J�MON�]�;_^a`cb
\ 4*Y 4%'%;*d��SNa^ \ �	�6e '75 �	T $@5 e f,f,f b
\ 4*Y 4%' ��g]�;�NS]�;h^a`_b
\ 4*Y 4%'��]S;�N�K�i	jE;*J�;SNh^k'>5 \ 4*'7WlX �nm JoMpNS]�;Eq

X�V m J�MONS]�;�b
\ 4*Y 4%' � J�K�rs^t+ Z�<	b
\ 4*Y 4%'��]S;�N�K�i	jE;*J�;SNEi � J�Koru^ � ')4IW T \ <

�]�;SN�KSi�j=;BJ�;SNEq � J�K�r�b
\ 4*Y 4%'EvUj�Mw^k'>5 \ 4*'7Wl$ m J�M
N�]�;Eq�' m J�MONS]�;Eq

< m ;=d���N3q \ m ��g]�;SN�]�;Sb
\ 4*Y 4%'%;*J�K�MpNE;Eiyx%� j=;h^�J�MON�]�;tz�+ <){E`_b
| X*Y . ^a`_b
\ 4*Y 4%'%;*J�K�MpNE;h^t+ Z�WI5�}O;*JoK�MONB;Ei�x*� j=;

z�+ <){
P f,f,f . iyF�b
| X%'B$�& ' m J�MONS]�;�b | X*' . $@0 m v�jSMpb
| X%'R+ m � J�K�r�b
| X*YDWI56X�W*Y + Z�5%^3`cb

Figure 5.2: FIPA Contract Net Interaction Protocol using CP-net after the 2nd

iteration.

Second iteration. curr is set to the I2P2 place. The Participant agent can send,

as a response, either a refuse or a propose communicative act. Refuse and Propose

message places are created by CreateMessageP laces (line 10), and resulting places

I3P3 and I4P4, corresponding to the results of the refuse and propose commu-

nicative acts, respectively, are created by CreateResultingAgentP laces (line 11).

The I3P3 place represents a joint interaction state where Participant has sent the

refuse message and terminated (P3), while Initiator has received it, and terminated

(I3). The I4P4 place represents the joint state in which Participant has sent the

propose message (P4), while Initiator has received the message and is considering

its response (I4).

62

In line 12, the I2P2, Refuse, I3P3, Propose and I4P4 places are connected using

the XOR-decision building block presented in Figure 4.3-b (Section 4.1). Then, the

FixColor procedure (line 13), adds the appropriate token color attributes, to allow

a deadline sequence expression (on both the refuse and the propose messages) to

be implemented as shown in Figure 4.14-b (Section 4.4). The I3P3 place denotes a

terminating state, whereas the I4P4 place continues the interaction. Thus, in lines

18-19, only the I4P4 place is inserted into the queue, for the next iteration of the

algorithm. The state of the net at the end of the second iteration of the algorithm

is presented in Figure 5.2.

Third iteration. curr is set to I4P4. Here, the Initiator response to a Participant

proposal can either be an accept-proposal or a reject-proposal. CreateMessagePlaces

procedure in line 10 thus creates the corresponding Accept-Proposal and Reject-

Proposal message places. The accept-proposal and reject-proposal messages cause

the interacting agents to transition to I5P5 and I6P6 places, respectively. These agent

places are created using the CreateResultingAgentP laces procedure (line 11). The

I5P5 place denotes an interaction state in which Initiator has sent a reject-proposal

message and terminated the interaction (I5), while the Participant has received the

message and terminated as well (P5). In contrast, the I6P6 place represents an in-

teraction state where Initiator has sent an accept-proposal message and is waiting

for a response (I6), while Participant has received the accept-proposal communica-

tive act and is now performing the requested task before sending a response (P6).

The Initiator agent sends exclusively either an accept-proposal or a reject-proposal

message. Thus, the I4P4, Reject-Proposal, I5P5, Accept-Proposal and I6P6 places are

connected using a XOR-decision block (in the CreateTransitionsAndArcs proce-

dure, line 12).

The FixColor procedure in line 13 operates now as follows: According to the

interaction protocol semantics, the Initiator agent evaluates all the received Partic-

ipant proposals once the deadline passes. Only thereafter, the appropriate reject-

proposal and accept-proposal communicative acts are sent. Thus, FixColor assigns

a MSG-TIME color set to the Reject-Proposal and the Accept-Proposal message

places, and creates a [Tts >= Tdeadline] transition guard on the associated tran-

sitions. This transition guard guarantees that Initiator cannot send any response

until the deadline expires, and all valid Participant responses have been received.

63

The resulting I5P5 agent place denotes a terminating interaction state, whereas the

I6P6 agent place continues the interaction. Thus, only I6P6 agent place is inserted

into the S queue.

� �����
���	�

 �
�������������������
� �����

�����
�! #"%$ &!'($) *,+ "�-

 .&/$ "0' ��&21 � 13"�4
���5���
�%
6�
� + "�-#798 :<;2"0=+ "�-#7>8 :<;2"0=

 .&!$ "0'
� ?@�A?

BDC��� 3"E$:.FHG5I
J(:��2K.*!'($ K#*

82) + =

 .&/$ "0'

� LD�ML

�! #"%$:<FNGOI
J<:
�/) PQB0*	'M$) PMB�*
G�4 �	R "�4

�S�����
�E
2�
�

 �
���5���
�O�0�H�%� � TU�MT

 #"%$ &!' #"%$ &!'

8 :M;2"0
:AV%4#W3V<X) Y343=

8 :M;Z"0
:MV#43W3V.X) Y�43= (&!$ "�'

 �[�%���\�
���������

�]��(]

���5���
�%
2�[�

�^�O���
�3
2���

F5_0_�4 � ;2`
�Q&	1 � 13"0W<X

G54Da243_U;2`���&61 � 1#"�W<X
+ "�-#798 :<;2"0= + "�-#7>8 :<;2"�=

 #"E$ &6' #"%$ &�'

 .&/$ "0'
8 :Q; "0'(b

:�V34%W#V<X) YE4#=
8 :M; "�'<b

:AV34EW3V<X) Y343=

 ���E�����
�O�0�c�E�

 �
�E�����
�5���H�E�� dU�Md

 #"%$ &!' #"%$ &!'

 .&/$ "0' .&/$ "�'

 ���E�����
�O�0�H�3�

 ���%�����
�5���H�%�

� eU�Me � f@�Af

���5�
���5�g#W<) X R &	4
� Y � 1#& +

8 h.; + "0-#b() Y � 1.& + `
V31#Y%4�1#&3h#; + "�-Eb
) Y � 1#& + `�&	4E" R X ;2=

 ���E�����
�O�0�H�3�

+ "�- + "�-

_�1<X 1#&3F�I[J�i�:jblknm
�1<X 1#&#:(o\��JpbS �	�.q &64 �	R "04 q r r r m
_�1<X 1#& ��s i�:�J�i�:lbjknm
�1<X 1#&�� i�:�J�G5`�tM:(F�:�Jjbu&	43�13&	V�W �wv F�I
J�i�:Mx

W0T v FOI[J�i�:�m
_�1<X 1#& � FHG�yzb{) Y�;!m
_�1<X 1#&�� i�:�J�G5`�tM:(F�:�JQ` � F\G�yzb � &	13V R _D;

� i�:�J�G�`�tQ:(F�:�JAx � FNG�y�m
�1<X 1#&(|�t�I}bu&	4#�1E&!V�" v F�I
J�i�:Ax~& v FOI[J�i�:Qx

; v :.oN��JMx~_ v ��s i�:�J�i�:�m
_�1<X 1#&#:(F\G5I
JQ:M`��.� tA:jb[F�I
J�i�:S��) ;6�(knm
� W<X + blknm
_�1<X 1#&#:(F\G5I
JQ:pb{) Y3V34��
:.F\G�IcJQ:M`��.� tQ:

��) ;6�[K r r r + `~BEm
� W#&<"%$ & v F�I
J�i�:�m � WE& + "�- v |�t�I
m
� W#&Q) v � F�G�y�m
� W<X@V#4%W3V(X) YE4#bAk�m

Figure 5.3: FIPA Contract Net Interaction Protocol using CP-net after the 4th (and

final) iteration.

Fourth iteration. curr is set to I6P6. This place is associated with three

communicative acts: inform-done, inform-result and failure. The inform-done

and the inform-result messages are instances of the inform communicative act

class. Thus, CreateMessageP laces (line 10) creates only two message places,

Inform and Failure. In line 11, CreateResultingAgentP laces creates the I7P7

and I8P8 agent places. The failure communicative act causes interacting agents

to transition to I7P7 agent place, while both inform messages cause the agents

to transition to I8P8 agent place. The I7P7 place represents a joint interaction

state where Participant has sent the failure message and terminated (P7), while

Initiator has received a failure communicative act and terminated (I7). On the

other hand, the I8P8 place denotes an interaction state in which Participant has

sent the inform message (either inform-done or inform-result) and terminated

64

(P8), while Initiator has received an inform communicative act and terminated

(I8). The inform and failure communicative acts are sent exclusively. Thus

CreateTransitionsAndArcs (line 12) connects the I6P6, Failure, I7P7, Inform

and I8P8 places using a XOR-decision building block. Then, FixColor assigns a

[#t msg = inform-done or #t msg = inform-result] transition guard on the transi-

tion associated with Inform message place. Since both the I7P7 and the I8P8 agent

places represent terminating interaction states, they are not inserted into the queue,

which remains empty at the end of the current iteration. This signifies the end of

the conversion. The complete conversation CP-net resulting after this iteration of

the algorithm is shown in Figure 5.3.

The procedure we outline can guide the conversion of many 2-agent conversa-

tion protocols in AUML to their CP-net equivalents. However, it is not sufficiently

developed to address the general n-agent case. For instance, Section 4.5 presented

a complex example of a 3-agent conversation protocol, which was successfully con-

verted manually, but could not be converted using the present form of the algorithm.

We believe that addressing automated conversion of the general n-agent case con-

versation protocols can be a potential ground for future research.

65

Part II

Conversation Recognition

66

Previous investigations on overhearing demonstrated a range of overhearing tech-

niques as presented in Chapter 2. However, despite the inspiration and concrete

techniques provided by previous work, general challenges of overhearing were only

addressed in the context of specific applications. As a result, a formal model of

overhearing was yet to be presented.

In this part of the thesis, we address this challenge introducing a formal approach

to overhearing (Chapter 6). We present a comprehensive theoretical model that is

constructed from three components. The first models the representation of con-

versation protocols, i.e. inter-agent communication templates used to coordinate a

specific system task performance (e.g., FIPA interaction protocols [FIPA site, 2005]).

The second component models a complete conversation system, a set of instantiated

conversations that take place in a multi-agent system. Finally, the third compo-

nent of our model represents the view of an overhearing agent on the corresponding

conversation system.

In addition, some key assumptions made by previous works are difficult to ex-

tract. For instance, previous investigations on overhearing all make the assumption

that the overhearing agent can match intercepted messages to a conversation pro-

tocol. Most make the assumption that all messages in a conversation are overheard

(i.e. no losses). Yet both assumptions are challenged in real-world settings.

Our work seeks to address these assumptions by presenting conversation recog-

nition algorithms (Chapter 7). We use the proposed theoretical model to formulate

the problem of conversation recognition. Conversation recognition is a key step in

overhearing, that deals with recognizing the conversation that took place, given a

set of overheard messages. This is a preliminary step to obtaining information from

overheard conversations.

We provide a skeleton algorithm for this task and instantiate it for handling loss-

less and lossy overhearing. We explore the complexity of these algorithms to address

their appropriateness for large-scale settings, and show that handling general lossy

overhearing–overhearing where messages can randomly be lost–is computationally

expensive. Surprisingly, however, a specific case of lossy overhearing, called system-

atic message loss, e.g., always losing one side of the conversation, is significantly

more efficient in terms of complexity. Fortunately, systematic message loss is likely

to be more frequent in practice.

67

Chapter 6

A Formal Model of Overhearing

Addressing the general overhearing task, we propose a formal model that is con-

structed of three components: (i) conversation protocols; (ii) a system of conversa-

tions using conversation protocols; and (iii) a view on conversations by an overhear-

ing agent.

To demonstrate the proposed model, we consider the following overheard con-

versation between two agents bidding on a contract. The first agent sends a call

for proposal (cfp), on which the second agent replies with a proposal–a propose

message. Then, the first agent accepts this proposal by sending an accept-proposal.

Finally, the second agent performs the agreed task and communicates an inform

message–informing the first agent on the established results.

This conversation implements a portion of the FIPA Contract Net Interaction

Protocol [FIPA Specifications, 2005b]. Generally1, the same protocol can be over-

heard differently. After the first agent issues a cfp, a second agent can refuse it or

propose to it. Then, its proposal is either accepted or rejected by the first agent-

communicating an accept-proposal or a reject-proposal message. Finally, the second

agent notifies the first agent on the results of the performed task sending an inform

or a failure message.

In the following sub-sections, we discuss the various components of our model

demonstrating them using the presented protocol and conversation.

1We describe this pattern as it may appear to the overhearing agent.

68

6.1 Conversation Protocols

When involved in a conversation, agents normally communicate according to a pro-

tocol, which can be captured by well-defined patterns. These patterns, i.e. con-

versation protocols, define a template that conversations must follow to achieve a

communications goal. Hence, conversation protocols specify an abstract representa-

tion of the corresponding conversations.

Conversation protocols are widely used in open multi-agent settings. For in-

stance, FIPA protocols [FIPA site, 2005] are an example to the continuous effort to

standardize the use of conversation protocols in multi-agent community. Though

frequently used in agent-oriented settings, conversation protocols can be found in

human-oriented environments as well. For example, [McElhearn, 1996] has showed

that conversation protocols can be found in e-mail mailing list traffic.

In our model, a conversation protocol is a tuple denoted by (R,Σ, S, s0, F, δ).

Below, we provide a detailed discussion of the components of this tuple.

Conversation Roles (R): A conversation role defines a separate functionality in

a conversation. Conversation protocols define valid sequences of messages between

various conversation roles. Each role determines agent behavior in a specific con-

versation. In our model, R denotes the set of conversation roles in a conversa-

tion protocol. In the contract-net protocol shown above, two roles can be distin-

guished: the first agent is the initiator, whereas the second agent is the participant

[FIPA Specifications, 2005b]. Thus, the set R consists of these two conversation

roles.

Communicative Act Types (Σ): There are often multiple communicative act

types (e.g. in FIPA [FIPA Communicative Acts, 2005]). Σ denotes the set of all

communicative act types used by the given conversation protocol. In our example,

this set contains: cfp, refuse, propose, etc.

Conversation States (S): A conversation state of an agent marks its state within

the protocol (in contrast with its internal state). Here, we must distinguish between

individual and joint states (see Part I, Chapter 3 for more details).

We explain these terms using the contract-net protocol. We denote the two

conversation roles as A and B. For the moment, let us consider A individually.

The A role starts in an initial conversation state, denoted as A1, where initiator is

ready to send a cfp message type. Sending this message, the agent transitions to

69

its second conversation state (A2) in which it has already sent a cfp type message

and is now waiting to receive either a propose or a refuse message type. Receiving

it, the agent transitions to one of the A3 or A4 conversation states, and so on.

Similarly individual conversation states A1-A8 and B1-B8 can be defined over the

A and B roles respectively. Here, we do not present a detailed discussion on the

protocol implementation, but we refer the readers to Part I, Chapter 5, Section 5.2

for additional information.

The same protocol may also be defined using a collection of joint interaction

states (Part I, Chapter 3), S = SA × SB, where each member of S corresponds to a

specific combination of individual states. However, not all joint states are legal. For

example, A1B1 is a legal joint conversation state in the given conversation protocol,

whereas A2B1 joint conversation state is considered to be illegal (since it denotes a

state where A has sent a message but B did not receive it). In our model, S is the

set of all legal joint conversation states over a conversation protocol. In our example,

S contains the following joint conversation states: A1B1, A2B2, etc.

Initiating Conversation State (s0): s0 is an initiating joint conversation state,

which corresponds to the combination of the initiating individual conversation states

over the various conversation roles.

Terminating Conversation States (F): F defines the set of joint conversation

states that terminate the conversation. Thus, F ⊆ S. In our example, F includes

A3B3 joint conversation state in which the initiator received a refuse message and

terminated, whereas the participant has sent it and terminated as well.

Transition Function (δ): δ determines the progress of a conversation by defining

which message types are expected at different points of the conversation according

to its current conversation state.

In order to define δ, we must first define following parameters. An abstract

message am is a < rx, ry, σ >, which is a member of the relation AM , where AM =

{< rx, ry, σ > |rx, ry ∈ R, σ ∈ Σ and rx 6= ry}. Thus, AM denotes a set of abstract

messages that may potentially correspond to the appropriate conversation protocol.

Now, we define δ as S × AM → S. Thus, the δ function defines whether a

transition, between two legal joint conversation states, is possible. In addition, δ

determines the abstract message, which causes this transition to occur.

In the example above, let us consider the δ(A1B1, < A,B, cfp >) = A2B2 in-

stance of δ. This instance has the following interpretation: given agents in A1B1

70

joint conversation state, the < A,B, cfp > abstract message (of a cfp message type

sent from the initiator to the participant) causes the agents to transition to the

A2B2 joint conversation state.

Based on the definition of conversation protocols presented above, we can now

define the set of possible abstract conversation sequences over a conversation pro-

tocol. Given a conversation protocol p, we denote this set as AS(p). To define this

parameter, we define a transition function on a sequence of abstract messages. This

function, defined as δ∗ : S × AM ∗ → S (where AM ∗ denotes the set of all possible

sequences over AM), can be formulated recursively as follows:

δ∗(s, ε) = ε

δ∗(s, ων) = δ(δ∗(s, ω), ν)

where s ∈ S, ε(empty) ∈ AM ∗,

ν ∈ AM, ω ∈ AM ∗

Using δ∗, we define the AS(p) set. An abstract conversation sequence is consid-

ered to be possible over a given conversation protocol if and only if it is a sequence

of abstract messages that begins from an initiating conversation state and ends in

one of the terminating conversation states. Thus, given a conversation protocol p

denoted by a tuple (R,Σ, S, s0, F, δ), the AS(p) ⊆ AM ∗ is defined as:

AS(p) = {ω ∈ AM ∗ | δ∗(s0, ω) ∈ F}

.

In the example protocol, there are four possible abstract conversation sequences

(see Part I, Chapter 5, Section 5.2). Let us consider one of them: < A,B, cfp ><

B,A, propose > < A,B,accept-proposal> < B,A, inform >. This sequence corre-

sponds to s0 = A1B1 → ... → A8B8 ∈ F sequence of joint conversation states. In

fact, it corresponds to the conversation described at the beginning of this chapter.

6.2 Conversation Systems

A conversation system is a set of conversations in a multi-agent system. In our

model, a conversation system is denoted by a tuple (P,A,Λ, I, C). In this section,

we describe these components in details.

71

Conversation Protocols (P): P is the set of conversation protocols of the con-

versation system, where each protocol is defined by a tuple as shown in Section 6.1.

Agents (A): A indicates the set of agents in the corresponding conversation system.

Based on this parameter, we define another element in the model - 2A. Using its

formal definition–2A is the set of all subsets of A–we refer to it as the set of all

possible conversation groups in the conversation system. However, following the

intuition that at least two agents must be involved in a conversation, we further

restrict the definition of the 2A set to be formulated as 2A = {g|g ⊆ A and |g| ≥ 2}.

Conversation Topics (Λ): Λ denotes the set of all conversation topics in the

conversation system.

Intervals (I): An interval is a time period within the conversation system life-

time. Thus, we define I as follows: I = {[t1, t2] | t1, t2 time stamps , t1 ≥ 0, t2 ≤

lifetime, t1 ≤ t2}.

Conversations (C): A conversation in a conversation system is defined by a group

of agents g ∈ 2A implementing a conversation protocol p ∈ P on a conversation

topic λ ∈ Λ within a time interval i ∈ I using an abstract conversation sequence

am∗ ∈ AS(p). We can formulate the set of conversations, which is denoted as C, in

a conversation system as follows:

C ⊆ {(p, g, λ, i,m∗) | p ∈ P, g ∈ 2A, λ ∈ Λ, i ∈ I, m∗
g,λ,i
←− am∗ ∈ AS(p)}

Thus, a conversation c ∈ C in a conversation system is a tuple (p, g, λ, i,m∗).

The m∗ parameter of a conversation denotes the actual conversation sequence that

has taken place in the corresponding conversation. Thus, m∗ is an implementation

of some abstract conversation sequence over the corresponding conversation pro-

tocol. The actual conversation sequence m∗ instantiates an abstract conversation

sequence am∗ ∈ AS(p) with conversation group g, topic λ and time interval i. This

instantiation is established as follows:

1. Instantiating conversation roles with agents: Here, we determine the mapping

between conversation roles of the conversation protocol and the agent conver-

sation group implementing it. For every conversation role r ∈ R, we determine

an agent a ∈ g (g ∈ 2A) implementing it.

2. Instantiating abstract messages with a topic: Each abstract message of the im-

plemented abstract conversation sequence is instantiated with the same topic,

i.e. the topic of the conversation.

72

3. Instantiating abstract messages with time stamps: Finally, each abstract mes-

sage of the implemented abstract conversation sequence is instantiated with a

time stamp within a given time interval.

A conversation sequence m∗ can therefore be denoted as m∗ = µ1...µn where

µi(∀i, i = 1, .., n) denotes a message within the conversation sequence. A single

message is defined as µ =< s, r, σ, λ, t >, where s and r are the sender and the

recipient of the message (s, r ∈ g), σ is its message type, λ is its topic and t is its

time stamp.

To demonstrate this formalization, we return to the conversation described at the

beginning of this chapter. We denote the two conversing agents as agentx and agenty,

and their conversation group as g = {agentx, agenty}. Accordingly, agentx is the

initiator, while agenty is the participant. We denote the topic of this conversation

as λ =contract-X . Finally, we denote the interval of this conversation as i = [t1, t4]

assuming that the messages have been communicated at t1, t2, t3, and t4 time stamps.

Thus, the actual conversation sequence of the given conversation can be represented

as < agentx, agenty, cfp, contract-X, t1 >< agenty, agentx, propose, contract-X,

t2 >< agentx, agenty, accept-proposal, contract-X, t3 >< agenty, agentx, inform,

contract-X, t4 >.

Loss Insert Order

(m < n) (m > n) (m = n)

Loosing Misoverhearing Inaccurately

Sequence some the actual overhearing

Level messages sequence or the order of

of the misclassifying messages in

actual messages of actual

sequence another sequence sequence

Errors and Losses (oi 6= µj)

Message Missoverhearing or loosing some information of

Level the overheard message (e.g. can not resolve the

designated recipient of overheard message).

Table 6.1: Possible differences between actual and overheard conversation sequences

73

6.3 Overhearing Conversations

An overhearing agent monitors inter-agent conversations by listening in to the ex-

changed communications. We denote the observed conversation sequence as o∗ as op-

posed to m∗. The actual conversation sequence m∗ is defined as m∗ = µ1...µn where

µi (∀i, i = 1, .., n) denotes a message within the actual sequence. Analogously, we

define the observed conversation sequence as o∗ = o1...om in which oi (∀i, i = 1, ..,m)

denotes an observed message of o∗.

Since the overhearing agent may not overhear all messages, or may incorrectly

overhear some messages, the overheard conversation sequence does not necessarily

match the actual conversation sequence. Table 6.1 above summarizes the possible

differences between the two conversation sequences.

74

Chapter 7

Algorithms for Conversation

Recognition

Overhearing a conversation sequence o∗, one of the key objectives of the overhearing

agent is to correctly recognize its appropriate conversation within the conversation

system. Specifically, the agent should determine its conversation group (g), topic

(λ), and interval (i). It must also identify the appropriate protocol (p) and its

actual conversation sequence (m∗). We focus on the extraction of p and m∗, since

extracting the other elements is almost trivial in many practical settings.

We propose a skeleton algorithm to determine the protocol corresponding to an

observed sequence of messages o∗ (Algorithm 2). Finding a matching protocol also

enables us to determine its m∗.

The proposed skeleton algorithm follows similar principles to the debugging al-

gorithm applied by [Poutakidis et al., 2002]. The algorithm consists of three phases.

Phase I is initialization (lines 1-2). Here, we construct a potential protocol set (PP)

over P , which assumed to be given in advance. Each protocol in PP , called a control

protocol, is an extension of the original protocol including a control mechanism used

for performing phases II-III of the algorithm. At phase II (lines 4-13), we disqual-

ify inappropriate protocols. For each observed message, each potential protocol is

checked (line 10) using CheckObsMsgMatch. Inappropriate protocols are accumu-

lated in the disqualified protocol set (DP) (line 12) and are subtracted from the

PP set at the end of each iteration (line 13). Finally, at phase III (lines 15-16), we

determine the final protocols, out of whatever protocols remain in the set PP .

This algorithm is a generic skeleton. Different instantiations are needed to handle

the problems described in Table 6.1. Below, we first show an overhearing algorithm

75

Algorithm 2 FindMatchingProtocols

(input: observed sequence o∗ = o1o2...om,

output: protocol set ⊆ P)

1: // Phase I - Initialize

2: PP = InitializePotentialProtocols(P)

3:

4: // Phase II - Disqualify inappropriate protocols

5: for all oi in o∗ do

6: if PP is empty then

7: break

8: DP = empty set

9: for all pp in PP do

10: bool rc = CheckObsMsgMatch(oi, pp)

11: if not rc then

12: DP = DP
⋃

{pp}

13: PP = PP \DP

14:

15: // Phase III - Determine final protocols

16: return DetermineF inalProtocols(PP)

for lossless o∗ (Section 7.1). We remove this naive assumption, first in general lossy

overhearing (Section 7.2), and then in systematic lossy overhearing (Section 7.3).

Finally, Section 7.4 concludes by analyzing the complexity of those algorithms.

7.1 The Naive Algorithm

The Naive algorithm assumes that the observed conversation sequence is equal to

the actual conversation sequence, i.e. it assumes no losses. In this case, Initial-

izePotentialProtocols extends the original conversation protocols with two new com-

ponents. The first is scurr ∈ S–a pointer to the current conversation state within

the protocol–it is initialized to s0. The second is AG–a mapping between R and A–

whose elements are initialized to unknown. We use the AG mapping to accumulate

information about agents implementing various roles of the protocol.

Then, we check (CheckObsMsgMatch) whether exists a transition from scurr

to some snext that is appropriate to the communicative act type of o. We also

check whether agents, corresponding to this message, match the information in AG

76

(CheckRolesMatch). In case these two conditions are satisfied, scurr is incremented

to snext and procedure returns true, else it returns false.

Finally, each protocol, remaining in PP , is checked (DetermineF inalProtocols)

to determine whether its scurr ∈ F . If so, the corresponding protocol is considered

as matching the observed conversation sequence.

7.2 The Random Loss Algorithm

The Random Loss algorithm handles the case in which there are multiple random

message losses in o∗, where each such loss is made from up to k consecutive messages.

This lossy overhearing condition may occur, for example, in case of malfunction in

the overhearing agent, due to which it loses a certain interval within the overheard

conversation.

In our example, in case k = 2, this algorithm can determine that o∗ =<

agentx, agenty, cfp,contract-X, t1 >< agenty, agentx, inform,contract-X, t4 > cor-

responds to the FIPA protocol introduced at the beginning of Chapter 6. Further-

more, keeping track of the conversation state sequence within the protocol, it may

be able to restore m∗.

In the Random Loss algorithm, control protocols are initialized with two addi-

tional components: CS and AG (InitializePotentialProtocols). The AG mapping

has identical semantics as before. However, instead of a single scurr, the CS set

contains numerous pointers to the possible current conversation states reflecting the

uncertainty caused by losing messages.

Procedure 3 CheckObsMsgMatch (of the Random Loss Algorithm)

(input: observed message o = (sen, rcv, σ, λ, t),

control protocol pp = (p, CS,AG) where p = (R,Σ, S, s0, F, δ),

output: bool)

1: NS = empty set

2: for all scurr in CS do

3: NS = NS
⋃

PropIgnLostMsg(scurr, o, AG)

4: CS = NS

5: return not (CS is empty)

In CheckObsMsgMatch (Procedure 3), for each scurr in CS (lines 2-3), we de-

termine its possible next states using PropIgnLostMsg. These next possible states

77

are accumulated in NS set (line 3), which is then assigned to CS (line 4). If at the

end of the procedure, CS is not empty, the procedure returns true, else it returns

false.

Procedure 4 PropIgnLostMsg

(input: conversation state scurr,

observed message o = (sen, rcv, σ, λ, t),

agent-role mapping AG,

output: conversation state set NS)

1: NS = empty set

2: IS0 = {scurr}

3: for i = 0 to k do

4: if ISi is empty then

5: break

6: NSi = ISi+1 = empty set

7: for all sint in ISi do

8: bool exists = check whether exists δ(sint, < rx, ry, σ >) = snext

9: if exists and CheckRolesMatch(o,< rx, ry, σ >,AG) then

10: NSi = NSi
⋃

{snext}

11: ISi+1 = ISi+1
⋃

{s|δ(sint,) = s}

12: NS =
⋃k

i=0
NSi

13: return NS

Given a scurr state, PropIgnLostMsg (Procedure 4) determines its next possible

states ignoring up to k consecutive losses. In each iteration, we apply two sets–NS i

and ISi+1. The first contains the next possible states corresponding to iteration i

(line 10), whereas the second set holds up the intermediate states that are to be

checked in the following iteration i+ 1 (line 11).

Finally, we determine final protocols using procedure similar to the one shown in

Procedure 4. A protocol is considered to be final if in its CS set there is at least one

state which is either final or there is a final state with no more than k consecutive

losses from it.

7.3 The Systematic Loss Algorithm

The Systematic Loss algorithm handles a more common situation in lossy

overhearing–losing up to l conversation roles. This condition can occur in case

78

that an overhearing agent, due to its location, cannot overhear messages sent from

agents implementing the lost roles (e.g., the overhearing agent sees outgoing mes-

sages, but not incoming messages). In our example, in case l = 1 and the lost role is

initiator, the algorithm can determine that o∗ =< agenty, agentx, propose,contract-

X, t2 >< agenty, agentx, inform,contract-X, t4 > corresponds to the FIPA protocol

described at the beginning of Chapter 6.

In the Systematic Loss algorithm, we determine for each set of lost roles (LR) a

CS and AG component. Thus, for each potential protocol, we define a control set

(CLR) that contains (LR,CS,AG) tuples.

Procedure 5 CheckObsMsgMatch (of the Systematic Loss Algorithm)

(input: observed message o = (sen, rcv, σ, λ, t),

control protocol pp = (p, CLR) where p = (R,Σ, S, s0, F, δ)

and CLR = ({(LR,CS,AG)|∀LR ∈ LRS}),

output: bool)

1: for all (LR,Cs,AG) in CLR do

2: NS = empty set

3: for all scurr in CS do

4: bool exists = check whether exists δ(scurr, < rx, ry, σ >) = s

5: if exists and CheckRolesMatch(o,< rx, ry, σ >,AG) then

6: NS = NS
⋃

PropIgnLostRoles(s, LR)

7: CS = NS

8: if CS is empty then

9: CLR = CLR \ {(LR,CS,AG)}

10: return not (CLR is empty)

In CheckObsMsgMatch (Procedure 5), each (LR,CS,AG) is considered indi-

vidually (line 1). For each scurr in its CS, we determine in lines 4-9 whether exists

a potential next state and then propagate from it ignoring the lost roles (using

PropIgnLostRoles in Procedure 6). The next potential states are accumulated in

NS set, which is later assigned to CS (line 7). If CS is empty, the (LR,CS,AG)

tuple is discarded from CLR (lines 8-9). The procedure returns true if at the end

of it the CLR set is not empty, else it returns false (line 10).

79

Procedure 6 PropIgnLostRoles

(input: conversation state scurr,

conversation role set LR ⊆ R,

output: conversation state set NS)

1: NS = empty set

2: ISi = {scurr}

3: while ISi is not empty do

4: ISi+1 = empty set

5: for all sint in ISi do

6: for all δ(sint, < r, , >) = s do

7: if r ∈ LR then

8: ISi+1 = ISi+1
⋃

{s}

9: else

10: NS = NS
⋃

{sint}

11: ISi = ISi+1

12: return NS

7.4 Discussion

We now turn to analyzing the complexity of the conversation recognition algorithms

we presented. The complexity of those algorithms is important to determine their

appropriateness for large-scale settings since in such settings the overhearer is re-

quired to process large quantities of overheard messages.

The algorithmic skeleton (Algorithm 2) consists of three phases. However, only

phases II and III contribute to algorithm complexity. In phase II, we match

each of m messages with each protocol in PP using CheckObsMsgMatch. In

phase III (DetermineF inal Protocols), we determine whether a protocol is final

(CheckIfProtocolF inal). In this analysis, we denote the complexity of Check-

ObsMsgMatch at iteration i as O(f i
1), while CheckIfProtocolF inal procedure is

denoted as O(f2).

The complexity of both phases depends on the number of protocols in PP at

each stage of the algorithm. In the best case, all (but one) protocols are disqualified

after the first iteration, whereas the final protocol remains through all m iterations.

Assuming m is relatively big, the complexity of disqualifying |P | − 1 protocols is

negligible. Thus, the best-case complexity can be formulated as follows:

80

(|P | − 1)O(f 1

1) +
m
∑

i=1

O(f i
1) +O(f2) =

m
∑

i=1

O(f i
1) +O(f2)

In the worst case, all protocols remain consistent with all m messages, and are

therefore repeatedly matched against overheard messages:

|P |(
m
∑

i=1

O(f i
1) +O(f2))

Now, let us focus on evaluating the
∑

O(f i
1) +O(f2) component–the complexity

for matching a single protocol–for each algorithm. We denote this complexity by

O(T). In the Naive algorithm, both O(f i
1) and O(f2) are equal to O(1), since

both procedures only perform a simple check. Thus, O(T) = O(m) for the Naive

algorithm. Thus, the Naive algorithm is efficient. However, its naive assumption,

assuming no losses, is often challenged in real-world settings.

In the Random Loss algorithm, the complexity of O(f i
1) and O(f2) depends on

the size of the appropriate CS set. The size of CS in iteration i is determined

by the NS set of the previous iteration (i − 1). Furthermore, for each state in

CS, we examine all states that are up to k transitions from it. Thus, in order to

evaluate O(T), we must consider the structure of function and the size of the NS

set established in each iteration.

In the best case for O(T), δ contains only one possible transition for each state

and |NS| is always equal to 1. Accordingly, O(T) is equal tomO(k)+O(1) = O(mk).

In the worst case, δ contains b transitions for each state–b is the branching factor

of the state (1 ≤ b ≤ |Σ|). Thus, the complexity O(α) of examining up to k

transitions from a certain state s ∈ S can be evaluated as O(1 + b+ b2 + ...+ bk) ≤

O(bk+1). Such states contribute no more than one new state to NS. In the worst

case, |NS| is 1 + b + b2 + ... + bk−1 ≤ bk. We denote it as β. Thus, the complexity

of O(f i
1) is α(1 + β + β2 + ... + βm) ≤ αβm+1 = O(bmk+2k+1). Analogously, the

complexity of O(f2) is bm(1 + b+ b2 + ...+ bn−m) = O(bn+1), where n = |m∗|. Thus,

the worst-case complexity of O(T) for the Random Loss algorithm is O(bmk)+O(bn).

In the Systematic Loss algorithm, the complexity of O(f i
1) and O(f2) depends

on the size of CS and the structure of δ. However, this complexity also depends on

the number of LR sets in CLR, i.e. |CLR|. In Section 7.3, we have defined each

LR set as a possible combination of up to l lost roles of the protocols’ conversation

roles. Thus, |CLR| can be formulated as follows:

81

|CLR| =
l
∑

i=0

(

|R|

i

)

In the best case, b = 1 and |NS| is always equal to 1. In addition, all LRs

(but one) are disqualified after the first iteration. Furthermore, from each state,

h states can be skipped (PropIgnLostRoles). Thus, the complexity of O(f i
1) is

always O(1 + h) = O(h), and the complexity of O(f2) is O(1)–simply checking the

remaining state. Therefore, the best-case complexity of O(T) for the Systematic

Loss algorithm is equal to O(mh).

In the worst case, we assume that no propagation can be made. Thus, the

complexity of O(f i
1) is similar to the Naive algorithm, only multiplied by |CLR|,

i.e. |CLR|O(m). As for O(f2), from the single state in CS, all states in levels

n−m from it must be examined. Thus, similarly to the principles explained above,

O(f2) ≤ |CLR|O(bn−m+1) = |CLR|O(bn−m). Thus, the worst-case complexity of

O(T) for the Systematic Loss algorithm is equal to |CLR|(O(m) +O(bn−m)).

In general, it is difficult to determine which of the algorithms is better. How-

ever, in practice, we often know which roles are lost or at least know the number

of lost roles. In such cases, the |CLR| parameter becomes a constant and, thus,

the Systematic Loss algorithm seems to be more efficient than the Random Loss

algorithm.

82

Part III

Selective Overhearing

83

All previous investigations on overhearing (presented in Chapter 2) rely on the

ability to overhear all relevant inter-agent communications. However, overhearing

multi-agent settings, and in particular large-scale ones, this assumption can be chal-

lenged. In such settings, overhearing agent might not be able to overhear all the

committed conversations due to limited resources. Instead, the overhearing agent

must be selective, carefully choosing its targets.

Although both conversations and agents can be chosen as potential targets (both

scenarios exist in the real-world), our work focuses on the latter. Thus, overhear-

ing agent selectively targets communicating agents within the monitored system.

Choosing one agent over the other, we assume that the values of information de-

rived from overhearing each agent can be evaluated and compared in context of the

task performed by the overhearer (e.g., monitoring progress, providing assistance

and so on–see Chapter 2). Otherwise, the overhearing agent can simply decide on

random targets.

We propose to use organizational knowledge on the monitored settings as a basis

for this decision. Both human [Gannon and Newman, 2001, Best et al., 2003] and

multi-agent [Dignum, 2003, Horling and Lesser, 2004] organizations assume that

their members differ in their roles, authority, etc. These differences also influence the

characteristics of conversations committed by the agents (e.g., the number of conver-

sations concurrently carried out by an agent, the significance of those conversations,

etc).

In our work, we use this organizational knowledge to choose which agents should

be overheard under the restriction of selectivity. We focus on hierarchical orga-

nizations and their specific characteristics. Hierarchical organizations are widely

common both in the real-world settings (e.g., many corporates) and in the imple-

mentations of multi-agent systems (where hierarchical structures are mainly used

for decomposition of complex tasks [So and Durfee, 1996, Yadgar et al., 2003]).

In this part of the thesis, we perform an empirical research of selective overhear-

ing in hierarchical organizations. Based on existing studies in various disciplines

of social science [Dewan et al., 1997, Gannon and Newman, 2001, Best et al., 2003,

Jensen, 2003, Friebel and Raith, 2004], we model and simulate inter-agent commu-

nications in hierarchical organizations (Chapter 8). Then, we empirically study

overhearing of such organizations applying various centralized (Chapter 9) and dis-

tributed (Chapter 10) selective overhearing policies.

84

Chapter 8

Selective Overhearing of

Hierarchical Organizations

This chapter takes the first steps towards an empirical study of selective overhearing

in organizations. Focusing on hierarchical organizations, we first propose a model

of selective overhearing in such organizations (Section 8.1). Then, in Section 8.2,

we show how to instantiate this model simulating different types of hierarchical

organizations and different types of selective overhearing strategies.

8.1 Modelling Selective Overhearing of Hierarchi-

cal Organizations

Overhearing extracts information from a conversation system (see Part II, Chap-

ter 6, Section 6.2), the set of conversations generated by an organization. Conver-

sation systems change based on the type of organization that is being overheard,

and, in turn, overhearing agents must adapt their overhearing policies to match the

conversation system. This section describes the conversation systems expected of

hierarchical organizations (Section 8.1.1), describes a number of general selective

overhearing policies for such organizations (8.1.2) and proposes a way to evaluate

them (8.1.3).

8.1.1 Hierarchical Communication

Organizational communications have been the subject of continuous research in var-

ious disciplines of social science such as social behavior, organizational theory, in-

85

formation theory and strategic management [Best et al., 2003, Dewan et al., 1997,

Friebel and Raith, 2004, Gannon and Newman, 2001, Jensen, 2003]. In these, com-

munications in hierarchical organizations have been of a particular interest. We

summarize the characteristics of hierarchical communications as follows:

• Distribution Characteristic [Where do conversations take place?]. No

conclusive indication has been found, of a relation between the volume of an

agent’s communications and its hierarchy level [Jensen, 2003]. Thus, the total

volume of conversations in a given hierarchy level depends on the number of

agents associated with this hierarchy level. The latter, in turn, is determined

by the hierarchical structure of the organization, i.e. the distribution of agents

among the hierarchy levels. For instance, in common pyramidal hierarchies,

the number of agents associated with each hierarchy level is smaller in higher

hierarchy levels. Thus, most conversations in the pyramidal organizations are

held between agents in the lower hierarchical levels, simply because most agents

are associated with these levels.

• Scope Characteristic [What do agents discuss?]. Social science studies

distinguish between three types of information: strategic, tactical and oper-

ational [Best et al., 2003, Gannon and Newman, 2001]. These different types

of information are associated with different organizational hierarchy levels.

The top levels handle strategic information, the middle levels are responsible

for the tactical information, and the lower levels handle operational informa-

tion. Thus, in hierarchical organizations, agents communicate on information

within their responsibility scope in the organization, i.e. mainly information

associated with their hierarchy level or relatively close to it.

• Span Characteristic [With whom agents communicate?]. Formal com-

munications in hierarchical organizations reflect the restricted flow of informa-

tion in such organizations: either top-down or bottom-up [Dewan et al., 1997,

Friebel and Raith, 2004, Jensen, 2003]. Accordingly, agents communicate

mostly with their peers, subordinates and their close superiors. Meaning

that most communications are held between agents of the same hierarchy lev-

els or between agents in relatively close hierarchical levels. However, formal

communications alone fail to capture the rare (but occurring) communication

between top-level and low-level agents. Such communications, that do not

follow the strict hierarchical structure, are called informal communications

[Jensen, 2003].

86

To formalize the characteristics presented above, we specialize and extend our

model of conversation systems introduced in Part II, Chapter 6, Section 6.2. We

define a conversation system of hierarchical organizations as a tuple (L,A,Λ, P, I, C),

as explained below.

Hierarchy Levels (L). The set of hierarchy levels is an extension of the previous

model. The hierarchy levels form the basis for the organizational information flow

and roles.

Agents (A). A is the set of communicating agents within the organization, each

associated with a hierarchy level. The distribution of agents among hierarchy levels

determines the structure of the hierarchical organization. For instance, in pyramidal-

hierarchies, the number of agents in higher hierarchal levels is always smaller than

in the lower ones. In diamond hierarchies, the middle levels have more agents than

bottom and top levels.

Conversation Topics(Λ). Λ denotes the set of conversation topics. Each topic is

probabilistically associated with a corresponding hierarchy level such that the topics

of a more strategic nature are associated with the higher end of the hierarchy and

the more operational topics with the hierarchy’s bottom (see Scope Characteristic

above).

Conversation Protocols(P). P indicates the set of conversation protocols used

in a conversation system (see Part II, Chapter 6, Section 6.1 for a detailed discus-

sion). Intuitively, this is the set of conversation types that can occur, e.g., queries,

brokering, informing, etc.

Intervals (I). An interval is a time period within the lifetime of an organization.

Each conversation takes place over a certain interval within the I set.

Conversations (C). Based on the parameters above, we define a conversation

as a group of agents g ∈ 2A implementing a conversation protocol p ∈ P on a

conversation topic λ ∈ Λ within a time interval i ∈ I. Thus, the C set can be

formulated as C ⊆ {(p, g, λ, i)|p ∈ P, g ∈ 2A, λ ∈ Λ, i ∈ I}.

The characteristics of the C set depend on the type of organization. In hier-

archical organizations, it follows the characteristics described at the beginning of

this section. Specifically, these affect the selection of topics to be associated with

87

each level, the assignment of agents to levels, the number of conversations at each

level, and the selection of conversation partners in terms of their relative position

in the organization. We accomplish these characteristics using a set of probability

functions (see detailed discussion in Section 8.2.1).

8.1.2 Selective Overhearing Policies

This part of the thesis focuses on selective overhearing. We assume that an overhear-

ing policy controls and coordinates multiple overhearing resources (for simplicity, we

will refer to each as an overhearing agent). The policy assigns overhearing agents to

conversations in the organizations. We distinguish two possible assignment types.

In the first, the overhearing agent is assigned a single conversation chosen from all

the conversations in the monitored organization. In the second, each overhearing

agent can focus on a single communicating agent (referred as its target), overhearing

all of its conversations. Both types of scenarios exist in the real-world.

We focus on agent-target assignments, where all conversations simultaneously

carried out by the target are overheard, as long as the overhearing agent is cur-

rently listening to the target (i.e., only the conversations that take place within the

overhearing time interval are overheard). During this time, the overhearing agent

performs conversation recognition (see Part II, Chapter 7) for each conversation.

Since conversation recognition takes time (to track and match the communicative

acts being exchanged), the overhearing agent initially does not know the partici-

pants, protocol and topic associated with an overheard conversation. It must infer

them from the contents of the messages it receives. The overhearing agent starts

overhearing assuming that the conversation protocol and topic can be any of the

p ∈ P and λ ∈ Λ respectively. Gradually, the overhearer is able to disqualify inap-

propriate protocols and topics until it determines the correct protocol and topic.

Assigning overhearing agents to their targets, we must take into account the

limitation of selectivity. In large-scale multi-agent systems, overhearing resources

are bound to be limited, and thus selected targets must be carefully chosen. Ac-

cordingly, only a subset of all potential targets can be covered. These targets are

determined according to the applied overhearing policy. Different criteria can be

used to determine the target agents to be overheard: For example, the targets can

be chosen randomly, or the information at the different stages of the conversation

recognition process can be used to determine whether to continue to overhear the

current agent or to find another target. In this research, we propose to use the

88

organizational knowledge on the monitored settings as a basis for this decision (e.g.

agents’ hierarchy levels, agents’ activity level in the organization, etc). These orga-

nizational differences influence the characteristics of conversations carried out by the

agents (see Section 8.1.1), and thus can be used as a promising basis for an effective

assignment of overhearing agents to their targets.

8.1.3 Evaluating Overhearing Policies

To evaluate overhearing policies, we must first decide on an appropriate measure

of the value of information derived from overhearing. After all, overhearing is a

monitoring approach: It aims to provide information about a monitored system

(here, an organization, an MAS). The problem is that different monitoring tasks have

different information needs, and therefore the value of monitored information may be

qualitatively different from one monitoring task to another. For instance, to visualize

the state of an organization with respect to a given task, monitoring emphasizes

completeness, where as missing details are those most sought after, regardless of

their importance in the organization [Kaminka et al., 2002]. On the other hand,

if the monitoring task is to determine information about a given topic, then only

conversations on this topic will be deemed valuable. Due to the nature of hierarchical

conversations (as discussed earlier), these may be clustered around specific levels of

the organization.

To allow us unbiased treatment of the value of conversations–to the degree

possible–we assume that the value of overheard conversations is a function of its

value to the organization, and will thus utilize the organizational value as the ba-

sis for evaluating overhearing policies. This simplifying assumption implies that we

assume targets are truthful and do not modify their conversations because they are

overheard. It also implies that we are actually assuming that the organizational

information value is proportional to the overhearing information value, at least to

the degree that we interpret lower information value as worse. The same assump-

tion is also made by most previous overhearing applications described in Chapter 2,

Section 2.1.

Expressing the value of overheard information extracted from overhearing agent

a ∈ A involved in a conversation c ∈ C, we consider two type of parameters. The

first addresses the conversation itself–e.g. its topic, content, context, etc. We denote

it as ρc. The second type of parameters, denoted as ρa, addresses the agent being

overheard: its role in the conversation, its position in the organization, etc. Thus,

89

the value of overhearing agent a ∈ A involved in conversation c ∈ C is a function of

both these parameter types and can be formalized as ν(c, a) = ψ(ρc
1, ρ

c
2, ..., ρ

a
1, ρ

a
2, ...).

In hierarchical organizations, we expect the more valuable conversations to be

held in the higher hierarchical levels. As discussed in Section 8.1.1, conversations at

the top of the hierarchy are more strategic, whereas the more operational conversa-

tions are held at the lower levels [Best et al., 2003, Gannon and Newman, 2001].

8.2 Simulating Selective Overhearing of Hierar-

chical Organizations

This section presents an instantiation of the model, shown in the previous section,

to simulate selective overhearing of hierarchical organizations. We show how dif-

ferent types of hierarchical organizations can be simulated by controlling various

parameters, such as the shape of the organization (diamond, pyramidal, inverse-

pyramidal, etc.), the number of layers it contains, and the value of information of

its conversations.

The number of communicating agents, i.e. |A|, was set to 50 simulating relatively

small organizations. The number of hierarchy levels, i.e. |L|, was initially set to 7.

However, changing this value as done in Chapter 9, Section 9.2.2, we can control the

hierarchy height of the monitored hierarchical organization.

Our research mainly focuses on pyramidal hierarchies–the most common type

of hierarchical organizations. To simulate a pyramidal organization, agents were

distributed between different hierarchy levels according to a Zipf-like hyperbolic

distribution. The probability of an agent to be associated with hierarchy level

l, 1 ≤ l ≤ |L| was set to 1/l (normalized). Accordingly, the number of agents

assigned to each hierarchy level becomes smaller as the hierarchy levels get higher.

Although focusing on pyramidal hierarchies, we also examine other shapes of hier-

archical organizations such as diamond, inverse-pyramidal and etc (see Chapter 9,

Section 9.2.3). These other organizational structures can be simulated by simply

changing the probability function determining the distribution of agents between

different hierarchy levels.

The number of topics, i.e. |Λ|, has been set to 80. This value reflects our

intuition that each agent has at least one conversation topic unique to itself (under

its direct responsibility) and a few more that are shared with its peers. The number

of protocols was defined as 25 simulating a diversity of interactions that are possible

90

in organization. The duration of each protocol, defining the length of a conversation,

was randomly set for each protocol to a value within {5,10,15,20,25}. We denote it

as d(p).

The number of overhearing agents was initially set to 15. Thus, the overhearing

coverage, defined as the ratio between the number of overhearers and the number

of communicating agents—k/|A|, was set to 30%. This overhearing coverage ratio

corresponds to the assumption of limited overhearing resources, i.e. not being able

to cover all communicating targets. In later experiments, we change the number of

overhearing agents to examine the affect of coverage on overhearing results.

The value of overheard information, ν(c, a), was evaluated using two parameters:

one of the ρc type and the other of the ρa type. As a ρc parameter, we considered

the conversation’s topic. Each conversation topic λ ∈ Λ has been randomly given

a value ν(λ) between 1 and 100. In addition, for each hierarchy level we defined a

value range of its conversation topics. This value range was calculated as a relative

portion of [1,100] equally divided between the levels such that the higher hierarchies

have the greater values. This way, the randomly set ν(λ) also associates the topic

λ ∈ Λ with its hierarchy level.

As the second parameter, of the ρa type, we considered the agent’s role in the

overheard conversation. For each conversation protocol p ∈ P two roles, denoted as

r ∈ R(p), have been defined. Their values were randomly set to one of the following

combinations: {50,50}, {67,33}, {75,25} and {99,1}. In this manner, we simulate

differences in overhearing different roles within the same conversation.

Finally, the value of overheard conversation has been calculated using an accu-

mulative function. The value of overhearing agent a ∈ A in a conversation c ∈ C is

defined as a sum of the value of the conversation’s topic and the value of agent’s role

in the conversation protocol, i.e. ν(c, a) = ν(λ)+ ν(r). Thus, the value of overheard

conversation ranges from 2 to 199.

8.2.1 Generating conversations

In the experiments in Chapters 9 and 10, we generated conversation systems and

simulated their dynamic execution, in a manner consistent with the characteristics

of hierarchical organizations, described earlier in Section 8.1.1. At the beginning of

each simulation run, |Ct|–the number of conversations at time t–new conversations

are generated using the procedure below. Then, each time a simulated conversation

ends, a new conversation is generated. Thus, a constant level of conversation activity

is maintained throughout the lifetime of the conversation system (fixed at 1000).

91

The procedure for generating a single conversation at time t followed the steps

shown in Algorithm 7. We assume that each simulated conversation involves two

communicating agents. However, this procedure can easily be extended to support

larger conversation groups.

Algorithm 7 Simulate Conversation Generation at Time t

1: l1 ← choose hierarchy using Pr(L)

2: a1 ← choose agent of hierarchy l1

3: λ← choose topic given hierarchy l1 using Pr(Λ|L)

4: l2 ← choose hierarchy given topic λ using Pr(L|Λ)

5: a2 ← choose agent of hierarchy l2

6: p← choose protocol using Pr(P)

7: set a1 and a2 to implement roles in R(p)

8: return c = (p, {a1, a2}, λ, [t, t+ d(p)])

First in lines 1-2, we choose a level l1 according to the distribution determin-

ing the organizational structure–a Zipf-like distribution for pyramidal hierarchies.

We then arbitrarily select an agent a1, associated with l1, to initiate the conversa-

tion. The use of Pr(L) ensures that the Distribution Characteristic, presented in

Section 8.1.1, holds.

Next (line 3), a conversation topic λ is chosen using the conditional probability

Pr(λ|l1), calculated according to Bayes’ rule as [Pr(l1|λ) · Pr(λ)]/Pr(l1). Pr(l1) is

known from the distribution determining the organizational structure. Pr(λ)–the

probability that the conversation is carried out on topic λ–is assumed to be taken

from the uniform distribution over Λ.

The calculation of Pr(l1|λ) requires some explanation. We remind the reader

that a topic λ has a value v in the range [1,100], which determines its associated

hierarchy level. We define a normal distribution with mean µ = v and standard

deviation σ = 0.5. The value Pr(l1|λ) is given by this distribution. Intuitively,

this translates into ensuring that agents usually carry out conversations on topics

associated with their hierarchy level or relatively close to it–Scope Characteristic.

The next step is to determine the level of the other agent (lines 4-5). Here the

process is reversed. We sample the topic’s normal distribution to determine a new

overhearing value, and its associated level l2. We again arbitrarily select an agent a2

associated with this level. Thus, a1and a2 are likely to be associated with the same

hierarchy level, or close, thus, following the Span Characteristic.

92

Finally, a conversation protocol p is randomly chosen from the uniform distri-

bution over P (line 6). We assign roles to the two agents from R(p) (line 7). To

reflect the intuition that agents of higher hierarchies commit the more valuable con-

versations, according to the Scope Characteristic in Section 8.1.1, we constrain the

assignments such that 80% of assignments give the agent of higher hierarchy, the

role of higher value.

8.2.2 Comparing Overhearing Policies

Given a set of generated simulated conversations (a conversation system), we can

now begin to apply different overhearing policies to study their characteristics. To

do this, we utilize the conversation value as described above. Given a policy pol, we

use Algorithm 8 to calculate polval, pol’s overhearing value for the same conversation

system. polval is the accumulated value of all conversations overheard using pol.

Algorithm 8 Calculate Policy Overhearing Value

1: polval ← 0

2: for all t such that 0 ≤ t ≤ lifetime do

3: OCt ← overheard conversations at time t

4: OAt ← k overheard agents at time t

5: for all c = (p, g, λ, i) such that c ∈ OCt do

6: polval ← polval + νt(c, a) ∀a, a ∈ g ∧ a ∈ OAt

7: return polval

Algorithm 8 presents the calculation of overhearing value for a team of k overhear-

ers implementing specific policy pol. For each time unit t (lines 2–6), we calculate its

overhearing value at time t and accumulate it in polval (line 6). An overhearing value

at time t is defined as an accumulative conversation value of overheard agents. Thus,

in lines 3–6 , for each overheard conversation, in a set of overheard conversations at

time t (OCt), its conversation value is accumulated for each communicating agent

that has been overheard (the OAt parameter indicates the set of agents overheard

at time t).

However, calculating the value polval is insufficient. Conversation systems may

differ due to factors such as random selection of topics and values, and our controlling

of various parameters. Thus, it would be impossible to compare the absolute polval

derived from a conversation system A, to that derived from a different conversation

system B.

93

To overcome this difficulty, we normalize polval based on the value of the theo-

retical optimal value that could be derived for a given conversation system. Given

k overhearing agents and a generated conversation system, we use Algorithm 9 to

calculate the optimal overhearing value (optimum). optimum is a theoretical value,

calculated based on full knowledge of the true value of all conversations in the or-

ganization: With each clock cycle, the k best targets are selected and assigned

to overhearing agents (remember that k is relatively smaller than the number of

potential targets due to selectivity restriction). We compare different policies by

computing their value as polval

optimum
%.

Algorithm 9 Calculate Optimal Overhearing Value
1: optimum← 0

2: for all t such that 0 ≤ t ≤ lifetime do

3: νt(a)← 0 ∀a, a ∈ A

4: for all c = (p, g, λ, i) such that c ∈ Ct do

5: νt(a)← νt(a) + νt(c, a) ∀a, a ∈ g

6: At,k ← k agents in A with highest νt(a) values

7: optimum← optimum+ νt(a) ∀a, a ∈ At,k

8: return optimum

Algorithm 9 introduces the calculation of optimum. For each time unit t (lines

2–8), optimum at time t is calculated and accumulated in optimum (line 7). The

optimum at time t for k overhearing agents is defined as a sum of conversation

values of k agents with the highest conversation values at time t (lines 6–7). A

conversation value of agent a ∈ A at time t–denoted as νt(a)–is the accumulative

value of its conversations at time t (lines 4–5). This algorithm makes a simplifying

assumption on changing overhearing targets. It assumes that a change of overhearing

target by an overhearing agent is instantaneous and has no cost. This assumption

is also used in other calculations.

94

Chapter 9

Empirical Study of Centralized

Policies

This chapter presents an empirical study of centralized selective overhearing poli-

cies in hierarchical organizations. Each overhearing policy may choose to overhear

different target agents, and thus overhears different conversations. Consequently,

some policies may perform well while others perform poorly. Furthermore, the same

overhearing policy may vary in its performance, in principle, under different config-

urations of conversation systems and overhearing resource constraints. The exper-

iments we report on seek to determine the qualitative performance of the policies

and the factors that influence their performance.

We now compare several overhearing policies using their evaluation values (as

a percentage of optimum–see Chapter 8, Section 8.2.2) in different configurations

of hierarchical organizations. Each evaluation is performed based on an average of

50 independent experiments with the same parameters. Thus, in the figures below,

each data point corresponds to 50 trials.

9.1 Static vs. Active Policies

Our initial hypothesis has been that the most successful overhearing in pyramidal-

hierarchical organizations (under the restriction of selectivity) would be achieved by

overhearing conversations of the most important agents–agents of highest hierarchi-

cal levels. The main intuition behind this hypothesis is that most important agents

carry out the most valuable conversations. We refer to this type of policy as Largest

Value.

95

Several largest-value policies are possible. In our first such overhearing policy,

called MostImportantStatic, k overhearing agents were set to overhear the k most

important agents (in terms of their hierarchy level). So as to never miss a conversa-

tion carried out by these agents, the policy committed to monitoring them regardless

of whether they are currently communicating or not.

To evaluate this policy, we define baseline overhearing policy, called Random-

Static. Here, k overhearers were set to target k random agents chosen at the be-

ginning of the experiment. Just as MostImportantStatic does not switch targets,

neither does RandomStatic.

A potential drawback of these policies is that their overhearing targets are de-

termined statically. In cases where the overheard agent is idle, overhearing it has

zero value. We thus contrast these static policies with active policies, in which the

selection of targets is made out of those agents that are communicating at the mo-

ment of selection (though the agent may not know at what stage in the conversation

they may be). The RandomActive chooses k target agents, similarly to Random-

Static. However, each time a target is idle, an alternative target is randomly chosen.

The MostImportantActive policy improves on MostImportantStatic by choosing the

k most important agents from those that are currently active.

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

Random Static

Random Active

(a) Random

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

Most Important Static

Most Important Active

(b) MostImportant

Figure 9.1: Static vs. Active Policies

Figures 9.1-a,b compare these policies. The values on the X-axis show the activity

levels of the examined conversation systems, i.e. the ratio between the number of

conversations at time t (|Ct|) and the number of communicating agents (|A|) (note

that each agent may engage in more than one conversation in parallel). The Y-axis

measures performance as percentage of the optimum. A comparison between Figure

9.1-a and 9.1-b shows that the two Largest Value policies outperform the random

policies in most activity levels.

96

However, more importantly, there is a qualitative difference in the behavior of the

active and static policies. In low activity levels, the likelihood of a given agent being

idle is relatively high. In such settings, active policies outperform static policies.

However, as the activity level grows, the probability of an agent to be idle reduces.

Thus, static overhearing policies monotonically rise as the activity level grows until

the probability of an agent to be idle is close (or equal) to 0. Indeed, in high activity

settings, the difference between static and active policies is insignificant.

Nevertheless, active policies may not always be preferable, since they require

qualitatively different knowledge about the monitored organization. Active policies

rely on the ability to detect agents that are conversing at any given time, unlike

static policies. Thus, a trade-off exists between the need to improve the results of

overhearing, and the additional costs that may be required in detecting activity of

potential targets.

9.2 Value vs. Volume Policies

As moving from static to active policies increased the overall volume of overheard

conversations (and thus the total derived value), a second overhearing approach–

Largest Volume–suggests itself. We implemented a version of it, called MostActive,

which targets the k most active agents, i.e. the k agents that are carrying out the

highest number of conversations at time t. Since the overhearing agent overhears

all conversations committed by its target, the idea is that this policy will be more

productive due to the greater quantity of overheard conversations.

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

Most Active

Most Important Active

70

80

90

100

0 100

Figure 9.2: Value vs. Volume Policies

97

Figure 9.2 shows the performance of the MostActive and MostImportantActive

policies. It shows that overhearing volume can in fact be a successful policy, using

less knowledge about the monitored organization. The MostActive policy does not

require knowledge of the organizational role of the targets. This result is surprising

given that in pyramidal-hierarchical organizations, most conversations are held be-

tween agents of lower hierarchy levels. Thus, in fact, MostActive statistically targets

the less important agents.

Furthermore, Figure 9.2 indicates that a tradeoff between the two types of poli-

cies exists. While the Largest-Value policies focus on overhearing a small number of

highly valuable conversations, the Largest-Volume policies concentrate on overhear-

ing a great volume of less valuable conversations. We dedicate the remaining part

of this section to exploring the factors influencing this tradeoff.

9.2.1 The Overhearing Coverage

We begin by analyzing the performance of the two policies under conditions of

different overhearing coverage–the ratio of the number of overhearing agents to the

number of potential targets. These results are shown in Figures 9.3-a to 9.3-f. It can

be seen that both policies become more efficient with higher overhearing coverage.

Clearly, this conclusion is to some extent straightforward. However, an addi-

tional, less-trivial conclusion is that relative performance of these policies does not

change with selectivity. While increased coverage (reduced selectivity) increases the

performance of both policies, the MostActive policy remains on top. It can be seen

that the parabolic curve of MostImportantActive graph becomes less pronounced.

In large overhearing groups, this effect can be explained by a significant overlap in

overhearing targets for both policies.

9.2.2 The Height of the Hierarchy

We now turn to analyzing the effect of hierarchies on the performance of the proposed

policies. Figures 9.4-a to 9.4-e show the policies’ behavior in organizations with 3,

5, 7, 9 and 11 hierarchy levels. The figures show that no significant change occurs in

the performance of both policies. Instead, only a slight performance decrease occurs

when the number of hierarchy levels is larger.

This lack of change is caused by the two policies essentially marking two extremes

in the space of policies in overhearing hierarchical organizations; they tend to prefer

the top and bottom levels. The MostImportantActive policy tends to always prefer

98

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

Most Active

Most Important Active

(a) Coverage: 5%

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

Most Active

Most Important Active

(b) Coverage: 10%

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

Most Active

Most Important Active

(c) Coverage: 20%

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

Most Active

Most Important Active

(d) Coverage: 30%

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

Most Active

Most Important Active

(e) Coverage: 40%

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

Most Active

Most Important Active

(f) Coverage: 50%

Figure 9.3: Effect of Coverage

agents in the top level. The MostActive policy tends to prefer the bottom level

(where there is more activity). Thus the middle levels in the organizations tend to

be ignored by these policies, regardless of the number of such middle levels.

99

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

Most Active

Most Important Active

(a) 3 Hierarchy Levels

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

Most Active

Most Important Active

(b) 5 Hierarchy Levels

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

Most Active

Most Important Active

(c) 7 Hierarchy Levels

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

Most Active

Most Important Active

(d) 9 Hierarchy Levels

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

Most Active

Most Important Active

(e) 11 Hierarchy Levels

Figure 9.4: Effect of Hierarchy Levels

9.2.3 The Organizational Structure.

The next parameter we seek to explore is the organizational structure of hierarchical

organizations. Figures 9.2, 9.3 and 9.4 above have shown the performance of the

two policies in pyramidal hierarchical organizations. In this section, we study the

behavior of the MostImportantActive and the MostActive policies in hierarchical

organizations with other (than pyramidal) organizational structures.

100

Organizational structure of hierarchical organization is determined by the dis-

tribution of agents among hierarchy levels. In this work, we address three types

of organizational structures besides pyramidal hierarchies. The first organization

structure, we consider, is an Inverse-Pyramid. In such organizational structure, the

number of agents in each hierarchy level becomes bigger as the hierarchy levels get

higher. The second has a Diamond organizational structure. Here, the middle hi-

erarchy level has the highest number of agents. Besides, as the hierarchy levels get

either higher or lower, the number of agents associated with these levels becomes

smaller. The last organizational structure, i.e. Equally-Distributed, is the one where

the number of agents associated with each hierarchy level is more or less equal.

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

Most Active

Most Important Active

(a) Inverse-Pyramid (∇)

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

Most Active

Most Important Active

(b) Diamond (♦)

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

Most Active

Most Important Active

(c) Pyramidal (4)

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

Most Active

Most Important Active

(d) Equally-Distributed (�)

Figure 9.5: Effect of Organizational Structure

The results of MostImportantActive and MostActive policies in these organiza-

tional structures (together with the pyramidal structure) are shown in Figures 9.5-a

to 9.5-d respectively. Again, it can be seen that the relative performance of the two

policies remains unchanged in different organizational structures. The main differ-

ence between these organizational structures is the rate of the convergence, i.e. the

101

activity level at which the two policies intersect/meet for the second time. We in-

tentionally cut the Figures 9.5-a,b,c and d at activity level of 800% so to emphasize

the difference in gaps between the MostImportantActive and MostActive policies at

this activity level. Thus, we can see that the slowest convergence is found in Inverse-

Pyramids, then in Diamond structures, then come the Pyramidal hierarchies and,

finally, Equally-Distributed structures show the quickest convergence.

9.2.4 The Importance of Importance

It would seem that the relative performance of the two policies, is qualitatively

unaffected by the selectivity level, nor by the height of the hierarchy (measured

in number of levels) and neither by the different organizational structures. Yet

hierarchical organizations are not characterized solely by these parameters. Rather,

it is the difference in the importance of the different levels that is significant.

In a final set of experiments addressing the exploration of the value-volume trade-

off, we changed the importance ratio between the low-value and the high-value con-

versations, i.e. the ratio between the average values of conversations in the bottom

and top hierarchy levels, respectively. In the previous experiments, the value of

conversations ranged from 2 to 199. On average, conversations committed by agents

of lowest hierarchy level were valued close to 50, while conversations of highest-level

agents were valued around 150 (ratio of 1:3). In these experiments, we examine the

two policies with additional ratios.

Figures 9.6-a,b,c show the performance of MostActive and MostImportantActive

for importance ratios of 1:3, 1:5 and 1:8 ratios. It can clearly be seen that as

the ratio of conversations value increases, the MostImportantActive policy improves

(in all activity levels), while the MostActive policy deteriorates. At some point

(Figure 9.6-b), the two policies shift relative places, and the MostImportantActive

policy dominates.

Thus, in case the ratio of high-level and low-level conversation values is sig-

nificant, it is better to target highly important agents than to overhear low-level,

highly-communicative ones. For intermediate ratios, a tradeoff exists between these

policies, and for high ratio values, no tradeoff exists.

102

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

Most Active

Most Important Active

(a) Conversations Value Ratio 1:3

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

Most Active

Most Important Active

(b) Conversations Value Ratio 1:5

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

Most Active

Most Important Active

(c) Conversations Value Ratio 1:8

Figure 9.6: Effect of Conversations Value Ratio

9.3 Heterogeneous Policies

Based on the insight that a classical value-volume tradeoff exists in centralized se-

lective overhearing, we now tackle the question of how to apply these two policies

effectively. An overhearing agent may not know in advance the exact parameters of

monitored organization such as its activity level, conversation value ratio between

high and low hierarchy levels, etc. Thus, it would face a dilemma deciding what

policy is best to apply.

In this section, we consider a combination of the two policies in what we call het-

erogeneous selective overhearing. Here, instead of a single homogeneous overhearing

group following a ceratin overhearing policy, we consider a heterogeneous overhear-

ing group where some agents follow the MostImportantActive policy and others use

the MostActive policy.

103

9.3.1 Fixed Heterogeneous Policies

A fixed division of an overhearing group between the two policies was first to be

considered. Figures 9.7, 9.8 and 9.9 show the performance of heterogeneous over-

hearing under conditions of different fixed divisions. In Figures 9.7-a,b and c, 75% of

overhearing agents use the MostImportantActive policy (Value), while the other 25%

apply the MostActive policy (Volume). Figures 9.8-a,b and c show the performance

of heterogeneous policies where the overhearing group is divided 50%-50% between

the MostImportantActive and the MostActive policies. Finally, Figures 9.9-a,b and c

show the results for a combination of 25%-75%. Each of the Figures 9.7, 9.8 and 9.9

show the performance of heterogeneous policies (with an appropriate fixed division)

under the conditions of different conversation ratios compared to the performance

of the MostImportantActive and the MostActive homogeneous policies.

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

Most Active
Most Important Active
Fixed Heterogeneous

(a) Conversation Value Ratio 1:3

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

Most Active
Most Important Active
Fixed Heterogeneous

(b) Conversation Value Ratio 1:5

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

Most Active
Most Important Active
Fixed Heterogeneous

(c) Conversation Value Ratio 1:8

Figure 9.7: Fixed Heterogeneous Policies - Value 75% & Volume 25%

We expected heterogeneous overhearing to act as an intermediate between the

two extremes of value and volume: In settings where MostImportantActive policy

104

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

Most Active
Most Important Active
Fixed Heterogeneous

(a) Conversation Value Ratio 1:3

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

Most Active
Most Important Active
Fixed Heterogeneous

(b) Conversation Value Ratio 1:5

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

Most Active
Most Important Active
Fixed Heterogeneous

(c) Conversation Value Ratio 1:8

Figure 9.8: Fixed Heterogeneous Policies - Value 50% & Volume 50%

outperforms the MostActive policy, heterogeneous policies were expected to outper-

form the MostActive policy, while still performing poorer than the MostImportan-

tActive policy. Similarly, in settings where MostActive policy performs better than

the MostImportantActive policy, a vise versa behavior was expected. Furthermore,

heterogeneous policies were expected to perform closer to the MostActive policy in

combinations with higher percentage of agents following the MostActive policy, and

to show closer performance to the MostImportantActive policy in groups where most

agents use the MostImportantActive policy.

Nonetheless, Figures 9.7, 9.8 and 9.9 show a surprising behavior of fixed hetero-

geneous policies. It can be seen that heterogeneous policies mostly outperform both

the MostImportantActive and the MostActive policies. Thus, using heterogeneous

policies, we are witnessing a condition where the sum of the parts is bigger than the

whole.

105

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

Most Active
Most Important Active
Fixed Heterogeneous

(a) Conversation Value Ratio 1:3

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

Most Active
Most Important Active
Fixed Heterogeneous

(b) Conversation Value Ratio 1:5

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

Most Active
Most Important Active
Fixed Heterogeneous

(c) Conversation Value Ratio 1:8

Figure 9.9: Fixed Heterogeneous Policies - Value 25% & Volume 75%

9.3.2 Dynamic Heterogeneous Policies

Given the improvement in performance achieved by combining the MostImportan-

tActive and the MostActive policies in fixed heterogeneous overhearing, we sought to

apply this combination in a more flexible fashion. Fixed heterogeneous policies may

perform well in some settings of conversation systems, while performing poorly in

others. However, being bounded to a static division of an overhearing group, these

policies have zero-ability to adjust.

Therefore, instead of statically defining for each agent in advance which over-

hearing policy it is about to follow, we make this decision dynamically for each

overhearing agent. Deciding on the policy the agent is about to follow, we choose

between two options. We decide whether the corresponding agent will overhear the

most important active agent choosing to follow the MostImportantActive policy, or

will it target the most active agent according to the MostActive policy. Moreover,

we decide whether it is better to overhear x conversations by the most important

106

active agent agenti or y conversations by the most active agent agentj. Usually, y

will be greater than x, but the value of conversations by agenti will be higher than

the ones by agentj. Thus, the dilemma.

This decision is made based on communicating agents’ past performance–the av-

erage value of conversations in which the agents were overheard earlier (as recognized

by the conversation recognition process, see Chapter 8, Section 8.1.2). Given that

this section addresses centralized selective overhearing, we assume that this memory

is shared to all agents in the overhearing group. The distributed case of individual

memory will be addressed further in Chapter 10.

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

Most Active
Most Important Active
Dynamic Heterogeneous

(a) Conversation Value Ratio 1:3

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

Most Active
Most Important Active
Dynamic Heterogeneous

(b) Conversation Value Ratio 1:5

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

Most Active
Most Important Active
Dynamic Heterogeneous

(c) Conversation Value Ratio 1:8

Figure 9.10: Dynamic Heterogeneous Policies

Figures 9.10-a,b,c show the performance of the DynamicHeterogeneous policy

in comparison to the MostImportantActive and the MostActive policies under dif-

ferent configurations of conversation value ratio. Although we expected the Dy-

namicHeterogeneous policy to always outperform both the MostImportantActive and

the MostActive policies, it can be seen that this clearly isn’t the case. Indeed, Fig-

ure 9.10-a (conversation value ratio of 1:3) shows that the DynamicHeterogeneous

107

policy outperforms both the MostImportantActive and the MostActive policies at all

activity levels. However, in Figure 9.10-b (value ratio of 1:5), the DynamicHeteroge-

neous policy performs poorer than the MostImportantActive policy in high activity

levels. Furthermore, in Figure 9.10-c (value ratio of 1:8), the MostImportantActive

policy outperforms the DynamicHeterogeneous policy in all activity levels.

However, we argue that this behavior is caused only due to the incompleteness of

information on which the value-volume decision is based. In Figures 9.10-a,b,c this

decision is based on the shared memory of communicating agents’ past performance.

At start, this memory contains no knowledge. Only with time, by overhearing

conversations, overhearing agents acquire the knowledge on average value of agents’

conversations. Thus, some decisions made based on this memory may be inaccurate.

Figures 9.10-a,b,c show that the ”price” of a mistake in value-volume decision is

higher in higher activity levels and more significant value ratios.

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

Most Active
Most Important Active
Dynamic Hetero Using HierAvg

(a) Conversation Value Ratio 1:3

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

Most Active
Most Important Active
Dynamic Hetero Using HierAvg

(b) Conversation Value Ratio 1:5

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

Most Active
Most Important Active
Dynamic Hetero Using HierAvg

(c) Conversation Value Ratio 1:8

Figure 9.11: Dynamic Heterogeneous Policies using Hierarchy Average Conversation

Values

108

To prove this claim, we performed the same set of experiments, only now using

more accurate information to make the value-volume decision. Here, this decision

was made based on the average value of conversations at different hierarchy levels.

Figures 9.11-a,b,c show that the DynamicHeteroUsingHierAvg policy (same as the

DynamicHeterogeneous policy but using average conversation values of hierarchy

levels) outperforms both the MostImportantActive and the MostActive policies in

all activity levels for all conversation value ratios.

Nevertheless, this information is usually unaccessible to overhearing agents.

Thus, we consider the DynamicHeterogeneous policy (shown in Figures 9.10-a,b,c)

to be the most effective centralized selective overhearing policy. Furthermore, we

use it as a baseline for comparison with distributed overhearing policies presented

in Chapter 10.

9.4 Discussion

In this chapter, we presented an empirical study of centralized selective overhearing

policies for hierarchically-structured organizations. Using the model for selective

overhearing in such organizations and its simulation presented in Chapter 8, we

performed an extensive set of experiments examining several centralized overhearing

policies appropriate for hierarchical settings.

Based on these experiments, we make several important qualitative conclusions:

• Active vs. Static Policies. Knowledge of which agents are active, facilitat-

ing active policies, is crucial in organizations with low conversation activity.

However, as activity level rises, the advantage of active policies disappears.

• Value vs. Volume Policies. Comparing the value and the volume policies,

a classical tradeoff have been found. However, the performance of these two

policies with respect to each other was found to be surprisingly robust to

changes in the shape of the organization (pyramidal, diamond-shaped, etc.),

the number of agents overheard, and the number of hierarchical levels in the

organization. Instead, their relative performance changes qualitatively only

with changes in how much the conversations at top levels are more important

than the conversations in low levels of the organization.

• Heterogeneous Policies. Although the value-volume tradeoff has been

found to be robust to many characteristics of the monitored organizations, it

109

is still influenced by some of these characteristics (mainly by the conversation

value ratio, but also by the activity level to a smaller degree). Unfortunately,

these characteristics are not always known in advance. Thus, committing

to one of these policies ”blindly” causes either a very good or a very poor

performance. To mediate the gap between the two extremes, we studied a

combination of both policies where some overhearing agents follow the value

policy, while others follow the volume overhearing policy. To our surprise, we

found that combining the two policies has the potential to outperform each

of the original policies separately for any monitored organization, and thus

to be a potentially effective centralized overhearing policy independent of any

influencing characteristics of the monitored organization.

This chapter addressed centralized selective overhearing policies appropriate for

hierarchical organizations. In the next chapter (Chapter 10), we examine the be-

havior of distributed selective overhearing policies in these settings.

110

Chapter 10

Empirical Study of Distributed

Policies

Up to this point, we conducted an empirical study of selective overhearing in hierar-

chical organizations focusing on centralized policies (Chapter 9). However, applying

centralized policies in large-scale distributed settings can be problematic. Tendency

towards distribution exists both in the real-world settings and in the multi-agent sys-

tems. Growth in the number of global international companies on one hand, and of

open distributed multi-agent applications on the other, constitute the development

in this direction in both fields. In such settings, a centrally-located overhearer (which

is equivalent to an overhearing group coordinated using centralized policy) might not

be able to monitor communications performed by geographically-distributed agents.

Instead, a team of cooperating overhearing agents, acting in a distributed man-

ner, should be used. This chapter is dedicated to the first steps towards studying

distributed selective overhearing of hierarchical organizations.

10.1 Centralized vs. Distributed Policies

In Chapter 9, we have focused on centralized selective overhearing. We have shown

heterogeneous overhearing policies to be effective centralized policies. However, all

these policies rely on a number of assumptions (some of which were implicit up to this

point) possible only in centralized settings. In this chapter, we are going to tackle

these assumptions moving from centralized to distributed selective overhearing.

As already mentioned, we are going to address the DynamicHeterogeneous policy

as a baseline centralized policy. This policy relies on the following assumptions: (i)

111

��
��� �

���	�
����
������
�����������������

����� ��� �! �#" $

%�&(' '
)+*�, &.-

/)10+2
3

46587�9;:=< >�?8<@> A�>B<�C87@D

EF

GHI
J.K.L MON

K P
Q MSR
T

J KUL M N
K P
Q M+R
T

V R#W
MONYX Z K+[

R T

V R W
M N X Z K+[

R T

Figure 10.1: Centralized vs. Distributed Policies

full visibility–all overhearing agents are aware of all conversations carried out in

the monitored organization; (ii) shared memory–the value-volume decision is made

based on memory shared by all overhearing agents; and (iii) collision avoidance–a

target chosen by one overhearing agent, can not be chosen by another overhearer.

Thus, moving from centralized policies to distributed ones, we simply reduce

overhearing agents’ collaboration along these three dimensions. Figure 10.1 summa-

rizes this transition. Addressing the memory dimension, we distinguish between two

types of memory. The first is shared by all overhearing agents, whereas the second

type of memory is individual for each overhearer.

As to the visibility dimension, we distinguish between three types of visibility.

The first is the full visibility already explained above. The second, i.e. group visi-

bility, assumes that overhearing agents are only aware of the conversations that are

carried out by their targets (they are not aware of the conversations carried out

by agents that are not being overheard). The last visibility type is agent visibility.

Here, as opposed to group visibility, overhearing agent is only aware of conversa-

tions committed by its target, but not by targets overheard by other overhearers.

However, the overhearing agent has a limited visibility of conversations carried out

by other communicating agents: It is aware of conversations that these agents hold

with its own target.

112

Finally, in the collision avoidance dimension, we distinguish between two ex-

tremes. On one hand, the case where all collisions are avoided, and, on the other

hand, the case where collisions are allowed and there is no collision avoidance mech-

anism applied.

Figure 10.1 summarizes the differences between centralized and distributed poli-

cies. Centralized policies assume full visibility, shared memory and collision avoid-

ance. On the other hand, distributed policies assume the other extreme: agent

visibility, individual memory and no collision avoidance. Any other combination is

considered to be partially centralized and partially distributed. In the remaining

part of this chapter, we show a transition from centralized overhearing policies to

the distributed ones along the three dimensions described above.

10.2 Memory Dimension

Exploring selective overhearing policies with respect to memory dimension, we first

assume full visibility and collision avoidance. However, the later experiments, pre-

sented in Sections 10.3-10.4, annul this assumption as well.

Following this initial assumption, we introduce two selective overhearing policies–

FullVis-ShrdMem-CollAvd and FullVis-IndMem-CollAvd. The first is in fact the

DynamicHeterogeneous policy presented in Chapter 9, Section 9.3.2. It uses shared

memory of communicating agents’ past performance as a basis for the value-volume

decision. To remind the reader, the value-volume decision considers whether the

agent will target most-important agents following the MostImportantActive (Value)

policy or whether it will target most communicative agents using the MostActive

(Volume) policy (see Chapter 9, Section 9.3.2 for further details).

In contrast, the FullVis-IndMem-CollAvd policy uses individual memory. Ac-

cording to this policy, each overhearing agent has only the memory of conversations

it overheard in the past, without any knowledge on conversations overheard by other

overhearers. Thus, the basis for the value-volume decision for each agent lies in its

own past experience.

The distinction between the two types of memory is important mainly due to the

requirements of their maintenance. Maintaining a consistent and accurate shared

memory requires broadcasting information value of each overheard conversation to

all overhearing agents, whereas individual memory requires no communications be-

tween overhearing agents.

113

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

FullVis-IndMem-CollAvd

FullVis-ShrdMem-CollAvd

Figure 10.2: Full Visibility - Memory Effect

Figure 10.2 shows the performance of the FullVis-ShrdMem-CollAvd and the

FullVis-IndMem-CollAvd policies. It can be seen that an overhearing group per-

forms better using shared memory than the case where an individual memory is

applied. However, the gap between the performance of the two policies appears to

be insignificant.

10.3 Visibility Dimension

The experiments presented so far all assumed full visibility, i.e. all overhearing

agents are aware of all the conversations carried out in the monitored organization

at any given moment. In this section, we are going to confront this assumption

by first assuming the transition from full to group visibility in Section 10.3.1, and

then addressing the transition to the even more restricted case of agent visibility in

Section 10.3.2.

10.3.1 Full vs. Group Visibility

Full visibility is usually unobtainable. Thus, we now assume group visibility. Ac-

cording to this visibility, overhearing agents are only aware of the conversations

carried out by agents that are being overheard. Still, each overhearing agent is

aware of both the conversations carried out by its target and of the conversations

114

by targets overheard by other overhearers. Group visibility restricts the visibility of

an organization to the limits of an overhearing group. However, it still assumes that

overhearing agents collaborate informing each other on the overheard conversations.

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

FullVis-IndMem-CollAvd
FullVis-ShrdMem-CollAvd
GroupVis-IndMem-CollAvd
GroupVis-ShrdMem-CollAvd

Figure 10.3: Group Visibility - Memory Effect

Figure 10.3 shows the performance of the two policies, discussed in Section 10.2,

with respect to group visibility. These policies are called GroupVis-ShrdMem-

CollAvd and GroupVis-IndMem-CollAvd respectively. Comparing these policies to

the ones relying on full visibility, we can see a degradation in performance. This

conclusion is straightforward to some extent since the transition from full to group

visibility reduces the knowledge on the monitored organization.

However, a more surprising result comes from contrasting the GroupVis-

ShrdMem-CollAvd and the GroupVis-IndMem-CollAvd policies. In contrast to the

performance of the two policies with respect to full visibility, it is the policy using in-

dividual memory that outperforms the policy using shared memory under condition

of group-visibility settings.

Moreover, group visibility assumes that the overhearing agent is both aware of the

conversations carried out by its target and of the conversations carried out by targets

overheard by other overhearers. Thus, group visibility depends on the number of

overhearing agents. In the following set of experiments, we tested the surprising

behavior of the GroupVis-ShrdMem-CollAvd and the GroupVis-IndMem-CollAvd

policies with respect to different number of overhearers–measured as coverage %, i.e.

the ratio of the number of overhearing agents to the number of potential targets.

115

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

GroupVis-IndMem-CollAvd

GroupVis-ShrdMem-CollAvd

(a) Coverage: 5%

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

GroupVis-IndMem-CollAvd

GroupVis-ShrdMem-CollAvd

(b) Coverage: 30%

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

GroupVis-IndMem-CollAvd

GroupVis-ShrdMem-CollAvd

(c) Coverage: 50%

Figure 10.4: Group Visibility - Shared vs. Individual Memory - Coverage Effect

Figure 10.4-b shows the performance of the two group-visibility policies with

respect to the default overhearing coverage of 30%, while Figures 10.4-a and c show

the performance results under condition of two additional coverage ratios (5% and

50% respectively). Figures 10.4-a,b and c all show that the surprising behavior

of individual memory outperforming the shared memory, found in group-visibility

settings, is consistent in all levels of overhearing coverage.

10.3.2 Group vs. Agent Visibility

Moving further towards distributed selective overhearing, we now assume agent vis-

ibility. As opposed to group visibility, overhearing agent is only aware of conversa-

tions committed by its target, but not by the targets overheard by other overhearers.

However, the overhearing agent has a limited knowledge on conversations held by

other communicating agents: It is aware of the conversations that these agents hold

with its own target.

116

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

GroupVis-IndMem-CollAvd

AgentVis-IndMem-CollAvd

(a) Coverage: 5%

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

GroupVis-IndMem-CollAvd

AgentVis-IndMem-CollAvd

(b) Coverage: 30%

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

GroupVis-IndMem-CollAvd

AgentVis-IndMem-CollAvd

(c) Coverage: 50%

Figure 10.5: Group vs. Agent Visibility - Individual Memory - Coverage Effect

Figures 10.5-a,b and c compare selective overhearing policies in group- and agent-

visibilities. However, considering the surprising result shown earlier in Figures 10.4-

a,b and c (where individual memory outperforms shared memory), we only address

policies using individual memory, ignoring shared memory policies in these settings.

This step also supports our desired goal of moving towards distributed selective

overhearing policies where the overhearing agents are loosely-coupled.

Again, we can see that the transition from group visibility to agent visibility

results in poorer performance. In all coverage ratios (Figures 10.5-a,b and c), the

GroupVis-IndMem-CollAvd policy outperforms the AgentVis-IndMem-CollAvd pol-

icy. This result is similar to the effect caused by the transition from full visibility

to group visibility. In both cases, the available information on the monitored orga-

nization becomes smaller with each transition, and thus causes the degradation in

performance.

117

10.4 Collision Avoidance Dimension

The final subject of our research in this chapter of the thesis is the influence of

collision avoidance on the performance of selective overhearing policies. Collision is

defined as a state where two or more overhearing agents target the same commu-

nicating agent at the same time. In centralized settings, such collisions can easily

be avoided since all agents are coordinated by a single centralistic authority. In

contrast, overhearing agents operating in distributed settings must handle collisions

on their own. Therefore, collision avoidance might be a time-consuming activity for

an overhearing agent.

In Section 10.4.1, we explore the general effect of collision avoidance comparing

the case where all collisions are avoided with the case where no collision mechanism

is applied at all, whereas Section 10.4.2 studies the case of partial collision avoidance,

i.e. where only some of the collisions are avoided. In both sections, we assume agent

visibility and the use of individual memory.

10.4.1 None vs. Full Collision Avoidance

Figures 10.6-a,b and c show the performance of selective overhearing policies with re-

spect to the two extremes: one where collisions are always avoided, i.e. the AgentVis-

IndMem-CollAvd policy, and other where collisions are allowed–the AgentVis-

IndMem-NoCollAvd policy. Moreover, in the AgentVis-IndMem-NoCollAvoid pol-

icy, even if a collision is detected, i.e. overhearing agent chooses a target already

overheard by another overhearer, the overhearer does not change its selected target.

On the other hand, in the AgentVis-IndMem-CollAvoid policy, in case of collision,

the overhearing agent chooses a second best target, then the third-best target and

so on in case of additional collisions. Finally, if it has no more desired targets, it

simply chooses a random one.

Since collisions depend on the number of overhearers, Figures 10.6-a,b and c show

the performance of these two overhearing policies with respect to different overhear-

ing coverage percentage (5%, 30% and 50% respectively). Indeed, it can be seen that

collision avoidance has a significant effect on the performance of overhearing poli-

cies. Furthermore, this effect becomes more significant in larger overhearing groups.

Although in settings with low overhearing coverage no difference is witnessed (with

or without collision avoidance), it becomes highly significant to avoid collisions as

the number of overhearing agents increases due to the higher probability of collisions

in such settings.

118

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

AgentVis-IndMem-CollAvd

AgentVis-IndMem-NoCollAvd

(a) Coverage: 5%

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

AgentVis-IndMem-CollAvd

AgentVis-IndMem-NoCollAvd

(b) Coverage: 30%

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

AgentVis-IndMem-CollAvd

AgentVis-IndMem-NoCollAvd

(c) Coverage: 50%

Figure 10.6: Agent Visibility - Collision Avoidance Effect

10.4.2 Partial Collision Avoidance
As a final step of our research, we examined different levels of collision avoidance.

Here, we compare overhearing policies where overhearing agent seeks to avoid only

a certain amount of occurring collisions.

Figures 10.7-a,b and c show the corresponding results. The AgentVis-IndMem-

p%CollAvoid policy represents a selective overhearing policy according to which

the overhearing agent chooses to avoid only p percent of occurring collisions. This

p percent ranges from 0% to 100% (with a 20% hop). The AgentVis-IndMem-

0%CollAvoid and the AgentVis-IndMem-100%CollAvoid policies correspond to

the AgentVis-IndMem-NoCollAvoid and the AgentVis-IndMem-CollAvoid policies

above.

Again, it can be seen that in settings with low overhearing coverage collision

avoidance has no significant effect (Figures 10.7-a). Similarly, different levels of

collision avoidance loose their impact as activity levels rise (Figures 10.7-b and c).

However, in low and medium activity levels, collision avoidance and its percentage

are important. Still, it can be seen that the performance boost, achieved due to the

higher levels of collision avoidance, is not always significant.

119

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

AgentVis-IndMem-100%CollAvd
AgentVis-IndMem- 80%CollAvd
AgentVis-IndMem- 60%CollAvd
AgentVis-IndMem- 40%CollAvd
AgentVis-IndMem- 20%CollAvd
AgentVis-IndMem- 0%CollAvd

(a) Coverage: 5%

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

AgentVis-IndMem-100%CollAvd
AgentVis-IndMem- 80%CollAvd
AgentVis-IndMem- 60%CollAvd
AgentVis-IndMem- 40%CollAvd
AgentVis-IndMem- 20%CollAvd
AgentVis-IndMem- 0%CollAvd

(b) Coverage: 30%

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800
Activity Level (%)

%
 o

f O
pt

im
um

AgentVis-IndMem-100%CollAvd
AgentVis-IndMem- 80%CollAvd
AgentVis-IndMem- 60%CollAvd
AgentVis-IndMem- 40%CollAvd
AgentVis-IndMem- 20%CollAvd
AgentVis-IndMem- 0%CollAvd

(c) Coverage: 50%

Figure 10.7: Agent Visibility - Collision Avoidance % Effect

10.5 Discussion

In Chapter 9, we discussed in details centralized overhearing policies of hierarchi-

cal organizations under the restriction of selectivity. On the other hand, in this

chapter, we explored the transition from centralized selective overhearing policies to

distributed ones.

In effective centralized policies, we identified three dimension in which overhear-

ing agents are centrally-coordinated. These dimensions are memory, visibility and

collisions avoidance. The potential targets are determined based on the visibility of

their current conversations and the memory of their prior conversations, while colli-

sions avoidance mechanism coordinates overhearing agents to prevent two different

overhearers to overhear the same target. An effective centralized policy assumes full

visibility, shared memory and no collisions.

120

Transitioning to distributed policies, we incrementally increased the autonomy

degree of overhearing agents (within the overhearing group) along these three di-

mensions. Addressing memory dimension, we considered the transition from shared

to individual memory. As for visibility, we distinguish between full visibility where

each overhearing agent is aware of all conversations, group visibility where each

overhearer is aware only of the conversations overheard by the overhearing group

and agent visibility–being aware only of the conversations it overhears. Finally, we

refer to cases where all, none and some collisions are avoided. Clearly, the fully

distributed selective overhearing policy assumes individual memory, agent visibility

and no collision avoidance.

Our experiments studied the changes in performance of overhearing policies

caused by the changes in coordination of the overhearing groups along these three

dimensions. We come to conclusion that some of the changes have greater effect

than others. For instance, the transition from shared to individual memory does

not influence the performance of selective overhearing. This conclusion is important

since maintaining shared memory causes frequent communications between over-

hearing agents, and thus might burden the communication network. In addition, we

show that it is sufficient to solve some of collision and not all of them. Again, this

conclusion is important since collision avoidance is a time-consuming activity that

might be problematic in real-time settings.

Still, the transition from centralized to distributed overhearing policies causes a

significant decrease in performance (mainly due to decrease in visibility). However,

we believe that studying the factors influencing this transition, as done in this thesis,

will help us to bridge this gap in the future. Furthermore, identifying the effect of

each factor will enable to focus the effort on the most influencing factors, while not

wasting valuable resources in vague.

121

Chapter 11

Final Remarks

Recent multi-agent systems are often built applying an open, distributed de-

sign. These systems involve various challenges of monitoring geographically-

distributed and independently-built multiple agents. Monitoring by overhearing

[Kaminka et al., 2002] is a monitoring approach particularly suited for open dis-

tributed MAS settings. Here, an overhearing agent monitors the exchanged com-

munications between the system’s agents. These overheard routine communications

are used to independently assemble and infer the needed monitoring information.

Previous investigations of overhearing have demonstrated a range of

overhearing techniques and applications. Overhearing was used for main-

taining organizational and situational awareness [Novick and Ward, 1993,

Legras, 2002, Rossi and Busetta, 2004, Rossi and Busetta, 2005], debugging

and detecting inconsistencies [Poutakidis et al., 2002, Rossi and Busetta, 2004,

Rossi and Busetta, 2005], monitoring progress [Kaminka et al., 2002] and discov-

ering opportunities for providing advice [Aiello et al., 2001, Busetta et al., 2001].

Given these and other potential applications, we believe that the principle of

overhearing is of great importance both in the fields of commercial and military

implementations along with broad research perspectives.

However, previous works mainly focus on the potential applications of overhear-

ing. In doing so, these investigations often rely on problematic assumptions related

to the fundamentals of overhearing. Our work systematically tackles these problem-

atic assumptions addressing the fundamental building blocks of overhearing.

A theme that runs through our research is the focus on the challenges of using

overhearing in large-scale multi-agent settings. We first addressed the building block

of conversation representation providing a scalable representation of multi-agent

conversations for overhearing. Then, building on it, we explored the building block

122

of conversation recognition addressing the cases of overhearing where the overhearer

can not overhear all exchanged messages. Finally, addressing the cases where not

just messages, but entire conversations are not accessible to the overhearing agent,

we empirically studied the building block of selective overhearing. In the remaining

part of this chapter, we summarize our work related to each of these building blocks,

draw the main conclusions and provide possible directions for future research.

11.1 Representing Conversations for Overhearing

Petri nets have recently been shown to provide a viable representation ap-

proach for modelling multi-agent conversations [Cost et al., 1999, Cost et al., 2000,

Nowostawski et al., 2001, Mazouzi et al., 2002]. However, radically different ap-

proaches have been proposed to using Petri nets for modelling multi-agent con-

versations. Yet, the relative strengths and weaknesses of the proposed techniques

have not been examined.

Our work in Part I of the thesis introduces a novel classification of previous

investigations and then compares these investigations addressing their scalability

and appropriateness for monitoring via overhearing. Based on the insights gained

from the analysis, we have developed a novel Petri net representation of multi-agent

conversations. This representation technique offers significant improvements (com-

pared to previous approaches) in terms of scalability, and thus is more appropriate

for representing multi-agent conversations in large-scale settings. We also show this

representation to be particularly suitable for monitoring via overhearing.

We systematically show how this representation covers essentially all the features

required to model complex multi-agent conversations, as defined by the FIPA con-

versation standards [FIPA Specifications, 2005c]. These include simple & complex

interaction building blocks, communicative act attributes and multiple concurrent

conversations, nested & interleaved interactions and temporal aspects of conver-

sations. Previous approaches could handle some of these examples (though with

reduced scalability), but none was shown to cover all the required features.

Finally, we developed a skeleton procedure for semi-automatically converting an

AUML protocol diagrams (the chosen FIPA representation standard) to an equiva-

lent Petri net representation. We have demonstrated its use on a challenging FIPA

conversation protocol, which was difficult to represent using previous approaches.

123

Naturally, some issues remain open for future work. We believe that the au-

tomatic conversion of human-readable AUML protocol diagrams to their machine-

readable Petri net representations is extremely important in the view of the existing

automatic techniques for debugging [Poutakidis et al., 2002], validation and veri-

fication [Desel et al., 1997], deadlock detection [Khomenco and Koutny, 2000], etc.

Though our work addressed such automatic conversion for AUML protocol diagrams

representing two agent roles, the general n-agent version still remains a challenging

problem open for future research.

11.2 Conversation Recognition

Our work on conversation recognition was the first to address this key step in over-

hearing. Most previous investigations on overhearing either simply ignore it or

assume it can be done without providing any implementation details.

In contrast, our work in Part II of the dissertation formally addresses conversation

recognition. Since most previous works address overhearing in context of specific

applications, our first goal was to provide a formal model of overhearing unrelated

to any specific task. Based on the proposed model, we have formalized the problem

of conversation recognition and provided algorithms for handling it both in lossless

and lossy settings. Furthermore, we have analyzed the efficiency of the introduced

algorithms with respect to their applicability in large-scale MAS.

Still, we believe that our work constitutes only the first steps in this direction.

We have analyzed conversation recognition for the most common case where the

overhearing agent does not overhear some of the exchanged messages due to noise,

its relative position or some other factor. In our opinion, it is also important to

consider additional erroneous cases where the sequence of overheard messages is

different from the sequence of messages exchanged in the actual conversation. These

possible differences are summarized in Table 6.1 in Chapter 6, Section 6.3.

In context of conversation recognition, we also distinguish two additional direc-

tions open for future research. The first is analyzing the appropriateness of dif-

ferent types of algorithms for conversation recognition. The algorithms proposed

in our work are forward chaining algorithms, i.e. algorithms that examine the se-

quence of overheard messages from first to last. In contrast, it is also possible

to examine the same sequence of overheard messages in a reverse order–from last

to first. This sort of algorithms called back chaining algorithms. The works by

124

[Klein, 1997, Fan and Yen, 2005] showed that certain tradeoffs exist using the two

types of algorithms. We believe that considering the application of the two types of

algorithms for conversation recognition and analyzing their tradeoffs in this context

offer an interesting research ground.

Another direction open for future research is conversation recognition of

multi-party communications recently gaining attention in multi-agent community

[Kumar et al., 2000, Traum and Rickel, 2002, Dignum and Vreeswijk, 2003]. As op-

posed to the point-to-point communications between two agents, multi-party com-

munications involve a group of communicating agents where each agent can send

a message at any given time, each agent is affected differently by the exchanged

communications, etc. Our algorithms, presented in Chapter 7, handle conversation

recognition in context of pairwise communications. However, the specific challenges

related to conversation recognition of groupwise communications remain unattained.

Identifying this opportunity, [Fan and Yen, 2005] made the first steps in this direc-

tion. Nonetheless, many challenges still remain open.

11.3 Selective Overhearing

Selective overhearing addresses the specific characteristics of overhearing in large-

scale MAS. In such settings, it is reasonable to assume that the available overhearing

resources are bound to be limited. Thus, the assumption that all relevant inter-

agent communications can be overheard (made by all previous investigations) can

be challenged. Instead, the overhearing agent must carefully choose its targets, since

only a subset of those can be overheard.

We propose to use organizational knowledge of the monitored settings to make

this decision. In our work, the overhearing agent decides on choosing one target

over the other based on factors such as its organizational role within the monitored

system and the specific characteristics of its conversations compelled by this role. We

believe that in the future it would be interesting to investigate alternative criterions

for making this decision.

Our work studies overhearing of hierarchical organizations. Thus, we first pro-

pose a model of selective overhearing taking into account both the limitations

of selectivity and the specific characteristics of such organizations. We focus

on hierarchical organizations since those are widely common both in real-world

(e.g., many corporates) and in multi-agent applications (e.g., [So and Durfee, 1996,

Yadgar et al., 2003]).

125

Still, it would be rather interesting to study overhearing of different

types of organizations used in multi-agent community such as holarchies,

coalitions, teams, congregations, societies, federations and matrix-organizations

[Horling and Lesser, 2004]. The choice of organizational paradigm depends on the

application. While suitable for some tasks, the same organizational paradigm might

be less appropriate for implementing some other tasks [Corkill and Lander, 1998,

Horling and Lesser, 2004]. Accordingly, in overhearing different types of organiza-

tions, we would have to consider these differences between the various organizational

paradigms.

Based on the proposed model for hierarchical organizations, we empirically study

various centralized and distributed selective overhearing policies. In doing so, we

examine overhearing performed by a group of cooperative agents tackling the as-

sumption by previous investigations that overhearing is either done by a single

centrally-located overhearer or by a group of non-collaborating overhearing agents

that perform overhearing out of their own interest. Given the interest in teamwork

[Pynadath and Tambe, 2003, Scerri et al., 2004, Paruchuri et al., 2004], we believe

that our work in this direction only constitutes the first steps in examining the im-

plications of applying the concept of teamwork in overhearing performed by a group

of collaborative overhearers.

126

Appendix A

A Brief Introduction to Petri Nets

Petri nets [Petri Nets site, 2005] are a widespread, established methodology for rep-

resenting and reasoning about distributed systems, combining a graphical repre-

sentation with a comprehensive mathematical theory. One version of Petri nets is

called Place/Transition nets (PT-nets) [Reisig, 1985]. A PT-net is a bipartite di-

rected graph where each node is either a place or a transition (Figure A.1). The net

places and transitions are indicated through circles and rectangles respectively. The

PT-net arcs support only place → transition and transition → place connections,

but never connections between two places or between two transitions. The arc di-

rection determines the input/output characteristics of the place and the transition

connected. Thus, given an arc, P → T , connecting place P and transition T , we

will say that place P is an input place of transition T and vice versa transition T is

an output transition of place P . The P → T arc is considered to be an output arc

of place P and an input arc of transition T .

A PT-net place may be marked by small black dots called tokens. The arc

expression is an integer, which determines the number of tokens associated with the

corresponding arc. By convention, an arc expression equal to 1 is omitted. A specific

transition is enabled if and only if its input places marking satisfies the appropriate

arc expressions. For example, consider arc P → T to be the only arc to connect

place P and transition T . Thus, given that this arc has an arc expression 2, we will

say that transition T is enabled if and only if place P is marked with two tokens. In

case the transition is enabled, it may fire/occur. The transition occurrence removes

tokens from the transition input places and puts tokens to the transition output

places as specified by the arc expressions of the corresponding input/output arcs.

Thus, in Figures A.1-a and A.1-b, we demonstrate PT-net marking before and after

transition firing respectively.

127

� �

�

� �

�

(a) Before firing

� �

�

	

�

(b) After firing

Figure A.1: A PT-net example.

Although computationally equivalent, a different version of Petri nets, called

Colored Petri nets (CP-nets) [Jensen, 1997a, Jensen, 1997b, Jensen, 1997c], offers

greater flexibility in compactly representing complex systems. Similarly to the PT-

net model, CP-nets consist of net places, net transitions and arcs connecting them.

However, in CP-nets, tokens are not just single bits, but can be complex, structured,

information carriers. The type of additional information carried by the token, is

called token color, and it may be simple (e.g., an integer or a string), or complex (e.g.

a record or a tuple). Each place is declared by a place color set to only match tokens

of particular colors. A CP-net place marking is a token multi-set (i.e., a set in which

a member may appear more than once) corresponding to the appropriate place color

set. CP-net arcs pass token multi-sets between the places and transitions. CP-net

arc expressions can evaluate token multi-sets and may involve complex calculation

procedures over token variables declared to be associated with the corresponding

arcs.

The CP-net model introduces additional extensions to PT-nets. Transition

guards are boolean expressions, which constrain transition firings. A transition

guard associated with a transition tests tokens that pass through a transition, and

will only enable the transition firings if the guard is successfully matched (i.e., the

test evaluates to true). The CP-net transition guards, together with places color

sets and arc expressions, appear as a part of net inscriptions in the CP-net.

In order to visualize and manage the complexity of large CP-nets, hierarchical

CP-nets [Huber et al., 1991, Jensen, 1997a] allow hierarchical representations of CP-

nets, in which sub-CP nets can be re-used in higher-level CP nets, or abstracted away

128

from them. Hierarchical CP-nets are built from pages, which are themselves CP-

nets. Superpages present a higher level of hierarchy, and are CP-nets that refer to

subpages, in addition to transitions and places. A subpage may also function as a

superpage to other subpages. This way, multiple hierarchy levels can be used in a

hierarchical CP-net structure.

The relationship between a superpage and a subpage is defined by a substitu-

tion transition, which substitutes a corresponding subpage instance on the CP-net

superpage structure as a transition in the superpage. The substitution transition

hierarchy inscription supplies the exact mapping of the superpage places connected

to the substitution transition (called socket nodes), to the subpage places (called

port nodes). The port types determine the characteristics of the socket node to port

node mappings. A complete CP-net hierarchical structure is presented using a page

hierarchy graph, a directed graph where vertices correspond to pages, and directed

edges correspond to direct superpage-subpage relationships.

Timed CP-nets [Jensen, 1997b] extend CP-nets to support the representation

of temporal aspects using a global clock. Timed CP-net tokens have an additional

color attribute called time stamp, which refers to the earliest time at which the token

may be used. Time stamps can be used by arc expression and transition guards, to

enable a timed-transition if and only if it satisfies two conditions: (i) the transition is

color enabled, i.e. it satisfies the constraints defined by arc expression and transition

guards; and (ii) the tokens are ready, i.e. the time of the global clock is equal to or

greater than the tokens’ time stamps. Only then can the transition fire.

129

Bibliography

[Aiello et al., 2001] M. Aiello, P. Busetta, A. Dona, and L. Serafini. Ontological

overhearing. In Proceedings of ATAL-01, 2001.

[AUML site, 2005] AUML site. Agent unified modelling language, at www.auml.org,

2005.

[Avrahami and Kaminka, 2005] D. Avrahami and G. A. Kaminka. Fast and com-

plete symbolic plan recognition. In Proceedings of IJCAI-05, 2005.

[Best et al., 2003] R. Best, G. de Valence, and C.A. Langston. Workplace Strategies

and Facilities Management. Elsevier, 2003.

[Busetta et al., 2001] P. Busetta, L. Serafini, D. Singh, and F. Zini. Extending

multi-agent cooperation by overhearing. In Proceedings of CoopIS-01, 2001.

[Busetta et al., 2002] P. Busetta, A. Dona, and M. Nori. Channelled multicast for

group communications. In Proceedings of AAMAS-02, 2002.

[Carrbery, 2001] S. Carrbery. Techniques for plan recognition. User Modelling and

User-Adapted Interaction, 11:31–48, 2001.

[ChaibDraa, 2002] B. ChaibDraa. Trends in agent communication languages. Com-

putational Intelligence, 18(2):89–101, 2002.

[Charniak and Goldman, 1993] E. Charniak and R.P. Goldman. A bayesian model

of plan recognition. Artificial Intelligence Journal (AIJ), 64(1):53–79, 1993.

[Cohen and Levesque, 1991] P. R. Cohen and H. J. Levesque. Teamwork. Nous, 35,

1991.

[Corkill and Lander, 1998] D.D. Corkill and S.E. Lander. Diversity in agent orga-

nizations. Object Magazine, 8(4):41–47, 1998.

130

[Cost et al., 1999] R. S. Cost, Y. Chen, T. Finin, Y. Labrou, and Y. Peng. Modelling

agent conversations with colored Petri nets. In Proceedings of the Workshop on

Specifying and Implementing Conversation Policies, the Third International Con-

ference on Autonomous Agents (Agents-99), Seattle, Washington, 1999.

[Cost et al., 2000] R. S. Cost, Y. Chen, T. Finin, Y. Labrou, and Y. Peng. Using

colored petri nets for a conversation modelling. In F. Dignum and M Greaves,

editors, Issues in Agent Communications, Lecture notes in Computer Science,

pages 178–192. Springer-Verlag, 2000.

[Cost, 1999] R. S. Cost. A framework for developing conversational agents. PhD

thesis, Department of Computer Science, University of Maryland, 1999.

[Cranefield et al., 2002] S. Cranefield, M. Purvis, M. Nowostawski, and P. Hwang.

Ontologies for interaction protocols. In Proceedings of the Workshop on Ontolo-

gies in Agent Systems, the First International Joint Conference on Autonomous

Agents & Multi-Agent Systems (AAMAS-02), Bologna, Italy, 2002.

[de Silva et al., 2003] L. P. de Silva, M. Winikoff, and W. Liu. Extending agents

by transmitting protocols in open systems. In Proceedings of the Workshop on

Challenges in Open Agent Systems, the Second International Joint Conference on

Autonomous Agents & Multi-Agent Systems (AAMAS-03), Melbourne, Australia,

2003.

[Desel et al., 1997] J. Desel, A. Oberweis, and T. Zimmer. Validation of information

system models: Petri nets and test case generation. In Proceedings of the 1997

IEEE International Conference on Systems, Man and Cybernetics: Computational

Cybernetics and Simulation, pages 3401–3406, Orlando, Florida, 1997.

[Dewan et al., 1997] R.M. Dewan, A. Seidmann, and S. Sundaresan. Communica-

tions in hierarchical organizations and standards policies for information technol-

ogy. International Journal of Electronic Commerce, 1(3):43–64, 1997.

[Dignum and Vreeswijk, 2003] F. Dignum and G. Vreeswijk. Towards a testbed from

multi-party dialogues. In Workshop on Agent Communication Languages, LNAI

2292, pages 212–230, 2003.

[Dignum, 2003] V. Dignum. A model for organizational interaction: Based on

agents, founded in logic. SIKS Dissertation Series, 2003.

131

[Fan and Yen, 2005] X. Fan and J. Yen. Conversation pattern-based anticipation of

teammates information needs via overhearing. In Proceedings of the IEEE/WIC

Intelligent Agent Technology conference (IAT-05), page 316322, France, 2005.

[Finin et al., 1997] T. Finin, Y. Labrou, and J Mayfield. KQML as an agent com-

munication language. In J Bradshaw, editor, Software Agents. MIT Press, 1997.

[FIPA Communicative Acts, 2005] FIPA Communicative Acts. Fipa Communica-

tive Act Library Specification, version J, at www.fipa.org/specs/fipa0000037, 2005.

[FIPA site, 2005] FIPA site. Fipa - the Foundation for Intelligent Physical Agents,

at www.fipa.org, 2005.

[FIPA Specifications, 2005a] FIPA Specifications. Fipa Brokering Interaction Pro-

tocol Specification, version H, at www.fipa.org/specs/fipa0000033/, 2005.

[FIPA Specifications, 2005b] FIPA Specifications. Fipa Contract Net Interaction

Protocol Specification, version H, at www.fipa.org/specs/fipa0000029/, 2005.

[FIPA Specifications, 2005c] FIPA Specifications. Fipa Interaction Protocol Library

Specification, version E, at www.fipa.org/specs/fipa0000025/, 2005.

[FIPA Specifications, 2005d] FIPA Specifications. Fipa Query Interaction Protocol

Specification, version H, at www.fipa.org/specs/fipa0000027/, 2005.

[FIPA Specifications, 2005e] FIPA Specifications. Fipa Request Interaction Proto-

col Specification, version H, at www.fipa.org/specs/fipa0000026/, 2005.

[Friebel and Raith, 2004] G. Friebel and M. Raith. Abuse of authority and hierar-

chical communications. RAND Journal of Economics, 35(2):224–244, 2004.

[Friedell, 1967] M. F. Friedell. Organizations as semilattices. American Sociological

Review, 32:46–54, 1967.

[Gannon and Newman, 2001] M. J Gannon and K.L. Newman, editors. The Black-

well Handbook of Cross-Cultural Management. Blackwell Publishing, 2001.

[Geib and Harp, 2004] C. W. Geib and S. A. Harp. Empirical analysis of a probalis-

tic task tracking algorithm. In Proceedings of AAMAS-04 Workshop on Modelling

Others from Observations (MOO-04), 2004.

132

[Grossi et al., 2005] D. Grossi, F. Dignum, L. Royakkers, and M. Dastani. Foun-

dations of organizational structures in multi-agent systems. In Proceedings of

AAMAS-05, 2005.

[Grosz and Kraus, 1996] B. J. Grosz and S. Kraus. Collaborative plans for complex

group actions. Artificial Intelligence, 86:269–358, 1996.

[Guessoum et al., 2004] Z. Guessoum, M. Ziane, and N. Faci. Monitoring and

organizational-level adaptation of multi-agent systems. In Proceedings of AAMAS-

04, 2004.

[Hameurlain, 2003] N. Hameurlain. MIP-Nets: Refinement of open protocols for

modelling and analysis of complex interactions in multi-agent systems. In Pro-

ceedings of the 3rd International Central and Eastern European Conference on

Multi-Agent Systems (CEEMAS-03), pages 423–434, Prague, Czech Republic,

2003.

[Horling and Lesser, 2004] B. Horling and V. Lesser. A survey of multi-agent or-

ganizational paradigms. Computer Science Technical Report 04-45, University of

Massachusetts, 2004.

[Horty and Pollack, 2001] J. Horty and M. Pollack. Evaluating new options in con-

text of existing plans. Artificial Intelligence, 127(2):199–220, 2001.

[Huber et al., 1991] P. Huber, K. Jensen, and R. M. Shapiro. Hierarchies in

Coloured Petri nets. In K. Jensen and G. Rozenberg, editors, High-level Petri

Nets: Theory and Application, pages 215–243. Springer-Verlag, 1991.

[Jennings, 1993] N. R. Jennings. Commitments and conventions: The foundations

of coordination in multi-agent systems. Knowledge Engineering Review, 8(3):223–

250, 1993.

[Jensen, 1997a] K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods

and Practical Use, volume 1. Springer-Verlag, 1997.

[Jensen, 1997b] K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods

and Practical Use, volume 2. Springer-Verlag, 1997.

[Jensen, 1997c] K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods

and Practical Use, volume 3. Springer-Verlag, 1997.

133

[Jensen, 2003] M.T. Jensen. Organizational communication: A review. R&D Report

1/2003, Agderforskning, Norway, 2003.

[Kalech and Kaminka, 2005] M. Kalech and G. A. Kaminka. Towards model-based

diagnosis of coordination failures. In Proceedings of AAAI-05, 2005.

[Kaminka and Tambe, 2000] G. A. Kaminka and M. Tambe. Robust multi-agent

teams via socially-attentive monitoring. JAIR, 12:105–147, 2000.

[Kaminka et al., 2002] G.A. Kaminka, D.V. Pynadath, and M. Tambe. Monitoring

teams by overhearing: A multi-agent plan-recognition approach. JAIR, 17:83–135,

2002.

[Kaminka, 2000] G. A. Kaminka. Execution Monitoring in Multi-Agent Environ-

ments. PhD thesis, University of Southern California, Computer Science Depart-

ment, 2000.

[Kautz and Allen, 1986] H.A. Kautz and J.F. Allen. Generalized plan recognition.

In Proceedings of AAAI-86, pages 32–37. AAAI Press, 1986.

[Khomenco and Koutny, 2000] V. Khomenco and M. Koutny. LP deadlock checking

using partial order dependencies. In Proceedings of the 11th International Confer-

ence on Concurrency Theory (CONCUR-00), pages 410–425, Pennsylvania State

University, Pennsylvania, 2000.

[Klein and Dellarocas, 1999] M. Klein and C. Dellarocas. Exception handling in

agent systems. In Proceedings of the Third International Conference on Au-

tonomous Agents (Agents-99), 1999.

[Klein, 1997] G. A. Klein. The recognition-primed decision (rpd) model: Looking

back, looking forward. In C. E. Szambok and G. Klein, editors, Naturalistic

decision making, pages 285–292. 1997.

[Kone et al., 2000] M. T. Kone, A. Shimazu, and T. Nakajima. The state of the art

in agent communication languages. Knowledge and Information Systems, 2:258–

284, 2000.

[Kumar et al., 2000] S. Kumar, M.J. Huber, D.R. McGee, P.R. Cohen, and H.J.

Levesque. Semantics of agent communication languages for group interaction. In

Proceedings of the 17th National Conference on Artificial Intelligence (AAAI-00),

pages 42–47. AAAI Press/The MIT Press, 2000.

134

[Legras, 2002] F. Legras. Using overhearing for local group formation. In Proceedings

of AAMAS-02, 2002.

[Lin et al., 2000] F. Lin, D. H. Norrie, W. Shen, and R. Kremer. A schema-based

approach to specifying conversation policies. In F. Dignum and M Greaves, edi-

tors, Issues in Agent Communications, Lecture notes in Computer Science, pages

193–204. Springer-Verlag, 2000.

[Ling and Loke, 2003] S. Ling and S. W. Loke. MIP-Nets: A compositional model

of multi-agent interaction. In Proceedings of the 3rd International Central and

Eastern European Conference on Multi-Agent Systems (CEEMAS-03), pages 61–

72, Prague, Czech Republic, 2003.

[Mazouzi et al., 2002] H. Mazouzi, A. E. Fallah-Seghrouchni, and S. Haddad. Open

protocol design for complex interactions in multi-agent systems. In Proceedings of

the First International Joint Conference on Autonomous Agents & Multi-Agent

Systems (AAMAS-02), pages 517–526, Bologna, Italy, 2002.

[McElhearn, 1996] K. McElhearn. Writing conversation: an analysis of speech events

in e-mail mailing lists, 1996.

[Milner et al., 1990] R. Milner, R. Harper, and M. Tofte. The Definition of Standard

ML. MIT Press, 1990.

[Moldt and Wienberg, 1997] D. Moldt and F. Wienberg. Multi-agent systems based

on Coloured Petri nets. In Proceedings of the 18th International Conference on

Application and Theory of Petri Nets (ICATPN-97), pages 82–101, Toulouse,

France, 1997.

[Morgenstern, 1951] O. Morgenstern. Prolegomena to a theory of organizations.

Manuscript., 1951.

[Ndumu et al., 1999] D. Ndumu, H. Nwana, L. Lee, and J. Collins. Visualizing and

debugging distributed multi-agent systems. In Proceedings of the Third Annual

Conference on Autonomous Agents, pages 326–333, 1999.

[Novick and Ward, 1993] D.G. Novick and K. Ward. Mutual beliefs of multiple

conversants: A computational model of collaboration in air traffic control. In

Proceedings of AAAI-93, pages 196–201, 1993.

135

[Nowostawski et al., 2001] M. Nowostawski, M. Purvis, and S. Cranefield. A layered

approach for modeling agent conversations. In Proceedings of the Second Inter-

national Workshop on Infrastructure for Agents, MAS and Scalable MAS, the

Fifth International Conference on Autonomous Agents, pages 163–170, Montreal,

Canada, 2001.

[Odell et al., 2000] J. Odell, H. V. D. Parunak, and B. Bauer. Extending UML in

the design of multi-agent systems. In Proceedings of the AAAI-2000 Workshop

on Agent-Oriented Information Systems (AOIS-00), 2000.

[Odell et al., 2001a] J. Odell, H. V. D. Parunak, and B. Bauer. Agent UML:

A formalism for specifying multi-agent interactions. In P. Ciancarini and

M. Wooldridge, editors, Agent-Oriented Software Engineering, pages 91–103.

Springer-Verlag, Berlin, 2001.

[Odell et al., 2001b] J. Odell, H. V. D. Parunak, and B. Bauer. Representing agent

interaction protocols in UML. In P. Ciancarini and M. Wooldridge, editors, Agent-

Oriented Software Engineering, pages 121–140. Springer-Verlag, Berlin, 2001.

[Packel et al., 1992] E. W. Packel, J. F. Traub, and H. Wozniakowski. Measures of

uncertainty and information in computation. Information Sciences: an Interna-

tional Journal, 65(3):253–273, 1992.

[Parker, 1993] L. E. Parker. Designing control laws for cooperative agent teams.

In Proceedings of the IEEE Robotics and Automation Conference, pages 582–587,

Atlanta, GA, 1993.

[Paruchuri et al., 2004] P. Paruchuri, M. Tambe, F. Ordonez, and S. Kraus. Towards

a formalization of teamwork with resource constraints. In Proceedings of AAMAS,

pages 596–603, 2004.

[Parunak, 1996] H. V. D. Parunak. Visualizing agent conversations: Using enhances

Dooley graphs for agent design and analysis. In Proceedings of the Second Inter-

national Conference on Multi-Agent Systems (ICMAS-96), 1996.

[Paurobally and Cunningham, 2003] S. Paurobally and J. Cunningham. Achieving

common interaction protocols in open agent environments. In Proceedings of

the Workshop on Challenges in Open Agent Systems, the Second International

Joint Conference on Autonomous Agents & Multi-Agent Systems (AAMAS-03),

Melbourne, Australia, 2003.

136

[Paurobally et al., 2003] S. Paurobally, J. Cunningham, and N. R. Jennings. En-

suring consistency in the joint beliefs of interacting agents. In Proceedings of

the Second International Joint Conference on Autonomous Agents & Multi-Agent

Systems (AAMAS-03), Melbourne, Australia, 2003.

[Petri Nets site, 2005] Petri Nets site. Petri nets world: Online services for the

international petri nets community, at www.daimi.au.dk/petrinets, 2005.

[Platon et al., 2004] E. Platon, N. Sabouret, and S. Honiden. T-compound: An

agent-specific design pattern and its environment. In Proceedings of 3rd interna-

tional workshop on Agent Oriented Methodologies at OOPSLA 2004, pages 63–74,

2004.

[Platon et al., 2005] E. Platon, N. Sabouret, and S. Honiden. Overhearing and direct

interactions: Point of view of an active environment, a preliminary study. In

Proceedings of AAMAS-05 Workshop on Environment for Multi-Agent Systems,

2005.

[Poutakidis et al., 2002] D. Poutakidis, L. Padgham, and M. Winikoff. Debugging

multi-agent systems using design artifacts: The case of interaction protocols. In

Proceedings of the First International Joint Conference on Autonomous Agents &

Multi-Agent Systems (AAMAS-02), pages 960–967, Bologna, Italy, 2002.

[Purvis et al., 2002] M. K. Purvis, P. Hwang, M. A. Purvis, S. J. Cranefield, and

M. Schievink. Interaction protocols for a network of environmental problem

solvers. In Proceedings of the 2002 iEMSs International Meeting:Integrated Assess-

ment and Decision Support (iEMSs 2002), pages 318–323, Lugano, Switzerland,

2002.

[Pynadath and Tambe, 2003] D. V. Pynadath and M. Tambe. An automated team-

work infrastructure for heterogeneous software agents and humans. Autonomous

Agents and Multi-Agent Systems, 7(1-2):71–100, 2003.

[Ramos et al., 2002] F. Ramos, J. Frausto, and F. Camargo. A methodology for

modeling interactions in cooperative information systems using Coloured Petri

nets. International Journal of Software Engineering and Knowledge Engineering,

12(6):619–636, 2002.

[Reisig, 1985] W. Reisig. Petri Nets: An Introduction. Springer-Verlag, 1985.

137

[Rossi and Busetta, 2004] Silvia Rossi and Paulo Busetta. Towards monitoring of

group interactions and social roles via overhearing. In Proceedings of CIA-04,

pages 47–61, Erfurt, Germany, 2004.

[Rossi and Busetta, 2005] S. Rossi and P. Busetta. With a little help from a friend:

Applying overhearing to teamwork. In Proceedings of IJCAI-05 Workshop on

Modelling Others from Observations (MOO), 2005.

[Scerri et al., 2004] P. Scerri, Yang. Xu, E. Liao, J. Lai, and K. Sycara. Scaling

teamwork to very large teams. In Proceedings of AAMAS-04, 2004.

[Selznick, 1948] P. Selznick. Foundations of the theory of organizations. American

Sociological Review, 13:25–35, 1948.

[Smith and Cohen, 1996] I. A. Smith and P. R. Cohen. Toward a semantics for an

agent communications language based on speech-acts. In Proceedings of AAAI-96,

1996.

[So and Durfee, 1996] Y. So and E. Durfee. Designing tree-structured organizations

for computational agents. Computational and Mathematical Organization Theory,

2(3):219–246, 1996.

[Tambe, 1997] M. Tambe. Towards flexible teamwork. Journal of Artificial Intelli-

gence Research (JAIR), 7:83–124, 1997.

[Traub and Werschulz, 1998] J. Traub and A. G. Werschulz. Complexity and Infor-

mation. Cambridge University Press, 1998.

[Traum and Rickel, 2002] D. Traum and J. Rickel. Embodied agents for multi-party

dialogues in immerse virtual worlds. In Proceedings of the First International Joint

Conference on Autonomous Agents & Multi-Agent Systems (AAMAS-02), pages

766–773, Bologna, Italy, 2002.

[Turner and Jennings, 2000] P. J. Turner and N. R. Jennings. Improving the scala-

bility of multi-agent systems. In Proceedings of the First International Workshop

on Infrastructure for Scalable Multi-Agent Systems, Barcelona, Spain, 2000.

[Wikstrom, 1987] A. Wikstrom. Functional Programming using Standard ML. In-

ternational Series in Computer Science. Prentice-Hall, 1987.

138

[Wilkins et al., 2003] D. E. Wilkins, T. J. Lee, and P. Berry. Interactive execution

monitoring of agent teams. Journal of Artificial Intelligence Research, 18:217–261,

2003.

[Xu and Shatz, 2001] H. Xu and S. M. Shatz. An agent-based Petri net model with

application to seller/buyer design in electronic commerce. In Proceedings of the

5th International Symposium on Autonomous Decentralized Systems (ISAD-01),

pages 11–18, Dallas, Texas, USA, 2001.

[Yadgar et al., 2003] O. Yadgar, S. Kraus, and O. Ortiz. Hierarchical information

combination in large-scale multi-agent resource management. In M.P. Huget,

editor, Communication in MAS: Background, current trends and future, pages

129–145. Springer-Verlag, 2003.

139

