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Abstract

Autonomy implies robustness. The use of unmanned (autonomous) vehicles is appealing for
tasks which are dangerous or dull. However, increased reliance on autonomous robots increases
reliance on their robustness. Even with validated software, physical faults can cause the con-
trolling software to perceive the environment incorrectly, and thus to make decisions that lead to
task failure.

Anomaly detection can also be applied to medical monitors; alarms will be raised whenever
the values of the measurements of the patient are anomalous with respect to the patient’s current
condition. This anomaly detection is particularly useful for medical devices that monitor patients
in recovery after a surgery, where the assigned nurses or physicians are not near to watch the
monitor.

Model-based diagnosis and fault-detection systems have been proposed to recognize failures.
However, these rely on the capabilities of the underlying model, which necessarily abstracts away
from the physical reality of the robot.

We present two novel, model-free, domain independent approaches for detecting anomalies
in unmanned autonomous vehicles, based on their sensor readings (internal and external). Both
approaches use the familiar Mahalanobis Distance for the online anomaly detection. The first
approach uses an offline training process. With this approach, we show the importance of a
training process, which enables the Mahalanobis Distance to detect anomalies successfully. The
second approach uses an online training process, in a way that is light-weight, and is able to take
into account a large number of monitored sensors and internal measurements. These properties
make the approach a “plug & play” anomaly detection mechanism for different robotic platforms.
We demonstrate a specialization of the Mahalanobis Distance for robot use, and also show how
it can be used even with very large dimensions, by online selection of correlated measurements
for its use.

We empirically evaluate these contributions in different domains: commercial Unmanned
Aerial Vehicles (UAVs), a vacuum-cleaning robot, a high-fidelity flight simulator, and an elec-
trical power system. We find that the online Mahalanobis distance technique, presented here, is
superior to previous methods.



Chapter 1

Introduction

1.1 Anomaly Detection
The use of unmanned vehicles and autonomous robots is appealing for tasks which are dangerous
or dull, such as patrolling [1], aerial search [12], rescue [4] and mapping [29]. However,
increased reliance on autonomous robots increases our reliance on their robustness. Even with
validated software, physical faults in sensors and actuators can cause the controlling software to
perceive the environment incorrectly, and thus to make decisions that lead to task failure.

This type of fault, where a sensor reading can be valid, but invalid given some operational or
sensory context, is called contextual failure [6]. For instance, a sensor can get physically stuck
such that it no longer reports the true value of its reading, but does report a value which is in the
range of valid readings.

Autonomous robots operate in dynamic environments, where it is impossible to foresee,
and impractical to account, for all possible faults. Instead, the control systems of the robots
must be complemented by anomaly-detection systems, that can detect anomalies in the robot’s
systems, and trigger diagnosis (or alert a human operator). To be useful, such a system has to
be computationally light (so that it does not create a computational load on the robot, which
itself can cause failures), and detect faults with high degree of both precision and recall. A too-
high rate of false positives will lead operators to ignoring the system; a too-low rate makes it
ineffective. Moreover, the faults must be detected quickly after their occurrence, so that they can
be dealt before they become catastrophic.

Our method can also be applied to medical medical monitors, where anomalous values of
monitored attributes (such as heart rate) can be detected. This anomaly detection is particularly
useful for medical devices that monitor patients in recovery after a surgery, where the assigned
nurses or physicians are not near to watch the monitor, and should attend the patient if something
goes wrong.

In this thesis, we focus on anomaly detection methods for robots. We present two novel
approaches for detecting anomalies in the behavior of UVs, using the Mahalanobis distance [19].
We make two contributions. First, we argue that in monitoring robots and agents, anomaly
detection is improved by considering not the raw sensor readings, but their differential. This is
because robots act in the same environment in which they sense, and their actions are expected
to bring about changes to the environment (and thus change to their sensor readings). Second,
we demonstrate the online use of the Mahalanobis distance—a statistical measure of distance
between a sample point and a multi-dimensional distribution—to detect anomalies. The use of
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Mahalanobis distance is not new in anomaly detection; however, as shown in this thesis, its use
with the high-dimensional sensor data produced by robots is not trivial, and requires determining
correlated dimensions.

The first approach consists of a pre-processing phase which finds dependencies between
different internal sensors on the vehicles. This dependency detection (DD) phase uses an effi-
cient search method—developed for data-mining applications and described in [21]—to identify
sub-groups of variables that are statistically dependent (i.e., their values changes together in pre-
dictable ways). The results of this phase are therefore several distinct groups of variables—each
of much smaller number of dimensions. The second phase, taking place during the execution of
the mission, uses the Mahalanobis distance to identify anomalous values in each of the smaller-
dimensional groups of variables.

We provide results of extensive experiments conducted using data from commercial UAVs,
and in laboratory mobile ground robots. In the experiments, we investigate the efficacy of this
approach in detecting anomalies in the UVs’ behavior. We also demonstrate the critical role of
the first phase.

The second approach uses an online training process that is light-weight, and enables the
Mahalanobis Distance to take into account a large number of monitored sensors and internal
measurements, and detect anomalies with high precision. While our first approach relied on
offline training, to do this, we introduce the use of the lightweight Pearson correlation measure
to do this. Taken together, the two contributions lead to an anomaly detection method specialized
for robots (or agents), and operating completely on-line.

To evaluate these contributions, we conduct experiments in four different domains:

• We utilize actual flight-data from commercial Unmanned Aerial Vehicles (UAVs), in
which simulated faults were injected by the manufacturer.

• data from the RV-400 vacuum cleaning robot that was subjected to physical faults.

• The Flightgear flight simulator, which is widely used for research [10, 14, 24] and is able
to simulate real faults.

• An Electrical Power System (EPS), which simulates the functions of a typical aerospace
vehicle power system, provided by the Advanced Diagnostics and Prognostics Testbed
(ADAPT) lab at the NASA Ames Research Center [15].

In all, we experiment with variant algorithms, and demonstrate that the online Mahalanobis
distance technique, presented here, is superior to previous methods. The experiments also show
that the specialization for robots also improves competing anomaly detection techniques, and is
thus independent of the use of the Mahalanobis distance.
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1.2 Thesis Layout
Chapter 2: Background

In Chapter 2 we provide the background for the Anomaly Detection Problem. We describe
the related work, and how our work differs from previous methods.

Chapter 3: Mahalanobis Distance as an Anomaly Detecotr

In Chapter 3 we describe the problem of
anomaly detection in the domain of Unmanned
Vehicles, how the input is provided and what is
expected in return. We describe how the Maha-
lanobis Distance can be utilized as an anomaly
detector that meets the requirements of the prob-
lem description, and how it can precisely de-
tect any of the three common types of anoma-
lies. We argue that it is possible only if corre-
lated attributes are used. We then describe and
demonstrate the challenge of finding correlated
attributes, and why it is not a trivial task.

Problem Description

Mahalanobis Distance
as an anomaly detector

The challenge of find-
ing correlated attributes

Chapter 4: Offline Training using Statistical Dependency Detection

In Chapter 4 we show the importance of a train-
ing process. We describe our first approach.
We show that only by applying the Mahalanobis
Distance on correlated attributes, successful re-
sults can be achieved. We show how the Multi-
Stream Dependency Detection (MSDD) algo-
rithm can be used offline for this goal.

The Dependency Detec-
tion (DD) Pre-process

Successful Results

Chapter 5: Online Anomaly Detection for Robots
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Having showed that applying correlated at-
tributes is critical for the use of Mahalanobis
Distance as an anomaly detector, we tried to cre-
ate a simpler yet effective training process, that
can be applied online. In Chapter 5 we describe
our second approach. We begin by outlining the
approach and describing the online training pro-
cess. We continue with the description of how
we specialized the anomaly detection for robots.
Then, we describe the anomaly detector.

Online Training Process

Specializing Anomaly
Detection for Robots

The Anomaly Detector

Chapter 6: Evaluation of the Approach

In Chapter 6 we evaluate our approach. We de-
scribe the four test domains, and a competitive
approach to ours. We show the importance of
each feature of our approach, and how it is su-
perior to previous approaches.

Experiments Setup

Successful Results

1.3 List of Publications
This work led to two papers:

1. Raz Lin, Eliahu Khalastchi, and Gal A. Kaminka. Detecting Anomalies in Unmanned
Vehicles using the Mahalanobis Distance. In International Conference on Robotics and
Automation (ICRA) 2010.

2. Eliahu Khalastchi, Meir Kalech, Gal A. Kaminka, and Raz Lin. Online Anomaly Detec-
tion in Unmanned Vehicles. In Autonomous Agents and Multiagent Systems (AAMAS)
2011.

4



Chapter 2

Background

We focus on anomaly detection in Unmanned (Autonomous) Vehicles (UVs). This domain is
characterized by a large amount of data from many sensors and measurements, that is typically
noisy and streamed online, and requires an anomaly to be discovered quickly, to prevent threats
to the safety of the robot [6]. These anomalies are usually characterized as being contextual or
collective anomalies, which are very illusive [6]. Past data is available for learning. However,
usually only nominal data samples are available [6].

Anomaly detection has generated substantial research over past years. Applications include
intrusion and fraud detection, medical applications, robot behavior novelty detection, etc. (see
[6] for a comprehensive survey).

Machine learning methods are usually employed to model what constitutes a nominal be-
havior and deriving from the representation of the nominal behavior the abnormal behavior. For
example, Ahmed et al. [2, 3] investigate the use of two distinct machine learning approaches,
namely the block-based One-Class Neighbor Machine and the recursive Kernel-based Online
Anomaly Detection algorithms, to detect network anomaly. Yet, as often happens in machine
learning techniques, their models are constrained and cannot be easily adapted to other domains.
Besides the fact that it is sensitive to different thresholds, to enable its use in different domains
many parameters must be fine tuned. We, on the other hand, demonstrate that our approach can
be easily adapted to different domains, while preserving the high anomaly detection rates.

One-class classification based anomaly detection methods assume all training data instances
to be of one class label. Such methods learn a discriminative boundary around the nominal
instances using a one-class classification algorithm [6]. Any test instance that falls outside the
learnt boundary is considered as anomalous. Support Vector Machines (SVMs) [26], as other
machine learning techniques, need additional computation to calculate this boundary in the one-
class setting [20, 23]. Kernels, such as radial basis function (RBF) kernel, can be used to learn
complex regions [6]. However, as we show in the results section, contextual anomalies are
undetected even by a successful and well-known classifier such as SVM; even under unrealistic
favoring conditions, where both nominal and anomalous data samples were available for the
training. Our proposed unsupervised method detected these anomalies.

Lotze et al. [18] studied the problem of detecting anomalies in sequence of real-time data of
patience and diseases. Our first approach uses a Dependency Detection method, which is based
on the work on multi-stream dependency-detection, described in [21]. However, we use only a
subset of the results generated, and thus can potentially alleviate the computational load when
applying the Mahalanobis Distance on the selected correlated attributes.
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Recently, Daigle et al. [8] proposed an event based approach for diagnosis parametric faults
in continuous systems. Their approach is based on a qualitative abstraction of deviations from the
nominal behavior. Yet, in contrast to our proposed approach, their approach is aimed to diagnose
an isolating single fault. Moreover, their technique is based on a finite automaton under the
assumption that it is feasible to create a model that captures all relevant system behavior.

Another approach for anomaly detection is based on model based reasoning (e.g., [13, 25]).
Yet, this requires to have a model of the robot and its interactions with the environment. Such a
model is expensive and complex to build.

The large amount of data of monitored UVs, is produced from a large number of system
components comprising of actuators, internal and external sensors, odometry and telemetry, that
are each monitored at high frequency. The separated monitored components can be thought
of as dimensions, and thus a collection of monitored readings, at a given point in time, can
be considered a multidimensional point (e.g., [17, 22]). Therefore, methods that produce an
anomaly score for each given point, can use calculations that consider the points’ density, such
as Mahalanobis Distance [17] or K-Nearest Neighbor (KNN) [22]. We use such a method here.

When large amounts of data are available, distributions can be calculated, hence, statistical
approaches for anomaly detection are considered. These approaches usually assume that the
data is generated from a particular distribution, which is not the case for high dimensional real
data sets [6]. Laurikkala et al. [16] proposed the use of Mahalanobis Distance to reduce the
multivariate observations to univariate scalars. Brotherton and Mackey [5] use the Mahalanobis
Distance as the key factor for determining whether signals measured from an aircraft are of
nominal or anomalous behavior. However, they are limited in the number of dimensions across
which they can use the distance, due to run-time issues. We address this challenge here.

To distinguish the inherent noisy data from anomalies, Kalman filters are usually applied
(e.g., [7, 11, 27]). Since simple Kalman filters usually produce a large number of false positives,
additional computation is used to determine an anomaly. For example, Cork and Walker [7]
present a non-linear model, which, together with Kalman filters, tries to compensate for mal-
functioning sensors of UAVs. We use a much simpler filter that significantly improved the results
of our approach. The filter normalizes values using a Z score transformation.
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Chapter 3

Mahalanobis Distance as an
Anomaly Detector

In this chapter we describe how the Mahalanobis Distance can be used as an anomaly detector in
the domain of unmanned vehicles. We start with the problem description of anomaly detection in
this domain. We describe how anomalies can be detected by the Mahalanobis Distance, in a way
that fits the description of the problem. We describe the three common categories of anomalies
and how each can be detected. However, we argue that anomalies can be detected successfully
by Mahalanobis Distance, only if correlated dimensions are used. We demonstrate the challenge
of finding correlated dimensions.

3.1 Problem Description
We deal with the problem of online anomaly detection. Let A = {a1, . . . , an} be the set of
attributes that are monitored. Monitored attributes can be collected by internal or external sensors
(e.g., odometry, telemetry, speed, heading, GPSx, GPSy , etc.). The data is sampled every
t milliseconds. An input vector ~it = {it,1, . . . , it,n} is given online, where it,j ∈ R denotes the
value of attribute aj at current time t. With each ~it given, a decision needs to be made instantly
whether or not ~it is anomalous.

Past data H (assumed to be nominal) is also accessible. H is an m × n matrix where the
columns denotes the n monitored attributes and the rows maintain the values of these attributes
over m time steps. H can be recorded from a complete operation of the UV that is known to be
nominal (e.g., a flight with no known failures), or it can be created from the last m inputs that
were given online, that is, H = {~it−m−1, . . . ,~it−1}.

We demonstrate the problem using a running example. Consider a UAV with its actuators
that collects and monitors n attributes, such as: air-speed, heading, altitude, roll pitch and yaw,
and other telemetry and sensors data. The actuators provides input in a given frequency (usually
with 10Hz frequency), when suddenly a fault occurs; for instance, the altimeter is stuck on a
valid value, while the GPS’s indicated that the altitude keeps on rising. Another example could
be that the UAV’s stick is moved left or right but the UAV is not responsive, due to icy wings.
This is expressed in the unchanging values of the roll and heading. Our goal is to detect these
failures, by flagging them as anomalies.
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3.2 Mahalanobis Distance as an Anomaly Detector
Mahalanobis Distance is an n dimensional Z-score. It calculates the distance between an n
dimensional point to a group of others, in units of standard deviations [19]. In contrast to the
common n dimensional Euclidean Distance, Mahalanobis Distance also considers the points’
distribution. Therefore, if the group of points represents an observation, then the Mahalanobis
Distance indicates whether a new point is an outlier compared to the observation. A point with
similar values to the observed points is located in the multidimensional space, within a dense
area and will have a lower Mahalanobis Distance. However, an outlier will be located outside
the dense area and will have a larger Mahalanobis Distance.

Figure 3.1: Euclidean vs. Mahalanobis Distance.

Formally, the Mahalanobis Distance is calculated as follows. Recall that ~it = (it,1, it,2, . . . , it,n)
is the vector of the current input of the n attributes being monitored, andH =m×nmatrix is the
group of these attributes’ nominal values. We define the mean of H by µ = (µ1, µ2, . . . , µn)
, and S is the covariance matrix of H . The Mahalanobis Distance, Dmahal, from ~it to H is
defined as:

Dmahal(~it, H) =

√
(~it − ~µ)S−1(~it

T − ~µT )

An example is depicted in Figure 3.1. We can see in the figure that while A and B have the
same Euclidean distance from the centroid µ, A’s Mahalanobis Distance (3.68) is greater than
B’s (1.5), because an instance of B is more probable than an instance of A with respect to the
other points.

Thanks to the nature of the Mahalanobis Distance, we can utilize it for anomaly detection
in our environment. Each of the n attributes of the domain correlates to a dimension. An input
vector ~it is the n dimensional point, that is measured by Mahalanobis Distance against H . The
Mahalanobis Distance is then used to indicate whether each new input point ~it is an outlier with
respect to H .

Using the Mahalanobis Distance, we can easily detect the three common categories of
anomalies [6]:

1. Point anomalies: illegal data instances, corresponding to illegal values in ~it.
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2. Contextual anomalies, that is, data instances that are only illegal with respect to specific
context but not otherwise. In our approach, the context is provided by the changing data
of the sliding window.

3. Collective anomalies, which are related data instances that are legal apart, but illegal
when they occur together. This is met with the multi-dimensionality of the points being
measured by the Mahalanobis Distance .

An anomaly of any type, can cause the representative point to be apart from the nominal points, in
the relating dimension, thus placing it outside of a dense area, and leading to a large Mahalanobis
Distance and eventually raising an alarm.

Figure 3.2: Example of Mahalanobis Distance as an Anomaly Detector

Figure 3.2 presents an example of the Mahalanobis Distance as an anomaly detector. The
data was taken from simulated flights of FlightGear fight simulator [9]. Recall the running
example, where the Altimeter was stuck on a legal value, but the GPS Altitude indicated that the
UAV kept on rising. The values of these two attributes suppose to change together. However,
when one of the attributes is stuck, even on a legal value, it is a collective anomaly with the
respect to the other attribute. These two attributes are depicted as the two dimensions in Figure
3.2. The square (gray) points present an observation of the values of these attributes, taken from
a nominal flight. The diamond (black) points present the values of an anomalous flight. For
a period of time, the GPS Altitude attribut’s values kept on rising while the Altimeter attribut’s
values stayed the same. The Mahalanobis Distance of several points from the anomalous flight
with respect to the nominal observation, is depicted in Figure 3.2 as m. Before the anomaly
occurs, the Mahalanobis Distance is 0.8 standard deviations. During the anomaly time, as the
GPS Altitude’s values keep on rising while the Altimeter’s values stay the same, the representing
point is being located farther away from a dense area, rising the Mahalanobis Distance up to
23.47 standard deviations. After the anomaly time, the Altimeter’s values are nominal again,
placing the representing point back in a dense area, decreasing the Mahalanobis Distance to
0.81.
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Using the Mahalanobis Distance as an anomaly detector is prone to errors without guid-
ance. In this thesis we show that the success of Mahalanobis Distance as an anomaly detector
depends on whether the dimensions inspected are correlated or not. When the dimensions are in-
deed correlated, a larger Mahalanobis Distance can better indicate point, contextual or collective
anomalies. However, the same effect occurs when uncorrelated dimensions are selected. When
the dimensions are not correlated, it is more probable that a given nominal input point will differ
from the observed nominal points in those dimensions, exactly as in contextual anomaly. This
can cause the return of large Mahalanobis Distance and the generating of false alarms.

Therefore, it is imperative to use a training process that selects correlated dimensions, prior
to the usage of the Mahalanobis Distance. The selection of correlated dimensions also acts as a
dimension reduction, which is essential for the Mahalanobis Distance calculation to be feasible
online.

3.3 The Challenge of Finding Correlated Attributes
Finding correlated attributes automatically is a difficult task. Some attributes may be constantly
correlated to more than one attribute, while other attribute’s values can be dynamically correlated
to other attributes based on the characteristics of the data. For example, the elevation value of
an aircraft’s stick is correlated to the aircraft’s pitch and to the change of height, measured in the
differences of the values of the altitude attribute (see Figure 3.3). However, this is not always
true. There is another dependency on the value of the roll attribute, which is influenced by the
aileron value of the aircraft’s stick. As the aircraft is being rolled, the pitch axis is getting more
vertical. This, in turn, makes the elevation value to correlate to the heading value, rather than
the height (see Figure 3.4). In the same manner, the rudder is correlated the the aircraft’s yaw,
which usually effects the heading. However as the aircraft is being rolled, the yaw axis is getting
more horizontal. This, in turn, makes the rudder value to correlate to the altitude value, rather
than the heading.

Figure 3.3: The Altitude is affected by the Elevation

In the next two chapters, we describe the work of a training process. In Chapter 4, we
describe our first approach, where we used the MultiStream Dependency Detection (MSDD) al-
gorithm [21] as an offline training process. We used this preprocess to detect correlated attributes
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Figure 3.4: The Heading is affected by the Elevation

prior to the online anomaly detection process. The dimensions of ~it were reduced to match only
the correlated attributes. Then, Mahalanobis Distance is used to compare ~it to H .

In Chapter 5, we describe our second approach, where an online process that finds and
groups correlated attributes is used, after which Mahalanobis Distance can be applied per each
correlated set of attributes. Instead of regarding ~it as one n dimensional point and use one
measurement of Mahalanobis Distance against H , we apply several measurements, one per each
correlated set.
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Chapter 4

Offline Training using Statistical
Dependency Detection

In this chapter, we describe an approach to find correlated attributes with an offline training
process. We show that applying the Mahalanobis Distance on correlated attributes achieves
successful results. We show how the Multi-Stream Dependency Detection (MSDD) algorithm
can be used offline for this aim.

The outline of the approach

The Dependency Detection training process
runs offline on H (a recored of past nominal
data). H is reduced to the learned correlated
dimensions. Then online, every input vector ~it
is reduced to these correlated dimensions and
compared to H using Mahalanobis Distance.
An anomaly score is returned.

Offline: The Dependency
Detection Pre-process

Online: Mahalanobis Distance

4.1 The Dependency Detection (DD) Pre-process
We introduce a pre-processing mechanism that uses statistical dependency-detection methods to
determine possible sub-groups of attributes which are statistically inter-dependent. These sub-
groups are then used in the second (online) phase to form the basis for the Mahalanobis distance
measurements. Thus, instead of using the Mahalanobis outlier detector on the entire input vector,
we break the task into a set of outlier detectors, each focused on parts of the input vector, each
using its own nominal distribution H , and each operating in a small-dimensional space (in our
experiments, typically 2–3 attributes).

In this work we build on earlier work by Oates et al. [21], which have developed efficient
data-mining algorithm called Multi-Stream Dependency Detection (MSDD). The algorithm finds
statistically significant patterns of the type AxBy → CzDq , which should be understood as
follows: In an input vector ~v, if the value A appears in attribute x, and the value B appears in
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attribute y, then the value C will likely appear in attribute z and the value D will likely appear
in attribute q. In other words, MSDD is able to determine that attribute values are dependent on
each other. The statistical strength of the patterns are measured by the G statistic [30]1. MSDD
uses an efficient heuristic search which guarantees finding the complete set of patterns, without
examining the entire combinatorial search space.

MSDD is both too crude and too good for our needs. On one hand, MSDD has the capability
for finding such patterns even when they are spread over time (i.e., to find patterns of the form “if
attribute x has value A, then in two ticks, we expect attribute y to have value B”), and can thus
produce finer-grained information than what is needed for the Mahalanobis distance, which only
requires knowledge of general dependencies between variables.Rather than simply outputting a
single pattern for each set of dependent attributes, MSDD very often detects redundant depen-
dencies, by finding different variations on the same basic dependence:

AxBy → CzDq

CzAxBy → Dq

CzDq → AxBy

. . .

We therefore used a modified version of MSDD—called simply Dependency Detection
(DD)—in which redundant patterns of the type above are merged together to form groups of
dependent attributes (in this case, the set would be x, y, z, q). This modified version, in effect,
tells us what attributes are correlated, and this, in turn, allows to run the Mahalanobis distance
only on the dependent attributes, thus significantly reducing the dimensionality of the space.
Note that often more than one group of dependent attributes would be identified, in which case
multiple Mahalanobis outlier detectors should be used, one for each group.

An example of how the whole approach works:

consider a robot with two sonar range detectors which are physically located near one an-
other. The robot can also return the its current speed using odometry or GPS. In a nominal input,
in most observations, the values of the attributes of the two sonars are changing together. Thus,
the DD process will report an almost constant correlation between these two attributes. How-
ever, a correlation between the speed attribute to the sonars attributes, will be significantly less
constant; only certain values of the speed attribute might correlate to certain values of the sonars
attributes. Thus, only the attributes of the two sonars are manually selected into a correlated set.
In the same manner, an additional correlated set might contain the odometery speed attribute and
the GPS speed attribute; but no correlated set will contain both speed and sonar attributes.

Online, the attributes of each correlated set are considered as dimensions. The current input
vector ~it will be broken into multidimensional points. In this example, ~it will be broken into
a 2D point containing the current values of the sonars attributes, and a 2D point containing the
current values of the odometry and GPS speed attributes. These points are compared using the
Mahalanobis Distance to the nominal points with the same dimension extracted from the nominal
data H .

If no anomaly occurs then the current points will fit the distribution of the nominal points.
Thus a low Mahalanobis Distance will be returned. However, if a correlated set was to contain
a speed attribute and a sonar attribute, then the current point, even if it contains perfectly legal
values, might not fit the distribution of the nominal points, since the occurrence of these two

1Similar in principle to the χ2 statistic.
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values together was not observed, due to their being uncorrelated. A high Mahalanobis Distance
will be returned, raising a false alarm.

Consider the following anomalies:

• One of the sonars is stuck on a legal value while the other sonar is working properly. The
current 2D point will not fit the distribution of the nominal points, since the occurrence
of these two values together was not observed, due to the fact that in most observations
the two sonars had similar values. Thus, a high Mahalanobis Distance will be returned,
justifiably raising an alarm.

• The robot entered a slippery surface. The lack of friction causes the wheels to spin in
place. The odometry speed reports a high value while the GPS speed reports a low value.
The 2D point will not fit the nominal distribution where the values of the two dimensions
were similar. A high Mahalanobis Distance will be returned justifiably raising an alarm.

4.2 Experiments
To evaluate the efficacy of this approach for detecting anomalies in UVs we conducted several
sets of experiments. The different experiments demonstrate the strength of the combination
between the pre-processing dependency detection mechanism and the online anomaly detection
mechanism, as well as the generality of the approach. We begin by describing the experiment
setup, and then continue to describe the different experiments and results.

4.2.1 Experiment Setup
We chose two different unmanned vehicles to demonstrate the generality of our approach. The
first set of data came from actual commercial unmanned aerial vehicles. The UAV is equipped
with several sensors and actuators, as well as a communication system. The communication
system transmits the information, along with monitoring information, to the ground station.

The information which is measured by the UAV sensors and is relevant for the anomaly
detection process includes more than 50 attributes. The different attributes can be categorized
to different families: air data (includes telemetry data that the UAV measures), inertial data
(includes information about the inertial navigation system (INS)), engine data (includes infor-
mation about the engine’s air and water temperature), servo information, and other information,
including the UAV mass, the air temperature and other information. The data is measured by the
sensors either in a 1Hz or 10Hz frequencies, yet the whole data is downloaded from the UAV at
a frequency of 10Hz.

The second set of experiments was conducted on a commercial vacuum-cleaning mobile
robot (the Friendly Robotics RV-400, used in our lab and fitted with our own control software.
see Figure 4.1).

Figure 4.1: An RV-400 robot.
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The RV-400 robot is equipped with many less sensors and actuators than the UAV. It has
22 attributes measured by ten sonar sensors which measure ranges, four bumper sensors, and
various other measurements including the target velocity and the actual velocity (based on wheel
motor encoder data), etc. The data itself is recorded in a 10Hz frequency.

In the course of evaluations, we utilized data from several nominal runs of the robots, as well
as from failure runs. We refer to these runs in the discussion of the experiments below.

For the UAV we the following errors were recorded:

• Descend: In this error, one of the sensors is malfunctioning and thus causes the sensor’s
input to decrease rapidly from a valid input to a constant value of zero.

• Constant: In this error, one of the sensors is malfunctioning and reports a constant value
for a period.

For the UGV the following errors were recorded:

• Weight Drag Halt: In this error, the robot was attached to a cart via a fishing string which
was loose. Then, the robot started its movement away from the cart, causing the string to
stretch, until it was completely stretched. This caused the robot to completely halt.

• Direction Deviation: In this error, a coin was attached to one of the robot’s wheels. This
caused the robot to divert from nominal behavior every time the coin touched the floor
(which was about every 5 seconds). It also changed its heading, etc.

For each UV we had a nominal behavior file which was used for two purposes. First, it was
used in the pre-processing phase to obtain the strongest dependent attributes for the domain of
the UV. Then, it was used in the online anomaly detection process for finding deviations in the
behavior of the vehicle from the nominal behavior recorded in that file (i.e., as the basis for the
nominal set m). The experiment data sets are summarize in Table 4.1.

4.2.2 Successfully Detecting Anomalies
As we mentioned, the anomaly detection process requires that we first find the attributes that are
considered correlated. To this end, we ran the pre-processing mechanism described in Section 4.1
on a nominal data file, Nominal UAV A (Nominal UGV A for the UGV domain). Out of the
56 (22 for the UGV) different attributes that are measured several attributes were found to be
significantly strongly correlated (based on the G statistic). We chose to use 2 of the correlated
attributes in our anomaly detection process (both in the UAV and the UGV domains). It is
notable to mention that in the case of the UGV domain, the MSDD pre-processing mechanism
returned somewhat unsurprising correlation between the odometry sensors, yet it also returned a
surprising correlation between two sonars on-board the robot. Later we found this dependency
highly useful for detecting the anomalies in the UGV experiments.

In the process of detecting the anomalies we need to determine the threshold above which
an anomaly is flagged. To this end we first run the Mahalanobis distance algorithm on the
nominal file and create a histogram of the standard deviations that are the output of the algorithm.
The threshold is then determined in such that at least 93% of the measurements are below it.
For the UAV and UGV domains, this generates a threshold of 15 and 0.081 standard deviation
units, respectively. We begin by describing the results on the UAV domain and finish with the
description of the UGV experiments.

Detecting Anomalies in UAVs

Figure 4.2 shows the results of the Mahalanobis distance algorithm when applied on the Descend
UAV C data. Disregarding the end of the flight, in which the behavior of the UAV changes, we
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Data Type Description

Nominal UAV A Contains nominal flight behavior.
This file was also used for the pre-process
phase and the comparison of
other UAVs’ behavior.

Nominal UAV B Contains an additional nominal flight behavior.

Descend UAV C Contains an error in a sensor, which
rapidly decreases its value until a constant zero.
The error is between time units
15,990 and 16,054.

Constant UAV D Contains an error in a sensor, which
value is stuck constant.
The error is between time units
8,105 and 8205.

Nominal UGV A Contains nominal driving behavior.
This file was also used for the pre-process
phase and the comparison of
other UGVs’ behavior.

Weight Drag Halt UGV Contains an error in the nominal
driving behavior: The UGV attempts to drag
a heavy load, which causes to comes to
a complete halt at time unit 100.

Direction Deviation UGV Contains an error in the nominal
driving behavior: The UGV has an object
stuck in one of its wheels, causing it to bounce
every 5 seconds.

Table 4.1: Description of experiment data.

16



can see from the figure that in the exact times of the error, the output of the Mahalanobis distance
is significantly higher than the threshold. Out of the 64 time units of the error, a total of 59 (92%)
were above the 15 threshold.

Figure 4.2: Descend UAV C: Mahalanobis distance (in std units) as a function of flight
time (1/100 of a minute).

Figure 4.3 shows the results of the Mahalanobis distance algorithm when applied on the
Constant UAV D data. Again, we disregard the start and end of the flight time periods (we
discuss them later). Unfortunately, though, the algorithm found no evidence of deviations from
the nominal behavior in this case. The explanation for this is the fact that “freezing” a sensor on
a constant value does not cause deviations from nominal behavior, since the value is legit, and
thus the Mahalanobis distance cannot detect these kinds of errors.

Trying to overcome this issue we ran an additional experiment. In this experiment we took
the differential of the data per each attribute, and now ran the anomaly detection mechanism to
find whether there are deviations from the nominal behavior of the UAV based on the differential
of the data. Figure 4.4 now shows the results of this experiment (note that for display purposes
we omitted the start and end periods of the flight from the figure’s scale). Now we can see that
the algorithm was indeed able to find a deviation from the nominal behavior at the end of the
error period, just before the sensor re-started reporting normal behavior.

Encouraged by these results, we moved to apply this technique to the UGV experiment data.
The results of the approach on the UGV domain is given below.

Detecting Anomalies in UGVs

Figure 4.5 shows the results of the Mahalanobis distance algorithm when used with the UGV
Weight Drag data, causing the UGV to halt . In Figure 4.5 we can see that the approach accurately
detected the stop movement of the UGV around time unit 100.

Finally, Figure 4.6 depicts the results of the Mahalanobis distance algorithm when applied
on the Direction Deviation UGV anomaly. We can see that approximately every 5 seconds the
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standard deviation units leap to a value larger than 0.08. An operator at the control station
watching this data online (or rather, being notified as the measures pass the threshold) would
have been able to detect that there is some malfunction with the robot, which is taking place
every 5 seconds.

4.3 The Importance of DD Pre-Processing
The Mahalanobis distance cannot stand on its own to detect anomalies. Its success in detecting
anomalies above lies in the fact that the dependency detection pre-processing mechanism was
invoked prior to the anomaly detection algorithm, and chose specific attributes on which to fo-
cus the Mahalanobis distance measure. Here, we demonstrate the importance of invoking this
mechanism.

First, let us examine the run-time of using the Mahalanobis distance as the number of at-
tributes increases. Figure 4.7 demonstrates the importance of narrowing down the input to the
Mahalanobis distance algorithm. The figure shows the run-time (in minutes) of the algorithm as
a function of the number of attributes in each stream of data it uses to detect the deviation from
the nominal behavior. The results demonstrate that the algorithm’s run-time increases quickly
as a function of the number of attributes. This is a part of the motivation for allowing the DD
process to select a smaller set of attributes.

However, it is not simply a case of reducing the number of attributes. To demonstrate the
importance of running the Mahalanobis distance on dependent attributes we ran the following
experiment.

Here, we built on a predefined knowledge of the UAV domain and chose several attributes
which are independent of each other (we verified also that they do not appear in the results of the
DD process). We then applied the Mahalanobis outlier detector based on these attributes, to see
if we could detect the failures using these attributes instead of those selected by the DD process.
We hypothesized that both on the nominal files and the simulated error files the results would
generate high rates of false alarms (detecting anomalies even though there is none), making the
algorithm useless.

We started by running the algorithm on two different data files which describe a nominal
behavior (Nominal UAV A and Nominal UAV B). Then, we applied the same mechanism on
a data file which simulated errors in predefined times (Descend UAV C). Figure 4.8 show the
percentage of false alarms detected when running the Mahalanobis distance on uncorrelated
attributes as compared to running it on correlated attributes.

As we hypothesized, we can see that the approach does not scale well if the input is not fine
tuned. While the rates of false alarms when applying the algorithm on dependent attributes is
relatively low (0.71%, 0.17% and 0.10% for Nominal UAV A, Nominal UAV B and Descend
UAV C, respectively), the rates increase significantly when applied on uncorrelated attributes
(2.06%, 34.29% and 60.17% for Nominal UAV A, Nominal UAV B and Descend UAV C, re-
spectively). That is, the algorithm “found” that the nominal flights actually deviated from the
nominal behavior, which, of course, was not the case.

As we argued in Section 4.1, a small number of attributes is also important because it facil-
itates increased accuracy. Figure 4.9 demonstrates that the number of false alarms dramatically
increases (compared to the DD-based runs) if too many attributes are used (3.97%, 1.19% and
21.81% for Nominal UAV A, Nominal UAV B and Descend UAV C, respectively, when four at-
tributes are used—compare to 0.71%, 0.17% and 0.10% when using the two strongly-dependent
attributes). From the figure we can see the difference in the false alarm ratio when only two of
the strongest correlated attributes are used as compared to using four strongest attributes. Thus,

18



using the DD algorithm to find the K strongest correlated attributes can also allow minimizing
false alarms in the anomaly detection process.

4.4 Discussion
We have showed that apart from having to reduce dimensions when using Mahalanobis Distance,
the dimensions that are left should be correlated. In this first approach [17], we demonstrated
how using an offline mechanism as the Multi-Stream Dependency Detection (MSDD) [21] can
assist in finding correlated attributes in the given data and enable use of Mahalanobis Distance
as an anomaly detection procedure. The MSDD algorithm finds correlation between attributes
based on their values. Based on the results of the MSDD process, we manually defined the
correlated attributes for our experiments. We have experimented with two domains of physical
data of real unmanned vehicles; showing the success of this domain independent approach in the
real world.

However, the main drawback of using the MSDD method is that it consumes many resources
during its offline training phase. For example, training on the UGV data set required 3 days of
computation time, on a PC with 3GB memory and 2 cores. Thus, in the next chapter, we pro-
pose using a much simpler algorithm, that groups correlated attributes using Pearson correlation
coefficient calculation. This calculation is both light and fast and therefore can be used online,
even on a computationally weak robot.
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Figure 4.3: Constant UAV D: Mahalanobis distance (in std units) as a function of flight
time (1/100 of a minute).

Figure 4.4: Constant UAV D, analysing differential data: Mahalanobis distance (in std
units) as a function of flight time (1/100 of a minute).
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Figure 4.5: Drag Weight Halt UGV: Mahalanobis distance (in std units) as a function
of movement time (1/10 of a second).

Figure 4.6: Direction Deviation UGV: Mahalanobis distance (in std units) as a function
of movement time (1/10 of a second).
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Figure 4.7: Mahalanobis distance’s run-time (in minutes and seconds) as a function of
attributes number.

Figure 4.8: False alarm rates when applying the Mahalanobis distance on correlated
and uncorrelated attributes.
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Figure 4.9: False alarm rates when applying the Mahalanobis distance on two and four
correlated attributes.
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Chapter 5

Online Anomaly Detection for
Robots

In the last chapter we showed that a training process that selects correlated attributes for the
use of the Mahalanobis Distance is essential for detecting anomalies successfully, and enables
the Mahalanobis Distance to be executed online due to the dimension reduction. However, the
training process in this approach is carried out offline because of its computational requirement,
while we believe that online training will be a much more efficient approach, for the following
reasons:

• The correlations between attributes are dynamically changed over time, as we demon-
strate in section 5.3.

• This approach is (1) model free (2) domain independent (3) unsupervised and (4) com-
pletely online, making it a “plug & play” anomaly detection mechanism for different
robotic platforms.

• The replacement of the MSDD algorithm with a simpler training process, allows a (com-
putationally weak) robot to execute the approach online locally, rather than remotely,
making it more autonomous. The MSDD algorithm could take much time to finish while
consuming vital computational resources. Thus, it cannot be executed online, and can-
not be executed on a robot. However, a simpler training process, which has a negligible
execution time, can be executed online on a robot.

We begin by outlining our approach. Then we describe the online training procedure, and the
specialization for anomaly detection on robots. Finally, we describe when our approach should
flag anomalies and describe our algorithm in detail.

5.1 The Outline of the Approach
We use the online input vectors to maintain the input history, which is regarded as nominal data
(described in section 5.2). An online training process (described in section 5.3) uses this nominal
data to return sets of correlated attributes, and a threshold per each set. The online training uses
the Pearson correlation coefficient calculation to determine which attributes are correlated. Then,
correlated attributes are grouped into sets.
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Each set of correlated attributes defines a multidimensional space. For each set, multidi-
mensional points are extracted from the nominal data; each point presents an observation of the
values of the attributes in the set. These points define the nominal distribution for each multi-
dimensional space. A threshold is calculated per each set as the highest Mahalanobis Distance
of all the points in the distribution of the multidimensional space defined by the set. The high-
est Mahalanobis Distance belongs to the least likely observed point in the distribution. Since
this point is regarded as nominal, any higher Mahalanobis Distance indicates an even less likely
observation, in other words, an anomaly. Thus, the highest Mahalanobis Distance acts as a
threshold.

The anomaly detector (described in section 5.5) breaks the current input vector into multi-
dimensional points. Each point presents the values of the attributes of a different correlated set.
Then, each point is compared to the nominal points of the same dimensions with Mahalanobis
Distance. If the returned Mahalanobis Distance is higher then the set’s threshold then an anomaly
is declared.

Figure 5.1: an Example of Anomalous and nominal Observations

Figure 5.1 demonstrates the work of the anomaly detector on a correlated set of two at-
tributes. The gray (2D) points presents the nominal observations of the values of the two at-
tributes. Each ring around the centroid µ is a standard deviation boundary. Each point within a
ring has an equal or smaller Mahalanobis Distance than the boundary. The outer ring is the high-
est Mahalanobis Distance of all the nominal points. Thus, it acts as a threshold. Points p1 and
p2 have the same value in dimension A, but different values in dimension B. The Mahalanobis
Distance of p1 is lower than the threshold. Thus it is considered as a nominal observation. The
Mahalanobis Distance of p2 is higher than the threshold. Thus, p2 will cause a declaration of an
anomaly.

Another aspect of the approach is the use of filtered differential data rather than raw data
(described in section 5.4). The differential data indicates a change or effect, while the raw
data indicates a state. The change is more fitting to the domain of robots since they act and
affect the same environment that they sense and affected by. These effects are expressed in the
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differential data of the robot’s readings. Thus, it makes sense to use differential data in this
domain. However, differential data is susceptible to noise and the high frequency of the data,
which characterize this domain. Thus, a filter is used to normalize the data.

5.2 The Sliding Window technique
We utilize a sliding window technique [6] to maintain H , the data history, online. The sliding
window (see Figure 5.2) is a dynamic window of predefined size m which governs the size of
history taken into account in our algorithm. Thus, every time a new input ~it is received, H is
updated asH ← {~it−m−1, . . . ,~it−1} the lastm online inputs. The data inH is always assumed
to be nominal and is used in the online training process. Based on H we evaluate the anomaly
score for the current input ~it using the Mahalanobis Distance [19].

Figure 5.2:
Illustration of the sliding window.

There are several advantages for using a sliding window approach for the history data rather
than a complete record of the past data. First, it allows achieving reduced computation time,
which makes it feasible to be used online. Second, it is less prone to “black swan” events [28] that
can lead to higher rates of false alarms. Lastly, older data is ignored and thus does not interfere
with the comparison of new data. Since we consider the history H as nominal, and since H will
include ~it in the next time step, it is essential that anomalies are flagged instantly. Allowing the
addition of an anomalous ~it into H , reduces false positives, as it raises the thresholds described
in section 5.5

5.3 Online Training
The example described in section 3.3 (the change of correlations due to axis change of the rolled
UAV) demonstrates how correlation between attributes can change during execution time. Thus,
it is apparent that an online training is needed to find dynamic correlations between the attributes.

Figure 5.3 shows a visualization of a correlation matrix sized 71 × 71, were each celli,j
depicts the correlation strength between attributes ai, aj . The stronger the correlation, the darker
the color of the cell. Figure 5.3 displays three snapshots taken from different time periods of a
simulated flight, where 71 attributes were monitored. The correlation change is apparent.

We use a fast online trainer, denoted as Online Trainer(H). Based on the data of the slid-
ing window H , the online trainer returns n sets of dynamically correlated attributes, denoted as
CS = {CS1, CS2, . . . , CSn}, and a threshold per each set, denoted as TS = {threshold1, . . . , thresholdn}.

The online trainer executes two procedures. The first procedure is a correlation detector
(see Alg. 1) that is based on Pearson correlation coefficient calculation. Formally, the Pearson
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Figure 5.3: Visualization of correlation change during a flight

correlation coefficient ρ between given two vectors ~X and ~Y with averages x̄ and ȳ, is defined
as:

ρ =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
∑
i(yi − ȳ)2

(5.1)

ρ ranges between [−1, 1], where 1 represents a strong positive correlation, and −1 represents a
strong negative correlation. Values closer to 0 indicate no correlation.

Algorithm 1 Correlation Detector(H)

Input: H - the data history made of the last m online inputs.
Output: CS - a collection of sets of correlated attributes.

1: for each ai ∈ A do
2: CSi ← φ
3: for each aj ∈ A do
4: if |ρi,j(HT

i , H
T
j )| > ct then

5: add aj to CSi

6: add CSi to CS
7: return CS

Algorithm 1 returns the n sets of correlated attributes, one per each attribute ai ∈ A. Each
CSi contains the indices of the other attributes that are correlated to ai. The calculation is done
as follows. The vectors of the last m values of each two attributes ai, aj are extracted from
H and denoted HT

i ,HT
j . We then apply the Pearson correlation on them denoted as ρi,j . If

the absolute result |ρi,j | is larger than a correlation threshold parameter ct ∈ {0..1}, then the
attributes are declared correlated and aj is added to CSi.

The ct parameter governs the size of the correlated attributes set. On the one hand, the
higher the ct, the less attributes are deemed correlated, thereby decreasing the dimensions and
the total amount of calculations. However, this might also prevent attributes from being deemed
correlated and affect the flagging of anomalies. On the other hand, the lowe the ct, the more
attributes are considered correlated, thereby increasing the dimensions, and also increasing the
likelihood of false positives, as less correlated attributes are selected. Therefore, ct should be
chosen offline by repeatedly running the anomaly detection algorithm on a given data known to
be nominal (e.g., a flight that had no known faults), each time increasing the value of ct until no
anomalies are returned.

The second procedure sets a threshold value per each correlated set (see Alg. 2). These
thresholds are later used by the Anomaly Detector (see Alg. 3) to declare an anomaly if the
anomaly score of a given input crossed a threshold value. Each thresholda ∈ TS is set by
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the algorithm to be the highest Mahalanobis Distance of points with dimensions relating the
attributes in CSa extracted from H . The algorithm simply calculates, for each correlated set,
the Mahalanobis Distance of each point in the distribution and the highest result is set as the
threshold for the correlated set. Since every point in H is considered nominal, then any higher
Mahalanobis Distance indicates an anomaly.

Algorithm 2 Threshold Setter(H,CS)

Input: H - the data history made of the last m online inputs.
Input: CS - a collection of sets of correlated attributes.
Output: TS - a collection of thresholds, one per each correlated set.

1: for each CSi ∈ CS do
2: thresholdi ← 0
3: Pi ← points with dimensions relating to CSi’s attributes extracted from H
4: for each pj ∈ Pi do
5: if thresholdi < Dmahal(pj , Pi) then
6: thresholdi ← Dmahal(pj , Pi)
7: add thresholdi to TS
8: return TS

One very important optimization, when using the threshold finder, is not to search for the
farthest point for each correlated set with each input given, otherwise a lot of unnecessary calls
for Mahalanobis Distance will be made, making it impractical. let pi,max be the farthest point
in Pi; it sets the threshold for CSi. With each new input, new points are added to Pi, and old
ones are removed, keeping the size of Pi to m. If the anomaly detector did not find an anomaly,
then this means that the new point added is closer than pi,max to the nominal points, so there
is no need to find a new threshold yet, not until pi,max is removed from Pi. If the anomaly
detector did find an anomaly, then the next point added to Pi is pi,max and its distance, already
calculated, is the new threshold. This means that in the worst case (computational-wise), when
there are no anomalies, a search for pi,max is made once every m times, making it feasible to be
used on-line.

5.4 Specializing Anomaly Detection for Robots
Monitoring in the domains of autonomous robots is unique and have special characteristics. The
main difference emerges from the fact that we are required to monitor using the data obtained
from sensors that are used in the control loop to affect the environment. In other words, the
expectations to see changes in the environment are a function of the actions selected by the
agent.

Therefore, it makes sense to monitor the change in the values measured by the sensors (which
originates from the robot’s actions), rather than the absolute values. The raw readings of the
sensors usually do not correspond directly to the agent’s actions. For example, an increase of
speed should be correlated to the lose of height generated by the UAV’s action, rather than
correlating a specific speed value with a specific height value. Formally, we use the difference
between the last two samples of each attribute, denoted as4(~it) = ~it − ~it−1.

To eliminate false positives caused by the uncertainty inherent in the sensors’ readings, and
also to facilitate the reasoning about the relative values of attributes, we apply a smoothing
function using a z-transform. This filter measures changes in terms of standard deviations (based
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on the sliding window) and normalizes all values to using the same standard deviation units. A
Z-score is calculated for a value x and a vector ~x using the vector’s mean value x̄ and its standard
deviation σx, that is, Z(x, ~x) = x−x̄

σx
.

We then transform each value it,j to its Z-score based on the last m values extracted from
the sliding window H (HT

j ). Formally, Zraw(~it) = {Z(it,1, H
T
1 ), . . . , Z(it,n, H

T
n )}. We also

define this transformation on the differential data as Z4(~it) = Zraw(4(~it)).
Two aspects emphasize the need to use filters. First, the live feed of data is noisy. Had we

used only the last two samples, the noise could have significantly damaged the quality of the
differential data. Second, the data feed is received with high frequency. When the frequency of
the incoming data is grater than the speed of the change in an attribute, the differential values
might equal zero. Therefore, a filter that slows the change in that data, and takes into account
its continuity, must be applied. In our simulations we experimented with two types of filters that
use the aforementioned Z-transformations, Zraw and Z4.

When an actuator is idle, its Z-values are all 0s, since each incoming raw value is the same
as the last m raw values. However, as the actuator’s reading changes, the raw values become
increasingly different from one another, increasing the actuator’s Z-values, up until the actuator
is idle again (possibly on a different raw value). The last m raw values are filled again with
constant values, lowering the actuator’s Z-values. This way, a change is modeled by a “ripple
effect””, causing other attributes that correspond to the same changes, also to be affected by that
effect.

Figure 5.4: Illustration of the Z-transformation.

Figure 5.4 illustrates the Z-transformation technique. The data is taken from a segment
of a simulated flight. The figure presents values of attributes (Y Axis) through time (X axis).
The aileron attribute stores the left and right movement of the UAV’s stick. These movements
controls the UAV’s roll which is sensed using gyros and stored in the roll attribute. We say
that the aileron and roll attributes are correlated if they share the same effect of change. The
aileron’s raw data is shown in Figure 5.4 as the square points, which remains almost constant.
Yet, the roll’s raw data, marked as an upside triangle, differs significantly from the aileron’s
data. However, they share a similar ripple effect, illustrated by their Z-transformation values,
shown in the triangle points and the diamond points. Thus, our Pearson calculation technique can
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find this correlation quite easily. Other attributes that otherwise could be mistakenly considered
correlated when using just the raw data or 4 technique, will not be considered as such when
using the Z-transformation technique, unless they both share a similar ripple effect. This could
explain the fact that the Z4 technique was proven to be the best one that minimizes the number
of false positives as described in Section 6.2

5.5 The Anomaly Detector
Algorithm 3 lists how the anomaly detector works. Each input vector that is obtained online,
~it, is transformed to Z4(~it) (line 1). The sliding window H is updated (line 2). The online
trainer process retrieves the sets of correlated attributes and their thresholds (line 3). For each
correlated set, only the relating dimensions are considered when we compare the point extracted
from ~it (line 8) to the points with the same dimensions in H (line 7). These points are compared
using Mahalanobis Distance (line 9). If the distance is larger than the correlated sets’ threshold,
then an anomaly is declared (line 10).

Algorithm 3 Anomaly Detector(~it)

Input: ~it - the current input vector received online.
1: ~it ← Z4(~it)

2: H ← {~it−m−1, . . . ,~it−1}
3: CS, TS ← Online Trainer(H)
4: for each a (0 ≤ a ≤ |CS|) do
5: Let CSa be the a’th set of correlated attributes in CS
6: Let thresholda be the a’th threshold, associated with CSa

7: PH ← points with dimensions relating to CSa’s attributes extracted from H
8: pnew ← point with dimensions relating to CSa’s attributes extracted from ~it
9: if thresholda < Dmahal(pnew, PH) then

10: declare “Anomaly”.

30



Chapter 6

Evaluation

First, we describe the experiments setup; the test domains and anomalies, the different anomaly
detectors that emphasize the need of each one of our approach’s features, and how the scoring is
done. Then, we evaluate the influence of each feature of our approach, and show the advantages
of our algorithm over other anomaly detection approaches.

6.1 Experiments Setup
We use four domains to test our approach, described in Table 6.1.

Domain UAV UGV FlightGear EPS
data real real simulated real
anomalies simulated real simulated real + simulated
scenarios 2 2 15 16
scenario duration (sec) 2100 96 660 120 to 300
attributes 55 25 23 81
frequency 4Hz 10Hz 4Hz 2Hz
anomalies per scenario 1 1 4 to 6 1 to 3
anomaly duration (sec) 100, 64 30 35 until the end of the input

Table 6.1: Tested domains and their characteristics.

The first is a commercial UAV (Unmanned Aerial Vehicles). The data of two real flights,
with simulated faults, was provided by the manufacture. The fault of the first flight is a gradually
decreasing value of one attribute. The fault of the second flight is an attribute that froze on a
legal value. This fault is specially challenging, because it is associated with an attribute that is
not correlated to any others, making it very difficult for our approach to detect the anomaly.

The second domain is a UGV. We used a laboratory robot, the RV400 (see Fig. 6.1). This
robot is equipped with ten sonars, four bumpers and odometry measures. We tested two scenar-
ios. In each scenario the robot went straight, yet it was tangled with a string that was connected
to a cart with weight. The extra weight causes the robot to slow down in the first scenario, and
completely stop in the second scenario. These scenarios demonstrate anomalies that are a re-
sult of the physical objects which are not sensed by the robot. Therefore, the robot’s operating
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Figure 6.1: RV-400 tangled with a string connected to a heavy cart.

program is unaware of these objects as well, leaving the situation unhandled. This domain also
presents the challenge of having little data (only 96 seconds of data).

Figure 6.2: FlightGear flight simulator.

To further test our approach, on more types of faults and on various conditions, we used
a third domain, the FlightGear flight simulator (see Fig. 6.2). FlightGear models real world
behavior, and provides realistic noisy data. “Instruments that lag in real life, lag correctly in
FlightGear, gyro drift is modeled correctly, the magnetic compass is subject to aircraft body
forces.” [9] Furthermore, FlightGear also accurately models many instrument and system faults,
that can be injected into a flight. For example, “if the vacuum system fails, the HSI gyros
spin down slowly with a corresponding degradation in response as well as a slowly increasing
bias/error.” [9]
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In the FlightGear simulation, we programmed an autonomous UAV to fly according to the
following behaviors: a take-off, an altitude maintenance, a turn, and eventually a landing. Dur-
ing a flight, 4 to 6 faults were injected into three different components; the airspeed-indicator,
altimeter and the magnetic compass. The faults and their time of injection, were both randomly
selected. Each fault could be a contextual anomaly [6] with respect to the UAV’s behavior, and
a collective anomaly [6] with respect to the measurements of different instruments such as the
GPS airspeed, altitude indicators and the Horizontal Situation Indicator.

Figure 6.3: The Electrical Power System diagram.

Usually, the measured attributes of an entire robotic system are low grained, in the sense that
a single attribute can express the state of multiple components of a subsystem. For example, the
values of the attribute Power supply are affected by the work of the complex components of the
electrical power system. Each of these components might be faulty.

To test the approach on a complex subsystem which is more fine grained, and where all the
components effect each other, we used a fourth domain. The fourth test domain is an Electri-
cal Power System (EPS), which simulates the functions of a typical aerospace vehicle power
system (see Fig. 6.3). The data set was generated from an EPS in the Advanced Diagnostics
and Prognostics Testbed (ADAPT) lab at the NASA Ames Research Center [15]. 81 attributes
monitored in 2Hz; they store data from sensors that measure system variables such as voltages,
currents, temperatures and switch positions. Faults were injected into the EPS using physical or
software means. Some components were stuck on legal values or drifted, switches failed to open
or close [15].

Our approach is based on three key features, compared to previous work. 1) a comparison to
a sliding window, rather than a complete record of past data. 2) the use of an online training pro-

33



cess to find correlated attributes. 3) the use of differential filtered data. To show the independent
contribution of each feature we tested the following online anomaly detectors that are described
by three parameters (Nominal Data, Training, Filter), as summarized in Table 6.2. The bold line
is our recommended approach when using Z∆ as the filter.

Name Nominal Data Training Alg.
(CD,none,filter) complete past data none 4
(SW,none,filter) sliding window none 5
(CD,Tcd,filter) complete past data offline 6
(SW,Tcd,filter) sliding window offline 7
(SW,Tsw,filter) sliding window online 8

Table 6.2: Tested Anomaly Detectors.

The filter can be raw, ∆, Zraw, Z∆ as described in Section 5.4. CD denotes the use of a
Complete record of past Data. SW denotes the use of a Sliding Window.

Here is a detailed description of each one of the algorithms we evaluated:

Algorithm 4 (CD,none,filter)(~it)

Input: ~it - the current input vector.
1: offline:
2: H ← filter(H)
3: add A to CS
4: thresholdH ← Threshold Setter(H,CS)
5:
6: online:
7: ~it ← filter(~it)
8: if thresholdH < Dmahal(~it, H) then
9: declare “Anomaly”.

(CD,none,filter) operation: H is filtered offline (line 2). Since no training is done, only one
“correlated” set is used (line 3), it contains all the attributes, regardless to their being correlated
or not. The threshold of H is set to be the highest Mahalanobis Distance of all the points within
H (line 4). ~it is filtered and compared to H online. If the threshold is crossed, an anomaly is
declared.
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Algorithm 5 (SW,none,filter)(~it)

Input: ~it - the current input vector.
1: online:
2: ~it ← filter(~it)
3: H ← {~it−m−1, . . . ,~it−1}
4: thresholdH ← Threshold Setter(H, {A})
5: if thresholdH < Dmahal(~it, H) then
6: declare “Anomaly”.

(SW,none,filter) operation: the input vector ~it is filtered (line 2). H is set to be the last m
inputs - a sliding window (line 3). The threshold is set to be the highest Mahalanobis Distance
of all the points within H (line 4). Since no training is done, all the dimensions are used. ~it is
compared to H (line 5). If the threshold is crossed, an anomaly is declared.

Algorithm 6 (CD,TCD, filter)(~it)

Input: ~it - the current input vector.
1: offline:
2: H ← filter(H)
3: CS ← Correlation Detector(H)
4: TS ← Threshold Setter(H,CS)
5:
6: online:
7: ~it ← filter(~it)
8: for each a (0 ≤ a ≤ |CS|) do
9: Let CSa be the a’th set of correlated attributes in CS

10: Let thresholda be the a’th threshold, associated with CSa

11: PH ← points with dimensions relating to CSa’s attributes extracted from H
12: pnew ← point with dimensions relating to CSa’s attributes extracted from ~it
13: if thresholda < Dmahal(pnew, PH) then
14: declare “Anomaly”.

(CD,TCD, filter) operation: H is filtered offline (line 2), then a training process takes place.
The Correlation Detector uses the data in H to return the sets of correlated attributes (line 3). A
threshold, per each correlated set of attributes, is set to be the highest Mahalanobis Distance of
all the points within H with the dimensions relating to the attributes in the correlated set (line
4). The input vector ~it is filtered online (line 7). For each correlated set, points with the relating
dimensions are extracted from ~it andH (lines 11,12), and compared with Mahalanobis Distance
(line 13). If a threshold of a correlated set is crossed, then an anomaly is declared (line 14).
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Algorithm 7 (SW,TCD, filter)(~it)

Input: ~it - the current input vector.
1: offline:
2: H ← filter(H)
3: CS ← Correlation Detector(H)
4:
5: online:
6: ~it ← filter(~it)
7: H ← {~it−m−1, . . . ,~it−1}
8: TS ← Threshold Setter(H,CS)
9: for each a (0 ≤ a ≤ |CS|) do

10: Let CSa be the a’th set of correlated attributes in CS
11: Let thresholda be the a’th threshold, associated with CSa

12: PH ← points with dimensions relating to CSa’s attributes extracted from H
13: pnew ← point with dimensions relating to CSa’s attributes extracted from ~it
14: if thresholda < Dmahal(pnew, PH) then
15: declare “Anomaly”.

(SW,TCD, filter) operation: H is filtered offline (line 2), then the Correlation Detector
uses the data inH to return the sets of correlated attributes (line 3). The input vector ~it is filtered
online (line 6) and H is set to be the last m inputs - a sliding window (line 7). A threshold, per
each correlated set of attributes, is set to be the highest Mahalanobis Distance of all the points
within H with the dimensions relating to the attributes in the correlated set (line 8). For each
correlated set, points with the relating dimensions are extracted from ~it and H (lines 12,13), and
compared with Mahalanobis Distance (line 14). If the threshold of the correlated set is crossed,
then an anomaly is declared (line 15).

Algorithm 8 (SW,TSW , filter)(~it)

Input: ~it - the current input vector.
1: ~it ← filter(~it)
2: H ← {~it−m−1, . . . ,~it−1}
3: CS, TS ← Online Trainer(H)
4: for each a (0 ≤ a ≤ |CS|) do
5: Let CSa be the a’th set of correlated attributes in CS
6: Let thresholda be the a’th threshold, associated with CSa

7: PH ← points with dimensions relating to CSa’s attributes extracted from H
8: pnew ← point with dimensions relating to CSa’s attributes extracted from ~it
9: if thresholda < Dmahal(pnew, PH) then

10: declare “Anomaly”.

(SW,TSW , filter) is our proposed approach when the filter isZ∆ (see Alg. 3 in section 5.5).
Everything is done online. H is set to be the last m inputs - a sliding window (line 2), the online
training uses the data in H to return the sets of the correlated attributes and their thresholds (line
3). For each correlated set, points with the relating dimensions are extracted from ~it andH (lines

36



7,8), and compared with Mahalanobis Distance (line 9). If the threshold of the correlated set is
crossed, then an anomaly is declared (line 10).

(CD,Tsw,filter) is not displayed in table 6.2. This anomaly detector executes the training
process on the sliding window, thus, thresholds are calculated online each time different corre-
lated sets are returned. However, the comparison of the online input is made against a complete
record of past data, thus, thresholds are calculated on the data of CD, which is considerably
larger than the data of SW . Therefore, the anomaly detection of (CD,Tsw,filter) is not feasible
online, hence, it is not compared to the other anomaly detectors displayed in table 6.2.

We evaluated the different anomaly detectors by the detection rate and false alarm rate. To
this aim we define four counters, which are updated for every input ~it. A “True Positive” (TP)
refers to the flagging of an anomalous input as anomalous. A “False Negative” (FN) refers to
the flagging of an anomalous input as nominal. A “False Positive” (FP) refers to the flagging of
a nominal input as anomalous. A “True Negative” (TN) refers to the flagging of a nominal input
as nominal. Table 6.3 summarizes how these counters are updated.

score description
TP counts 1 if at least one “anomalous” flagging occurred during a fault time
FN counts 1 if no “anomalous” flagging occurred during a fault time
FP counts every “anomalous” flagging during nominal time
TN counts every “nominal” flagging during nominal time

Table 6.3: Scoring an anomaly detector.

For each algorithm, we calculated the detection rate = tp
tp+fn

and the false alarm rate =
fp

fp+tn
. An efficient classifier should maximize the detection rate and minimize the false alarm

rate. The perfect classifier has a detection rate of 1, and a false alarm rate of 0.

6.2 Results
Figures 6.4 and 6.5 present the detection rate and the false alarm rate respectively of 15 flights
in the FlightGear simulator. We present the influence of the different filters on the different
algorithms. The scale ranges from 0 to 1, where 0 is the best possible score for a false alarm rate
and 1 is the best possible score for a detection rate.

We begin with the first anomaly detector, (CD,none). Both Figures 6.4 and 6.5 show a value
of 1, indicating a constant declaration of an anomaly. In this case, no improvement is achieved
by any of the filters. This accounted for the fact that the comparison is made to a complete record
of past data. Since the new point is sampled from a different flight, it is very unlikely for it be
observed in the past data, resulting with a higher Mahalanobis Distance than the threshold, and
the declaration of an anomaly.

The next anomaly detector we examine is (SW,none). In this detector, the comparison is
made to the sliding window. Since data is collected in a high frequency, the values of ~it and
the values of each vector in H , are very similar. Therefore the Mahalanobis Distance of ~it is
not very different than the Mahalanobis Distance of any vector in H . Thus the threshold is
very rarely crossed. This explains the very low false alarm rate for this algorithm in Figure
6.5. However, the threshold is not crossed even when anomalies occur, resulting in a very low
detection rate as Figure 6.4 shows. The reason is the absence of training. The Mahalanobis
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Figure 6.4: Detection rate. (Higher is better)

Figure 6.5: False alarm Rate. (Lower is better)

Distance of a contextual or collective anomaly, is not higher than Mahalanobis Distances of
points with uncorrelated dimensions in H . The anomalies are not conspicuous enough.

The next two anomaly detectors, introduce the use of offline training. The first (CD,Tcd),
uses a complete record of past data, while the second (SW,Tcd) uses a sliding window. However
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in both anomaly detectors the training is done offline, on a complete record of past data. When
no filter is used, (CD,Tcd) declares an anomaly most of the times, this is illustrated in the square
dot in Figures 6.4 and 6.5. When filters are used, more false negatives occur, expressed in the
almost 0 false alarm rates and the decreasing of the detection rate. However, when a sliding
windows is used, even with no filters, (SW,Tcd) got better results, a detection rate of 1, and
less than 0.5 false alarm rate, which is lower than (CD,Tcd)’s false alarm rate. The filters used
with (SW,Tcd) lower the false alarm rate to almost 0, but this time, the detection rate, though
decreased, remains high. Comparing (SW,Tcd) to (CD,Tcd) shows the importance of a sliding
window, while comparing (SW,Tcd) to (SW,none) it shows the crucial need of training.

The final anomaly detector is (SW,Tsw) which differs from (SW,Tcd) by the training mech-
anism. (SW,Tsw) applies an online training on the sliding window. This allows achieving a very
high detection rate. Each filter used allows increasing the detection rate closer to 1, until Z∆

gets the score of 1. The false alarm rate is very high when no filter is used. When using filters
we are able to reduce the false alarm rate to nearly 0. (SW,Tsw,Z∆), which is the approach we
described in section 5.5, achieves a detection rate of 1, and a low false alarm rate of 0.064.

The results show the main contributions of each feature, summarized in table 6.4

feature contribution reason
sliding window decreases FP similarity of ~it to H .
training increases TP correlated dimensions→ more conspicuous anomalies.
online training increases TP correspondence to dynamic correlation changes.
filters decreases FP better correlations are found.

increases TP

Table 6.4: Feature Contributions

Figure 6.6 describes the entire space of classifiers: the X-axis is the false alarm rate and
the Y -axis is the detection rate. A classifier is expressed as a 2D point. The perfect anomaly
detector is located at point (0,1), that is, it has no false positives, and detects all the anomalies.
Figure 6.6 illustrates that when the features of our approach are applied, they allow the results to
approximate the perfect classifier.

Figure 6.7 shows the detection rates and false alarm rates of (TW,Tsw,Z∆) in the classifier
space, when we increase the correlation threshold ct ∈ {0..1} in the online trainer described in
section 5.3. Note that the X axis scales differently than in Figure 6.6, it ranges between [0, 0.2]
in order to zoom in on the effect.

When ct equals 0 all the attributes are selected for each correlated set, resulting with false
alarms. As ct increases, less uncorrelated attributes are selected, reducing the false alarms,
until a peak is reached. The average peak of the 15 FlightGear’s flights was reached when ct
equals 0.5. (TW,Tsw,Z∆) averaged a detection rate of 1, and a false alarm rate of 0.064. As
ct increases above that peak, less attributes that are crucial for the detection of an anomaly are
selected, thereby increasing the false negatives, which in return lowers the detection rate. When
ct reaches 1, no attributes are selected, resulting a constant false negative.

To further test our approach, we compare it with other methods. Support Vector Machines
(SVM) are considered very successful classifiers when examples of all categories are provided
[26]. However, the SVM algorithm classifies every input as nominal, including all anomalies,
resulting in a detection rate of 0 as Figure 6.8 shows. Samples of both categories are provided to
the SVM, and it is an offline process, yet, the contextual and collective anomalies are undetected.
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Figure 6.6: The classifier plane.

Figure 6.7: The influence of the correlation threshold.

This goes to show how illusive these anomalies are, which were undetected by a successful and
well-known classifier, even under unrealistic favoring conditions.

We also examine the quality of (SW,Tsw,Z∆) in the context of other anomaly detectors.

40



Figure 6.8: FlightGear Domain Detection Rate

We compared it to the incremental LOF algorithm [22]. As in our approach, the incremental
LOF returns a density based anomaly score in an online fashion. The incremental LOF uses
K nearest neighbor technique to compare the density of the input’s “neighborhood” against the
average density of the nominal observations [22]. Figure 6.8 shows a detection rate of 1 to
(SW,Tsw,Z∆) and the incremental LOF algorithm, making it a better competitive approach to
ours than the SVM.

Since the incremental LOF returns an anomaly score rather than an anomaly label, we com-
pared the two approaches using an offline optimizer algorithm that gets the anomaly scores re-
turned by an anomaly detector, and the anomaly times, and returns the optimal thresholds, which
in retrospect, the anomaly detector would have labeled the anomalies, in a way that all anomalies
would have been detected with a minimum of false positives.

Figures 6.9 to 6.13 show for every tested domain the false alarm rate of

1. (SW,Tsw,Z∆)

2. optimized (SW,Tsw,Z∆) denoted as OPT(SW,Tsw,Z∆)

3. optimized incremental LOF denoted as OPT(LOF)

The results of the detection rate for these anomaly detectors is 1 in every tested domain, just
like the perfect classifier; all anomalies are detected. Thus, the false alarm rate presented, also
expresses the distance to the perfect classifier, where 0 is perfect.

The comparison between (SW,Tsw,Z∆) to OPT(LOF) does not indicate which approach is
better in anomaly detection, since the incremental LOF is optimized, meaning, the best theo-
retical results it can get are displayed. However the comparison between OPT(SW,Tsw,Z∆) to
OPT(LOF) does indicate which approach is better, since both are optimized. The comparison be-
tween OPT(SW,Tsw,Z∆) to (SW,Tsw,Z∆) indicates how better (SW,Tsw,Z∆) can theoretically
get.

In all the domains the OPT(SW,Tsw,Z∆) had the lowest false alarm rate. Naturally, OPT(SW,Tsw,Z∆)
has a lower false alarm rate than (SW,Tsw,Z∆), But more significantly, it had a lower false alarm
rate than OPT(LOF), making our approach a better anomaly detector than the incremental LOF
algorithm. Of all the tested robotic domains, the highest false alarm rate of (SW,Tsw,Z∆) oc-
curred in the UAV’s second flight, as Figure 6.11 show (little above 0.09). In this flight, the fault
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Figure 6.9: FlightGear domain.

Figure 6.10: UAV first flight.

occurred in an attribute that is not very correlated to any other. Thus, the correlation threshold
(ct) had to be lowered. This allowed the existence of a correlated set that includes the faulty at-
tribute as well as other attributes. This led to the detection of the anomaly. However the addition
of uncorrelated attributes increased the false alarm rate as well.

Figure 6.12 shows a surprising result. Even though the results of the incremental LOF are
optimized, (SW,Tsw,Z∆), which is not optimized, had a lower false alarm rate. This is explained
by the fact that in the UGV domain, there was very little data. KNN approaches usually fail when
nominal or anomalous instances do not have enough close neighbors [6]. This domain simply
did not provide the LOF calculation enough data to accurately detect anomalies. However, the
Mahalanobis Distance uses all the points in the distribution, enough data to properly detect the
anomalies.

Figure 6.14 shows the false alarm rate influenced by the increase of the sliding window’s
size. While Mahalanobis Distance uses the distribution of all the points in the sliding window,
the KNN uses only a neighborhood within the window, thus unaffected by its size. Therefore,
there exists a size upon which our approach’s real false alarm rate, meets the incremental LOF’s
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Figure 6.11: UAV second flight.

Figure 6.12: UGV domain.

optimized false alarm rate.
In this thesis, we presented two approaches. The first approach uses an offline training pro-

cedure, utilizing a complex and computationally heavy dependency detection algorithm. The
second approach uses an online training procedure utilizing the quick Pearson correlation cal-
culation. Now, we want to compare the two approaches, and show that the second approach is
more effective.

We begin by run-time comparison. In the first approach, the run-time of the online anomaly
detection phase is predetermined by the offline training phase. However, in the second approach,
the run-time is influenced by parameters which are set by the user. The second approach has
additional computation due to its online training. However, the Mahalanobis Distance is used to
compare the input vector to a “window” of the last m inputs. Thus, the run-time is influenced by
the size of m. In the first approach, where the training is done offline, the Mahalanobis Distance
is used to compare the input vector to a complete recored of past data, which can be significantly
larger than the online window. Thus, despite the additional computational time of the online
training, the second approach’s run-time can be set to be equal or even smaller than the online

43



Figure 6.13: EPS domain.

Figure 6.14: Sliding Window’s changing size.

run-time of the first approach (which is usually the case).
While the second approach has no offline phase, the first approach’s offline run-time is sig-

nificantly long. It is determined by the search depth of the MSDD algorithm, which needs to
be deep enough to return good results. The offline run-time can take days and even more. The
run-time of the online training of the second approach, scales to the number of attributes being
measured; its usually a matter of a few milliseconds - faster than the frequency of the input. If
the number of attributes is too large, and causes the run-time of the online training to be slower
than the frequency of the input, then the data can be sampled in a lower frequency.

The most interesting comparison, obviously, is the false alarm rates of each approach. Each
approach has advantages and disadvantages that effects the results, as summarized in table 6.5

Figure 6.15 summarize the results of the proposed approach (second approach) compared
against the first approach. Since in the first approach only returns an anomaly score, optimized
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offline training approach online training approach
Advantages a better algorithm to new data is compared to

find correlations. current data.
the data is filtered.
automatic selection of
correlated attributes.

Disadvantages attributes are manually a simpler algorithm to
selected into correlated sets. find correlations.
new data is compared to past data.
the data is not filtered.

Table 6.5: Feature Contributions

thresholds were selected by the OPT algorithm to flag anomalies. Thus the optimal results are
displayed. Except for the UGV domain, where there is a slight difference in the false alarm rates,
in all the others the second approach outperforms the first. In the FlightGear and EPS domains
the first approach failed. every input was declared as anomalous. This goes to show the problem
of manually selecting correlated attributes out of the MSDD output.

Figure 6.15: Comparison of first and second approach

To know the influence of our appraoch’s features, upon another density based technique,
we also implemented the incremental LOF algorithm with our features. Figure 6.16 shows the
decrease of false positives, of OPT (LOF ), when the filters were used, averaged over the 15
flights of the FlightGear’s domain. While the raw data produced an average of 63 false positives
per flight, diff produced only a half, Zraw and Zdiff produced an average of 4.53, 4.5 false
positives per flight respectively. The last results are very close to the optimal results of our
approach which had only 3 false positives. This goes to show the special need of the robots
domain, in a differential filtered data.

We also tested our approach, with the replacement of the Mahalanobis Distance calculation
with the incremental LOF calculation. This means that an online trainer grouped correlated
attributes into sets, and the incremental LOF algorithm was applied to each correlated set, while
maintaining points from the sliding window. However, this was proved to have a very long
computational time, which is not feasible online.
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Figure 6.16: False positives of inc. LOF
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Chapter 7

Conclusions and Future Work

In this thesis we presented two novel approaches for detecting anomalies in unmanned au-
tonomous vehicles. Both approaches use the Mahalanobis Distance to detect anomalies and
thus benefit from its model-free nature. The experimentation with different domains of both
simulated and physical nature, showed the approaches’ domain independent quality and the abil-
ity to succeed in the real world. While the first approach used an offline training procedure, the
second approach used an online training procedure that made the approach also unsupervised,
and completely online anomaly detector for robots. Therefore, the second approach has the qual-
ities of a “plug & play” mechanism for different robotic platforms. We showed how essential a
training process is to the successful online anomaly detection. Moreover, the experiments with
the second approach also showed the benefits of:

• The comparison of the current data input to the data of the sliding window.

• The finding of dynamic correlations between attributes (online).

• The filtering of the data.

We showed that this approach is superior to previous approaches such as the incremental
LOF algorithm, and that the approach succeeds where other well-known classifiers, such as
SVM, have failed even under unrealistic favoring conditions. We compared our two approaches,
and found that the online approach is more effective than the first. Finally, we showed that
the filtering can improve other anomaly detection techniques, thereby showing its independent
contribution.

The next step after anomaly detection towards diagnosis, is “Anomaly Isolation”. We think
that once an anomaly was declared, the most likely attributes that are expressing the anomaly
can be easily found by a process of elimination. If the removal of a dimension lowers the
Mahalanobis Distance then the attribute relating this dimension is probably responsible for the
anomaly. Once the isolated symptoms are collected, a process of diagnosis can begin.

The large difference between the results of the optimized thresholds to the results of the
calculated thresholds, shows that the thresholds chosen by our technique can be chosen better.
We think that better learning algorithms can find closer thresholds to the optimized ones.

This work focused on detecting anomalies on a single robot. We think that our approach
can work just as well in the data of multiple robots. For example, a few UAV’s are flying in a
formation, the data of the altitude of each aircraft is added to a multidimensional point. When
one aircraft breaks the formation unexpectedly, the Mahalanobis Distance will raise indicating
an anomaly.
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