
International Conference on Fuzzy Logic and Applications
(Fuzzy’97), May 18-21, 1997, Zichron Yaakov, Israel.

REAL-WORLD ROBOT NAVIGATION USING FUZZY
REACTION AND DELIBERATION

Gal A. Kaminka
University of Southern California

Information Sciences Institute and Department of Computer Science
4676 Admiralty Way, Marina del Rey, CA 90292 USA

galk@isi.edu

Abstract
We report on the development of a fuzzy system providing a low-level
obstacle-avoidance navigation for a robot in an office environment. The
system employs reactive and deliberative rule-based behaviors in a unified
manner, allowing them to compete and compromise in controlling the
robot. The system is constructed hierarchically, and successfully employs
less than 100 rules to control a 28-variable space. We show that the system
acts distinctively different than crisp behavior arbitration approaches in that
it allows for all behaviors to influence the control of the robot in parallel,
each to degree to which it is appropriate. This approach is a step towards a
unified view of reaction and deliberation as responses to an external and
internal environments, respectively.

1. INTRODUCTION

Autonomous mobile robots have served for many years as valuable test-
beds for AI research. Numerous studies have been performed towards
developing robots that can carry out their tasks in complex dynamic
environments while avoiding physical obstacles (e.g., [1], [2], [3], [5], [6]).
We report on the design and implementation of a low-level navigation
system which avoids obstacles while attempting to reach goal locations.
The system is part of the YODA/F project, developing a robot that can
navigate and carry out simple tasks (e.g., mail distribution, floor tours) in
an office environment. As part of the ongoing work on this project, an
earlier version of the robot (YODA)1 has successfully participated (winning
second-place) in the AAAI-96 National Robot Competition [10], [11].

                                               
1 The older version uses the same architecture, but a non-fuzzy navigation controller.



  YODA/F is a three-layer software architecture in the spirit of Atlantis [6]
running on top of a DMR/MRV-3 robot about 120cm tall and weighing
more than 50kg. The robot has 24 ultra-sonic long-range sonar sensors
spread about the robot body and internal position and orientation detectors
(x,y,φ). It accepts primitive commands controlling velocity, heading, etc.
The software consists of a planner, responsible for high-level scheduling
and planning tasks; an executive layer, responsible for making sure the plan
is carried out, and the controller described in this report.

The controller is responsible for getting a sequence of goal locations
from the executive layer, and driving the robot from one location to the
next while avoiding any obstacles, inanimate or otherwise. If it cannot drive
the robot all the way to the goal, it reports the actual distance successfully
traveled to the executive layer and allows it to replan. We use the term
goal-directed obstacle avoidance to note this local-minimum search, where
the robot must try to get closer and closer to the goal if it is possible, as
opposed to a smarter mechanism employing a global optimization search,
where the robot may choose to get farther from the goal in order to bypass
a known obstacle. The global behavior is carried out by the higher layers of
the architecture, and is outside the scope of this report.

The design and implementation of the controller were influenced heavily
by several important constraints. Robustness of the obstacle-avoidance
system is critical because of the safety requirements which follow from the
robot’s mass and size. However, this constraint is hard to maintain: the
sonar sensors are not reliable2, the position and orientation sensors lose
accuracy as the robot moves around, the distances are given only in
approximate terms (±30cm), etc. In short, we are seeking reliable
performance from a system whose sensors and information are inherently
unreliable and inaccurate.

2. FUZZY BEHAVIORS

Based on the idea of reactive behavior-based architectures ([1], [2], [3])
we have modeled the design of the controller on a competition between
two behaviors for control of the robot. An obstacle-avoidance behavior
selfishly attempts to keep the robot at a distance from any physical object
which it can sense through the sonars. It will turn the robot away from
obstacles, and reduce the speed or even stop the robot if they are too close.
This behavior is reactive, in the sense that it reacts to the environment in
attempting to carry out its task, without considering internal models of the

                                               
2 Objects as close as 10 cm were sometimes sensed to be as much as 2 meters away.



world or goals. If the robot is not close to any object, this behavior will not
change its heading or position. If the robot is inside a hallway, this behavior
will attempt to keep the robot away from the walls, but will have no
“preference” on which way is otherwise best.

A second behavior is a goal-seeking behavior. It attempts to drive the
robot closer and closer to the location provided by the executive layer of
the architecture. It doesn’t take into account any obstacles that are in the
way. It is deliberative in the sense that the behavior mostly ignores the
robot’s surroundings, responding instead to internal goals based on models
of the world (as existing in the higher levels of the architecture).

While crisp examples of behavior-based competition choose between all
the behaviors competing for influence ([1], [2], [3], [10], [11]) the fuzzy
approach allows for gradual compromises to be made, allowing both
behaviors to influence the output to the degree that they are appropriate.
Thus, if the robot is very close to a wall, the influence of the obstacle-
avoidance behavior is stronger, and causes the robot to turn away and slow
down. When the way is clear, the influence of the goal-seeking behavior is
stronger, and leads the robot towards the goal. In most cases, a
compromise results where the robot both avoids obstacles to the degree
that they are close, and heads towards the goal, to the degree that it is far.

3.  COUNTERING RULE EXPLOSION

Given the inherent approximate nature of the information processed in the
system, a fuzzy rule-based approach seems natural for implementing the
behaviors. However, the system must deal with a large variable space: 27
input variables (24 sonars, orientation, goal distance and heading), and 2
outputs (velocity, and the change to the current heading). Since fuzzy
systems are vulnerable to the problem of an exponential number ([7], [8])
of rules (in the size of the variable space), we needed ways to reduce the
number of rules while still maintaining acceptable performance. We have
managed to develop a working controller which implements the two
behaviors in under 100 rules by utilizing two strategies: we built the
controller as a hierarchical system, and we preferred writing rules with
large coverage of the input space.

3.1  Hierarchical Rule-Based System

It is important to note that sonars positions are absolute - as the robot
turns,  its wheels turn in place without rotating the body, and the sonars do
not shift their position; i.e., if a sonar was pointing North, it will point
North always, regardless of whether the robot has turned. The implication



of this is that the sonar sensor pointing in the forward direction may
actually be a different sensor from reading to reading, depending on the
current orientation of the robot. In other words, any rule referring to the
relative-direction sonar reading (e.g., the forward sonar), such as:

 IF ForwardSonar=Blocked THEN Speed=Stop
is actually to be implemented in the controller by a rule for each of the 24
sonar/orientation combinations:

IF Sonar-1=Blocked AND Orient=Towards-1 THEN Speed=Stop
.....

IF Sonar-24=Blocked AND Orient=Towards-24 THEN Speed=Stop
This expansion will occur whenever we refer to the any sonar reading by its
relative position. Assuming we refer to each sonar in ω rules, we would
require 24*ω*24 = 576*ω rules. Not only does this explosion hurt severely
the expected performance of the controller, but it also makes the rules
tedious to specify and harder to maintain. It is easier for the rule-writer to
conceptualize the behavior of the robot as in the single-rule version above.

We therefore structured the controller as two rule-bases (Fig. 1) which
work in sequence, creating a two-level hierarchical system [9]. The first
rule-base simply computes the relative readings - Forward, Back-Left,
Right, etc. - and passes the results for processing in the second rule-base,
which can now be much smaller and easier to work with. Notice that this
eliminates the need for the variable holding the current orientation of the
robot. The number of rules now needed is 24*24 for the first rule-base, and
24*ω for the second, for a total of 576+24*ω. To find out the minimal ω
that will make sure the trade off is beneficial in the number of rules we
solve the inequality 576+24*ω < 576*ω and get ω>24/23. Intuitively, the
more we use the same variable combination, the more we save from
computing it in the first stage.

Second
Rule
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First Rule Base
 (Now Array Shift)

Controller

Absolute Sonars Readings

Orientation

Goal

Relative Sonars

Velocity, heading change

Figure 1.
This restructuring reduces substantially the number of rules required to

process, and enhances the readability and maintainability of the rules. An
additional advantage is the added modularity of the controller. Any of the
two serial components may be replaced by an equivalent algorithm if it
proves to be better. Such was the case with the first rule-base, where the
relative-directions can be more efficiently computed by sensor-array shifts.



3.2  Simple Rules - Broad Coverage

The second rule-base, although simpler, is still handling 28 variables, and is
thus still very much at risk of rule-explosion. Another strategy effective in
reducing the number of rules was to employ a selfish rule strategy. We
preferred writing rules which do not attempt to make decisions based on a
global criteria, but instead tested only a single sonar sensor on the IF side,
with appropriate “selfish” output set on the THEN side. The center-of-
gravity defuzzification [7], [8] combines all the fired rules’ effects into a
coherent decision on the output commands issued to the robot. Simple
rules provide a broad coverage of the input space.  This effectively reduces
the overall number of rules required, and provides coarse-grain
approximation which is sufficient for our purposes.

An interesting thing to note is that the initial design rationale of
separating the controller into two behaviors made the rules easier to write.
For example, since the reactive behavior does not take into account the
goal location, the rules implementing it did not need to match the goal
location sets in the IF side. Similarly, rules implementing the deliberative
goal-seeking behavior had little to do with the state of the sensor readings.

4. RESULTS AND DISCUSSION

The system described in this report has been completely implemented on
the robot hardware, and the experiments used to tune and modify the rules
were all carried out in the real-world environment in which YODA/F is to
operate. An analysis of the controller and its performance shows that
several strategies combined together in making a successful solution.

The fuzzy behavior-based approach and its unified treatment of reactive
and deliberative behaviors of the controller offers an alternative to the
behavior arbitration scheme offered by [3], and used in the earlier version
of YODA [10], [11]. Instead of choosing a single behavior which would be
appropriate in a given situation, the fuzzy approach allows all behaviors to
influence the robots actions in parallel, each to the degree to which it is
appropriate. This structure results in an emergent cooperation between the
behaviors as they together control the robot’s actions. The resulting
behavior of YODA/F imitates biological creatures to some degree.
Different resulting behaviors may be achieved by changing the weights of
the obstacle-avoidance  and goal-seeking behaviors:  If the weights of the
former are increased, the robot acts as if afraid of passing in narrow places.
If the weights of the latter are increased instead, the robot is “hungrier” and
bolder in attempting to reach the goal.



The approach also shows how reactive and deliberative behaviors may be
conceptually and practically unified. Reactive behaviors respond directly to
the external environment as perceived by the sensors and do not maintain
an internal model of the world to guide their behavior. Deliberative
behaviors present the other extreme - they reason using an internal model
of the world and do not consider sensory input - they respond to the
internal environment, composed of beliefs and goals. The fuzzy controller
constructed treats these two types of behaviors equally. The only difference
between them is in the source of the input they use - external (sensors) or
internal (beliefs and goals).

Although conceptually the above ideas may be attractive in themselves,
their practical implementation as fuzzy rule-bases was an important factor
in the resulting structure and design of the actual controller. The potential
exponential explosion of the number of rules used to control the robot with
its large variable space was a major motivation for moving from a single
flat rule-base to a hierarchical system, employing two components working
in sequence, rather than parallel. There are theoretical results of the
benefits of hierarchical systems, and the optimal structure of such systems
[9]. But restructuring the flat controller system for YODA/F as a two-level
hierarchy proved to be beneficial both in terms of computation (which is to
be expected from the theory) as well as design; because the abstractions
taken corresponded to the abstractions made naturally by the human
designer, the rules were easier to maintain. However, we cannot expect
every system to have this design characteristic.

We also have managed to reduce the number of rules used in the second
rule-base by writing rules with very large coverage of the variable space.
Such rules, which provide coarse-grain approximation of the behavior
function, may not be appropriate for systems were the required behavior is
intricate and complex, since this will require finer-grain approximation.

5. FUTURE WORK

We plan to continue our efforts in addressing current issues emerging from
the controller architecture as well as future extensions. We hope that
learning will improve performance and allow planning to emerge as a
property of the architecture, rather than an arbitrary structure. A major
source of concern is the time of matching all the rules against the various
inputs. We are investigating ways to address this issue in the future.
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