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Abstract

Human beings, from the very young age of 18 months, have been

shown to be able to extrapolate intentions from actions [Meltzoff, 1995].

That is, upon viewing another human executing a series of actions, an ob-

serving child can guess the underlying intention, even before the goal has

been achieved, and even when the performer failed at achieving the goal.

In this work, we propose a cognitive model of this human ability, namely,

that of intention recognition.

The proposed model deals with the challenge of recognizing the inten-

tion of an observed sequence of actions, performed by some acting agent.

Intention recognition is apparently one of the core components of social

cognition. Such a model is therefore important both from a cognitive sci-

ence point of view and from an engineering perspective. It could provide

a deeper understanding of normal and pathological development of human

social cognition processes, as well as allowing for artificial implementa-

tion of this ability in software agents and physical robots, towards the end

of creating more socially intelligent artificial beings.

Much work has already been done in all the many areas touching upon

this topic, from psychology through neuroscience to artificial intelligence

and engineering. In this work we aim to address those aspects of intention

recognition which have not yet been treated satisfactorily. We provide a

high-level overview of the process as a whole, and detail this model in a

way which can explain how failed sequences of actions can be dealt with

and their underlying intention extracted, and how novel objects can be dealt

with, and goals regarding them predicted, although there is—seemingly—

no prior knowledge about them.

We elaborate on two components of our proposed model, which we

believe to be at its core, namely, those of intention detection and intention

prediction. By intention detection we mean the ability to discern whether

or not a sequence of actions has any underlying intention at all, or whether

it was performed in an arbitrary manner with no goal in mind. By intention

prediction we mean the ability to extend an incomplete sequence of actions

to its most likely intended goal.

The overall structure of the model, i.e. its components and the connec-

tions between them, is justified by psychological theories and supported

by a plethora of empirical results reviewed in the relevant literature. These
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theories and experiments are referred to appropriately throughout this work.

As for the two core modules on which we elaborate—Intention Detec-

tion and Intention Prediction—we present results from several experiments

which we have designed and implemented for this purpose.

The Intention Detection module is based on a measure of intention,

which captures a notion of efficiency, in keeping with the Principle of Ra-

tional Action [Gergely and Csibra, 2003], which states that intentions are

brought about by the most rational means available to the actor. This mod-

ule is validated by two experiments. The first is an artificial emulation

of the original intention re-enactment procedure by Meltzoff [1995]. The

results show that the proposed measure of intention indeed succeeds at cat-

egorizing streams of action according to the extent to which they convey

an underlying intention.

The second experiment validating the Intention Detection module is

closer to real life. It uses surveillance videos taken from an online database,

and analyzes them according to the proposed measure of intention. This

analysis is then compared to human judgment of intention on the same

videos. The resulting correlation between the output of our module and

that of the human subjects is high, showing once again that our measure of

intention indeed captures the notion of intention present in action.

Like the Intention Detection module, the Intention Prediction module

is based on a measure of intention as well. This measure is also designed to

be in line with the Principle of Rational Action, however, it is formalized

differently, for reasons which will be discussed. The Intention Prediction

module also makes use of the psychological notion of affordances, for ex-

tracting goal states from objects in the environment, which the observed

actions might possibly be intending to realize.

In order to test this second measure of intention as far as its usefulness

for predicting intention, we designed an online experiment in which human

subjects were presented with abstract objects (various geometric shapes),

and were asked to predict the end-configuration of the objects, which ob-

served sequences of movements were aiming to achieve. The predictions

arrived at by our measure of intention were compared to the human results,

and proved to be highly reliable. Other possible measures, such as proxim-

ity of the terminal state arrived at by the actions to the various goals, were

also considered. However the success of these measures at predicting the

intended goal was inferior to that of our measure of intention, and they at

ii



most play a secondary role in the process.

To conclude our work, we summarize our findings and propose several

directions for future research on intention modeling. We hope this work

will be of interest and of use to researchers in the multidisciplinary com-

munities dealing with intention recognition, and look forward to seeing the

ideas proposed here implemented in socially cognitive artificial systems.
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Chapter 1

Introduction

This work proposes a cognitive model of human intention recognition. It deals
with the problem of recognizing the intention of an observed sequence of actions,
performed by some acting agent. Intention recognition is apparently one of the
core components of social cognition. Such a model is therefore important in at
least two ways. First, from a cognitive science point of view, it could provide
a basis for understanding human social cognition processes, perhaps leading to
diagnosing and treating cases in which this ability is impaired, as well as further-
ing research on normal development. Second, from an engineering perspective,
it could allow for artificial implementation of this ability in software agents and
physical robots, thus enhancing their cognitive capacities, as well as socially
natural interactions with humans.

While much work has been done both psychologically and computationally
to further the understanding of the process of intention recognition, a complete
model has not yet been proposed. Such a model should fit the vast amount of
empirical data collected over the years, which describe the various aspects of
the process—in particular, the ability of dealing with failed actions and novel
objects, as will be explained. It should also be complete in the sense that it
describes the process as whole, from a high level, as well as going down to the
details of the mechanisms of each of the sub-processes of which it is composed.

For example, many experiments with children have been conducted in order
to elucidate how and when intention recognition abilities develop. In particular,
Meltzoff and colleagues have devoted much of their research to these questions.
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A number of his experiments [Meltzoff, 1995], which serve as a main motivation
for the work described here, highlight two specific challenges which have not
yet been satisfactorily resolved by the research community. The first stems from
the fact that children as young as 18 months of age are able to understand the
intention underlying the actions of an observed adult even when these actions fail

at bringing about the adult’s intention. An added conundrum is the fact that the
children are able to do this also when the actions are performed on novel objects,
thus—seemingly—not relying on prior information regarding the objects.

This is what we have attempted in this work. Firstly, to outline the necessary
components of a cognitive model of human intention recognition, and the inter-
actions between them, as arises from the psychological data. Secondly, to detail
those components which are at the core of the process, and for which existing
models in the literature are lacking.

We next give an overview of our proposed model (Section 1.1), and then
briefly describe the two main components of the model, which are at the core of
the process Section 1.2). To conclude this introduction, we describe the organi-
zation of this dissertation.

1.1 A Model of Human Intention Recognition

The proposed model is schematically described in Figure 1.1. It consists of sev-
eral modules—Intentional Being Detector, Intention Detector, Affordance Ex-
tractor, Success Detector, and Intention Predictor—connected between them by
flow of relevant information from one to another. The input to the process as a
whole consists of the acting agent A and the state-trace induced by its observed
actions s0,s1, ...,sn. The desired output is a goal state most likely intended by
the acting agent. In the following chapters theoretical justification will be given
for the modules and the connection between them, and empirical evidence will
be provided for those two modules which are at the core of the process, as we
understand it. We present here a brief overview of the model, with elaboration
on, and justification for, each of the modules left for Chapter 3.

As Figure 1.1 shows, the process begins with the perception of an agent per-
forming actions within an environment. This is the input. The expected output
is a goal which is most likely intended by the actor. First, the observing agent

2
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determines whether or not the acting agent is at all capable of intention. If the
answer is ”no”, there is no point in continuing the process, and it is terminated.

If the answer is ”yes”, the observing agent determines whether this particu-
lar instance of actions is being performed intentionally or not. Answering this
question—detecting intention—is one of the core modules we elaborate upon in
this work. Again, if the answer is ”no”, the process is terminated, since there is
no goal to look for.

If the answer is ”yes”, that is, the actions are identified as intentional, the in-
tended goal must now be predicted. This can be done online—while the actions
are being performed, before the acting agent has achieved its goal, or offline, af-
ter the acting agent has stopped acting, and the observing agent can ask whether
or not the terminal state at which the actor has stopped is its intended goal. We
specifically deal with the possibility that the actor failed at bringing about its
goal, and want our model to be able to detect these cases and ”fix” them, i.e.,
correctly predict what the actor was intending to do.

In order to answer the ”success or failure” question, we propose using a no-
tion of affordances, which will discussed in detail later. Basically, affordances
in our context are possible goal states which are likely to be performed on the
objects in the environment. These are extracted from the environment, and then
made use of in answering the discussed question. If the actions are deemed suc-
cessful, the process can terminate with the answer that the achieved terminal
state is the intended goal.

In the case that the actions are deemed to have failed, the observing agent
must now guess what the intended goal was. This is the second of the two mod-
ules which are at the focus of this work.

The final output of the model is the intended goal—whether it has been suc-
cessfully achieved by the acting agent or not—or an answer indicating either that
the acting agent is not an intentional being, or that its actions were not performed
intentionally.

1.2 Detection and Prediction of Intention

The phrase ”recognition of intention” could mean either recognition of the pres-
ence of intention, i.e. recognizing that the observed actions are intentional, or

4



prediction of the intention, i.e. recognizing what the intention of the actions ac-
tually is. In this work, we deal with both of these meanings, as two separate,
sequential, processes. Each of these processes consists of one of the core mod-
ules, as mentioned in the precious section.

These two processes of detection and prediction are conceptually and prac-
tically distinct: according to the proposed model, given an observed sequence
of actions, the observing agent first decides whether the actions were performed
intentionally or not. This is what we refer to as detection of intention. Next, the
agent goes on to determine the content of the intention, a stage which we name
prediction of intention. Prediction—since the agent must determine the intention
before it has been realized, as in the case where the actions resulted in failure.

The importance of this distinction is first and foremost in explaining and
describing the process of intention recognition, as it appears in humans. An
experiment in developmental psychology, which serves as a major motivation for
this work (and is brought in detail later on in Section 2.4), shows that children do
not always choose to imitate the intended goal of an acting adult. We propose that
the determining factor in the decision to imitate or not to imitate is the perceived
presence of intention. When the participating children detected intention in the
actions of the adult, they made the effort to guess what that intention was, and
then went on to imitate it. while, if no intention was detected by them, they did
not trouble themselves to imitate the actions of the adult.

In addition, this distinction could prove useful in computational implementa-
tions of the process. Attempting to predict the intention of an acting agent when
no such intention is present would both be wasteful in terms of computational
resources, as well as result in a wrong answer.

The contribution of this work is meant to be both in the model itself, i.e. in
the description of the process as whole, as well as in the detailing of the two
main modules of detection and prediction.

1.3 Organization of this Dissertation

In Chapter 2, we bring the necessary theoretical background for understanding
and justifying the proposed model, as well as work relating to it. We highlight
what has already been done and what is yet considered as open. We touch upon

5



several seemingly unrelated topics, and therefore ask the reader to keep in mind
the above outline of the model, in order to understand how these topics are related
to the subject of intention recognition.

Next, in Chapter 3, we make use of the theoretical background in elaborating
on the different modules of the model, with focus on the two main modules of
intention detection and intention prediction. For these two modules, we describe
the methods used for evaluating them.

We then present two chapters of experiments, Chapter 4 one for intention
detection and Chapter 5 for intention prediction. Each contains a description of
the experimental setup and the results along with their consequences.

Finally, in Chapter 6, we discuss the significance of the results, highlighting
several aspects such as the use of different measure of intention and the role of
repetition. Possible directions for future research are also suggested.

1.4 Publications Resulting from this Dissertation

• ”Distinguishing Between Intentional and Unintentional Sequences of Ac-
tions”, with Gal A. Kaminka and Carmel Domshlak. In Proceedings of the
9th International Conference on Cognitive Modeling (ICCM-09), 2009.

• ”Distinguishing Between Intentional and Unintentional Sequences of Ac-
tions”, with Gal A. Kaminka and Carmel Domshlak. In Proceedings of the
IJCAI-09 workshop on Plan, Activity, and Intention Recognition (PAIR-
09), 2009.

• ”Distinguishing Between Intentional and Unintentional Sequences of Ac-
tions”, with Gal A. Kaminka. In preparation, to be submitted to the Journal
of Cognitive Systems Research.
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Chapter 2

Background and Related Work

Intention is at the focus of many fields of study, ranging from psychology and
philosophy through neuroscience to artificial intelligence and robotics. In Sec-
tion 2.1 we open the following review with references to those areas which
touch upon intention, either researching it directly or using it in service of other
branches of study.

After establishing the importance and applications of the study of intention,
we turn to inquire into the different meanings of the term, since it is used in dif-
ferent contexts, and not always with the same meaning. Various characteristics
of intention serve as potential candidates for solving the problem of intention
detection (Section 2.2).

Next, in Section 2.3, we survey some recent major contributions to the sub-
ject of the prediction of intention. Some of these are in the context of the study
of imitation, which is closely related to that of intention prediction. Most rele-
vant is the work of Meltzoff, whose intriguing experiments on imitation serve as
motivation for this dissertation. As such, a section is dedicated to a more detailed
review of his experiments and findings (Section 2.4).

Finally (Section 2.5), we touch upon the notion of affordances. While not
directly related to the subject of intention, use is made of it in the framework
proposed here. For that reason, a brief review of this notion and its relevance to
us is included here.

For each of the reviewed topics, we bring theoretical background which jus-
tifies its relevance to the task of intention recognition. In addition, we survey
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computational models which attempt to implement them. Finally, after gather-
ing information pertaining to the task at hand, we will go on, in the next chapter,
to describe how all this information comes together in our framework for detect-
ing and predicting intention.

2.1 Importance and Applications of Intention

Being able to infer the intention underlying the actions of agents within the envi-
ronment is a valuable asset. This ability is part of what is known in psychology
as theory of mind—the ability to understand the intentions, beliefs and desires of
another. Theory of mind is what enables humans to interact socially in an intel-
ligent manner. Individuals who posses a theory of mind which is impaired to a
substantial degree—specifically in their ability to understand intentions—are of-
ten diagnosed as suffering from a disorder in the autism spectrum [Baron-Cohen,
1995].

Understanding the mechanisms underlying this ability is important for glean-
ing insights regarding autistic and normal development. In addition, they have
practical significance in the field of engineering, software and hardware: the in-
sights gained in neuroscience and psychology can be implemented in artificial
systems, to the end of enhancing their interaction with humans in a socially in-
telligent, natural way. Such systems are useful for artificial household help, such
as invalid assistance [Miro et al., 2009] as well as security systems, such as in-
terception of enemies and tracking of adversaries [Foo et al., 2007].

2.2 Detecting Intention

To the best of our knowledge, most of the research conducted on computational
recognition of intention deals with the problem of predicting the content of the
intention, not with the problem of detecting whether or not intention is present
at all in the observed actions. Yet several past investigations show that humans
react differently to sequences of observation which convey some intention, than
to sequences of arbitrary actions [Woodward, 1998, Gergely et al., 1995]. To
address this challenge—that of discriminating between intentional and uninten-
tional action—we must first define more rigorously what we mean by intentional
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action, and what characterizes intentional actions as opposed to unintentional
ones.

2.2.1 Definitions of Intentional Action

Throughout this work, the term intentional action refers to action which is per-
formed by an agent with the purpose of bringing about some desired goal-state.
Three key words should be emphasized here: action, purpose, and goal-state.
Each such key word distinguishes our definition of intentional action from other
possible definitions, and should be kept in mind throughout this work. This is
important since the experiments presented here were designed according to this
understanding of the term, and the results might not necessarily be relevant to
other understandings of it.

As opposed to intention in action, other forms of intention, such as intention
in thought or intention in speech, do not bring about observable changes in the
world state (generally modeled as relationships between entities in the world).
As such, they require different tools and mechanisms, and are out of the scope
of this work.

The key word purpose is relevant to the relation of the notions of success
and failure to the notion of intention. In this work we specifically address the
possibility of failure in the execution of action, however, this does not render the
actions intentionless. The actual outcome of the actions might indeed be unin-
tended, i.e., a failed goal, yet the actions themselves were nevertheless performed
with an intention in mind. According to this understanding, intentional actions
terminating in failure or accidents would still be considered as intentional. The
important criterion here is that there was a purpose which drove the actions, even
if that purpose was not realized.

Compare this viewpoint to that of Harui et al. [2005], for example. While
they too aim to distinguish between intentional and unintentional action in their
proposed implementation, their distinction is actually between intentional out-
comes and accidental outcomes. For this they made use of prosody and verbal
utterances (such as ”oops”) and their timing within the stream of action. The
distinction we wish to make here is of another kind: between action performed
with a specific intention in mind, to action performed without any intention in
mind.
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There is a philosophical opinion, held by such as Husserl, which views all
conscious action as intentional [Banchetti-Robino, 2004]. While this may be so,
it is possible to distinguish between two types of intention, as expressed in action.
There is one type of intentional action, in which it is the motion itself which is
the goal of the actor. Consider, for example, a dancer: there is no end-state which
the dancer is aiming to bring about, rather, the motion itself is the goal. Another
type of intentional action is that which is performed for the purpose of bringing
about a certain goal-state. In the context of this work, we limit ourselves to the
second type, and in this sense, the first type would be considered unintentional.

2.2.2 Characteristics of Intentional Action

A preliminary condition that actions must fulfill in order to have intention at-
tributed to them, is that they be performed by an intentional being. Experiments
with children have shown that when the same actions are performed by a human
and by a mechanical arm, the observing children tend to attribute intention only
to the human, and not to the mechanical being [Meltzoff, 1995]. Apparently,
from a very young age children are able to distinguish between intentional be-
ings and non-intentional ones, and employ this distinction before attempting to
decide whether the actions per se are intentional or not.

Several factors have been suggested in the literature which are relevant to the
task of distinguishing between intentional and non-intentional agents. Among
them are biological motion [Blakemore and Decety, 2001], texture of the ap-
pendage performing the action [Guajardo and Woodward, 2004] (i.e. skin versus
gloved or metal object) and presence of eye gaze [Itakura et al., 2008].

Once the actor has been determined as capable of intentions, the actions
themselves can be inspected for underlying intention. In order to be able to
discriminate between intentional actions and unintentional ones, we must have a
better understanding of what exactly intention is, and how it manifests itself in
action. For this we turn to the psychological literature, mostly in the cognitive
and developmental fields, in which there is an elaborate and extensive ongoing
discussion on the topic, from Smith [1978] through Dennet [1989] to Gergely
and Csibra [2003], to name just a few. Much insight can be gleaned from such
research for the purpose of modeling and implementing the capacity of intention
detection. We refer here to those works which supplied us with motivation and
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justification for our work.

There are several psychological theories regarding the stance taken when
dealing with intention. Meltzoff [2002] takes the mentalistic stance, that infants’
ability to interpret intention makes use of an existing theory of mind—reasoning
about the intents, desires and beliefs of others. Gergely and Csibra [2003], on
the other hand, take a teleological stance, that infants apply a non-mentalistic,
reality-based action interpretation system to explain and predict goal-directed ac-
tions. As Gergely and Csibra say themselves, this teleological evaluation should
provide the same results as the application of the mentalistic stance as long as
the actor’s actions are driven by true beliefs. In their own words, ”... when be-
liefs correspond to reality, the non-mentalistic teleological stance continues to be
sufficient for interpreting action even after the mentalistic stance, which includes
fictional states in its ontology, has become available” [Csibra and Gergely, 1998,
p. 258]. The teleological interpretation would break down, however, if the in-
terpreted actions were based on pretense or false beliefs. Since the scenarios we
address here do not deal with false beliefs, and assume that the agent’s beliefs
correspond to reality, we can ignore this distinction for now and take Gergely and
Csibra’s psychological theories as motivation for our model, without decreeing
which of the two stances humans actually take.

So what are the criteria which enable the attribution of intention—or, in tele-
ological wording, goal-directedness—to movement? According to Gergely and
Csibra, the Principle of Rational Action [Gergely and Csibra, 2003, Watson,
2005] plays a major role here. This principle states that intentional action func-
tions to bring about future goal states by the most rational means available to the
actor within the constraints of the situation.

Kiraly et al. [2003] break down the rationality principle into two assumptions
which respectively provide two perceptual cues indicating goal-directedness.
The first assumption is that the basic function of actions is to bring about some
particular change of state in the world. This specifies that the outcome of the
action should involve a salient change of state in the environment. When trying
to determine whether the end-state arrived at is the intended goal or whether it
is a failure or an accident, this could come in handy. The second assumption
is that agents will employ the most efficient (rational) means available to them
within the constraints of the situation. This specifies that the actor should be
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capable of equifinal variation of actions, meaning that when the situational con-
straints change, the agent will take different actions in order to reach the goal
efficiently. It is this second assumption which we will take advantage of here
for our purposes. In attempting to determine whether an action sequence is in-
tentional or not, we will be looking for efficiency—in time, space, effort, or any
other resource utilized in the process.

Besides saliency of change of state and equifinality, several other features
of intentional action have been proposed. Among them are affective vocal and
facial cues [Carpenter et al., 1998], animate movement which is self-propelled,
possibly along a nonlinear path and undergoing sudden changes of velocity [Blake-
more and Decety, 2001], persistence (repeating actions over and over), and ex-
pending of effort [Heider, 1958]. In our proposed model we focus on the Prin-
ciple of Rational Action and ignore for now other features, for reasons that are
both practical and theoretical. On the practical side, the notion of efficiency is
captured in a very straightforward way computationally. This, as opposed to
such notions as ”effort”, ”animate movement” and ”affective cues”. On the theo-
retical side, we would like to isolate the minimal components which characterize
intentional behavior. For example, research has shown that eliminating affective
vocal and facial cues from the demonstration does not impair infants’ ability to
discern intention [Meltzoff, 1995]. Our results show that indeed rationality of
action might be a strong enough indication of intention.

2.3 Predicting Intention

As opposed to intention detection (i.e. determining whether or not the observed
actions were performed intentionally), intention prediction (i.e. guessing the
goal which the observed actions were aimed at bringing about) has been the fo-
cus of much research, regarding both its appearance in humans and its implemen-
tation in artificial systems. We review here the major findings from psychology
and neuroscience, and several important implementations in engineering.

2.3.1 Cognitive and Developmental Psychology

From the moment they are born, humans display a remarkable ability to imitate.
Imitation is closely related to inference of intentions, in the sense that the latter is
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a preliminary requirement for the former, when dealing with high-level imitation,
i.e., goal imitation. Understanding how this mechanism works in humans, and
modeling it, is one of the topics dealt with in the cognitive and developmental
psychology research community.

2.3.1.1 Stages of Imitation

Our main inspiration and motivation comes from work by Meltzoff and col-
leagues [Metlzoff and Moore, 1983, Meltzoff, 1998, 1988, Meltzoff and Moore,
1989, Hanna and Meltzoff, 1993, Meltzoff, 1995, Meltzoff and Moore, 1997].
Based on many studies done on neonates, infants and toddlers, as well as adults,
Meltzoff distinguishes between four stages in the development of imitative ca-
pabilities.

• Body Babbling: Coined by Meltzoff and Moore [1997], body babbling is
the process of learning the correspondence between various muscle move-
ments and their resulting body configurations, which begins already in
utero. Much as babies start out with vocal babbling before they proceed
on to comprehensible speech, so too they begin with random movements
of limbs and facial parts before they are able to intentionally achieve a
specific motion or pose.

• Imitating Body Movements: Once the infant has learned the basic mo-
tor primitives which enable it to achieve intended body configurations, it
learns to recognize these when they are performed by an adult, and sub-
sequently imitate them. Neonates have been documented [Metlzoff and
Moore, 1983, Meltzoff and Moore, 1989], displaying the ability to imitate
such facial expressions as tongue protrusion and frowning.

• Imitating Actions on Objects: At the age of several months, infants ex-
pand their imitation repertoire to include not only gestures and expres-
sions, but also object manipulations [Meltzoff, 1998, 1988, Hanna and
Meltzoff, 1993]. This enables the acquisition of knowledge of tool use
and other important skills.

• Inferring Intentions: This last stage is the one which interests us. Meltzoff
[1995] showed that 18-month old infants can imitate an intended act, even
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when that act failed to be completed for some reason. The experimental
setup had an adult attempt to demonstrate a novel action on a novel object,
for example, pulling apart a two-piece dumbbell, whereby his hand slipped
and the dumbbell remained as it was. When handed to the child, the child
conveyed his ability to understand the intended action by re-enacting it
successfully. Since this experiment serves as motivation for our work, we
bring it in detail in the next section ( 2.4).

Other studies relating to this last stage of inferring intentions were done by
Bekkering and colleagues. In one such study they showed that imitation
of gestures in children is goal directed [Bekkering et al., 2000]. In an-
other [Gergely et al., 2002], they showed how children could reason about
whether the means were actually goals in and of themselves, and therefore
worth imitating, or whether they were secondary to the true goal, and there-
fore could be substituted for by other means. These studies demonstrate
the ability of young children to infer and reason about goals. However, we
refer back to the above-mentioned work by Meltzoff [1995], which has the
added value of showing how children can infer the goal even when it is
only implied, and not successfully completed, and when it is performed on
objects which are novel to the children. These are the two main challenges
we deal with in our model.

2.3.1.2 Imitation and Theory of Mind

First introduced by Premack and Woodruff [1978], theory of mind (aka folk psy-

chology and mentalizing) is the ability to attribute mental states (beliefs, intents,
desires, etc.) to oneself and to others. As originally defined, it enables one to un-
derstand that mental states can be the cause of others’ behavior, thereby allowing
one to explain and predict the observed actions produced by others. As Melt-
zoff categorizes it, this ability enables a psychological attribution of causality to
human acts, rather than the physical causality generally attributed to inanimate
objects.

Different accounts are given by psychologists for the mechanism underlying
this ability. One of them, known as simulation theory [Gordon, 1986, Davies
and Stone, 1995, Heal, 2003], has gained popularity and credibility lately, in
part due to the discovery of mirror neurons (see next section). In the words
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of Breazeal et al. [2005], simulation theory posits that by simulating another
person’s actions and the stimuli they are experiencing using our own behavioral
and stimulus processing mechanisms, humans can make predictions about the
behaviors and mental states of others based on the mental states and behaviors
that they themselves would possess if they were in the other’s situation. In short,
by thinking ”as if” we were the other person, we can use our own cognitive,
behavioral, and motivational systems to understand what is going on in the heads
of others.

According to this explanation, the mutual relationship between imitation and
theory of mind is clarified, and further elucidated by many studies [Meltzoff
and Moore, 1992, 1994, 1995, Meltzoff and Decety, 2003, Meltzoff and Gopnik,
1993]. On the one hand, basic imitation of movement is a precursor to the de-
velopment of theory of mind skills, by laying the foundations for what Meltzoff
calls the ”like me” framework for recognizing and becoming an intentional agent
[Meltzoff, 2007]. Once the infant learns by imitation that his body, along with
its inputs and outputs, is similar to those of the adults he sees around him, then
he can simulate their behavior within his own mind. On the other hand, once this
capacity is developed, theory of mind can be put to use for the explanation and
prediction of actions observed. This would enable the level of imitation which
requires inference of intentions and goals.

2.3.2 Neurophysiology

Mirror neurons, found in the premotor cortex of the macaque monkey, are acti-
vated both when the monkey performs a goal directed action, and when it per-
ceives a conspecific performing the same actions. In humans, the existence of
mirror neurons has not been verified, however mirror systems (i.e. brain regions,
as opposed to single neurons) have been shown to be active during both percep-
tion and generation of motor actions. This was done using various methods of
brain imaging, such as EEG [Cochin et al., 1998, 1999, Altschuler et al., 1997,
Bekkering et al., 2000], MEG [Hari et al., 1998], TMS [Fadiga et al., 1995] and
PET [Arbib et al., 2000]. This discovery paved the way for many computational
models and implementations, attempting to produce imitation based on intention
prediction.

Mirror neurons are one of the main neural mechanisms proposed for explain-
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ing theory of mind capabilities in general, and understanding of intentions in
particular [Rizzolatti et al., 1996, Gallese et al., 1996]. These neurons are espe-
cially important for imitation, where the ability to predict the intention at which
the actions are aimed is necessary. Therefore, as in the domain of psychology,
so in neurophysiology, research on imitation is tightly coupled with research on
intention prediction.

It has been suggested that in addition to action recognition [Gallese et al.,
1996], these neurons contribute to the functioning of imitation [Rizzolatti et al.,
2001, Williams et al., 2001] and understanding of intentions [Fogassi et al.,
2005], as well as to various other theory of mind abilities [Dapretto et al., 2005]
and theories, such as the simulation account of theory of mind [Gallese and Gold-
man, 1998].

2.3.3 Implementations in Artificial Systems

2.3.3.1 Goal and Plan Recognition

A closely related yet conceptually distinct area of research is that of plan and goal
recognition, in the field of artificial intelligence. Here too, the aim is to develop
a system which is able to correctly understand the goal underlying an observed
sequence of actions. However, while in cognitive modeling the purpose is to
approximate and explain the given task as humans perform it, in artificial intelli-
gence the purpose is generally to create a system which performs the task in the
best possible way (according to some specific performance criteria), though not
necessarily in the same way humans do. While some of the algorithms devel-
oped in artificial intelligence are motivated by findings from cognitive sciences,
this is not the general rule. We bring only a small sampling of the vast amount of
work done in this area, highlighting how it differs from the work presented here.

First, we note that most recent plan recognition works focus on using prob-
ability distributions over possible explanations for an observed sequence of ac-
tions [Charniak and Goldman, 1993, Geib and Goldman, 2005]. Using consis-
tency rules [Lesh and Etzioni, 1995, Hong, 2001] and learning [Blaylock and
Allen, 2006], earlier goal recognition systems return a likelihood-ranked set of
goals consistent with the observed sequence. We too propose using a probability
distribution over possible goals, however, as we show, people utilize additional
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information (aside from a-priori likelihood and consistency) in making their in-
ference. Avrahami-Zilberbrand and Kaminka [2007] discuss additional ways,
such as a bias towards hypotheses that signify threat.

More recently, an approach similar to ours has been suggested by Ramirez
and Geffner [2010]. In both systems—ours and theirs—the actions are used in
order to determine which of a predefined set of goals is the one intended by the
actor. While their work goes down to the details of the computational implemen-
tation, we put emphasis on giving a cognitive justification of the system, and put
it in the context of recent findings in psychology and neuroscience. This is true
both of the set of goals (we propose that the notion of affordances plays a role
here), as well as of the criteria of efficiency for choosing among the goals (we
propose the Principle of Rational Action as a psychological justification of its
use).

Another system which recognizes intentional actions has been implemented
by Hongeng and Wyatt [2008] on a robot. Their work differs from ours in several
respects. First and foremost, they emphasize the visual input analysis, which is
not of interest to us in the scope of this work. Second, they aim to identify
action-goals, such as grasp, reach, push, and not state-goals, i.e. desired end-
states of the world, which is what we do. Towards the end of their work they
point out that their system behaves in a way which fits the Principle of Rational
Action. However, this principle is not explicitly part of their system, as it will be
shown to be in ours. Last, since their work is in artificial intelligence and not in
cognitive modeling, they do not compare the performance of their system to that
of humans, as we do here.

2.3.3.2 Robot Imitation

Another field which has much in common with ours, is that of robot imitation.
When dealing with robot imitation, two problems must be addressed: the prob-
lem of recognizing the goal to be imitated, in our words, ”intention prediction”,
and the problem of executing the recognized goal using the robot’s physical con-
figuration and its action repertoire—which are not necessarily the same as those
of the actor’s. This second problem is known as the body correspondence prob-
lem. Only the first problem is relevant to our work.

Affordances are becoming more and more popular in the field of robotics.
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The work of Lopes et al. [2007] applies them to imitation. They show how a
robot can learn a task, or a policy, after observing repeated demonstrations by
a human. As defined above, the term intention in our context does not include
tasks, or sequences of actions, but rather end-states. More importantly, our ex-
periments show that in our model, observation of one demonstration is enough
for predicting intention. Another difference is that the repeated demonstrations
familiarize the robot with the objects, thus allowing it to learn the relevant affor-
dances. We suggest that affordances can be extracted from novel objects, based
on findings from the psychological literature, as will be explained when we in-
troduce affordances in detail (Section 2.5).

Many other robot imitation systems have been developed (for a review, see
Breazeal and Scassellati [2002]). Some of them concentrate on the problem of
robot body correspondence mentioned above [Schaal et al., 2003]. Others deal
with imitation of the kind related to a different definition of intention than that
dealt with in this work, such as movement per se [Schaal et al., 2003, Billard and
Mataric, 2001], gestures [Calinon and Billard, 2007] and emotion [Breazeal,
2003].

2.3.4 Cognitive Modeling

Putting the hardware aside, cognitive modeling of intention recognition aims at
uncovering the core cognitive abilities required for the task, and the way in which
they interact to produce the desired effect. To this end, empirical psychological
data is made use of, as well as many computational tools developed in recent
years.

For example, research in psychology attempts to pinpoint the age at which
intention understanding matures. By correctly placing it within the context of
other developing skills—be they social, motoric or cognitive—speculations can
be explored regarding the various relationships between the different skills. One
such study has shown that understanding failed reaching actions is present at 10
months of age [Brandone and Wellman, 2009], and is preceded by the under-
standing of successful reaching actions. In addition, development of the under-
standing of failed actions has been shown to occur at the same time as initiation
of joint attention and the ability to locomote independently [Brandone, 2010].

Identifying the relationship between various skills, i.e. knowing what skills
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are required for understanding intentions, and what skills make use of under-
standing intentions, enables correctly identifying and implementing the building
blocks of artificial cognitive systems with intention understanding abilities. Ne-
haniv and Dautenhahn [2007], Meltzoff and Decety [2003] and Meltzoff et al.
[1999] are examples of this approach.

Another example of utilizing psychological theories for cognitive modeling
is that of [Oztop and Kawato, 2005], who have implemented systems based on
the simulation theory account of theory of mind. In this work, we too make use
of a psychological principle—that of Rational Action (Section 2.2.2)—and show
how it can be translated into a computable form.

Computational tools are also made use of in the field of cognitive modeling.
Cuijpers et al. [2006] is one of many who have used neural networks to solve
problems related to goal recognition. Meltzoff and colleagues [Rao et al., 2007]
have employed Bayesian learning to implement a system based on his four-stage
paradigm of imitation (see above, Section 2.3.1.1). Inspiration from mirror
neurons (see above, Section 2.3.2) has been drawn by several researchers to the
end of creating artificial systems which exhibit imitative behavior. For a review,
see Oztop et al. [2006].

We focus here on two challenges posed by Meltzoff [1995]’s experiments:
How is intention prediction possible when only a failed sequence of actions is
demonstrated? And how is intention prediction possible when the actions are
performed on novel objects, about which the observer seemingly has no prior
knowledge? These two challenges have not yet been satisfactorily addressed in
the cognitive modeling research community, and that is what we attempt to do
in this work. Our aim is to model the phenomenon of intention recognition, in a
way that best fits the data accumulated in the various fields.

2.4 Meltzoff’s Experiment

In order to understand the motivation for our model, as well as the setup used to
evaluate it, we elaborate here on a description of Meltzoff [1995]’s experiment.
The purpose of his experiment was to test whether children of 18 months of age
are able to understand the underlying intention of a sequence of actions, even
when that intention is not realized, i.e. when the acting agent failed to achieve
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the goal. Since children of such young an age are not verbally proficient, he used
a re-enactment procedure which builds upon the tendency of toddlers to imitate
adults.

For each of five different novel toy objects, a target action was chosen. For
example, for a two-piece dumbbell-shaped toy, the target action was pulling it
apart. For a loop and prong device, the target action was to fit the loop onto
the prong. The children were divided into four groups: Demonstration Tar-
get, Demonstration Intention, Control Baseline and Control Manipulation. Each
child was seated in front of an adult with a table between them, on which lay
one of the five objects, and was exposed to a demonstration, depending on the
experimental group to which he or she belonged:

• The children in the Demonstration Target group were shown three repeti-
tions of a successfully completed act, such as pulling apart the dumbbell,
or hanging the loop on the prong; their voluntary response was to repro-
duce the same act when the objects were handed to them.

• The children in the Demonstration Intention group were shown three failed

attempts of the adult to produce the goal, where the adult (seemingly)
failed at reaching it, and they never saw the actual goal. These children’s

re-enactment of the goal reached a level comparable to that of the children

who saw the successful attempts. This shows that children can see through
the actions to the underlying intention, and extrapolate the goal from the
failing actions.

• The children in the Control Manipulation group saw the object manipu-
lated three times in ways that were not an attempt to reach the chosen
target act. This was done in order to make sure that mere manipulation of
the object is not enough for the children to reproduce the goal.

• A second control group—Control Baseline—had the children just see the
object, without it being manipulated at all, in order to test whether they
would reproduce the goal on their own. Both control groups did not show
significant success at reproducing the target act.

When do children choose to act in a way that imitates the adult, and when do
they choose to remain passive and not act? The experiment of Meltzoff [1995]
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shows that when children discern an underlying intention, as in the two Demon-
stration groups, they attempt to imitate it. When they do not detect such an
intention, as in the Control groups, they do nothing, or sometimes mimic the ar-
bitrary acts of the adult (in the Control Manipulation group; obviously, children
were imitating what they understood to be the intention of the adult). Only when
no intention was apparent from the actions of the adult did the children remain
passive and not produce any action.

Thus a complete model of intention recognition must first be able to model
the ability to discern whether or not there is an underlying intention. Only then
is it relevant to attempt to infer what that intention is. Allowing for such a pre-
liminary stage would explain why children in both Demonstration groups were
motivated to look for an underlying intention, while children in the Control Base-
line group were not. This also explains why children in the Control Manipulation
group sometimes reproduced the actions of the adult, even when it was not ex-
actly what the experimenter had in mind. We propose that what characterizes
those demonstrations which the children chose to re-enact is a rationality, or ef-
ficiency, which hints at an underlying intention worth imitating. We will make
this notion more concrete, and show how to make use of it in order to computa-
tionally detect intention.

Meltzoff’s original ground-breaking experiment intrigued other researchers,
and served as a basis for many follow-up experiments, exploring various aspects
of the understanding of intentions in order to hone in on the exact mechanism
enabling this ability. One such work is that of Huang et al. [2002]. They suggest
several candidate ”clues” which the infants might make use of in their attempt to
identify the intention underlying the observed actions. One clue which they con-
firmed plays an important role is stimulus enhancement by spatial contiguity, i.e.
the proximity of the object parts relevant to the realization of the intended goal.
This clue will also be made use of in our model. For this, infants—and artificial
agents with the same social abilities—must be able to decompose objects to their
parts, and identify what actions can be performed with them. This is where the
notion of affordances comes in, which will be taken up in the next section.
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2.5 Affordances

An affordance is a quality of an object, or an environment, that allows an indi-
vidual to perform an action. For example, ”sitting” is an affordance offered by a
chair. In the present work, we claim that affordances play a role in the process
of intention prediction. In order to lay the ground for the understanding of this
role, the following section presents a short review of the topic, which refers only
to those aspects which are relevant to the current work. For a more complete
review see for example St. Amant [1999] and, more recently, Sahin et al. [2007].

The notion of affordances was first introduced by Gibson [1977], in the con-
text of visual perception. Since his definition of affordances as ecological prop-
erties of the environment which depend on the perceiver, the concept has evolved
into various forms and uses in many different fields of study. The ecological, per-
ceptual and cognitive psychology literature all deal with affordances, as does re-
search in several computer science and engineering fields, from object-oriented
programming languages through human-computer interaction and artificial in-
telligence to robotics and industrial engineering. The term ”affordance” is often
used loosely, and the different contexts in which it appears possibly refer to dif-
ferent meanings of it. Therefore, any work which makes use of the notion of
affordances should begin with a clarification of what exactly is meant by the
term. In the following we do this, while putting the notion into the context of
intention prediction.

2.5.1 Action-State Duality of Affordances

One level of abstraction of the notion of affordances, which follows naturally
from the original definition, tends to blur the distinction between affordances
and actions. On this level, every affordance is an action. See for example Gaver
[1991], who defines affordances as ”potentials for action”. The same is true of
Cisek [2007], who straightforwardly refers to potential actions as affordances.
Neurophysiological data supports this abstraction. Using fMRI, Grezes et al.
[2003] have shown that viewing an object potentiates brain activity in motor
areas corresponding to the actions that the object affords.

The action-state duality familiar in the Artificial Intelligence planning com-
munity, suggests viewing affordances from the point of view of states, rather than
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actions. Since every sequence of actions has a sequence of states induced from
it, and vice versa, every executed sequence of states has a sequence of actions
which induced it, we propose here to view affordances not as possible actions
which can be performed on the environment, but as possible states which the
environment can be brought to. This duality allows us to refer to possible goal
states as affordances. In other words, when attempting to recognize the inten-
tion underlying a sequence of actions, we can consider the affordances available
in the environment, in the form of possible goal states. Although this is not a
common view in the affordance literature, we exploit this duality and suggest
that findings regarding affordances as actions are valid regarding affordances as
states.

2.5.2 Affordances as Interactions and Relationships Between
Objects

While the framework described here is applicable to affordances in general,
when dealing with the prediction of intentions, our experiments deal with a
specific subset of affordances, namely, those which can be described as inter-
actions and relationships between objects in the environment. This subset has
been dealt with in the context of object-oriented programming [Baldoni et al.,
2006], and fits in well with our view of affordances as states: two objects can
define different states, depending on the relationship they hold with each other.
Several examples studied by developmental psychologists are ”passing-through”
and ”support” [Sitskoorn and Smitsman, 1995], ”containment” [Carona et al.,
1988, Chiarello et al., 2003], ”above” and ”below” [Quinn, 1994] and ”tight-fit”
[Casasola and Cohen, 2002].

2.5.3 Development of an Affordance Library

Regarding how and when the ability to recognize affordances is acquired, much
research has been done in the field of developmental psychology. The works
quoted above [Sitskoorn and Smitsman, 1995, Carona et al., 1988, Chiarello
et al., 2003, Quinn, 1994, Casasola and Cohen, 2002] attempt to determine the
age at which various spatial relationships are incorporated into the cognition of
the normally developing infant.
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Learning functional categorization of objects based on object parts is also
seen as acquisition of affordances, and has been extensively studied from a de-
velopmental perspective. Infants as young as ten months old, who have been
familiarized with the same action performed on different objects, increase their
attention when a familiar object is combined with a novel action [Horst et al.,
2005]. By 14 to 18 months, infants who have been familiarized with two ob-
jects, each of which was combined with a certain action, dishabituate to novel
combinations of the familiar objects and actions [Madole et al., 1993, Madole
and Cohen, 1995]. These findings indicate that objects become associated with
actions through experience. Infants aged 14 and 18 months can also attend to
relations between function and the presence of certain object parts [Booth and
Waxman, 2002], thus confirming that generalization can be made and applied to
novel objects, based on familiar functional parts.

While there is ongoing debate as to the exact developmental time-line, all
agree that throughout infancy and toddler-hood these and other concepts of func-
tions and spatial relationships which objects afford are incorporated into the cog-
nition of the developing child. We refer to this dynamically growing structure as
an ”affordance library”. The existence of such a library enables humans to rec-
ognize possible actions which can be performed on objects—including novel
ones—and possible states to which these objects can be brought about to, in
relation to other objects in the environment.

2.5.4 Accessing the Affordance Library

Studies in experimental psychology support the claim that perception of an ob-
ject serves as a prime which can potentiate or inhibit reaction time to commands
to execute afforded actions on the object. Craighero et al. [1996] have shown
how a prime visually congruent with an object to be grasped markedly reduces
the reaction time for grasping. Tucker and Ellis [1998] employed a stimulus-
response compatibility paradigm whose results were consistent with the view
that seen objects automatically potentiate components of the actions they afford,
even in absence of explicit intentions to act. This behavioral data shows that
the perception of an object automatically potentiates motor components of pos-
sible actions toward that object, irrespective of the subject’s intention. In terms
of an affordance library, we interpret this as having the library accessed and the
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relevant affordance extracted and made available upon perception of the object.

Neurophysiological experiments complement the above results. Fogassi et al.
[2005] showed how mirror neurons encode goals (such as eating an apple or plac-
ing it in a cup). These neurons fire upon view of the grasping configuration of the
actor’s hand on the object, and so prove how the type of action alone, and not the
kinematic force with which actors manipulated objects, determined neuron ac-
tivity. Other research goes further, to state that even before an action is initiated,
merely the observation of the object itself is enough to cause neuronal activity in
specific motor regions. Among others, Grezes and Decety [2002] used positron
emission tomography for exploring neural correlates of object perception. They
found increased regional cerebral blood flow in areas known to serve motor rep-
resentation. These activations are congruent with the idea of an involvement of
motor representation already during the perception of an object and thus provide
neurophysiological evidence that the perception of objects automatically affords
actions that can be made toward them. Functional MRI was used by Grezes et al.
[2003] to show increased activation in specific brain regions when the action
subjects were asked to perform on an object clashed with the action the object
afforded. Thus, results from both behavioral and neuroimaging studies confirm
that affordances of an object become available to the observer upon the object’s
perception—even before action has been initiated on the object, and before the
observer formulates an intention to do so or recognizes such an intention by a
confederate. In other words, perception of the environment causes constant ac-
cess to the affordance library—at every given moment, the perceiver has at hand
possible affordances which are compatible with the current perception of the
environment.

2.5.5 Probability Distribution Over Affordances

Having established that affordances are made available upon perception, we go
on to claim that more than one affordance can be invoked by an object, and
these multiple affordances have a probability distribution over them. In a hy-
potheses formulated and tested behaviorally and neurophysiologically, namely,
the affordance competition hypothesis, Cisek [2007] sets forth a parallel mech-
anism by which biological agents choose actions. According to this hypothesis,
at every given moment, when receiving input from the environment, an agent
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is presented with several action possibilities, and must choose between them in
order to act. Disregarding the action selection stage, we borrow from here the
notion that upon observing the environment and the objects present in it, an agent
is aware of several possible affordances competing between them. In the work
of Cisek [2007] this competition is settled for the purpose of action selection,
while in ours it is used for the purpose of intention prediction. Ye et al. [2009]
have recently shown how the perception of one affordance can interfere with the
possibility that another affordance will be detected for the same object. Based
on their findings, we conclude that several different affordances can be invoked
simultaneously with different likelihoods.

2.5.6 Applications of Affordances in Engineering

Recently, AI experts and roboticists have turned to affordances, understanding
their potential for enriching an agent’s interaction with its environment. Affor-
dances can be applied to software and hardware agents in two ways. The first is
concerned with developing the ability to automatically learn affordances. There
has been extensive research in this area [Stoytchev, 2005, Erdemir et al., 2008,
Fitzpatrick et al., 2003, Hart, 2009, Ridge et al., 2009, Dogar et al., 2007]. The
related field of object categorization [Pinz, 2005] has also been explored, in par-
ticular, functional object categorization [Rivlin et al., 1994], which builds upon
Biederman [1987]’s Recognition By Components theory. The present work does
not attempt to deal with this application of affordances, rather, we shall assume
it is well developed enough in order to be incorporated into a model such as the
one suggested in our work, as will be shown.

Once the ability of affordance learning and recognition is incorporated into
the artificial agent, it can be applied in a second way: it can be used to enhance
the cognitive repertoire of the agent. This possibility has already been pointed
out by Murphy [1999], and has recently gained more popularity, e.g. in the work
of Dogar et al. [2007]. In particular, affordances can be applied to intention pre-
diction, which is what we propose here. To the best of our knowledge, there has
not been much work in this area so far. One notable exception is the work of
Lopes et al. [2007], which similarly suggests using affordances for robot imita-
tion. Their work differs from ours in several aspects, mentioned above (Section
2.3.3.2).
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Chapter 3

A Model of Intention Recognition in
Humans

In the introduction, we presented an outline of a proposed cognitive model of hu-
man intention recognition. We are now ready to go into the details of the model.
Several of the modules, as important as they are to the complete process, deal
with aspects which are not directly related to intention, such as gaze detection
and affordances. Therefore, aside from placing them in context and describing
their contribution to the model, we do not further analyze their possible underly-
ing mechanisms. Rather, we rely on others’ work in the relevant fields for this.
The two main modules which concern us are those of intention detection and
intention prediction.

The next sections provide a sequential description of the process of intention
recognition, beginning with the input of the perceived environment and the acting
agent, along with the trace of observed actions (this input is accessible to all
modules), and ending with the output of the most likely goal intended by the
acting agent. We bring here again a graphic description of the model, in Figure
3.1. The input and output of each module will be stated, with the output of
each module contributing to the input of a subsequent module, thus forming
the flow of the model. Details of each module will be given, with the reservation
mentioned above: elaboration will be provided only for those two modules which
are at the core of the process, as we understand it. For these two modules we will
describe their underlying mechanisms and the methods used to evaluate them.
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Figure 3.1: Scheme of Proposed Model.
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3.1 Intentional Being Detection

The input relevant for this module is the perception of the acting agent. The
module answers the question: Is the observed agent an intentional being? The
output is a binary answer: True if the agent is deemed capable of intention, and
False otherwise.

As noted above (Section 2.2.2), detecting whether or not the observed act-
ing agent is capable of intention is a necessary preliminary stage. This is true
both conceptually and practically. Conceptually, since apparently this is how hu-
mans process movement performed by other agents: they first determine whether
or not an underlying intention should be searched for. And practically, since it
would be futile and misleading to attempt to decipher a sequence of actions re-
garding its underlying intention, when it was performed by an agent not capable
of intention.

Evidence for the fact that humans do indeed first determine the capability for
intention of the observed acting agent arises from several experiments in devel-
opmental psychology. In his original re-enactment procedure, Meltzoff [1995]
himself showed that when a mechanical arm performed the same actions as the
human, the observing children did not attempt to reproduce the failed goal. A set
of studies by Woodward and colleagues [Woodward et al., 2001] indicate that
agents lacking certain specific human-like characteristics do not induce imita-
tive behavior in children observing them. Hofer et al. [2005] have shown that
while 12-month-old infants relate to a mechanical claw as possessing intentions,
9-month-old infants do not do so unless they are first shown that a human hand is
activating the claw. All this goes to show that in order to be able to attribute in-
tentions to an acting agent, humans must first possess an understanding regarding
the ability of that agent to act intentionally.

As to the exact characteristics of the agent which invoke that understand-
ing in the observer, there are various candidates. Among them are texture (e.g.
metal versus skin [Woodward et al., 2001], and eye gaze [Itakura et al., 2008].
The latter has proved to be a determining factor in the attribution of intentions
by children to an acting robot: only when the robot made eye contact with the
children before acting, did the children interpret its actions as intentional.

Since extracting human-like characteristics from the observed agent is not
directly related to the subject of intention, we do not go into implementation
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details of this module. Rather, we assume it to be given. If the output of the
module is False , then the process stops here. Only if the output is True , will
the process continue and go on to the next module: once the acting agent has
been determined to be of the intentional kind—such as a human or a cognitive
robot—the next stage is to analyze the particular instance of executed action for
the presence of intention.

3.2 Intention Detection

This module consists of the first of the two main processes we identify in the
problem of intention recognition. The question it answers is whether the ob-
served sequence of actions was performed intentionally or not. Again, the answer
is binary: True if the action sequence is deemed intentional, False otherwise.

How can this question be answered? As described above (Section 2.2.2), a
necessary condition of intentional action is that it is efficient, in the sense of the
Principle of Rational Action [Gergely and Csibra, 2003, Watson, 2005]. We pro-
pose that this condition is also sufficient. In order to establish this, we make the
notion of efficiency more concrete, so that it can be translated into a computable
form. To this end, we introduce a measure of intention, described and formalized
next.

We denote the observation trace by t = s0, ...,sn, i.e. a sequence of states,
brought about by the actions of the demonstrating agent. s0 is the initial state,
and sn is the terminal state. The task of the observing agent is to decide, given
this trace, whether there was an underlying intention or whether the acting agent
behaved unintentionally.

Inspired by the Principle of Rational Action [Gergely and Csibra, 2003], we
check for some form of efficiency in the trace. It is reasonable to expect that
a trace with an underlying intention will exhibit a clear progression from the
initial state towards the goal state, which is the most efficient way to bring about
that goal, given the initial state. Note that our agent does not know at this stage
whether or not there is an underlying intention to the trace, and even if there is,
if it is reached successfully. On the other hand, unintentional traces would not be
driven by such efficiency, and would fluctuate towards and away from the initial
state, without any clear directionality.
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We define a state-distance measure dist, which measures the shortest path
between two states of the world, given all possible actions that can take us from
one state to the other. There are a few requirements for the distance measure. We
do not require this distance to obey symmetry (d(s1,s2) = d(s2,s1)). However, it
should always be positive, and equal 0 only from a state to itself. In addition, it
should obey the triangle inequality. Using any such distance measure, we capture
the notion of optimality, in the sense of a shortest path from one state to another.

Thus, from the original state trace we induce a sequence of distance mea-
surements d1 = dist(s1,s0), ...,dn = dist(sn,s0), measuring the optimal (minimal)

distance between each state in the sequence, and the initial state. In this way, for
every state we have an indication of how much the demonstrating agent would
have had to invest (in time, number of atomic actions, or any other resource, de-
pending on how the distance is defined), had it been intending to reach that state.
We posit that enough information is preserved in this sequence for our observing
agent to come to a satisfying decision regarding the presence of an underlying
intention.

This distance measure is dependent on the nature of the world being modeled.
For example, when dealing with spatial targets, the distance could simply be the
Euclidean, and indeed it is, in the second of our experiments. In a discrete state-
space, defined by STRIPS notation, we use Bonet and Geffner [1999]’s Heuristic
Search Planner (HSP) to generate optimal plans from the initial state to every
state in the trace, and the number of action steps in each generated plan is taken
to be the distance to the respective state. This distance served us in our first
experiment. Other distance measures might incorporate information regarding
cost expended or effort invested in the actions.

The behavior of the sequence of distances conveys how efficiently the demon-
strating agent performed is actions. If it acted efficiently—taking only optimal
action steps that bring it closer to the goal—then the sequence of distances will
be monotonically increasing, since every state reached will be more distant from
the initial state than the state at which the agent was at one time step before.
While if the agent acted randomly, executing various actions that do not neces-
sarily lead anywhere, then the sequence of distances will fluctuate, and will not
display any clear progression away from the initial state.

We want to quantify this intuitive reasoning and calculate from the distance
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sequence a measure of intention. A naive approach would be to check the mono-
tonicity of the sequence—if the distances of each state from the initial state in-
crease monotonically, then we have a very strong indication of efficiency, which
conforms to the rationality principle, and therefore, we can strongly conclude
the presence of intention. However, expecting the sequence to strictly increase,
or even merely non-decrease, at every point, is too strong a requirement, and
would not stand up to the flexibility inherent in real-life motion. Very rarely will
human motion display complete monotonicity of this distance sequence, no mat-
ter how intentional the actions from which it was induced. We therefore use a
different, softer, approach: for every state, we check if the distance from it to the
initial state is greater than that of the previous state. We call this a local increase,
and we take the proportion of local increases in the sequence to be our intention
measure. That is, we look to see at how many of the states along the trace has
the distance from the initial state increased, as compared to the previous state,
out of the total number of states in the trace. This will give us an idea of how
efficient the action sequence is. Of course, if the sequence does happen to be
completely monotonic, then a local increase will be found at every point, and so
the proportion will equal 1. Yet, for the less-than-perfect sequences, there will
still be ample margin to convey their intentionality.

More formally,

u = |{si : di > di−1}n
i=1| (3.1)

is the number of states in the trace where the distance from the initial state in-
creases, as compared to the distance at the previous state. Taking this number
and dividing it by the total number of states in the trace,

t =
u
n

(3.2)

gives us a measure of intention for the action sequence.

The higher the resulting t, the more intention is attributed to the action. If
a binary answer is preferred, we can determine a cutoff level which serves as
a threshold above which we conclude intention is present, and below which we
conclude it is not.

For example, in the case of clear intention, we would expect a strictly mono-
tonically increasing sequence of distances; the agent proceeds from the initial
state, at each step moving farther and farther away from it, and closer and closer
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to the intended goal. At the other end, if the observed agent is not driven by an
intention to reach any particular state, we would expect the sequence to fluctuate
in a seemingly random fashion, with the agent sometimes moving away from the
initial state and sometimes moving back towards it. Of course, this is merely
a motivational argument. In Chapters 4 and 5, describing the experiments, we
show that this simple intuitive method does indeed produce the expected results.

3.3 Affordance Extraction

Only if in previous stage the presence of intention has been established (indicated
by an output of True ) will the process continue on to the task of determining the
actual content of the intention. To this end, we propose employing a variation
on the theme of affordances, as described in Section 2.5. The environment
and the objects in it can be analyzed and their affordances extracted, and these
affordances will play a part in the next stages of the process.

Follow-up studies using Meltzoff’s [Meltzoff, 1995] original re-enactment
paradigm have shown that the ability to imitate unsuccessful goals is existent
at 18 months of age, but not at 12 months [Bellagamba and Tomasello, 1999].
However, recent developments seem to indicate that what differentiates the chil-
dren in these two age groups is not their intention-reading ability per se, but
rather their ability to limit the range of possible outcomes to a small set of goals.
Limiting the range of possible outcomes is crucial, since this is what makes the
behavior transparent to its goal [Csibra and Gergely, 2006]. Nielsen [2009] has
shown that once 12-month-old children become acquainted with the affordances
of the objects and their parts, they are then able to deduce the intended goal
of the actor manipulating the objects. Yet, when the affordances are not made
explicit to the children (as was the case in Bellagamba and Tomasello [1999]’s
experiment), they are unable to interpret the intentions of the actor. This is strong
evidence to the fact that the ability to extract affordances from objects, based on
prior knowledge, is a prerequisite to the ability to read the intentions underlying
actions performed on those objects. For this reason we incorporate the Affor-
dance Extractor sub-module into our model.

The module of affordance extraction takes as input only the environment and
the objects in it—it does not make use of the observed action sequence. As such,
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it could theoretically be executed independently of the previous modules. Nev-
ertheless, we place it within the model at this point, since it would be inefficient
to extract affordances before the presence in intention has been ascertained. The
output of this module is a set of k affordances, {g j}k

j=1, in the sense of states
which could serve as the intended goal of the acting agent.

The subject of affordances is tangent to the subject of this research, however,
it is not directly related to intention. For this reason, we do not propose a model
for extracting affordances from objects. A large body of research has accumu-
lated, both theoretical and practical—as described in Section 2.5—which can
facilitate the implementation of such a module and its incorporation into the pro-
posed cognitive model of intention recognition. We leave the details to others,
and focus on how such an implementation can be made use of in our context—in
the next section.

3.4 Success Detection

Given as input an action sequence already determined to be intentional by the
Intention Detector module, and a list of affordances from the Affordance Extrac-
tor module, the question of whether or not the actor succeeded in achieving its
goal can now be answered. This answer can be given in a very straightforward
manner, after the previous stages have been completed. Formally, the question
and answer can be described as sn ∈ {g1, ...gk}, where sn is the observed terminal
state and {g j}k

j=1 are the affordances extracted from the objects in the environ-
ment.

Simply, if the terminal state which the acting agent has brought about by its
actions is one of the affordances, we assume that it is the intended goal at which
the actions were aimed, and that the agent has successfully achieved it. If, on the
other hand, the terminal state is not one of the affordances, we assume the agent
failed at realizing its intention. This follows from our premise that the intended
goal coincides with one of the extracted affordances.

This stage of Success Detection is of conceptual importance more than prac-
tical. If answering the question of whether or not the acting agent was successful
is not of interest, then it can be ignored. The implementation itself consists of
nothing more than a simple logical test, and moving on to the next stage without
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explicitly answering it will cause no loss of efficiency, as will be seen. Yet we
state it as a module in itself in order to show how the previous stages lay the
groundwork for solving what might otherwise have been a difficult question.

3.5 Intention Prediction

This module is the second of the two main focuses of this dissertation. It is con-
cerned with predicting the intention underlying the observed stream of actions.
Its input is the trace of actions along with the list of possible afforded goals,
as returned from the Affordance Extractor. Its output is the final output of the
whole process of intention recognition, namely, a goal g ∈ {g j}k

j=1, which is
most likely the intended goal, given the observations.

We next present a formalization of the problem at hand, followed by three
possible heuristics which can be employed for this task. Each of these heuristics
is based on different information extracted from the action sequence or from the
objects. In the next chapter, we describe a two-phased experiment on human sub-
jects, whose results validate the use of the notion of affordances and the ability
to correctly choose among them using the presented heuristics.

Based on the findings from the affordance literature (quoted above in Sec-
tion 2.5), and on our experiments (described below in Chapter 5.2.1), we posit
that observation of the objects invokes possible goal states, along with a distri-
bution over them. Recall the notation g1, ...,gk for k possible afforded goals, and
p1, ..., pk for their respective likelihoods, with p1 + ...+ pk = 1. These gi are the
goal-states considered as possible intentions underlying the observed actions.

For the case of sn coinciding with one of the goals gi, it would make sense
to conclude that the sequence of actions was successful in achieving this goal.
If sn is not one of these goals, we conclude failure, and seek a way of choosing
which gi is the intended goal. This in essence, is the content of the Success
Detector module, which, as explained above, can be ignored without loss of
functionality or efficiency. It is actually built into the Intention Predictor, and
only conceptually distinct from it.

We propose three different heuristics, which build upon each other, for inten-
tion prediction. We will show how these heuristics play a role in the way humans
determine which goal is the one most likely intended by the acting agent. The
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first heuristic takes into account only the objects in the environment, disregard-
ing the observed actions and their effect on the objects. It is defined by the prior
probability distribution pi. Acting according to this heuristic alone would pro-
duce the choice of that gi with the highest pi.

The second heuristic considers further information, namely, that of the state
of the environment brought about by the actions, sn. The distance function,
dist(si,s j), between states, is utilized here. This distance need not necessar-
ily satisfy all the usual requirements of distance functions (such as symmetry),
however it must always be positive and equal zero if and only if si = s j, and it is

always optimal.

The distance measure could be the same one utilized in the Intention Detec-
tion module (above, Section 3.2). Given this distance function, we compute k

values, di = dist(sn,gi), for each of the k possible goals, gi. Our second proposed
heuristic utilizes this distance sequence, di. A reasonable way of acting accord-
ing to it would be to choose that gi with the lowest di, i.e. the goal closest to
the terminal state arrived at. This can be seen as a realization of the mechanism
of stimulus enhancement by spatial contiguity, mentioned as one of the clues for
predicting intention in Section 2.3.

The third heuristic is motivated by the psychological Principle of Rational
Action [Gergely and Csibra, 2003], which states that intentional action functions
to bring about future goal-states by the most rational actions available to the actor
within the constraints of the situation. In essence, it means that the action should
display some form of efficiency. Consider g to be the intended goal, then the
sequence of states beginning with s0, ...,sn and continuing directly to g should
exhibit efficiency. Making use of the complete trace of action available to the
perceiver, s0, ...,sn, we define an intention measure which attributes a value to
each of the potential goals, g j. For each goal g j, we measure the length of the
path s0, ...,sn,gi, and the length of the path going directly from s0 to g, and divide
the second by the first: r j =

∑n
i=1 dist(si−1,si)+dist(sn,g j)

dist(s0,g j)
These lengths are calculated

using the same distance function as above. The resulting ratio relays how long
the actual path to g j would be, compared to how long it could optimally be.
These ratios, r j, define our third heuristic of choosing the g j with the highest
intention, r j.

Each of these heuristics could potentially serve to rank the afforded goals,
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and choose the highest ranking one as that most likely intended by the acting
agent. In the chapter describing the experiments for the Intention Prediction
module (Chapter 5) we present an environment for evaluating them, and com-
pare their effectiveness at the task of intention prediction to human performance.
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Chapter 4

Experiments for Evaluating the
Measure of Intention Detection

In this section we describe the experiments used to evaluate the proposed mea-
sure of intention detection. The problem formalization appears in Section 3.2,
along with the proposed measure of intention for the task of intention detection.
We now go on to describe two experimental setups in which this measure of in-
tention was tested. The first environment is an artificial replication of Meltzoff’s
experiment, using standard AI planning problem description language (STRIPS).
The second environment uses real life data from the online CAVIAR database of
surveillance videos.

4.1 Experiment I: Discrete Version of Meltzoff’s Ex-
periment

The first environment in which we evaluated the proposed measure of intention
consists of a discrete abstraction of Meltzoff [1995]’s experiments. The next
section describes how we rendered Meltzoff’s experiments into a computational
form, using standard AI planning problem description language (STRIPS). This
is followed by a results section which shows the performance of the model in
this environment.

39



4.1.1 Experimental Setup

We modeled Meltzoff’s experiment environment as an 8-by-8 grid, with sev-
eral objects and several possible actions which the agent can execute with its
hands, such as grasping and moving. We implemented two of the five object-
manipulation experiments mentioned by Meltzoff: the dumbbell and the loop-
and-prong. For the dumbbell, there is one object in the world, which consists of
two separable parts. The dumbbell can be grasped by one or both hands, and can
be pulled apart. For the loop-and-prong, there are two objects in the world, one
stationary (the prong), and one that can be moved about (the loop). The loop can
be grasped by the hand, and released on the prong or anywhere else on the grid.
As previously described, we use Bonet and Geffner [1999]’s HSP∗ to compute
the distance measure.

We manually created several traces for the dumbbell and for the loop and
prong scenarios, according to the descriptions found in Meltzoff’s experiment, to
fit the four different experimental groups. In addition, we created a random trace,
which does not exhibit any regularity. We added this trace since the children in
Meltzoff’s Control Manipulation group were sometimes shown a sequence with
underlying intention, albeit not the target one. Since we want to test our model
on traces that have no underlying intention whatsoever, we artificially created
such a random trace.

For the dumbbell scenario, all traces start out with both hands at position
(1,1), and the dumbbell is stationary at position (5,5). The traces are verbally
described in Table 4.1. A graphic description is given as well for the first trace,
in Figure 4.1. For the loop and prong scenario, there is only one active hand on
the scene, which in all traces starts out at position (1,1). The loop starts out at
position (3,3), and the prong is stationary at position (5,5). The traces for this pair
of objects are described in Table 4.2. For each trace we calculated the sequence
of distances, using the above mentioned HSP algorithm, and then computed the
proportion t.

∗HSP is downloadable from http://www.ldc.usb.ve/˜bonet/
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Trace Name Trace Description
Demonstration Target Left and right hands move from initial posi-

tion towards the dumbbell, grasp it and pull
it apart.
A visual representation of this trace is given
in Figure 4.1(a-n).

Demonstration Intention I Left and right hands move from initial po-
sition to dumbbell, grasp it and pull, with
left hand slipping off, leaving the dumbbell
intact.

Demonstration Intention II Same as above, with right hand instead of
left slipping off.

Control Baseline No movement—both hands remain static at
initial position.

Control Manipulation Left and right hands move from initial posi-
tion to dumbbell, grasp it and remain static
in that position for several steps.

Random Right hand moves towards the dumbbell and
grasps it, then releases it and moves away.
Then left hand wanders around the grid,
then right hand joins left.

Table 4.1: Description of traces for each of the experimental groups in the dumb-
bell experiment.

4.1.2 Results

Figure 4.2 shows plots of the sequences of distances associated with the dumb-
bell experiments. The step number in the sequence is depicted in the X axis.
The Y axis measures the distance of the respective state from the initial state.
Figure 4.3 shows the same for the prong and loop experiments. In Meltzoff’s
experiments, every child was shown three traces, and only then was handed the
objects. There is certainly information in this seeming redundancy; see Melt-
zoff et al. [1999] who show that when only one trace was shown to the children
in the Demonstration Intention group, they were unable to reproduce the goal.
However, we do not incorporate the redundant information at this stage in our
model (see the discussion in Section 6.2 for more on this). So, while every child
was shown three possibly different traces, we calculated our measure of intention
separately for each of these traces, which is why we have more than one row in
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Trace Name Trace Description
Demonstration Target Hand moves from initial position to loop,

grasps it and places it on prong.
Demonstration Intention I Hand moves from initial position to loop,

grasps it and places it to the right of
the prong (in our interpretation, the loop
”misses” the prong).

Demonstration Intention II Hand moves from initial position to loop,
grasps it and places it to the left of the prong.

Control Baseline No movement—hand remains static at ini-
tial position.

Control Manipulation I Hand moves from initial position to loop,
grasps it and moves it along top of prong,
from right to left.

Control Manipulation II Hand moves from initial position to loop,
grasps it and moves it along top of prong,
from left to right.

Control Manipulation III Hand moves from initial position to loop,
grasps it and places it just below the prong.

Random Hand moves from initial position to
loop,grasps it and then releases, then moves
away to wander about the grid.

Table 4.2: Description of traces for each of the experimental groups in the prong
and loop experiment.

the table for some of the groups.

For example, the prong and loop procedure failed in two different ways in
Meltzoff’s Demonstration Intention condition—either with the loop being placed
too far to the right of the prong (Demonstration Intention I in Table 4.4), or too far
to the left (Demonstration Intention II in Table 4.4). The children in Meltzoff’s
Demonstration Intention experimental group each saw three demonstrations—
first Demonstration Intention I, then Demonstration Intention II, and then once
again Demonstration Intention I—while in our replication of the experiment,
every such trace was a demonstration in itself.

Table 4.3 shows the calculated measure of intention for each of the traces
in the dumbbell experiment, and Table 4.4 shows the same for the prong and
loop experiment. In both tables, each row corresponds to a different type of state
sequence. The right column shows the measure of intention as computed by the
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method described above.

Trace Measure of Intention
Demonstration Target 1
Demonstration Intention I 0.8333
Demonstration Intention II 0.9166
Random 0.5384
Control Manipulation 0.8333
Control Baseline 0

Table 4.3: Calculated Measure of Intention for STRIPS Implementation of
Dumbbell Experiment.

Trace Measure of Intention
Demonstration Target 1
Demonstration Intention I 1
Demonstration Intention II 1
Random 0.5555
Control Manipulation I 0.7777
Control Manipulation II 0.7777
Control Manipulation III 1
Control Baseline 0

Table 4.4: Calculated Measure of Intention for STRIPS Implementation of Prong
and Loop Experiment.

Figure 4.2a shows the distance sequence for the Demonstration Target trace,
for the thirteen-state trace graphically depicted in Figure 4.1. The graph is mono-
tonically increasing, since at every state the demonstrating agent moved farther
and farther away from the initial state, and closer to the goal state. Since at each
of the twelve states following the initial state there was an increase in the dis-
tance, the intention measure calculated from this sequence is 12/12, i.e. 1, as
seen in the first row of 4.3. This, of course, is the highest possible score, thereby
clearly indicating intention, according to our interpretation.

The same can be seen for the Demonstration Target sequence of the loop and
prong objects. Figure 4.3a shows the clear progression away from the initial state
in a seven-state sequence. This too results in an intention measure of 7/7, i.e. 1,
as seen in the first row of Table 4.4.

In the case of Demonstration Intention traces, we also get a high measure of
intention. See for example the distance sequences of the Demonstration Inten-
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tion traces in the dumbbell experiment in Figures 4.2b and 4.2c. The distance
increases along the traces, until the actor stumbles, so to speak, and takes steps
that are unproductive in bringing him nearer to the goal that would realize his
intention. This stumbling is expressed in the drop towards the end of the dis-
tance sequences. The corresponding measures of intention are therefore less
than 1, yet still high enough to communicate the presence of intention. In the
first Demonstration Intention trace we have the left hand slip off the dumbbell to
the left, resulting in a state in which the hand is closer to where it previously was,
with respect to the initial state. So there are nine out of eleven steps which in-
crease the distance, resulting in the score shown in the second row of Table 4.3.
In Demonstration Intention II, it is the right hand which slips off to the right,
bringing it to a state which is yet farther away from the initial state. So there
are ten out of eleven steps which increase the distance, as seen in the third row
of the table. High measures of intention are also achieved for the two Demon-
stration Intention traces of the prong and loop experiment shown in Figures 4.3b
and 4.3c. In fact, in this case the maximum score of 1 is reached (see the two
corresponding rows in Table 4.4), even though the acting agent failed at reach-
ing its goal. Although the agent ”stumbled” here too, the stumbling happened
in a way which resulted in a state which was farther away from the initial state
than the previous state. We see here that our measure of intention is only useful
for recognizing the presence of intention, but not for recognizing whether that
intention was successfully fulfilled or not.

So far we have seen that action sequences with underlying intention, whether
or not successfully realized, receive a high score of intention. What about action
sequences which were performed as manipulation, and not aimed at achieving
the target action? The case of the Control Baseline trace is simple—since no
movement was executed whatsoever, the distance sequence remains a flat zero
all along, as seen in Figure 4.2f for the dumbbell experiment and in Figure 4.3h
for the loop and prong experiment. The resulting intention scores are therefore
zero, as Tables 4.3 and 4.4 show.

The Control Manipulation traces necessitate a deeper inspection. While our
experiments show that the scores they achieved were generally lower than those
for the intentional traces, these scores were nevertheless relatively high, and in
one case (Control Manipulation III of the loop and prong experiment), maximal.
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Indeed, the graph of this trace shows it is monotonically increasing. How can
this be explained? Interestingly, Meltzoff’s results showed that the children in
the Control Manipulation conditions sometimes imitated the actions of the adult,
bringing the objects to the same end-state as in the demonstration. This end-
state was not the target action chosen for the experiment, yet, obviously, the chil-
dren were detecting here some other intention worth imitating. So, although the
demonstration was a manipulation with respect to the chosen target action, it was
interpreted as intentional with respect to the perceived end-state by the children.
This is more rigorously controlled and explored by Huang et al. [2002], with the
same conclusion—that the children were detecting an underlying intention, even
though it was not that which the experimenters had in mind.

For this reason we designed what we called Random traces—traces with no
underlying intention whatsoever, that have the agent move its hands about the
state-space in an undirected manner. The distance graphs for these traces fluc-
tuate, as seen in Figures 4.2d and 4.3d, which justly earn them the significantly
lower scores appearing in the respective rows of Tables 4.3 and 4.4.

45



(a) Initial state. Both hands at (1,1),
dumbbell at (5,5).

(b) Step one. Right hand moving
towards dumbbell.

(c) Step two. Right hand continuing
towards dumbbell.

(d) Step three. Right hand continu-
ing towards dumbbell.

(e) Step four. Right hand at dumb-
bell.

(f) Step five. Right hand grasping.

(g) Step six. Left hand moving to-
wards dumbbell.

(h) Step seven. Left hand continu-
ing towards dumbbell.

Figure 4.1: Dumbbell Demonstration Target Trace.
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(i) Step eight. Left hand continu-
ing towards dumbbell.

(j) Step nine. Left hand at dumb-
bell.

(k) Step ten. Left hand grasping
dumbbell.

(l) Step eleven. Pulling apart.

(m) Step twelve. Releasing one
hand.

(n) Step thirteen. Releasing other
hand.

Figure 4.1: Dumbbell Demonstration Target Trace (cont).
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(b) Demonstration Intention I
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(c) Demonstration Intention II
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(d) Random
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(e) Control Manipulation
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(f) Control Baseline

Figure 4.2: Distance as a Function of State in the Dumbbell Experiments.
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(f) Control Manipulation II

Figure 4.3: Distance as a Function of State in the Prong and Loop Experiments.
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(h) Control Baseline

Figure 4.3: Distance as a Function of State in the Prong and Loop Experiments
(cont).
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4.2 Experiment II: Surveillance Videos

The second environment in which we evaluated the utility of the proposed mea-
sure of intention for detecting the presence of intention, uses surveillance videos.
These were taken from the CAVIAR database at the University of Edinburgh’s
School of Informatics†. The next section describes the environment, followed
by a description of the results, comparing the intention of the observed data ac-
cording to the proposed measure of intention and according to human judgment.
In addition, we inspect the possibility of using the measure of intention for seg-
menting subgoals.

4.2.1 Experimental Setup

A second set of experiments was carried out in a new domain, in order to compare
the judgment of intention according to the proposed measure, to that of human
observers. We are interested in how human observers classify real-life human
movement, and whether their judgment of intention correlates with that of our
model. To test this, we used the CAVIAR video repository of surveillance videos.

4.2.1.1 The Data

The CAVIAR project contains video clips taken with a wide angle camera lens in
the entrance lobby of the INRIA Labs at Grenoble, France. In the videos, people
are seen walking about and interacting with each other. A typical screen shot
from one such video is shown in Figure 4.4. Each video comes with an XML file
of the ground truth coordinates of movement for the people seen in the video.
We selected a dozen of these movies, and cut from them clips in which single
people are seen moving about. Table 4.5 enumerates the clips and the videos in
the repository from which they were taken. Some videos had more than one clip
extracted from them, in which different characters moved about. In the XML
files, these characters are distinguished by unique numbers, named Object IDs.
These clips were shown to human subjects, while the ground truth coordinates
of the character’s movement were extracted from the XML files and fed as input

†The EC Funded CAVIAR project/IST 2001 37540, found at URL:
http://homepages.inf.ed.ac.uk/rbf/CAVIAR/.
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for calculating the intention measure. Clip number 5 was given as an example to
the subjects, and therefore does not appear in further analysis.

Figure 4.4: Typical Screen Shot from a CAVIAR Video, with Character Seen
Entering From Bottom.

Clip Number File Name XML File Name Object ID
1 Walk1.mpg wk1gt.xml 1
2 Walk2.mpg wk2gt.xml 4
3 Walk3.mpg wk3gt.xml 4
4 Walk3.mpg wk3gt.xml 2
5 Walk3.mpg wk3gt.xml 3
6 Browse1.mpg br1gt.xml 3
7 Browse2.mpg br2gt.xml 3
8 Browse3.mpg br3gt.xml 1
9 Browse4.mpg br4gt.xml 1
10 Browse4.mpg br4gt.xml 2
11 Browse WhileWaiting1.mpg bww1gt.xml 2
12 Browse WhileWaiting2.mpg bww2gt.xml 0

Table 4.5: Clip numbers with their corresponding video file name, xml file name
and object ID in the CAVIAR repository, from which they were taken.

With respect to intention, the clips we chose show movement ranging from
very deliberate (e.g. a person crossing a lobby towards an exit), to not very clear
(e.g. a person walking to a paper stand and browsing, then moving leisurely to a
different location, etc.). We compared human subjects’ judgment of the intention
of motions in these videos, to the predictions of our model.
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4.2.1.2 Applying the Measure of Intention to the Data

Let us begin by describing how we measure intention using our model. We used
the ground truth position data of the selected videos as a basis for our intention
measurements. Every frame in the video was taken as a state in the trace, with the
planar coordinates of the filmed character describing it. The Euclidean distance
was used as the distance measure. As above, for every state we calculated the
distance from the initial state, and then checked for how many of those states the
distance increased, relative to the previous state.

Figure 4.5a plots the path of movement of the observed character, in planar
coordinates, for clip number 6, which was taken from video br1gt.mpg of the
repository. The character starts moving from the left towards the right, where
he spends some time standing in place (since we are only plotting planar coor-
dinates, the amount of time spent at each point is not represented here). From
there the character turns downwards, then back upwards, once again spending
time at the same spot, and finally moving leftwards, towards the starting point.
Figure 4.5b graphs the distances of each state in the path, from the initial state.
The X axis marks the video frame number, and the Y axis measures the distance
from the initial location of the person in question. Note how for the first 300
frames or so, the graph rises gradually, corresponding to the part of the path
where the character moves away from the starting point. Where the character
stands in place, the distance graph stays more or less constant. Towards the end
of the clip, when the character moves back towards the starting point, the dis-
tance drops. The measure of intention for this movement path, as we calculated
it, was t = 0.4. Using a cutoff value of 0.5, this movement was classified as non-
intentional. The interested reader is invited to watch the video and compare it to
the graphs presented here.

4.2.1.3 Comparing to Human Judgment

These same video clips were shown to human subjects who were asked to write
down their opinion regarding the intention of the viewed character. They were
given the option of segmenting the video if they thought the character changed its
intention along the trace. Segmentation was enabled at a resolution of seconds.
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Figure 4.5: Examples from Clip Number 6.

Using Entropy to Measure Divergence of Responses. Here we faced some dif-
ficulty in the experiment design. In pilot experiments, it became clear that asking
the subjects to directly rank the ”strength of intention” of a video segment leads
to meaningless results. For instance, some subjects in pilot experiments chose to
give high intention scores to a video segment showing a person seemingly walk-
ing around aimlessly. When we asked for an explanation, the answer was that
the person in the video clearly intended to pass the time. Such an understanding
does not fit the sense of intention with which we are dealing in this study. We
thus needed to measure intention indirectly. To do this, subjects were requested
to write down a sentence describing the perceived intention of the person in the
video, typically beginning with the words ”the person intends to ...”. The idea be-
hind this is that in segments where there is clear intention, a clear answer would
emerge (for instance, ”The person intends to exit the room”); in other video seg-
ments, the unclear intention would result in more highly varied answers (e.g.,
some would write ”intends to pass the time”, while others would write ”intends
to walk”, etc.). This divergence can be measured by various means; we chose
the information entropy function as it is used in statistics to measure dispersion
of categorical data.

Using Content Analysis to Extract Categories from the Responses. Before ap-
plying this to our data, we first had to standardize the replies, which were given
as natural language answers to an open-ended question. A finite number of cate-
gories needed to be chosen and assigned to the different descriptions, in a consis-
tent and reliable way. We turned to the social sciences methodology for studying
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the content of communication, known as content analysis [Babbie, 2003], and
used this as motivation for the analysis described in the following. Two indepen-
dent coders each analyzed all the input from the subjects. From every descrip-
tion, a verb (e.g. walk, look) and a noun (e.g. location, object) were extracted,
reducing the sentence to two words, which together consisted of a unique cate-
gory. Where the two coders disagreed as to the category to be applied to a given
description, a third arbitrator decided between them. The chosen categories were
then applied to the data. For every video clip the entropy was calculated per sec-
ond and then averaged over time, producing a single entropy value for each of
the video clips.

4.2.2 Results

4.2.2.1 Measure of Intention Correlates With Human Judgment

Table 4.6 summarizes the resulting entropy values of this analysis, alongside
the intention scores as returned by our method. Figure 4.6 plots entropy versus
intention of the eleven video clips analyzed. Every point in the graph represents
one video clip, analyzed as described above to produce two values. The X axis is
the intention measure as calculated by our method, and the Y axis is the entropy
value, reached by calculating the divergence of categories across subjects per
second, averaged over time.

We calculated the correlation between the entropy and the intention, and
found it to be strongly negative at -0.685. The significance of this value was
checked using Fisher’s r to z transform. We ran a Z test to check the probability
of the null hypothesis that the entropy and the intention are uncorrelated, which
resulted in P=0.0096. We conclude that the correlation is indeed significant.

This result confirms our conjecture that our method does capture the notion of
intention, as judged by humans. This is what we were expecting to see—that the
entropy is significantly negatively correlated with the intention. The higher the
entropy of movement of a given character, the less clear that character conveyed
intention to the observing subjects, and the lower the intention calculated by our
method. The inverse is true as well—the lower the entropy of movement of a
given character, the clearer its intention was to the human observers, and the
higher the intention score achieved by our method.
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Clip Number Intention Entropy
1 0.644 0.370
2 0.552 0.622
3 0.861 0.160
4 0.636 0.730
6 0.408 0.514
7 0.366 0.483
8 0.431 0.495
9 0.449 0.871
10 0.611 0.521
11 0.481 0.879
12 0.094 0.999

Table 4.6: Measure of Intention and Entropy of Human Judgments for Video
Clips.
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Figure 4.6: Plot of Entropy vs. Intention. Correlation=—0.686.
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4.2.2.2 Using Measure of Intention for Segmenting Subgoals

While analyzing the results of the second experiment, the matter of parsing
streams of action according to sub-goals arose. Several of the clips we analyzed
clearly show changing intentions, e.g. when the character stops in mid-track,
turns around 180 degrees, and moves in the opposite direction. If a sequence of
actions is expected to have at most one possible goal, when in fact it is composed
of several sub-goals, then an observing agent behaving according to our measure
of intention would be confused. Take for example the case of a person intending
to reach one location, and having accomplished that, moves on to the goal of
returning to his original location. If we consider this to be one coherent stream
of action, with one goal, which is the resulting end-state, then obviously an agent
using this measure would come to the conclusion that there is no underlying in-
tention, since, had the person been intending to be at his original location, he
would not have taken the unnecessary and inefficient steps of moving to a differ-
ent location and then back home. If, on the other hand, it is understood that the
stream of action must first be parsed into sub-streams, then each sub-stream can
be dealt with separately, by applying the measure of intention to it. Every sub-
stream could then be seen as efficient in bringing about its respective sub-goal.

In this experiment, we allowed the participating subjects to write down more
than one intention per video clip, in accordance with the way they perceived the
intentions changing with time. However, the intention score given to a trace of
movement according to our method takes into account the complete trace from
beginning to end, without allowing for the possibility of changing intentions
along the way. We turn to this possibility now, asking how can these changing
intentions be dealt with? Instead of taking only one final intention score, we
calculated our measure at every point in the path, and inspected the changes
along the resulting graph. We wanted to see if the behavior of the graph of
intention, as measured by us, could indicate significant changes in the intention
of the observed character. If so, this could prove a useful tool for segmenting
sequences of action into subgoals.

To do this, for each video clip we examined the graph of intention and marked
the first clear change of trend in the graph. Reaching an obvious maximum, min-
imum, or plateau were considered to be clear changes in trend. At the marked
point a new subgoal was assumed found, and a new intention score was calcu-
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lated, using the previous segment’s terminating state as the new segment’s initial
state. Once again, the first change of trend was marked, and so on, until the end
of the intention graph was reached. Given the time frames at which the graph
was segmented, the corresponding points along the path of movement were indi-
cated.

Video clip number 6 is given as an example, in Figure 4.7. The plot area is
divided into alternating white and gray strips, corresponding to subgoals found
according to the process described above. In the first vertical white area, the plot
of intention begins. Where it first peaks significantly, a subgoal is parsed, and
the calculation of intention begins again, with the terminal state of the previous
segment taken as the initial state for the current segment. In the subsequent
vertical gray area, the previous segment’s intention plot is continued, so as to
demonstrate the significance of the peak, and the second segment’s intention
plot begins. Where a significant minimum is reached in it, a new vertical white
area begins, indicating the new subgoal found. In this area, again, the segment
of the previous subgoal continues, so as to demonstrate the minimum found, and
the plot of intention for the third subgoal begins. The first subgoal’s plot is no
longer shown here. And so on—every strip in the plot contains two subgoals’
intention plots—the previous and the current (except for the first strip, which
contains only the first subgoal).

Figure 4.7c shows where the points found fall along the path. Clearly, the
places where subgoals were found to begin mark significant changes of direc-
tion or movement—the segment between the ”start” point and subgoal 1 have
the character moving from left to right, between points 1 and 2 the character is
standing in place, between 2 and 3 moving down, 3 and 4 moving up, 4 and 5
standing in place, 5 and 6 moving to the right. This data is summarized textually
in Table 4.7.

Figure 4.7b shows the plot of entropy as it changes over time, with num-
bers indicating where subgoals were found. Note that the behavior of the en-
tropy graph is somewhat inverse to the behaviors of the intention graphs of the
subgoals—for the first subgoal, the intention graph is increasing, while the en-
tropy graph in that section is decreasing. For the second subgoal, the intention
decreases while the entropy increases. The third subgoal also holds this inverse
relationship, but the last 3 subgoals do not continue to show such a correspon-
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Figure 4.7: Analysis of Video Clip 6.
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Frames Seconds Coordinates Trend Character intention
1-265 1-11 (26,164)-(277,96) increases walks to ATM 0.653
265-402 11-16 (277,96)-(301,97) decreases stands at ATM 0.257
402-495 16-20 (301,97)-(278,212) increases walks down 0.774
495-590 20-24 (278,212)-(299,96) increases walks up 0.811
590-631 24-25 (299,96)-(304,93) decreases stands at ATM 0.220
631-707 25-28 (304,93)-(203,97) increases walks up 0.766

Table 4.7: Description of Subgoals Found in Video Clip 6.

dence. Perhaps this is so since those last sections are not very long, and don’t
contain enough data for the trends to come forth strongly.

Figure 4.8 depicts the same analysis applied to video clip number 7, serving
as another example of the value of the proposed measure of intention for parsing
subgoals. A textual summary of the subgoals is given in Table 4.8

Frames Seconds Coordinates Trend Character intention
1-231 1-9 (91,70)-(291,98) increasing walks to ATM 0.645
231-451 9-18 (291,98)-(306,98) decreasing stands at ATM 0.04
451-561 18-22 (306,98)-(287,0) increasing leaves ATM 0.679

Table 4.8: Description of Subgoals Found in Video Clip 7.

Another example is given in video number 3. This is a simpler example, in
which no subgoals were found. Its analysis is shown in Figure 4.9. The character
in this video moves in a straightforward manner from the bottom of the screen
to the top. Fittingly, the intention score achieved is high, and the entropy is low.
The intention graph is smooth—no clear peaks or troughs are present—and so
does not indicate any points of changing intentions. The slight change noticed
right at the beginning of the path—from moving left to moving up—is obscured
by the general noise always present at the beginning of intention graphs, until
enough data has accumulated to give a meaningful score.

While our results do indicate that the proposed measure of intention can be
useful for parsing subgoals, there are some examples in which the segmentation
is less than perfect. In some cases, subgoals are found where they don’t exist,
as in video clip number 1, shown in Figure 4.10. Table 4.9 describes the two
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Figure 4.8: Analysis of Video Clip 7.
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Figure 4.9: Analysis of Video Clip 3.
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subgoals found for this clip. In this example, there is an apparent change of cur-
vature in the path at the segmentation point, however it does not seem prominent
enough to justify parsing. Indeed, the change of trend in the intention graph is not
prominent either, so perhaps using a stricter definition for identifying changes of
trend would eliminate such false positive instances.

Frames Seconds Coordinates Trend Character intention
1-113 1-6 (244,285)-(39,132) increase walks up 0.842
113-274 6-11 (139,132)-(82,63) decrease walks up 0.503

Table 4.9: Description of Subgoals Found in Video Clip 1.

Another example is given in Figure 4.11, this time of the false negative kind,
with the description of subgoals in Table 4.10. Using our method, three subgoals
were found, while it seemed to us that the third subgoal should have been parsed
into an additional subgoal, at the sharp turn the character takes halfway through
the subgoal. Perhaps the short length of this section did not contain enough
data for such a precise cut. Another possibility is that this is another case where
more rigorous criteria for changes of trend in the intention graph might fix the
problem. Since overall our method does succeed at segmenting subgoals—as the
first few examples show—we did not go into the fine tuning of the parameters.
The exact parameters for subgoal parsing need to be found when bringing this
method down to practical implementation.

Frames Seconds Coordinates Trend Character Intention
1-344 1-15 (29,163)-(177,204) increase strolls down 0.474
344-458 15-19 (177,204)-(174,217) decrease walks around 0.404
458-509 19-21 (174,217)-(237,283) plateau walks down 0.961

Table 4.10: Description of Subgoals Found in Video Clip 11.
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Figure 4.10: Analysis of Video Clip 1.
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Chapter 5

Experiments for Evaluating
Heuristics of Intention Prediction

We turn now to the task of determining the content of the intention detected in
an observed sequence of actions, i.e., predicting the goal state which the actor
was intending to bring about by his actions.

According to the theoretical background on affordances reviewed above, we
posit that upon perception of objects in the environment, afforded goal states are
invoked in the mind of the observer. Our task, therefore, is to extract information
from the observed sequence of actions performed on the objects, in order to
determine which of the afforded goal states is the one at which the actions are
aimed.

In the following section we describe our experiment, in which human sub-
jects were asked to determine the intention underlying an observed action se-
quence. We show how the observed process of human intention recognition can
be explained according to the three values produced by the heuristics given in
Section 3.5—the prior p j, the distance d j and the intention measure r j, com-
puted for each afforded goal state g j=1,...,k. We hypothesize that choosing the
highest ranking goal according to the intention measure r j, best approximates
the preference demonstrated by the subjects participating in the experiment. The
data confirms this, as well as the fact that d j, and p j play secondary roles with
regard to this task.
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5.1 Experimental Setup

As an environment in which to evaluate our model, we chose what could be seen
as a two-dimensional version of Meltzoff’s setup: scenarios in which two geo-
metric objects exist, one stationary and the other movable. We used several pairs
of such objects. Part I of the experiment was meant to determine the various pos-
sible afforded goal configurations of each pair of objects, i.e., the g j’s, along with
their associated prior probabilities, the p j’s. This is in line with our assertion that
upon perceiving the objects, several possible goal-states would be retrieved from
the so-called affordance library of the perceiver, along with a distribution over
them. Part II of the experiment shows how the priors for these goals interact with
the two other values mentioned (distance and intention) in order to determine the
intention underlying the observed sequences of actions. We used the Euclidean
distance as our distance measure.

The experiment was run as two web applications—one for each part—and the
URL addresses were given to approximately 140 computer science undergrad-
uates, who participated in return for credit (mean age: 21.2(3.57), 112 male).
The first application consisted of a succession of nine screens, in each of which
a pair of objects was presented to the subjects: a black stationary one, and a grey
movable one. The subjects were instructed to drag the grey object to whichever
configuration seemed ”natural” to them, in relation to the black object. The lo-
cations chosen by each subject were recorded, for each pair of objects, as were
the trajectories of movement leading to those choices. The pairs of objects used
are shown in Figure 5.1, with a corresponding identification code for each.

Two weeks after the results of the first part were analyzed, the second ap-
plication was designed and implemented. It had the subjects view manipula-
tions of the grey object for five of the nine object-pairs used in the first part.
For each pair, several paths were constructed, and the grey object was animated
along those paths. The subjects were told that the animations they were viewing
were from the results of one of the subjects (”student X”) on the first part of
the experiment—student X had dragged the grey object in each pair to a specific
location, but only the first part of the trajectory was being shown. The subjects
were instructed to complete the trajectory and drag the grey object to the location
where they thought student X had intended to place it. In both applications the
order in which the screens were presented was randomized.
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(a) 1a (b) 1b (c) 2a

(d) 2b (e) 3a (f) 3b

(g) 3c (h) 4a (i) 5a

Figure 5.1: Object-Pairs and Their Identification Codes.

5.2 Results

The results of the first part of the experiment justify our understanding that non
trivial priors exist for possible goals. According to the results of the second
part of the experiment, the heuristic based on the intention measure proves most
useful for correctly predicting the intended goal. In addition to these two major
results, we also suggest using the distance measure or the prior distribution for
choosing among afforded goal states for which the intention measure is maximal,
i.e. in the case of a tie. The last point of interest arising from the results concerns
the generation of new affordances. As this is not the topic of this study, we only
briefly touch upon it at the end of the results section.

5.2.1 Existence of Non Trivial Priors for Possible Goals

The null hypothesis for the first part of the experiment would be that, having
never before seen the objects presented, the subjects would choose all possible
goal configurations with equal probability. The results, however, clearly reveal
that non trivial priors do exist for the object-pairs presented. Of course, some
object-pairs are more natural than others. For example, pair 1a begs to be config-
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ured as a house (Figure 5.2), with the grey triangle placed atop the black square,
which is presumably why this goal configuration was chosen by 96.49% of the
subjects. Other pairs also produced a clear tendency among the subjects to prefer

Figure 5.2: Most Frequent State (A) for Object-Pair 1a, with Prior 96.49%.

one configuration over another. As an example, consider pair 3a (Figure 5.3), for
which the subjects chose to place the grey circle in the middle indentation at the
bottom of the black object with 69.29% frequency, while they placed the grey
circle in the right hole with 10.71% frequency and in the left hole with 12.86%
frequency. Such choices could be due to properties such as symmetry and size,
however, we are not interested in why these preferences emerge, but rather in
the fact that they do indeed emerge. Obviously, different pairs of objects afford
different configurations, which is why we have taken the liberty to refer to these
states as ”affordances”.

Prior probabilities of states, as determined by the frequencies at which sub-
jects chose the different configurations in the first part of the experiment, are
shown in the following figures, for each of the remaining object-pairs. Capital
letters denote the states—this lettering was chosen arbitrarily, and is not ordered
by frequency. In addition, the lettering for each object-pair is independent—
there is no relationship between states of different object-pairs which happen to
have the same capital letter. Only states which were chosen by the subjects with
frequency above 3% are shown, which is why the sum of frequencies does not
always amount to 100%—states with negligible frequency are not shown.

(a) State A (69.29%) (b) State B (10.71%) (c) State C (12.86%)

Figure 5.3: Most Frequent States for Object-Pair 3a with Their Priors.
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Figure 5.4 shows the empirical priors for object-pair 2a (note that in state D—
Figure 5.4d—the grey square is placed behind the black square, thus obscured
by it). Figure 5.5 shows the priors for object-pair 1b (state E—Figure 5.5c—is
shown as an example of a configuration which was not chosen at all in this first
part of the experiment, and it will be referred to later on, in the second part of the
experiment). Figures 5.6, 5.7, 5.8, 5.9 and 5.10 show the priors for affordances
of object-pairs 2b, 3b, 3c, 4a and 5a, respectively.

(a) State A (24.56%) (b) State B (51.75%) (c) State C (3.51%)

(d) State D (7.89%) (e) State E (3.51%) (f) State F (3.51%)

Figure 5.4: Most Frequent States for Object-Pair 2a with their Priors.

(a) State A (85.82%) (b) State B (11.35%) (c) State E (0.00%)

Figure 5.5: Most Frequent States for Object-Pair 1b with their Priors.

(a) State A (68.42%) (b) State B (30.70%)

Figure 5.6: Most Frequent States for Object-Pair 2b with their Priors.
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(a) State A (5.63%) (b) State B (77.46%) (c) State C (11.27%)

(d) State F (1.41%) (e) State I (0.00%) (f) State J (0.00%)

Figure 5.7: Most Frequent States for Object-Pair 3b with Their Priors.

(a) State A (30.22%) (b) State B (17.99%) (c) State C (48.20%)

Figure 5.8: Most Frequent States for Object-Pair 3c with Their Priors.

(a) State A (19.15%) (b) State B (68.09%) (c) State C (3.55%)

(d) State D (4.96%)

Figure 5.9: Most Frequent States for Object-Pair 4a with Their Priors.

(a) State A (41.23%) (b) State B (23.68%) (c) State C (33.33%)

Figure 5.10: Most Frequent States for Object-Pair 5a with Their Priors.
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5.2.2 Intention Measure for Ranking Goals

Of the three heuristics proposed, the one guided by our intention measure proves
to be most informative for inferring the intended goal. Ranking the candidate
goals from Part I, g j, according to their intention measures, r j, and choosing
the highest ranking one, results in the same goal most frequently chosen by the
subjects in Part II. In other words, the goal with the highest intention measure
coincides with the goal most frequently chosen by the subjects. This observation
holds for all five object-pairs and their respective paths of movement demon-
strated in the experiment, except for one case, as will be shown in the following.

Before going into the detailed quantitative results, we first present a qualita-
tive summary, in Figure 5.11. This figure shows the success rate of each of the
heuristics, at matching the goal state most often chosen by the subjects as the
intended one.
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intentionality distance prior

Figure 5.11: Success Rate of Each Heuristic at Predicting the Correct Goal.

The details of these matchings are given in Table 5.1. Every row in the table
corresponds to one demonstration of movement—identified by an object-pair
and a path. For each such demonstration, the goals with the highest rank are
given, according to each measure. The column titled ”Most Frequent” gives
the goal state most frequently chosen by the subjects in Part II. This is the goal
state we are attempting to guess. The next column, titled ”Maximal Intention”,
gives the goal state achieving the highest intention measure. Next, ”Minimal
Distance”, gives the goal state which has the shortest distance from the terminal
state of the observed path. And last, ”Maximal Prior”, gives the goal state chosen
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most frequently by the subjects in Part I (this prior is constant across all paths of
a given object-pair). In several instances, more than one goal state achieved the
highest value for a given measure. In those cases, all those goal states are given,
separated by commas.

Note that in both parts of the experiment we measured the frequencies of
choices of the various resulting goal states—in the first part, given the object-
pairs alone, and in the second part, given the object-pairs being manipulated in
movement. When referring to the results of Part I, we call these frequencies
priors. They should not be confused with the frequencies of choice from Part II,
which are the results of the observed behavior which we are attempting to match.

(Object-Pair, Path) Most Frequent Maximal Intention Minimal Distance Maximal Prior
(1b, I) B B A A
(1b, II) B B B A
(1b, III) A A B A
(3a, I) C C A A
(3a, II) C C C A
(3a, III) A A,B A,C A
(3b, I) J A C B
(3b, II) A A C B
(3b, III) B B,C C B
(3c, I) B B C C
(3c, II) B B C C
(3c, III) A A,B,C A C
(4a, I) A A B B
(4a, II) A A A B

Table 5.1: Most Frequently Chosen Goal State vs. Choice According to Heuris-
tics per Object-Pair and Path.

Note how column ”Maximal Intention” matches column ”Most Frequent” in
all but one of the total 14 demonstrations (object-pair 3b, Path I), while column
”Minimal Distance” does not match in nine of them. ”Maximal Prior” matches
in only three of the 14 demonstrations. This analysis summarizes the findings
and justifies our conclusion that, of the three heuristics proposed, the intention
measure is best at predicting the intended goal. We next go into the details of the
results, pointing out various aspects of the findings along the way.
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Object-Pair 1b. For object-pair 1b, three paths were shown to the subjects (Fig-
ure 5.12). Paths I and II share a common initial state, with Path II continuing
on past the terminal state of Path I. Paths II and III share a common terminal
state, and differ with regards to their initial state. The three afforded states most
frequently chosen by the subjects in Part II were A, B and E (refer to the above-
mentioned Figure 5.5), and the frequencies according to which they were chosen,
for each path, are given in Table 5.2.

(a) Path I (b) Path II (c) Path III

Figure 5.12: Paths for Object-Pair 1b.

state\path I II III
A 16.67 8.33 90.91
B 65.15 78.79 1.52
E 9.85 9.85 3.79

Table 5.2: Frequencies of Choices for Object-Pair 1b.

We now compare these empirical results for this object-pair to the prediction
based on ranking according to the intention measure. Note that we calculate the
intention measure only for states A and B, since these are the only states which
achieved significant positive priors in the first part of the experiment (85.82%
and 11.35% respectively, as shown in Figure 5.5). These values of the intention
measure are shown in Table 5.3. The results show that for each path, the state
scoring the highest intention is also that which was most often chosen by the
subjects. Noticeably, by manipulating the trajectory, we were able to cause the
subjects to infer a goal which had a relatively low prior probability.

It is interesting to further compare paths I and II: the results show that the
longer Path II left less room for ambiguity in the subjects’ decision between
states A and B, so that although state A was not chosen with highest frequency
for either path, its frequency of choice for Path I was higher than for Path II.
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state\path I II III
A 0.996 0.949 0.999
B 1.000 1.000 0.973

Table 5.3: Measure of Intention for Object-Pair 1b.

The measure of intention also reflects this—state A received a lower value of
intention in Path II than in Path I.

Another point worth noting is that both states received high measures of in-
tention for all three paths, and the differences between these values, while sig-
nificant, are not great. This does not reflect the substantial gaps between their
respective values of frequency of choice. For example, in Path III, the measure
of intention of state A is greater than that of state B by 0.026%, while the fre-
quency of choice of state A is greater than that of state B by 89.39%. Thus, while
ranking according to this intention measure preserves the order of frequency of
choice, the relative weights of the values do not correspond. However, since for
the task at hand we are only interested in choosing the highest ranking afforded
state, we need not be concerned about normalization.

Object-Pair 3a. Object-pair 3a supports these results as well. Here too, three
paths were shown to the subjects (Figure 5.13). Path II begins as Path I does, and

(a) Path I (b) Path II (c) Path III

Figure 5.13: Paths for Object-Pair 3a.

continues further. Paths II and III end at the same position, but begin at different
ones. Table 5.4 presents the empirical results for this object-pair—only the three
most frequently chosen states are shown, since the others achieved negligible
frequencies. The states themselves are depicted in Figure 5.3.

Table 5.5 gives the calculated measure of intention for each of the three paths
and the three most frequently afforded states (from the first part of the experi-
ment). Ranking the possible intended states according to this measure, we arrive
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state\path I II III
A 14.18 3.73 79.85
B 0.00 0.00 16.42
C 78.36 92.54 0.75

Table 5.4: Frequencies of Choices for Object-Pair 3a.

at results quite close to those of our subjects’. The only difference is in Path III,
where states A and B both achieve the maximal intention score of 1. We later
show what information can be used to break such a tie.

state\path I II III
A 0.98 0.79 1.00
B 0.94 0.72 1.00
C 1.00 1.00 0.75

Table 5.5: Measure of Intention for Object-Pair 3a.

Object-Pair 3b. Results for object-pair 3b are shown next. Figure 5.14 depicts
the three different paths shown to the subjects. Here, the movable object in all
three paths starts out at the same position. Path II begins as Path I, and continues
a bit farther, while Path III moves in a slightly different direction from the start.
Table 5.6 shows the subjects’ choice of goal states for each of the paths. Ta-
ble 5.7 shows the measure of intention for each of the goal states which achieved
significant priors (above 3%) in the first part.

Notice that three new goal states appear at this stage, in Table 5.6—goals
which were not chosen with significant frequency in the first part of the experi-
ment (or not at all), yet in the second part they were. In Paths II and III, this does
not affect our prediction according to the measure of intention, since the goal
states achieving the highest rank according to this measure turn out to be one of
the original three which achieved high priors (A, B, C). However, in Path I, the
original three goal states, A, B and C are each chosen by the subjects in this sec-
ond part of the experiment with frequency below 20%. Only goal state J, which
in the first part of the experiment was not chosen by any of the subjects, received
the most ”votes” here—25.18%. This is the only case in which our measure of
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intention fails to predict the correct goal state. We will return to this issue when
discussing dealing with new affordances.

(a) Path I (b) Path II (c) Path III

Figure 5.14: Paths for Object-Pair 3b.

state\path I II III
A 13.67 41.73 0.00
B 18.71 7.19 59.71
C 14.39 0.00 36.69
F 7.19 28.06 0.00
I 17.27 0.72 0.72
J 25.18 18.71 0.00

Table 5.6: Frequencies of Choices for Object-Pair 3b.

state\path I II III
A 0.999997339 0.999988829 0.998315324
B 0.998137457 0.99167065 1
C 0.988936353 0.484244163 1

Table 5.7: Measure of Intention for Object-Pair 3b.

Object-Pair 3c. The fourth of the object-pairs presented to the subjects was 3c.
The three paths for this pair are given in Figure 5.15. Here, Path II is a short
”version” of Path I, while Path III shares nothing in common with them. The
frequencies of the subjects’ choices are given in Table 5.8, and the measures
of intention in Table 5.9. For Paths I and II, the highest ranking goal state ac-
cording to the measure of intention matches the one most frequently chosen by
the subjects. However, for Path III, all three candidate goal states achieved the
maximal value of intention. As mentioned above, we will discuss strategies for
disambiguating between such tied goal states in the following.
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(a) Path I (b) Path II (c) Path III

Figure 5.15: Paths for Object-Pair 3c.

state\path I II III
A 8.09 11.03 72.79
B 83.82 66.18 8.82
C 2.94 16.91 15.44

Table 5.8: Frequencies of Choices for Object-Pair 3c.

state\path I II III
A 0.994128317 0.998505671 1
B 0.999995551 0.99998616 1
C 0.718324618 0.948277727 1

Table 5.9: Measure of Intention for Object-Pair 3c.

Object-Pair 4a. Object-pair 4a was the last of the five object-pairs used in this
part of the experiment. The two paths for this pair are given in Figure 5.16, and
the resulting frequencies for the four most chosen goal states are in Table 5.10.
For both paths, state A was most often chosen even though its prior is signifi-
cantly lower than that of state B. Calculated measures of intention are given in
Table 5.11, and once again, the highest ranking goal state matches that which
was most often chosen by the subjects.

(a) Path I (b) Path II

Figure 5.16: Paths for Object-Pair 4a.
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state\path I II
A 69.29 85.00
B 19.29 2.14
C 1.43 2.14
D 2.14 1.43

Table 5.10: Frequencies of Choices for Object-Pair 4a.

state\path I II
A 0.999991597 0.999999761
B 0.918639653 0.463140117
C 0.972263947 0.791587525
D 0.992876392 0.950940113

Table 5.11: Measure of Intention for Object-Pair 4a.

5.2.3 Breaking Ties

The above analysis has shown that choosing the goal state with the highest inten-
tion measure will almost always correctly predict the intended goal state in a way
which matches human predictions. However, in three cases (Path III of object-
pair 3a, Path III of object-pair 3b, and Path III of object-pair 3c), more than one
goal state achieved the highest value of intention, according to our measure. In
all these cases, one of the tied goal states coincides with the goal state most fre-
quently chosen as the intended one by the subjects. We will now discuss possible
ways of decreeing which of the tied goal states should be chosen as the intended
one.

While the distance measure and the prior values of the goal states proved to
be inferior to the intention measure at the task of predicting intention, we propose
that they can play a secondary role, for breaking ties. Given tied goal states, we
can rank them according to their distance measures and according to their priors.
Which of the two is better at breaking the ties and decreeing the intention in
accordance with the subjects’ choices?

Table 5.12 shows the highest ranking goal states for these three cases, where
for the ”Minimal Distance” and ”Maximal Prior” column, the ranking was only
between those goal states ranked equally maximally according to ”Maximal in-
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tention”.

(Object-Pair, Path) Most Frequent Maximal intention Minimal Distance Maximal Prior
(3a, III) A A,B A A
(3b, III) B B,C C B
(3c, III) A A,B,C A C

Table 5.12: Most Frequently Chosen Goal State vs. Choice According to Heuris-
tics per Object-Pair and Path, for Tied Goal States.

Inspection of this table does not resolve the issue. For the tied goal states
of the case of object-pair 3a (A and B), both the distance measure and the prior
prefer goal state A, which is what the subjects most often preferred. For the tied
goal states of the case of object-pair 3b (B and C), the distance measure wrongly
ranks C over B, while the prior correctly ranks B first. The inverse is true of the
tied goal states of the case of object-pair 3c (A, B and C): the distance measure
correctly decrees goal state A as the intended one, while the prior wrongly prefers
C over A.

Nevertheless, it seems to us that the distance measure should be used for
breaking ties. This, for the simple reason that it contains more information than
the prior does—it takes into account the terminal state of the observed trajectory
of motion, while the prior relies only on the affordances inherent in the objects
themselves, regardless of the intentional manipulation performed on them. In
addition, referring back to Figure 5.11, note that overall, distance was a better
predictor of intention than prior.

Numerical details of the calculation of distance measure for each object-pair
and each path, are given in the following Tables 5.13, 5.14, 5.15, 5.16, and 5.17.
Note that the numbers given are not the absolute distance of the terminal state
from the goal state, but rather that distance, divided by the total length of the
path. This is for normalization purposes, and does not affect the relative ranking
of the goal states.

5.2.4 Dynamic Generation of New Affordances

The one case in which our measure of intention failed at predicting the intended
goal state occurred in the first path of object-pair 3b. Since the measure of in-
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state\path I II III
A 0.671867777 0.161047671 0.133559308
B 0.673362408 0.123362611 0.101528092
E 0.627397208 0 0

Table 5.13: Distances for Object-Pair 1b.

state\path I II III
A 0.73 0.29 0.38
B 0.79 0.48 0.59
C 0.78 0.28 0.38

Table 5.14: Distances for Object-Pair 3a.

state\path I II III
A 0.875117165 0.625354683 0.876706556
B 0.855813708 0.57024362 0.857142857
C 0.5 0.26550759 0.5

Table 5.15: Distances for Object-Pair 3b.

state\path I II III
A 0.505994833 0.821498 0.62962963
B 0.409780754 0.787669299 0.72972973
C 0.340439936 0.686763288 0.836065574

Table 5.16: Distances for Object-Pair 3c.

state\path I II
A 0.792008403 0.201331258
B 0.668779763 0.358788311
C 0.795203728 0.359743257
D 0.844938759 0.429732538

Table 5.17: Distances for Object-Pair 4a.
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tention is only calculated for those goal states which received a significant prior
(above 3%) in the first part of the experiment, goal state J, the one voted most
likely to be the intended goal, was not even considered. Had it been considered,
its value of intention would have competed with that of goal state A, and then
ties would have had to be broken, as discussed above. However, when using the
intention measure within our framework for predicting the intended goal, we can
only take into account afforded goal states—as determined by their priors.

This situation hints at the preliminary stage of acquiring affordances. While
for the purposes of this study we assume a library of affordances already ex-
ists, along with a prior distribution over them, obviously, this assumption is not
entirely correct. New affordances can be dynamically generated based on the ob-
servation sequence, and the perceived intention plays a role in their generation.

To see this, note that the failure of correctly predicting goal J in the first
path of object-pair 3b demonstrates a new affordance being ”born”—although
the goal state J was not chosen by any of the subjects as a possible configuration
for object-pair 3b during the first part of the experiment, when presented with a
display of intentional movement which did not seem to be aimed at any of the
high-prior goal states (A, B or C), a new goal state somehow afforded itself to the
observers.

The same can be seen in the case of object-pair 1b. There, state E achieved
a prior of zero during the first part of the experiment, yet, in the second part of
the experiment it was chosen with significant frequency (9.85% in each of Paths
I and II, and 3.79% in Path III). However, in this case, this phenomenon of a
new afforded state being ”born” did not affect the performance of the prediction
process, as compared to the results of the second part of the experiment, since,
while this new goal state was chosen relatively often, it was not often enough
to overcome the frequency of choice of the intended goal state—one which had
achieved a high prior in the first part of the experiment.

In accordance with this, a complete model of the cognitive ability of goal
prediction would have to take into account the process of affordance generation,
and not rely only on those affordances already present in the repertoire of the
observer. As crucial as this is for completing the picture, since it is an entirely
different area of study, worthy of its own research, we do not go into it here. We
only point out that even when leaving out this important ability of affordance
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generation, the process we described was able to correctly predict the intended
goal with close to 93% accuracy.

84



Chapter 6

Discussion and Future Work

Several points pertaining to the above-presented results deserve further consider-
ations. Some of them clarify and justify the developed model, and some of them
are left for future research. We conclude with a short summary of what we hope
to be the contribution of this work.

6.1 Different Measures of Intention

Two related, but different, problems were addressed in this work. The first was
the problem of determining whether an observed sequence of actions was being
performed with an intention in mind. To this end, the measure t was proposed.
The second problem concerned the intended goal at which the sequence of ac-
tions was being directed. For this, the measure r was proposed. The question
begs to be asked: could not one unified measure be devised, so as to solve both
problems? After all, both measure claim to capture a sense of intention.

In order to answer this question, we present a summary of the two problems
and their respective measures of intention, side by side, in Table 6.1. This pre-
sentation will assist in the understanding of the critical differences between the
two problems, and will explain the necessity of using two different measures of
intention for solving them.

For the solution of the first problem, a high enough value of t (given some
threshold) indicates intention. In essence, what this t measures, is the proportion
of states which are more distant from the initial state, compared to the previous
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First Problem Second Problem
Problem: Determine whether the

observed sequence is
intentional or not

Choose from among
several possible af-
forded goals, the
one goal most likely
intended by the per-
forming agent

Input Arguments: s0, ...,sn s0, ...,sn,g j=1,...,k

Intention Measure: t = |{si:di>di−1}n
i=1|

n r j=1,...,k =
dist(s0,g j)

∑n
i=1 dist(si−1,si)+dist(sn,g j)

Table 6.1: Summary of the Two Problems and Their Respective Measures of
Intention.

state. That is, it captures the notion of rationality in the sense of consistency in
moving away from the initial state. In the case of intention, it is expected that the
actions will move the agent consistently farther and farther away from the initial
state, towards its goal (unknown to the observer at this stage).

For the solution of the second problem, the goal g j with the highest measure
r j will be chosen as the goal intended by the agent (with possible fine tuning ac-
cording to other heuristics). This measure conveys how efficiently the observed
sequence can reach the goal state, when the path is extended to the goal (denom-
inator of r j), compared to the most efficient way of reaching the goal from the
initial state (numerator of r j).

With this summarizing comparison at hand, several reasons for choosing
measure t for the first problem, and measure r for the second, can be proposed,
along with an explanation of why using one instead of the other will not produce
satisfactory results.

6.1.1 Different Input Parameters

For the first problem, we do not know whether or not there is a goal state, let
alone what that goal state is. Therefore, we cannot ask how efficiently the goal
state can be reached (which is what the second measure deals with). The termi-
nal state, at this stage, cannot be used as a possible goal state, since the sequence
might be intentional, yet fail at bringing about the intended goal, in which case

86



measuring the efficiency of reaching the failed terminal state would be mislead-
ing. So, instead of looking forwards and asking whether the agent is proceeding
efficiently towards some state (which is what we do for the second problem), we
look backwards and ask whether the agent is consistently proceeding away from
the initial state. This explains why the second measure should not be used for
the first problem.

In essence, this difference arises from the simple fact that the two problems
deal with different input. While the first problem takes only the path of observed
motion as input, the second problem considers the possible afforded goals as
well. Of course, it could be suggested to take these afforded goals into account
already at the first stage, however, choosing among several possible goals before
knowing yet whether or not any such goal in fact exists, would be conceptually
wrong. This is so since in the case of unintentional action, returning as an answer
a goal claimed to be the intended goal, would obviously be misleading.

6.1.2 Absolute vs. Relative Values

In addition, for the first problem, we have one observed sequence of actions,
which must be analyzed with regard to itself only. This, as opposed to the case in
the second problem, where we have several sequences—the observed sequence
extended to each of the possible goal states. These sequences can be compared
to each other, as far as their efficiency in bringing about their goals. In other
words, in the first problem one absolute value is produced (the intention of the
observed path of motion), while in the second problem several relative values are
produced (one for each afforded goal state).

Consider for example the schematic depiction in Figure 6.1 of an observed
path of motion, with three possible goals and their respective extensions of the
path to them. According to the first measure, all three paths (from s0 through
sn to each of g1, g2 and g3) will receive the maximal value of 1, since at every
point along the path the distance from s0 increases, for all the goals. For the first
problem, this would be considered a satisfactory result, since, indeed, all three
paths display intention. Yet, for differentiating between the goals with regard to
their likelihood of being the intended one, the first measure is not strong enough.
However, according to the second measure, goal g2 will be scored highest, since
it is reached by the most efficient way from the initial state, as opposed to the

87



Figure 6.1: Schematic Path of Motion with Three Possible Goals.

two other goals, for which more efficient paths exist. This explains why the first
measure cannot be used for the second problem.

6.1.3 Enabling Parsing of Subgoals

An added benefit of using the first measure for the first problem is the ability to
parse the sequence of actions into subgoals, according to changes in the trend
of the intention graph, as discussed above, in 4.2.2.2. This is enabled due to the
fact that this measure incorporates information about the time—by dividing by
the number of states in the sequence, which can be thought of as the number of
time steps, given that one action is performed at each time step.

Consider for example the case of an agent starting out at s0, moving towards
location si, lingering there for a while, and then continuing to another location
sn. This is presented schematically in Figure 6.2. Applying the second measure
here for the first problem, would indicate an intentional sequence (with the goal
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Figure 6.2: Schematic Path of Motion with Agent Lingering at si.

of reaching sn). Yet, applying the first measure would produce a graph of inten-
tion which rises towards si, then drops as time continues yet the distance from
the initial state remains constant, then once again increases as the agent moves
towards sn. It is these changes of trend which would enable parsing this sequence
into two subgoals, si and sn.

It is inherent to the specification of the first problem that time be taken into
account, while for the second problem this is not necessary—the prefix of the
path (s0 to sn) is already determined to be intentional by the first stage, and
remains fixed for each of the possible goals—to which the paths are extended in
the optimal way, without wasting time, which means that time is irrelevant here.
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6.2 The Role of Repetition

In Meltzoff [1995]’s original experiment, children were shown to be able to
predict the intended goal in two conditions: when the goal was successfully
achieved (Demonstration Target), and when the goal was attempted but failed
(Demonstration Intention). According to these results, perceived intention is
enough for predicting the goal. Follow-up studies by Meltzoff et al. [1999] have
shown that one failed attempt demonstration was not enough to produce imi-
tation by the observing children, as opposed to one successful demonstration,
which was sufficient. According to this account, when dealing with failed goals,
repetition is necessary for the process of intention recognition.

The question remains as to which of the two stages in the recognition process
makes use of the information carried by repetition. When the failed intention
was displayed only once, did the children fail to imitate since they did not detect
intention (first stage of intention detection), or did they detect intention yet failed
to imitate since they were not able to infer the intention from the insufficient
observations (second stage of intention prediction)?

For each of these possibilities, the repetition can be explained as playing a
specific role. If the repetition is relevant for the first stage of intention detection,
it can be seen as playing an enhancement role, strengthening the measure of in-
tention more and more upon each observation, finally driving it over the required
threshold for determining the presence of intention. Such mechanisms are famil-
iar in neurophysiology—single neurons, and consequently the output of neural
networks, have thresholds which cause the system to fire only when the stimulus
is strong enough. This also fits with the intentionality theory of Heider [1958],
which points at persistence as one of the main characteristics of intentional ac-
tion. Our measure for intention detection returns a value in the continuous range
of [0,1], which can be binarized by a threshold, as described in Section 3.2.

If, on the other hand, the repetition is relevant for the second stage of inten-
tion prediction, it fits into the role that equifinality plays in inferring intended
goals. The principle of equifinality, as mentioned in Section 2.2.2, states that
when attempting to realize an intended goal, the actor will vary his actions, de-
pending on the environmental constraints. Indeed, in Meltzoff [1995]’s original
experiment, the three failed attempts were usually not exact copies of each other,
but rather differed in such aspects as the initial state or the path taken to reach
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the goal. As such, each demonstration could serve as an additional clue in the
quest of intention prediction, while only one clue might not be sufficient.

Other follow-up studies have been performed in an attempt to clarify var-
ious aspects of the process of intention recognition, among them, the role of
repetition. Huang et al. [2002] came up with a seemingly contradicting finding.
In their study, they showed children a stimulus enhancement demonstration, in
which the adult performed a sequence of actions which called the observer’s at-
tention to those parts of the objects relevant to the goal, by bringing them close
to each other. This has been proposed as one of the possible clues for predicting
intention (”spatial contiguity”, Section 2.4). According to the description of the
action sequences, to the viewer, the Stimulus Enhancement condition would look
the same as the Demonstration Intention condition. Yet, in Huang et al. [2002]’s
experiment the results showed that one Stimulus Enhancement demonstration
was enough for correctly predicting intention, as opposed to Meltzoff [1995]’s
one failed attempt demonstration, which did produce imitation by the observing
children. How can this discrepancy be explained?

Huang (personal communication) suggests the it might not be the repetition
itself which plays a role here, but rather the exposure time. While all three
Demonstration Intention sequences took 20 seconds to display altogether, a sin-
gle one took only a third of that. On the other hand, a single Stimulus Enhance-
ment demonstration took the full 20 seconds to display (including the initial state
and restoration to the initial state at the end of the demonstration). Therefore, the
failure of the children to reproduce the target act after one failed attempt in Melt-
zoff’s experiment might be due to insufficient exposure time. If this is so, it can
be concluded that repetition does not truly play a role in the stage of intention
prediction.

In our experiments, in the second stage of intention prediction, we did not
make available the information carried by repetition. Rather, the viewers were
expected to predict the intention given only one observed sequence of actions.
According to the above, for the second stage this could be justified by the fact
that repetition is not relevant for intention prediction. Indeed, the results support
this.

For the first stage of intention detection, there were two different experi-
ments. In the second experiment using surveillance videos, the viewers were
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allowed to play the video clips as often as they wanted, and this was not con-
trolled or monitored. However, in the first experiment which simulated Meltzoff
[1995]’s, the output was given as a single value, which was high enough to cross
the predetermined threshold after only one ”viewing”. In order to incorporate
the mechanism of repetition, the threshold could simply be made higher, and an
accumulating value could be used, such that only three repeated attempts would
drive the value over the threshold.

6.3 Determining the Point of Failure

According to our model, once failure has been determined (at the stage of Suc-
cess Detection, Section 3.4), the process of Intention Prediction kicks in. For
this, the observed sequence of actions is extended to each of the possible af-
forded goals, and each of these is compared to the optimal sequence, from the
initial state to the respective goal. This was described in detail above (Section
3.5). It is worth noting that the process can be refined if the action sequence
is not extended from the (failed) end-state, but rather from the point at which
failure commenced.

How can the point at which failure commenced be identified? Once again,
the Principle of Rational Action, as it is captured by our measure for intention
detection, can be utilized. The measure of intention can be calculated for every
state along the trace of observed action, and the resulting behavior of the result-
ing graph can be analyzed. A noticeable point at which the graph significantly
dips, towards the end of the trace (assuming the action was halted close to where
the failing began), conveys a meaningful drop in intention, and can be taken as
a breakpoint at which failure commenced. Calculating the measure of inten-
tion detection through this breakpoint, instead of through the observed end-state,
would result in a more accurate hypothesis regarding the intended goal.

6.4 False Beliefs and Environmental Constraints

In this work we assumed there were no environmental or psychological con-
straints which had to be taken into account. Environmental constraints could be,
for example, physical obstacles. Dealing with these can easily be incorporated
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into our model: the distance function used by the measures of intentionality must
simply be adapted so that it captures the information regarding obstacles. Thus,
for example, when using the Euclidean distance, instead of measuring the direct
distance between two points, the distance would be measured by a path which
circumvents the obstacle in the most direct way possible.

By psychological constraints we are referring to the problem of false beliefs.
As mentioned in Section 2.2.2, the Principle of Rational Action on which our
measure of intentionality were based, stems from Gergely and Csibra [2003]’s
teleological stance. This stance would not necessarily be able to deal with in-
terpretation of actions which is based on false beliefs. It would be interesting to
attempt to expand our model to include such cases, and observe if and how the
model would then be able to handle them.

6.5 Summary

In this work we have presented a cognitive model of human intention recognition.
Its main contribution is meant to be, firstly, in the explanation of the process as
a whole and the interaction between the modules composing it. We have tried to
justify this with reference to the large body of research which has accumulated
on the topic of intention in the field of psychology.

Secondly, we elaborated on two of the core modules, those of intention detec-
tion and intention prediction, describing a way to translate psychological prin-
ciples, such as the Principle of Rational Action, affordances, and stimulus en-
hancement by spatial contiguity, into measures and concepts which can be com-
putationally implemented. These translations were evaluated in comparison to
human judgment of intention, proving their validity and utility at solving the task
at hand.

To summarize, the contributions of this dissertation are:

• A proposal of a comprehensive model relating all the necessary compo-
nents which play a part in the process of intention recognition.

• Introduction of measures of intention which are used for detecting the pres-
ence of intention in a sequence of observed actions, and predicting their
intended outcome.
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• Devising experimental methods for testing these measures of intention,
and comparing their usefulness at the task at hand to human performance.

This research can be taken forward on several fronts. The model as is can
be implemented in a software of hardware agent, along with other cognitive and
social skills, and its performance evaluated. At the same time, the model can be
expanded to deal with false beliefs and pretense, as well as static and dynamic
environmental constraints. These are only a few of the different directions future
research can follow, as elaborated above.

While there is still some way to go in order to render the ideas presented here
into a full working implementation, we believe this work greatly advances the
current understanding of the process of intention recognition. As such, we hope it
will be of interest and of use to researchers in the multidisciplinary communities
dealing with intention recognition.
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