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Abstract

Social comparison, the process in which individuals
compare their behavior and bkeliefs to those of other
agents, is an important process in human societies. Our
aim is to uilize theories of this process for synthetic
agents, for the purposes of enabling socia skill's, team-
coordination, and geaer individual agent performance
Our current focus is on individual failure detedion and
recvery in multi-agent settings. We present a nowel
approach, SOCFAD, inspired by Social Comparison
Theory from socia psychology. SOCFAD includes the
following key novel concepts: (&) utilizing aher agents in
the ewironment as information sources for failure
detedion, and (b) a detedion and recvery method for
previously uncetedable failures using abdictive inference
based on other agents’ belitfs

I ntroduction

Social comparison is a process often olserved in human
societies, in which individuals evaluate their own beliefs,
gaals, and bkehavior by comparing themselves to aher
members of the group, and pasbly modify their behavior
or beliefs based on the results of that comparison. The
process alows individuals within the group to improve
their performance and coordination with ather members
of the group. We have begun ogerationali zing this process
in synthetic agents, for the purpose of improving their
social skill's, collaboration cagpabilities, and individual
performance. Our current focus is to uilize this process
for an individual agent’s behavior monitoring.

Agent behavior monitoring is a well known and
difficult problem, espeddly in dyramic environments
(e.g., Doyle @ al. 1986 Reece ad Tate 1994. The
unpredictability of such dyremic environments causes an
exploson d state space omplexity, which inhibits the
ability of any designer (human o macdine) to enumerate
in advance the crred resporses for al possble states. In
such environments, agents must therefore aitonamously
deted their own failures and attempt recovery. To this
end, an agent must have information abou the ided
behavior expeded o it. Thisided can be compared to the
agent’s adual behavior to deted discrepancies indicaing
possblefailures. Previous approaches to this problem
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(e.g., Doyle @ al. 1986 Reece ad Tate 1994 Willi ams
and Nayak 1996 have focused onthe designer supdying
the agent with either a self-model for comparison (Model-
Based Diagnasis), or explicitly spedfied exeaution
monitoring condtions (ided ranges of values for percepts
and adions). In the model-based approach, the aent’s
percepts are run througha model to generate ided adions,
which are compared to the adual adions which the agent
have cosen. Any dscrepancy is a sign o failure
However, if afailure occurs at the percepts themselves the
model does nat generate any dff erent set of adions-- ina
sense, the gent's adions are rred based on the
perceptions it has. A similar process takes placein the
condtion monitoring approach. Thus, these gproaches
are susceptible to information failures: failures where
necessary information for comparison is not available, or
is faulty but within nominal ranges.

The model-based and condtion monitoring approaches
may also encourter difficulties in scded-up damains. If
designing a well -behaving agent in a wmplex, dynamic,
unpredictable environment is hard, designing a self-model
for such an agent, may be just as hard. In a sense, the
same information (what is a @rred resporse given the
internal and external state) is to be provided twice once
in designing the agent, and orce in its wlf-model. One
faca of this problem is that exeaution-monitoring
condtions can easily becmme too rigid to describe the
flexible, dynamic, ranges of values that are to be
expected.

We propcse anovel complementary approac to fail ure
detedion and recovery, which is unique to multi-agent
settings. This approach, SOCFAD (Social Comparison for
FAilure Detedion), is inspired by idess from Social
Comparison Theory (Newell 1990. The key idea in
SOCFAD s that agents use other agents as urces of
information onthe situation and the ided behavior. The
agents compare their own behavior, beliefs, goas, and
plansto those of other agents, in order to deted failuresin
their own behavior. The aents resson abou the
differences, and draw useful conclusions regarding their
own behavior's corredness This approach alows the
agent to infer information from other agents behavior,
repladng its own perceptions. Also, it doesn’t require the
designer to provide the ggent with redundant information
abou itself, utilizing instead ather agents as urces of
information.



M otivating Example

Our application damain involves developing automated
pilot agents for participation in a multi-agent battlefield
simulation environment, which is highly dynamic,
complex and rich in detail (Tambe & al. 1995. These
qualities present the gents with never-ending
oppatunities for failure, as anticipation d all possble
internal and external states isimpaossble for the designer.
For example, ateam of three gents arrives at a spedfied
landmark paosition. One of the team-members, whase role
is that of a scout, is to continue forward towards the
enemy, identifying and werifying its position. The scout's
tean-mates (attackers) are to wait for its return in the
spedfied pasition. Due to uranticipated sensory fail ure,
one of the dtadkers does not deted the landmark marking
the waiting padnt. Instead of waiting kehind, it continues
to fly forward with the scout, following it into the
battlefield, leaving the other attacker alone behind.

We have mlleded dazens of such fail ure reports over a
period d a few months, despite significant development
and maintenance dforts, including the use of some fail ure
detedion methods based on knavn approaches. However,
using SOCFAD, an agent as in the example &owve can at
least deted that something may be wrong by ndicing that
other agents are behaving differently.

Social Comparison: SOCFAD

SOCFAD is inspired by Social Comparison Theory
(Festinger 1954, a descriptive theory from social
psychdogy. We have begun to ogerationaize it for
monitoring. SOCFAD’s algorithm accepts inpus
representing the states of the agents being compared -
their beliefs, goals, behavior, etc. These ae mmpared to
the aggent’s own state to deted discrepancies, which would
indicae possble failures. Then, a social similarity metric
is used to reason abou which discrepancies are justified,
and to what degree In thisway, alevel of certainty in the
deteded failure is produced, which is based on the
expected similarity between the agents.

To operationalize SOCFAD, we therefore require: (i) a
way of aaqquiring knavledge of the other agents (so that
we have something to compare gjaingt); (ii) a procedure
to compare aents states;, and (iii) a procedure for
measuring the significance of any dscrepancies, based on
the agents’ expected social similarity.

Knowledge of other agents can be communicated.
However, such communicaion is often impradica given
costs, risk in hcstile territories, and uneliability in
uncertain settings. Our implementation o SOCFAD relies
instead on agent modeling (plan recognition) tedchniques
that infer an agent’'s beliefs, goals, and dans from its
observable behavior and surroundngs. When the
monitoring agent has accessnaot only to its own original
beliefs, gaoals, plans, etc., but aso to those of its group
members, the process of comparison can take place.

Our agents design is based on readive plans

(operators) (Firby 1987 Newell 1990 Rao et al. 1993,
which form hierarchies that control ead agent. The
design implements the Joint Intention Framework
(Levesque @ a. 1990. Following this framework,
operators may be team operators (shared by the team) or
individual (spedfic to ore gyent). Tean operators achieve
and maintain joint goals, and require coordination with
the other members of the team as part of their applicaion
(Tambe 1996, Tambe 1997).

Different cagpabilities and performance result by
changing the information bkeing compared (e.g., internal
beliefs and gals vs. observable behavior). It is useful to
use information that captures the control processes of the
agents. Operator hierarchies are therefore natural objeds
for modeling and comparison. The &aent modeling
technique we use, RESC,_,,, infers the operator hierarchies
being exeauted by dher agents based ontheir observable
adions. Based on the representation d the other agents
plans by operator hierarchies, the cmparison processcan
be implemented by comparing the chosen operators in
equal depths of the hierarchies - the hierarchy o the
monitoring agent, and the hierarchies for its chosen
targets for comparison.

Differences with ather agents are meaningful only to
the extent that the other agents are socially similar. Other
agents may na be exeauting dans that are relevant to the
agent’s goals, and may therefore be irrelevant for failure
detedion puposes. Worse yet, other agents may be
haostile, intentionally using deception to advance their own
agendas. Fortunately, team members tend to work onjoint
goals and sub-plans related to the one the aggent shoud be
exeauting, and can be aumed to be nonhostile. The
comparison pocess we use in SOCFAD therefore
considers team members only.

Team Operator Differences

In the Joint Intentions Framework, explicit team operators
form the basis for teamwork, requiring mutual belief on
the part of the tean members as a cndtion for the
establishment, and termination o team operators. At the
team level, members are maximally socialy similar,
requiring that identicd operators be exeauting. Any
difference in team operators between agents in a team is

therefore a certain sign of failure, regardless of its cause.

In the example &owve, one aent has failed to deted a
key landmark pasition and continued exeaution d the
“fly-flight-plan” team operator. However, its teanmates
corredly deteded the landmark and terminated exeaution
of that operator, switching to the “wait-at-point” team
operator. Through agent modeling, the miscoordinating
agent infers the operators the other agents are exeauting.
It redizes that they could pdentially be exeauting the
“wait-at-point” operator and ceteds a discrepancy with its
own teamn operator of “fly flight plan”. At this point it
does not know which side is corred, but can conclude
with certainty that a failure has occurred within the tean
and the coordination among its members.



Individual Operator Differences

In service of team operators, different agents may work on
different individual operators. These do not carry with
them the responsibilities for mutual belief that team
operators do, and so differences in individual operators
are not sure signs of failure, but at best indications of the
possibility. We therefore require additional information
about the agents causing the difference which can help in
determining whether the difference isjustified or not.

Agents working towards similar goals have similar
social roles. In our example, there were attackers and a
scout. Agents with similar roles would serve as better
sources of information. Related to the social role is social
status, which may also justify differences in individua
operators among team members. For instance, in the
military domain agents of different ranks may follow
different individual operators to guide their behavior.

We have provided our agent with the means to
explicitly consider the social role and status of other
agents within the team in filtering and assigning weights
to the information inferred about them. For example, if
the agent is an attacker, which is one of the roles in a
team in our domain, it will assign more weight to other
agents which are attackers.

Towards Socially-Based Recovery

From the fact that other agents are executing a different
plan, the agent can conclude with some certainty that a
failure has occurred, but it cannot tell which of the sidesis
correct. If the agent believesit is at fault, it can alter its
own beliefs by adopting the (inferred) beliefs of the other
agents. In particular, team operators require mutual belief
in pre-conditions, and so by adopting them the agent re-
synchronizes itself with the rest of the team. For example,
the agent in the landmark example overcame its sensory
problem by adopting its team-mates inferred belief in the
landmark being reached even though its own sensors
didn't support this belief. This fulfilled the preconditions
of its own “wait-at-point” operator, which was selected
and allowed the agent graceful recovery from the failure.

Summary and Future Work

This paper presents a novel approach to failure detection,
an important problem plaguing multi-agent systems in
large-scale, dynamic, complex domains. Existing
approaches often face difficulty in addressing this
problem in such domains. The key novelties of our
approach are: (a) a new failure detection method, utilizing
other agentsin the environment as information sources for
comparison, (b) a general heuristic for team-based
comparison, and (c) a detection and repair method for
(previoudy undetectable) information failures using
abductive inference based on other agents’ beliefs.

The social comparison approach to failure detection
complements previous methods, being able to detect
different types of failures. In general, previous approaches

use the agent’s own inputs to generate an ideal output
which is compared to the actual output to detect problems
in the process converting inputs to outputs. Thus they are
limited by the quality of the agent’s own perceptions.
However, SOCFAD can detect such failures and correct
them as demonstrated above.

Several issues are open for future work. One important
issueisin techniques and biases useful for deciding which
side is correct where a difference is encountered with
another agent, but no information is known to support
either side. A simple technique that may be used is to
follow the majority, so that if a majority of agents agree
with one agent, its beliefs and behavior is taken to be
correct. Such a technique has clear limitations, and
improvements continue to be a subject for future work.
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