
Towards Social Comparison for Failure Detection: Extended Abstract

Gal A. Kaminka and Milind Tambe

Computer Science Department and Information Sciences Institute
University of Southern California

4676 Admiralty Way, Marina del Rey, CA 90292
 (310) 822-1511 {galk, tambe}@isi.edu

Abstract
Social comparison, the process in which individuals
compare their behavior and beliefs to those of other
agents, is an important process in human societies. Our
aim is to utili ze theories of this process for synthetic
agents, for the purposes of enabling social skill s, team-
coordination, and greater individual agent performance.
Our current focus is on individual failure detection and
recovery in multi -agent settings. We present a novel
approach, SOCFAD, inspired by Social Comparison
Theory from social psychology. SOCFAD includes the
following key novel concepts: (a) utili zing other agents in
the environment as information sources for failure
detection, and (b) a detection and recovery method for
previously undetectable failures using abductive inference
based on other agents’ beliefs1.

Introduction

Social comparison is a process often observed in human
societies, in which individuals evaluate their own beliefs,
goals, and behavior by comparing themselves to other
members of the group, and possibly modify their behavior
or beliefs based on the results of that comparison. The
process allows individuals within the group to improve
their performance and coordination with other members
of the group. We have begun operationalizing this process
in synthetic agents, for the purpose of improving their
social skill s, collaboration capabiliti es, and individual
performance. Our current focus is to utili ze this process
for an individual agent’s behavior monitoring.

Agent behavior monitoring is a well known and
diff icult problem, especiall y in dynamic environments
(e.g., Doyle et al. 1986, Reece and Tate 1994). The
unpredictabilit y of such dynamic environments causes an
explosion of state space complexity, which inhibits the
abilit y of any designer (human or machine) to enumerate
in advance the correct responses for all possible states. In
such environments, agents must therefore autonomously
detect their own failures and attempt recovery. To this
end, an agent must have information about the ideal
behavior expected of it. This ideal can be compared to the
agent’s actual behavior to detect discrepancies indicating
possible failures. Previous approaches to this problem

1Copyright © 1997, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

(e.g., Doyle et al. 1986, Reece and Tate 1994, Willi ams
and Nayak 1996) have focused on the designer supplying
the agent with either a self-model for comparison (Model-
Based Diagnosis), or expli citl y specified execution-
monitoring conditions (ideal ranges of values for percepts
and actions). In the model-based approach, the agent’s
percepts are run through a model to generate ideal actions,
which are compared to the actual actions which the agent
have chosen. Any discrepancy is a sign of failure.
However, if a failure occurs at the percepts themselves the
model does not generate any different set of actions -- in a
sense, the agent’s actions are correct based on the
perceptions it has. A similar process takes place in the
condition monitoring approach. Thus, these approaches
are susceptible to information failures: failures where
necessary information for comparison is not available, or
is faulty but within nominal ranges.

The model-based and condition monitoring approaches
may also encounter diff iculties in scaled-up domains. If
designing a well -behaving agent in a complex, dynamic,
unpredictable environment is hard, designing a self-model
for such an agent, may be just as hard. In a sense, the
same information (what is a correct response given the
internal and external state) is to be provided twice: once
in designing the agent, and once in its self-model. One
facet of this problem is that execution-monitoring
conditions can easil y become too rigid to describe the
flexible, dynamic, ranges of values that are to be
expected.

We propose a novel complementary approach to failure
detection and recovery, which is unique to multi -agent
settings. This approach, SOCFAD (Social Comparison for
FAilure Detection), is inspired by ideas from Social
Comparison Theory (Newell 1990). The key idea in
SOCFAD is that agents use other agents as sources of
information on the situation and the ideal behavior. The
agents compare their own behavior, beliefs, goals, and
plans to those of other agents, in order to detect failures in
their own behavior. The agents reason about the
differences, and draw useful conclusions regarding their
own behavior’s correctness. This approach allows the
agent to infer information from other agents’ behavior,
replacing its own perceptions. Also, it doesn’ t require the
designer to provide the agent with redundant information
about itself, utili zing instead other agents as sources of
information.

Motivating Example

Our application domain involves developing automated
pilot agents for participation in a multi -agent battlefield
simulation environment, which is highly dynamic,
complex and rich in detail (Tambe et al. 1995). These
qualiti es present the agents with never-ending
opportunities for failure, as anticipation of all possible
internal and external states is impossible for the designer.
For example, a team of three agents arrives at a specified
landmark position. One of the team-members, whose role
is that of a scout, is to continue forward towards the
enemy, identifying and verifying its position. The scout’s
team-mates (attackers) are to wait for its return in the
specified position. Due to unanticipated sensory failure,
one of the attackers does not detect the landmark marking
the waiting point. Instead of waiting behind, it continues
to fly forward with the scout, following it into the
battlefield, leaving the other attacker alone behind.

We have collected dozens of such failure reports over a
period of a few months, despite significant development
and maintenance efforts, including the use of some failure
detection methods based on known approaches. However,
using SOCFAD, an agent as in the example above can at
least detect that something may be wrong by noticing that
other agents are behaving differently.

Social Comparison: SOCFAD

SOCFAD is inspired by Social Comparison Theory
(Festinger 1954), a descriptive theory from social
psychology. We have begun to operationalize it for
monitoring. SOCFAD’s algorithm accepts inputs
representing the states of the agents being compared -
their beliefs, goals, behavior, etc. These are compared to
the agent’s own state to detect discrepancies, which would
indicate possible failures. Then, a social similarity metric
is used to reason about which discrepancies are justified,
and to what degree. In this way, a level of certainty in the
detected failure is produced, which is based on the
expected similarity between the agents.

To operationalize SOCFAD, we therefore require: (i) a
way of acquiring knowledge of the other agents (so that
we have something to compare against); (ii) a procedure
to compare agents’ states; and (iii) a procedure for
measuring the significance of any discrepancies, based on
the agents’ expected social similarity.

Knowledge of other agents can be communicated.
However, such communication is often impractical given
costs, risk in hostile territories, and unreliabilit y in
uncertain settings. Our implementation of SOCFAD relies
instead on agent modeling (plan recognition) techniques
that infer an agent’s beliefs, goals, and plans from its
observable behavior and surroundings. When the
monitoring agent has access not only to its own original
beliefs, goals, plans, etc., but also to those of its group
members, the process of comparison can take place.

Our agents’ design is based on reactive plans

(operators) (Firby 1987, Newell 1990, Rao et al. 1993),
which form hierarchies that control each agent. The
design implements the Joint Intention Framework
(Levesque et al. 1990). Following this framework,
operators may be team operators (shared by the team) or
individual (specific to one agent). Team operators achieve
and maintain joint goals, and require coordination with
the other members of the team as part of their application
(Tambe 1996, Tambe 1997).

Different capabiliti es and performance result by
changing the information being compared (e.g., internal
beliefs and goals vs. observable behavior). It is useful to
use information that captures the control processes of the
agents. Operator hierarchies are therefore natural objects
for modeling and comparison. The agent modeling
technique we use, RESCteam, infers the operator hierarchies
being executed by other agents based on their observable
actions. Based on the representation of the other agents’
plans by operator hierarchies, the comparison process can
be implemented by comparing the chosen operators in
equal depths of the hierarchies - the hierarchy of the
monitoring agent, and the hierarchies for its chosen
targets for comparison.

Differences with other agents are meaningful only to
the extent that the other agents are socially similar. Other
agents may not be executing plans that are relevant to the
agent’s goals, and may therefore be irrelevant for failure
detection purposes. Worse yet, other agents may be
hostile, intentionally using deception to advance their own
agendas. Fortunately, team members tend to work on joint
goals and sub-plans related to the one the agent should be
executing, and can be assumed to be non-hostile. The
comparison process we use in SOCFAD therefore
considers team members only.

Team Operator Differences
In the Joint Intentions Framework, expli cit team operators
form the basis for teamwork, requiring mutual belief on
the part of the team members as a condition for the
establi shment, and termination of team operators. At the
team level, members are maximally sociall y similar,
requiring that identical operators be executing. Any
difference in team operators between agents in a team is
therefore a certain sign of failure, regardless of its cause.

In the example above, one agent has failed to detect a
key landmark position and continued execution of the
“ fly-flight-plan” team operator. However, its teammates
correctly detected the landmark and terminated execution
of that operator, switching to the “wait-at-point” team
operator. Through agent modeling, the miscoordinating
agent infers the operators the other agents are executing.
It reali zes that they could potentiall y be executing the
“wait-at-point” operator and detects a discrepancy with its
own team operator of “ fly flight plan” . At this point it
does not know which side is correct, but can conclude
with certainty that a failure has occurred within the team
and the coordination among its members.

Individual Operator Differences
In service of team operators, different agents may work on
different individual operators. These do not carry with
them the responsibilities for mutual belief that team
operators do, and so differences in individual operators
are not sure signs of failure, but at best indications of the
possibility. We therefore require additional information
about the agents causing the difference which can help in
determining whether the difference is justified or not.

Agents working towards similar goals have similar
social roles: In our example, there were attackers and a
scout. Agents with similar roles would serve as better
sources of information. Related to the social role is social
status, which may also justify differences in individual
operators among team members. For instance, in the
military domain agents of different ranks may follow
different individual operators to guide their behavior.

We have provided our agent with the means to
explicitly consider the social role and status of other
agents within the team in filtering and assigning weights
to the information inferred about them. For example, if
the agent is an attacker, which is one of the roles in a
team in our domain, it will assign more weight to other
agents which are attackers.

Towards Socially-Based Recovery
From the fact that other agents are executing a different
plan, the agent can conclude with some certainty that a
failure has occurred, but it cannot tell which of the sides is
correct. If the agent believes it is at fault, it can alter its
own beliefs by adopting the (inferred) beliefs of the other
agents. In particular, team operators require mutual belief
in pre-conditions, and so by adopting them the agent re-
synchronizes itself with the rest of the team. For example,
the agent in the landmark example overcame its sensory
problem by adopting its team-mates inferred belief in the
landmark being reached even though its own sensors
didn’t support this belief. This fulfilled the preconditions
of its own “wait-at-point” operator, which was selected
and allowed the agent graceful recovery from the failure.

Summary and Future Work

This paper presents a novel approach to failure detection,
an important problem plaguing multi-agent systems in
large-scale, dynamic, complex domains. Existing
approaches often face difficulty in addressing this
problem in such domains. The key novelties of our
approach are: (a) a new failure detection method, utilizing
other agents in the environment as information sources for
comparison, (b) a general heuristic for team-based
comparison, and (c) a detection and repair method for
(previously undetectable) information failures using
abductive inference based on other agents’ beliefs.

The social comparison approach to failure detection
complements previous methods, being able to detect
different types of failures. In general, previous approaches

use the agent’s own inputs to generate an ideal output
which is compared to the actual output to detect problems
in the process converting inputs to outputs. Thus they are
limited by the quality of the agent’s own perceptions.
However, SOCFAD can detect such failures and correct
them as demonstrated above.

Several issues are open for future work. One important
issue is in techniques and biases useful for deciding which
side is correct where a difference is encountered with
another agent, but no information is known to support
either side. A simple technique that may be used is to
follow the majority, so that if a majority of agents agree
with one agent, its beliefs and behavior is taken to be
correct. Such a technique has clear limitations, and
improvements continue to be a subject for future work.

References
 1. Doyle R. J., Atkinson D. J., Doshi R. S., Generating perception requests

and expectations to verify the execution of plans, in Proceedings of AAAI-

86, Philadelphia, PA (1986).

 2. Festinger, L. 1954. A theory of social comparison processes. Human

Relations, 7, pp. 117-140.

 3. Firby, J. 1987. An investigation into reactive planning in complex

domains. In Proceedings of the National Conference on Artificial

Intelligence (AAAI-87).

 4. Levesque, H. J.; Cohen, P. R.; Nunes, J. 1990. On acting together, in

Proceedings of the National Conference on Artificial Intelligence (AAAI-

1990), Menlo Park, California, AAAI Press.

 5. Newell A., 1990. Unified Theories of Cognition. Harvard University

Press.

 6. Reece, G. A.; and Tate, A. Synthesizing protection monitors from causal

structure, in Proceedings of AIPS-94, Chicago, Illinois (1994).

 7. Rao, A. S.; Lucas, A.; Morley, D., Selvestrel, M.; and Murray, G. 1993.

Agent-oriented architecture for air-combat simulation. Technical Report:

Technical Note 42, The Australian Artificial Intelligence Institute.

 8. Tambe, M.; Johnson W. L.; Jones, R.; Koss, F.; Laird, J. E.; Rosenbloom,

P. S.; and Schwamb, K. 1995. Intelligent Agents for interactive

simulation environments. AI Magazine, 16(1) (Spring).

 9. Tambe, M. 1996. Tracking Dynamic Team Activity, in Proceedings of the

National Conference on Artificial Intelligence (AAAI-96), Portland,

Oregon.

 10. Tambe, M. 1997. Agent Architectures for Flexible, Practical Teamwork,

in Proceedings of the National Conference on Artificial Intelligence,

Providence, Rhode Island (To appear).

 11. Williams, B. C.; and Nayak, P. P. 1996. A Model-Based Approach to

Reactive Self-Configuring Systems. In Proceedings of the Thirteenth

National Conference on Artificial Intelligence (AAAI-96), Portland,

Oregon.

