
A Generalization of the Shortest Path Problem
to Graphs with Multiple Edge-Cost Estimates

Eyal Weissa;*, Ariel Felnerb and Gal A. Kaminkaa

aBar-Ilan University
bBen-Gurion University

Abstract. The shortest path problem in graphs is a cornerstone
of AI theory and applications. Existing algorithms generally ignore
edge weight computation time. We present a generalized framework
for weighted directed graphs, where edge weight can be computed
(estimated) multiple times, at increasing accuracy and run-time ex-
pense. This raises several generalized variants of the shortest path
problem. We introduce the problem of finding a path with the tight-
est lower-bound on the optimal cost. We then present two complete
algorithms for the generalized problem, and empirically demonstrate
their efficacy.

1 Introduction
The canonical problem of finding the shortest path in a directed,
weighted graph is fundamental to artificial intelligence and its ap-
plications. The cost of a path in a weighted graph, is the sum of the
weights of its edges. Informed and uninformed search algorithms for
finding shortest (minimal-cost) paths are heavily used in planning,
scheduling, machine learning, constrained optimization, and more.

A common assumption made by existing search algorithms is
that the edge weights are determined in negligible (or very small
constant) time. However, recent advances challenge this assump-
tion. This occurs when weights are determined by queries to re-
mote sources, or when the graph is massive, and is stored in ex-
ternal memory (e.g., disk). In such cases, additional data-structures
and algorithmic modifications are needed to optimize the order in
which edges are visited, i.e., optimizing access to external mem-
ory [21, 8, 9, 13, 11, 12, 20]. Similarly, when edge weights are com-
puted dynamically using learned models, or external procedures, it is
beneficial to delay weight evaluation until necessary [1, 16, 15, 14].

A concrete example serves to illustrate the setting we address.
Consider searching for the fastest route between two cities, where
edges represent roads, and edge weights represent current travel
times, which are queried from an online source (e.g., Google maps).
Even a few milliseconds for each query makes the weight evalua-
tion a significant component in the search run-time. Travel times can
be estimated even more accurately with information from additional
sources (e.g., weather conditions, road curvature and elevation), but
their use may significantly increase edge weight computation time.

We present a novel approach to handling expensive weight compu-
tation by allowing the search algorithms to incrementally use multi-
ple weight estimators, that compute the edge weight with increasing
accuracy, but also at increasing computation time. Specifically, we
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replace edge weights with an ordered set of estimators, each provid-
ing a lower and upper bound on the true weight. A search algorithm
may quickly compute loose bounds on the edge weight, and invest
more computation on a tighter estimator later in the process. In the
example above, a local database can be queried quickly to get rough
bounds on the travel times (based on the fixed distance and speed
limits). Incrementally, online queries and computations can be used
as needed to get more accurate edge weight estimations, at increasing
computational expense. This approach follows the recently suggested
concept of dynamic estimation during planning [22, 23] and its first
implementation in AI planning [25].

Having multiple weight estimators for edges is a proper gener-
alization of standard edge weights, and raises several shortest path
problem variants. The classic singular edge weight is a special case,
of an estimator whose lower- and upper- bounds are equal. However,
since the true weight may not be known (even applying the most
expensive estimator), other variants of the shortest path problems in-
volve finding paths that have the best bounds on the optimal cost.

In this paper, we introduce the shortest path tightest lower-bound
(SLB) problem, which is to find a path with the tightest lower bound
on the optimal cost. SLB is an important shortest-path problem vari-
ant in graphs with multiply-estimated edge weights, since its solution
provides a lower bound for the true cost of any solution, even when
costs are unknown, and furthermore it is key to determining optimal
(or bounded-suboptimal) paths in such graphs, as we will discuss.

We present BEAUTY, an uninformed search algorithm based on
uniform-cost search (UCS, a variant of Dijksra’s algorithm) [3]. We
then use it to construct an anytime algorithm (A-BEAUTY) that
provides additional flexibility for trade-offs between time spent on
search and time spent on estimation. Both algorithms are shown to
be correct and complete. Experiments demonstrate the dramatic com-
putational savings they offer compared to the baseline which uses the
most accurate and expensive estimates in all cases.

2 Background and Related Work
To put this research in context, consider the abstract components of
the search run-time T , in a manner inspired by [14]:

T = Tw + Tv = τw × w + τv × v, (1)

where Tw is the time spent on edge weight computation and Tv is the
time spent on vertex (search) operations (e.g., expansion, queue oper-
ations, etc.). Tw, Tv can be decomposed as follows: w is the number
of edge weight computations conducted, and v the number of vertices



encountered during the search; τw, τv are respectively the average
edge weight computation time, and average vertex search operations
time (for every vertex considered).

We use this abstract view to examine different algorithmic ap-
proaches in terms of their efforts to reduce v or w, sometimes trading
an increase in one parameter to reduce another. Standard search al-
gorithms assume τw is negligible (or a small constant) and so their
effort is mostly on reducing v. In contrast, algorithms for finding
shortest paths in robot configuration spaces must consider settings
where τw is high, since in these applications, edge existence and cost
are determined by expensive computations for validating geometric
and kinematic constraints. Thus these algorithms reduce w by explic-
itly delaying weight computations [1, 16, 15, 14], even at the cost of
increasing v. Related challenges arise in planning, where action costs
can be computed by external (lengthy) procedures [2, 6, 4], or when
multiple heuristics have different run-times [10].

There are also approaches that seek to directly reduce τw (rather
than w). When the graph is too large to fit in random-access mem-
ory, it is stored externally (i.e., disk). External-memory graph search
algorithms optimize the memory access patterns for edges (and ver-
tices), so as to make better use of faster memory (caching) [21, 8,
9, 13, 11, 12, 20]. This reduces τw by amortizing the computation
costs, but still assumes a single weight computation per edge.

The approach we take in this paper is complementary to those
above. We consider a case where the weight of each edge can be esti-
mated multiple times, successively, at increasing expense for greater
accuracy. The component Tw = τw × w is then replaced with

Tw = τw1 × w1 + τw2 × w2 . . . τwk × wk, (2)

with τw1 < . . . < τwk , and possibly, w1 + . . .+wk > w. However,
the total sum in Eq. 2 may be much smaller than the original τw×w.
While naturally, τwk ≤ τw, the search algorithm may produce wk ≪
w. The algorithms presented here make use of this to balance search
effort and edge evaluation in a refined manner, and thus to reduce
overall run-time Tw.

This re-thinking of edge weights is independent of, and comple-
mentary to, other extensions to the definition of weights in graphs.
For example, scalar weights can be random, drawn from a distribu-
tion associated with each edge [5]. Fuzzy weights [17] allow quan-
tification of uncertainty by grouping approximate weight ranges to
several representative sets. Multi-objective weights [19] allow each
edge to be associated with a vector of different weights, facilitating
optimization of multiple objectives. All of these extensions ignore
the weight computation time, in contrast to the work reported here.

3 Shortest Path with Estimated Weights

A standard weighted digraph is a tuple (V,E, c), where V is a set
of vertices, E is a set of edges, s.t. e = (vi, vj) ∈ E iff there exists
an edge from vi to vj , and c : E → R+ is a cost (weight) function
mapping each edge to a non-negative number. Let vi and vj be two
vertices in V . A path p = ⟨e1, . . . , en⟩ from vi to vj is a sequence of
edges ek = (vqk , vqk+1) s.t. k ∈ [1, n], vi = vq1 , and vj = vqn+1 .
The cost of a path p is then defined to be c(p) :=

∑n
k=1 c(ek).

The Goal-Directed Single-Source Shortest Path (GDS3P ) problem
involves finding a path π from a start vertex to a goal vertex, with
minimal c(π), denoted as C∗.

We now replace the cost function c by an estimator-generating
function Θ, which for every edge e yields a sequence of estimation
procedures, each providing a lower and upper bound on the weight of

the edge (Def. 1). The procedures are ordered by increasing running
times and assumed to yield increasingly tightening bounds.

Definition 1 A cost estimators function for a set of edges E, de-
noted as Θ, maps every edge e ∈ E to a finite and non-empty se-
quence of weight estimation procedures,

Θ(e) := (θ1e , . . . , θ
k(e)
e ), k(e) ∈ N, (3)

where estimator θie, if applied, returns lower- and upper- bounds
(lie, u

i
e) on c(e), such that 0 ≤ lie ≤ c(e) ≤ ui

e < ∞). Θ(e) is
ordered by the increasing running time of θie, and the bounds mono-
tonically tighten, i.e., [lje, u

j
e] ⊆ [lie, u

i
e] for all i < j.

This allows us to define estimated weighted digraphs:

Definition 2 An estimated weighted digraph is a tuple G =
(V,E,Θ), where V,E are sets of vertices and edges, resp., and Θ
is a cost estimators function for E.

A path p = ⟨e1, ..., en⟩ can now be characterized by the accu-
mulated lower- or upper- bounds on the edges, resulting from the
application of some weight estimators (Def. 3):

Definition 3 Let Φ(e) be a non-empty subset of estimators from the
sequence Θ(e), for an edge e. We denote the tightest bounds on c(e),
over all estimators in Φ(e), as lΦ(e) (maximum lower bound) and
uΦ(e) (minimum upper bound):

lΦ(e) := max{lie|θie = (lie, u
i
e) ∈ Φ(e)}

uΦ(e) := min{uj
e|θje = (lje, u

j
e) ∈ Φ(e)}

(4)

For a path p, let Φ(p) :=
⋃

e∈p Φ(e). The path lower bound and
path upper bound of p w.r.t. Φ(p) follow, respectively, from the tight-
est edge bounds defined above.

lΦ(p) :=

n∑
i=1

lΦ(ei), uΦ(p) :=

n∑
i=1

uΦ(ei) (5)

We denote by Φ∗(p) the maximal size Φ(p), which includes all esti-
mators for edges in p.

Estimated weighted digraphs and their path bounds generalize the
familiar weighted digraphs, which are a special case where for ev-
ery edge e, there is a single estimation procedure θ1e = (c(e), c(e))
with lower and upper bounds that are equal to the weight c(e). In this
special case, a shortest tightly-bounded path π in the graph is a so-
lution to a GDS3P problem. However, in the general case, multiple
estimators exist, and we are not guaranteed that every weight can be
estimated precisely, even if all estimators for it are used. Thus, sev-
eral variants of the shortest path problem exist, which correspond to
the tightest bounds for the shortest path.

We focus on the shortest path tighest lower bound (SLB) problem
(Prob. 1). This problem deals with determining a path that achieves
L∗—the optimal tightest lower bound on the cost of the shortest path.

Problem 1 (SLB, finding L∗) Let P = (G, vs, Vg), where G is an
estimated weighted digraph with cost estimators functions Θ, vs ∈
V is the start (source) vertex and Vg ⊂ V is a set of goal vertices.
The Shortest path tightest Lower Bound problem (SLB) is to find a
path π from vs to any goal vertex v ∈ Vg , such that π has the lowest
tightest lower bound of any path from vs to v ∈ Vg , w.r.t. Θ, i.e.,
l(π) = L∗ with

L∗ := min
π′
{lΦ∗(π′) | π′ is a path from vs to v ∈ Vg}. (6)



The use of the min operator may seem counter-intuitive, as typ-
ically the tightest lower bound would be the maximal of all lower
bounds. Indeed, ideally, we should use lΦ∗(π∗), the tightest (maxi-
mal) lower bound of the shortest path π∗. However, π∗ is unknown
(as the cost function itself is unknown). Thus, instead we have to use
L∗, the minimal tightest lowest bound of any path that leads from
vs to a goal vertex. Necessarily, the use of L∗ bounds lΦ∗(π∗) from
below, and on the other hand it is the best (maximal) lower bound we
may use, when the true edge costs are unknown.

The SLB problem (Problem 1) is a generalization of the standard
shortest path problem GDS3P (Thm. 1), and thus its complexity is
at least that of GDS3P .

Theorem 1 Problem 1 generalizes GDS3P problems.

Proof. We show that any standard GDS3P problem can be formu-
lated as a special case of SLB. In this special case, each edge has
one estimator (namely, k(e) = 1 for every e), that returns the exact
cost (i.e., l1e = c(e) = u1

e), as this implies L∗ = C∗. A solution
for an SLB instance as described above has lower bound L∗ and will
therefore have cost C∗, hence by definition it is a shortest path. □

The solution to an SLB problem is important as generally exact
edge costs may not be known and then L∗ provides a tight lower
bound for the cost of any solution, thus quantifying cost uncertainty.
Yet it has additional uses. For example, L∗ is key in determining
optimal and bounded-suboptimal shortest path solutions. To see this,
we recall the definition of admissible solutions: a solution π to a
GDS3P problem is said to be a B-admissible shortest path if c(π)
is bounded by a suboptimality factor B, i.e.,

c(π) ≤ C∗ × B. (7)

If B = 1, then π is a shortest path.
In estimated weighted digraphs the cost c(π) of a path π is not

known precisely (in the general case), and thus Inequality 7 cannot
be shown directly. Instead, as c(π) ≤ uΦ∗(π) holds, we may prove
that π is B-admissible by showing that uΦ∗(π) ≤ C∗ × B. Still, the
optimal cost C∗ is also unknown, so we instead compare to L∗ (the
SLB solution). Necessarily, L∗ ≤ C∗ holds, thus showing

uΦ∗(π) ≤ L∗ × B (8)

is sufficient to prove that π is B-admissible (see Example 1). Solv-
ing SLB is therefore critical to identifying B-admissible paths with
estimated costs (which, for B = 1 are shortest paths).

Example 1 Consider an estimated weighted digraph
G = (V,E,Θ), with V = {v0, v1, v2, v3, v4}, and
E = {e01, e02, e14, e21, e23, e24} (see Fig. 1). Here, Θ is de-
fined by the following estimators: For edge e01: θ1e01 = (4, 4).
For edge e02, θ1e02 = (2, 6), and θ2e02 = (3, 5). For edge e14,
θ1e14 = (1, 10), θ2e14 = (4, 6). For edge e21, θ1e21 = (2, 3),
θ2e21 = (3, 3). For edge e23, θ1e23 = (5, 9), θ2e23 = (7, 8). Finally,
for edge e24, θ1e24 = (4, 6). Additionally, the true edge costs have
the following values: c01 = 4, c02 = 4, c14 = 5, c21 = 3, c23 = 7
and c24 = 6.

Given the graph above, we may define the SLB problem P =
(G, vs, Vg) with vs = v0 and Vg = {v3, v4}, i.e., searching for
paths from v0 to either v3, or v4. Then, the unknown optimal cost
is C∗ = c(π∗) = c01 + c14 = 9 with π∗ = ⟨e01, e14⟩, and the
tightest lower bound for C∗ is L∗ = lΦ∗(π1) = l202 + l124 = 7
with π1 = ⟨e02, e24⟩ (the SLB solution). Then, considering the so-
lution π2 = ⟨e02, e23⟩, one can obtain its tightest upper bound
uΦ∗(π2) = u2

02 + u2
23 = 13 and use it to get its admissibility factor

B(π2) = uΦ∗(π2)/L
∗ = 13/7.

Figure 1. Left: Digraph of Example 1. Right: costs and estimates.

4 Algorithms for SLB
We present two algorithms for solving the SLB problem. Both aim
at reducing the number of expensive estimators used. The first al-
gorithm, BEAUTY (Branch&bound Estimation Applied in UCS To
Yield bottom, Alg. 1), extends UCS to dynamically apply cost esti-
mators during a best-first search w.r.t. lower bounds of edge costs.
The second algorithm, A-BEAUTY (Anytime BEAUTY, Alg. 3)
uses BEAUTY in iterations, such that bounds established in one iter-
ation are used to focus the search in the next, monotonically improv-
ing the solution. Both algorithms are proved correct and complete.

4.1 The First Algorithm: BEAUTY

Algorithm 1 receives an SLB problem instance and two hyper-
parameters lest, lprune. For simplicity we will first describe a base
case where lest, lprune are both set to∞, and therefore have no ef-
fect and can be ignored. The relevant lines using lest and lprune are
colored in blue (Lines 17–19) and should be ignored for now. We
will come back to these parameters later.

Base Setting. BEAUTY is structurally similar to UCS. It activates
a best-first search process using the standard OPEN and CLOSED
lists. Nodes n in OPEN are prioritized by gl(n) which is, in the base
case, always equal to the optimal lower bound to node n along the
best known path (similar to using g(n) for ordering nodes in UCS
in regular graphs, which is done according to optimal cost). The best
such node n is chosen for expansion in Line 4, and its successors
are added in the loop of Lines 10–23. The main change of BEAUTY
over UCS is in the duplicate detection mechanism performed when
evaluating the cost of a new edge e that connects n to its successor s.
In UCS, the exact edge cost c(e) is immediately obtained and used
to update the path cost that ends in s. In BEAUTY, we iterate over
the different estimators θie for edge e (Lines 14–16). In each iteration
we set g̃l to be the lower bound for the path to s given the current
estimator (Line 16). Now such a path can be already pruned earlier if
its current lower bound (using the current estimator) will not improve
the best known path to s (gl(s)). In that case we will not need to ac-
tivate the entire set of estimators (in particular, the expensive ones).
Thus, if g̃l ≥ gl(s), the while statement (Line 14) ends. Then, ordi-
nary duplicate detection is performed in Lines 19–23. See Example 2
for a demonstration of using BEAUTY in its base setting.

Enhanced Setting. We now consider the enhanced setting where
lest, lprune are set to some constant values (not ∞). First, lest is
used as an upper bound for activating the series of estimators. When
a node n has a path lower bound > lest then we no longer activate



Algorithm 1 BEAUTY

Input: Problem P = (G,Θ, vs, Vg)
Parameter: Thresholds lest, lprune

Output: Path π, Opt, bounds l∗, l̄∗

1: gl(s0)← 0; OPEN← ∅; CLOSED← ∅
2: Insert s0 into OPEN with gl(s0)
3: while OPEN ̸= ∅ do
4: n← pop node n from OPEN with minimal gl(n)
5: if Goal(n) then
6: l(π)← gl(n)
7: Opt, l∗, l̄∗ ← BEAUTY-PS
8: return trace(n), Opt, l∗, l̄∗

9: Insert n into CLOSED
10: for each successor s of n do
11: if s not in OPEN ∪ CLOSED then
12: gl(s)←∞
13: g̃l ← gl(n)
14: while g̃l < gl(s) and estimators remain for e = (n, s) do
15: l(e)← Apply next estimator for e
16: g̃l ← gl(n) + l(e)
17: if g̃l > lest then
18: break // exit while loop
19: if g̃l < gl(s) and g̃l ≤ lprune then
20: gl(s)← g̃l
21: if s in OPEN then
22: Remove s from OPEN
23: Insert s into OPEN with gl(s)
24: return ∅, false,∞,∞

the series of estimators and only apply the first (cheapest) estimator
for edges after n (including the edge to n). This is done in Lines 17–
18 where we break the loop that further activates estimators on the
current edge. Second, lprune is used as an upper bound to prune (and
not add to OPEN) any node with lower bound > lprune (in a similar
manner to bounded cost search [18]). This is done in Line 19.

The purpose of using L∗ ≤ lest < ∞ is to avoid applications
of redundant (and expensive) estimators. Similarly, the purpose of
using L∗ ≤ lprune <∞ is to decrease the size of OPEN, which im-
plies less insertion operations and cheaper insert/delete operations.
But since L∗ is unknown, setting these hyper-parameters to mean-
ingful values requires prior information. Practically, such informa-
tion can be achieved by obtaining a suboptimal solution with l ≥ L∗,
and using it to set lest = lprune = l. This idea is implemented in the
anytime algorithm (A-BEAUTY) discussed below.

Goal Test and the Post-Search Procedure BEAUTY-PS. When
a solution π is found by the Goal function (Line 5), with the path
lower bound l(π), BEAUTY calls BEAUTY-PS (post-search proce-
dure, Proc. 2 below) to iterate over the edges of π and tighten the
estimations whenever possible, to produce the tightest lower bound
l̄∗ for π. If l̄∗ = l(π), namely the path bounds were already tight
before BEAUTY-PS, then it determines that π is optimal and sets
Opt ← true. Note that in the base setting when a solution is found
it is always already tightly estimated before BEAUTY-PS, so no fur-
ther estimators are applied and Opt ← true. BEAUTY-PS returns
Opt, l∗ = l(π) and l̄∗, which are then returned by BEAUTY to-
gether with π (generated by a path-reconstruction function trace).

Depending on the hyper-parameters lprune, lest, BEAUTY is
complete (Lemma 1), sound (Lemma 2), and optimal (Lemma 3).

Procedure 2 BEAUTY-PS
Input: BEAUTY’s inputs and variables
Output: Opt, bounds l∗, l̄∗

1: Opt← true; l∗ ← l(π)
2: for each edge e in π do
3: if estimators remain for e then
4: l← Apply the best estimator for e
5: l(π)← l(π) + l − l(e)
6: l(e)← l
7: if l(π) > l∗ then
8: Opt← false
9: l̄∗ ← l(π)

10: return Opt, l∗, l̄∗

Lemma 1 (Conditional Completeness Prob. 1) BEAUTY, pro-
vided with lprune ≥ L∗, is complete.

Proof. BEAUTY inspects nodes that are removed from OPEN by
best-first order w.r.t. lower bound of path cost. When lprune =∞ is
satisfied, no node is pruned, so that every node encountered during
the search is inserted into OPEN. The condition g̃l < gl(s) simply
verifies that each node in OPEN points back to the best found path
leading to it, but it does not prevent nodes from being inserted. In
this case completeness is assured, as the search is systematic.

Suppose that a best-first algorithm utilizes all possible estimators
per edge it encounters. Then, if a solution exists, a shortest path tight-
est lower bound π∗ will necessarily be returned with L∗. Since ap-
plying more estimators can only increase (tighten) the lower bound
for an edge, it follows that when not all possible estimators per edge
are utilized, and a systematic best-first search takes place, then a so-
lution π for P ending in a node n will be found, where the key of n
in OPEN (the obtained lower bound), immediately before it was re-
moved, must be lower than, or equal to, L∗. This holds regardless of
the value of lest, that only affects which (and how many) estimators
will be applied. Namely, the value of lest may affect which solution
π is found, but not the fact that such a solution will be found. Hence,
when lprune ≥ L∗ is satisfied, a solution π is necessarily found. □

Lemma 2 (Bounds for L∗) BEAUTY, provided with lprune ≥ L∗,
returns 0 ≤ l∗ ≤ L∗ ≤ l̄∗, if a solution exists for P . Furthermore,
if lest < L∗ also holds, then l∗ > lest.

Proof. The proof of Lemma 1 established that when BEAUTY is
called with lprune ≥ L∗, a solution π will be found (when a solu-
tion exists), ending in a node n, where the key of n in OPEN gl(n)
(the obtained lower bound), immediately before it was removed,
satisfies gl(n) ≤ L∗. Additionally, gl(n) ≥ 0 trivially holds, as
each edge lower bound is by definition non-negative. In line 6 of
BEAUTY l(π) ← gl(n) is set, then BEAUTY-PS is called, which
sets l∗ ← l(π) in Line 1, and then l∗ is not changed until it is re-
turned. BEAUTY-PS utilizes all unused estimators in the solution π,
by systematically improving estimations for each edge e belonging to
π using all estimators in Θ(e). Thus the tightest possible lower bound
for π is obtained and returned as l̄∗. From the optimality of L∗ it fol-
lows that l̄∗ ≥ L∗. To sum up, l∗, l̄∗, that satisfy 0 ≤ l∗ ≤ L∗ ≤ l̄∗,
are returned.

Let us now consider the case that lest < L∗ holds in addition to
lprune ≥ L∗. Seeking a contradiction, assume that l∗ > lest is not
necessarily satisfied. This means that for some solution π, it holds
that l∗ ≤ lest. Recall that l∗ = gl(n) for the node n, which is the
last node in the path implied by the solution π. Since lest < L∗



holds, it must be that each edge in π has been estimated using all
possible estimators before n is established as a goal node, as for each
node n′ satisfying the condition gl(n

′) ≤ lest, edges included in the
path leading to n′ are only denied tight estimation in cases where a
better alternative path leading to n′ was already found. Therefore,
the lower bound of π cannot be tightened, so l∗ = l̄∗ is satisfied,
implying that π is optimal with lower bound L∗. But this means that
L∗ = l∗ ≤ lest < L∗. A contradiction. Hence, l∗ > lest. □

Lemma 3 (Conditional Optimality Prob. 1) BEAUTY, provided
with lprune ≥ L∗ and lest ≥ L∗, returns a shortest path tightest
lower bound π and l̄∗ = L∗, if a solution exists for P .

Proof. Continuing the argument made in the proof of Lemma 2, if
lprune ≥ L∗ and lest ≥ L∗ hold, then the best paths, based on
tightest possible estimates, with cumulative lower bounds of up to
lest are found, and their terminal nodes are inserted to OPEN. In
particular, the best paths up to L∗ (including this value) are found.
From the definition of L∗ it follows that there exists a solution π
with a tight lower bound equal to L∗. Hence, π, or possibly another
solution with the same tight lower bound, is guaranteed to be found
when its corresponding goal node is removed from OPEN. Then,
l̄∗ = l∗ = L∗ together with π are returned. □
The implication of Lemmas 1–3 is that SLB problems can be solved
optimally using BEAUTY by setting lprune and lest to be greater
than, or equal to, L∗, which can always be achieved by setting them
to∞, as Example 2 shows.

Example 2 Consider calling BEAUTY with lest = lprune = ∞
(i.e., base setting) on P from Example 1. Tracing its run, at the first
iteration of the while loop it invokes θ1e01 , θ

1
e02 and θ2e02 and inserts

v1, v2 to OPEN with keys 4, 3. At the second iteration v2 is removed
from OPEN, θ1e21 , θ

1
e23 , θ

2
e23 , θ

1
e24 are invoked, and v3, v4 are in-

serted to OPEN with keys 10, 7. At the third iteration v1 is removed
from OPEN, θ1e14 and θ2e14 are invoked. At the forth iteration v4 is
removed from OPEN and BEAUTY returns ⟨e02, e24⟩, true, 7, 7.

However, a lower value of lest enables to avoid redundant estima-
tions, where the potential savings grow as lest approaches L∗ from
above. This motivates the use of BEAUTY in an iterative framework
that gradually increases lest until the optimal solution is found.

4.2 The Second Algorithm: Anytime BEAUTY

The A-BEAUTY algorithm automates the iterative usage of
BEAUTY with increasingly tightened lest and lprune around L∗,
until the optimal solution is found. It starts with lest = 0 and
lprune =∞, and each time BEAUTY terminates it returns l∗ > lest
(Lemma 2), which is used as lest in the next call. Similarly, the re-
turned l̄∗ is a finite value (when a solution exists) that always is
greater than, or equal to, L∗ (again, Lemma 2). Using the lowest
value of l̄∗, lprune is monotonically non-increasing.

The process converges in a finite number of iterations (shown be-
low) and thus assures optimality, while gradually utilizing more esti-
mations, that in turn support better approximations for L∗ (which are
saved every time an improvement is achieved). The estimations are
saved between iterations, so that it is not necessary to re-apply esti-
mators. Technically, this is obtained by defining the next estimator to
apply to first look for a saved value and only then turn to unused esti-
mators. Tightened lprune values decrease the size of OPEN, reducing
memory consumption and run-time (due to less insertion operations,
and cheaper insert/delete operations).

Algorithm 3 A-BEAUTY
Input: Problem P = (G,Θ, vs, Vg)
Output: Path π, bound l̄∗

1: l∗ ← 0; l̄∗ ←∞; Opt← false
2: while not Opt do
3: π,Opt, l∗, l̄← BEAUTY (P , l∗, l̄∗)
4: if π = ∅ then
5: return ∅,∞
6: if l̄ < l̄∗ then
7: l̄∗ ← l̄
8: Print π, l∗, l̄∗

9: return π, l̄∗

Theorem 2 (Completeness, Soundness and Optimality Prob. 1)
A-BEAUTY is complete. If a solution exists for P , then a shortest
path tightest lower bound π and L∗ are returned.

Proof. A-BEAUTY initializes l∗ ← 0 and l̄∗ ← ∞, and then enters
a loop that terminates when no solution is found or when the opti-
mal solution is found. At each iteration of the loop, it calls BEAUTY
with lest = l∗ and lprune = l̄∗. Due to the initialization, the con-
ditions of Lemmas 1 and 2 are fulfilled in the first iteration, so that
if a solution exists, a solution would be returned by BEAUTY, with
tightened bounds, i.e., l∗ > 0 and L∗ ≤ l̄∗ <∞. In the second iter-
ation (if the optimal solution has yet to be found) the l∗ and l̄∗ found
in the first iteration are used again as lest = l∗ and lprune = l̄∗ in
the call for BEAUTY, where again the conditions for both lemmas
hold. Thus l∗ is guaranteed to monotonically increase with each iter-
ation, and l̄∗ can either decrease (but remain at least L∗) or stay the
same. Hence, the conditions for both lemmas are satisfied in every
iteration until termination, i.e., we have established that the condi-
tional completeness of BEAUTY implies regular completeness for
A-BEAUTY, and that l̄∗ monotonically non-increases.

To show optimality, we next analyze the increase in l∗ between
subsequent iterations. Denote δi := l∗i − l∗i−1, where l∗i is the value
obtained after call i to BEAUTY. Note that δi cannot be arbitrarily
small values, as they exactly represent the differences between cu-
mulative lower bounds of solutions obtained in subsequent iterations,
which are limited to a finite set of values (induced by Θ). Thus, there
exists a constant δmin > 0 such ∀i, δi ≥ δmin is satisfied. Hence, ei-
ther the optimal solution is found before l∗ reaches L∗, or it is found
right after it reaches it (Lemma 3), which necessarily occurs after a
finite number of iterations. □
The proof of Thm. 2 shows the number of iterations until conver-
gence to optimality is unknown a-priori. Nevertheless, we can set a
simple threshold either on the number of iterations or on the conver-
gence implied by l̄∗/l∗. Once the threshold is crossed, setting both
lest and lprune to l̄∗ ensures the last iteration. See Example 3.

Example 3 Consider again the SLB problem P from Example 1.
When calling A-BEAUTY on P , at the first iteration the utilized
estimators are θ1e01 , θ

1
e02 , θ

1
e14 , θ

2
e14 , θ

1
e21 , θ

1
e23 and θ1e24 , where θ2e14

is invoked by BEAUTY-PS. The algorithm prints ⟨e01, e14⟩, 5, 8. At
the second iteration the estimator θ2e02 is also utilized. The algorithm
prints ⟨e02, e24⟩, 7, 7 and returns ⟨e02, e24⟩, 7.

5 Empirical Evaluation
The theoretical guarantees of BEAUTY and A-BEAUTY touch on
their optimality and completeness, but do not provide information as
to the run-time savings they offer. We therefore empirically evaluate



Table 1. The configuration of f1, f2, f3 in Rows 2–4 according to the
hash values displayed in Row 1.

Hash 1 2 3 4 5 6 7 8 9
f1 1 2 3 1 2 3 1 2 3
f2 2 3 4 3 4 5 4 5 6
f3 3 4 5 4 5 6 5 6 7

the algorithms in diverse settings, based on AI planning benchmark
problems that were modified to have multiple action-cost estimators,
so that these induce SLB problems.

The set of problems was taken from a collection of IPC (Inter-
national Planning Competition) benchmark instances1. Starting from
the full collection, we first filtered out every domain that didn’t offer
support for action costs. Then, for some of the domains we created
additional problems by using different configurations of costs. For all
problems and domains, we synthesized three estimators. Each edge
e with cost cold(e) was mapped to a new cost cnew(e) that satis-
fies cnew(e) ≥ cold(e) × f3, with f3 > f2 > f1 ≥ 1, so that
l1e := cold × f1, l

2
e := cold × f2, l

3
e := cold × f3 served as its first,

second and third lower bound estimates. To diversify the estimator
sets for different edges, the parameters f1, f2, f3 were taken from the
sets f1 ∈ {1, 2, 3}, f2 ∈ {f1 + 1, f1 + 2, f1 + 3}, f3 ∈ {f2 + 1},
which resulted in nine different configurations. The choice of config-
uration was taken according to the result of a simple hash function,
that depends on cold(e) and a user-input seed, described as follows:

Hash = (cold(e) + seed) mod 9. (9)

Then, the configuration was set according to Table 1. Each prob-
lem was run once per seed, where the seeds where taken from the
set [0, 8], which resulted in 9 instances per problem. Overall, this
resulted in a cumulative set of 914 problem instances, spanning 12
unique domains. The full list of the domains and problems that were
used in the experiments is detailed in [24].

We note that the configurations depicted in Table 1 that are cho-
sen according to the hash function of Eq. 9 guarantee that the same
ground action, in different states, will have the same cost estimates.
BEAUTY and A-BEAUTY were implemented as search algo-

rithms in PlanDEM (Planning with Dynamically Estimated Action
Models [24]. a C++ planner that extends Fast Downward (FD) [7]
(v20.06). All experiments were run on an Intel i7-1165G7 CPU
(2.8GHz), with 32GB of RAM, in Linux. We also implemented
Estimation-time Indifferent UCS (EI-UCS), a UCS algorithm that
uses the most accurate estimate on each edge it encounters, to serve
as a baseline. For every problem instance we ran EI-UCS, BEAUTY
with lest = lprune = ∞, and two versions of A-BEAUTY—A-
BEAUTY-2 and A-BEAUTY-10—with maximal number of 2 and
10 iterations, resp. We emphasize that all these algorithms are guar-
anteed to achieve optimal solutions. We report the results from prob-
lem instances which all algorithms solved successfully, i.e., found
optimal solutions, within 5 minutes.

5.1 BEAUTY vs. EI-UCS

We begin by contrasting BEAUTY and EI-UCS, to examine the
effectiveness of BEAUTY in avoiding unnecessary expensive es-
timations. BEAUTY is only guaranteed optimal if its two hyper-
parameters, lest, lprune, are greater than L∗, which is unknown a-
priori. Thus, to ensure a fair comparison, we set lest = lprune =∞

1 See https://github.com/aibasel/downward-benchmarks.

for all the runs of BEAUTY (that are not part of the anytime frame-
work). Using these settings, the only difference between BEAUTY
and EI-UCS is the condition g̃l < gl(s) in the estimation loop (line
15 in Alg. 1) that prevents applying further estimators when an alter-
native path with lower g-value is already known. In contrast, EI-UCS
ignores estimator time, always computing the tightest lower bound
possible for every edge. Hence, the two algorithms follow the exact
same search mechanism (i.e., identical node expansion order), and
may only differ in the numbers and types of the estimators applied.
Of specific interest is the difference in expensive third-layer estima-
tors usage. Note that under this setting BEAUTY-PS has nothing to
improve, as the solution path is already fully estimated.

We denote by L3 the number of third-layer estimators applied dur-
ing search. The results are summarized below:

• The ratio rL3 := L3(BEAUTY)/L3(EI-UCS) had average of
60.82% (stddev 11.57%), median 60.88%, with overall range
spanning 24.4% to 88.48%.

• Whenever BEAUTY did not apply a third-layer estimator for an
edge, it used on average a second-layer estimator in 0.51% of the
cases. Namely, in these cases estimation time was almost always
dramatically reduced.

Table 2 reports the results for all algorithms, compared to EI-UCS.
The results are grouped by domain (domains listed by row—see cap-
tion for column explanation). The table shows (third column, total for
all domains in the last row) that roughly 40% (100-60.82) of the ex-
pensive estimations are avoided, on average. There is high variance,
whose causes remain unknown for now.

5.2 A-BEAUTY vs others

We now turn to discuss A-BEAUTY-2 and A-BEAUTY-10. The
relevant experiment results are summarized in Columns 5, 6 (A-
BEAUTY-2) and 7, 8 (A-BEAUTY-10) of Table 2.

First and foremost, the results reveal that A-BEAUTY-2 and A-
BEAUTY-10 save roughly 54% (100-46) and 55% (100-45) of the
most expensive estimations, compared to EI-UCS. This represents an
additional 15% savings on top of BEAUTY.

Second, although both have relatively high standard deviations
(about 16%), they perform similarly in most domains (see below for
the exception). This can be attributed to the (typically) very informed
upper bound l̄∗ that is achieved after the first iteration, so there is little
room for improvement. Indeed, the lower bound l∗ typically comes
very close to L∗ when A-BEAUTY-10 converges, so when lest is set
to l̄∗ after the first iteration of A-BEAUTY-2, it achieves an almost
identical behavior as in the last iteration of A-BEAUTY-10.

We examined more closely the domains where the savings of A-
BEAUTY-2 and A-BEAUTY-10 vary noticeably (e.g., in the Ele-
vators domain). We observed that in many of these problems, the
range of values for cold, and thus also the range of values for the
lower bound estimates (induced by cold), is relatively high compared
to other domains, i.e., the interval [A,B] ⊂ [0,∞) from which the
values are taken is relatively large. This implies a less smooth distri-
bution of costs (and estimates) over the graph edges, where it is com-
mon to have significant jumps in g-values between two subsequent
nodes on a path. The implication of such jumps is that it becomes
easier to avoid estimation of non-relevant paths (with gl > lest).
In the same cases of larger ranges of values, A-BEAUTY-10 more
frequently achieves improved estimation savings compared to A-
BEAUTY-2. We believe this may be due to the distribution of costs
being less smooth, decreasing the likelihood that l̄∗ ends up close to



Table 2. Summarized performance data of BEAUTY (∞,∞), A-BEAUTY-2 and A-BEAUTY-10 (written as Any-2 and Any-10 for brevity) relative to
EI-UCS, with breakdown by domains. For each algorithm and domain two entries are presented with average ± standard deviation in percentage: the ratio of

third-layer estimator usage rL3 (Alg):= L3(Alg)/L3(EI-UCS) and the ratio of expanded nodes rexp(Alg):=expanded(Alg)/expanded(EI-UCS).
Domain #Instances rL3 (BEAUTY) rexp(BEAUTY) rL3 (Any-2) rexp(Any-2) rL3 (Any-10) rexp(Any-10)
Barman 495 58.23±4.52 100±0 49.27±13.29 189.1±20.13 48.91±13.39 837.32±136.03
Caldera 72 83.25±3.01 100±0 58.48±8.08 176.42±9.72 57.88±8.42 905.15±90.99

Cavediving 54 70.77±0.78 100±0 59.26±3.33 200±0 59.26±3.33 981.48±47.88
Elevators 27 28.81±3.23 100±0 10.13±6.9 145.45±27.48 6.4±5.18 724.26±210.48
Floortile 36 54.83±0.76 100±0 45.13±7.51 183.53±13.31 44.6±7.68 890.43±100.06

Parcprinter 36 83.12±2.62 100±0 25.02±11.24 136.34±15.58 22.38±9.93 810.26±98.03
Scanalyzer 18 48.18±1.65 100±0 48.16±1.66 200±0 48.16±1.66 994.44±23.57

Settlers 36 71.87±2.22 100±0 40.88±13.61 177.87±20.82 35.34±15.16 692.36±142.32
Sokoban 36 52.24±0.9 100±0 49.2±2.44 196.34±4.2 48.89±2.68 934.51±94.83

Tetris 45 63.3±4.74 100±0 41.91±7.27 180.3±10.41 41.09±8.37 907.11±126.24
Transport 41 47.25±4.09 100±0 17.53±8.76 144.92±20.83 16.01±8.73 760.46±132.08

Woodworking 18 61.39±1.54 100±0 44.35±6.09 185.21±8.7 37.95±6.33 816±183.54
All domains 914 60.82±11.57 100±0 46.03±15.75 182.67±23.66 45.13±16.37 849.65±142.31

L∗ after the first iteration, and allowing more room for improvement
in additional iterations.

Finally, Table 2 shows that the two algorithms consume on av-
erage roughly 1.8 and 8.5 times the number of expanded nodes of
EI-UCS, which is due to the search restart at every iteration. In do-
mains where the estimation savings are similar, it appears that two
iterations may be sufficient, and will be much more efficient. How-
ever, more generally—and recalling the abstracted run-time from
earlier—this is a good example of how algorithms may increase the
search operations, to save on weight computations. For instance, if
the times spent on estimation and search (Tw and Tv resp., Eq. 1)
satisfy Tw = 10×Tv for EI-UCS and some problem P , then consid-
ering a typical factor two of savings in estimation time and twice
the search time of A-BEAUTY-2 on P , it follows that the latter
achieves overall run-time T2 = 0.5 × Tw + 2 × Tv = 7 × Tv vs.
T1 = Tw + Tv = 11× Tv , i.e., a reduction of ≈ 36% in run-time.

Table 3 provides additional information that sheds light on the de-
velopment of search and estimation metrics throughout the iterations.
The table follows the iterations of A-BEAUTY-10. Row 2 indicates
the number of times convergence to an optimal solution occurred at
iteration i, allowing us to examine how many iterations were needed
to solve the problems, on average. As can be seen, 50% of the prob-
lems take less than 10 iterations, with rapid decrease from i = 9
down to i = 4, while the other 50% terminate at i = 10 or more (the
maximum number of iterations in these experiments was 10). Row 3
reveals the convergence of the lower bound obtained to the terminal
value L∗. We can see that the rate of convergence is decaying. Row
4 further strengthen this observation, as the standard deviations are
relatively low and also decaying. This motivates using a maximum
threshold to avoid a very long convergence process, which could in-
cur significant search effort overhead.

Lastly, Table 4 shows the average and standard deviation (Rows 2
and 3, respectively) of pruned nodes out of evaluated nodes, for each
iteration of A-BEAUTY-10, in percentage. It can be seen that the
average percentage of pruned nodes is monotonically non-decreasing
with the iterations, from roughly 1% at the second iteration to 26% at
the tenth iteration, which is due to the monotonically non-decreasing
upper bound lprune, that serves for pruning. Namely, as the upper
bound gets tighter, pruning becomes more effective.

5.3 BEAUTY-PS

Given that often, two iterations of A-BEAUTY offered the same
savings as ten iterations, yet significantly more than a single iter-

Table 3. Convergence analysis of A-BEAUTY-10. Row 2 indicates the
number of times convergence occurred at iteration i, Rows 3 and 4 indicate
the mean µ and standard deviation σ, respectively, for the ratio of the lower
bound obtained after iteration i to L∗, where the values in Rows 2–4 are in

percentages. Results are rounded to integers for ease of presentation.
Iteration i 1 2 3 4 5 6 7 8 9
Final i(%) 0 0 0 0 1 3 10 16 20

µ(l∗i /L
∗)(%) 40 63 76 85 90 94 95 97 97

σ(l∗i /L
∗)(%) 7 9 9 8 7 6 5 4 4

Table 4. Pruning analysis of A-BEAUTY-10. Rows 2 and 3 indicate the
mean µ and standard deviation σ, respectively, for the ratio between pruned
nodes and evaluated nodes, in percentages. Results are rounded to integers.

Iteration i 1 2 3 4 5 6 7 8 9 10
µ(pr/ev)(%) 0 1 2 4 10 11 12 15 17 26
σ(pr/ev)(%) 0 5 7 10 16 16 17 18 19 22

ation, it is interesting to examine the role of BEAUTY-PS (Pro-
cedure 2) in improving the results from the first iteration of A-
BEAUTY. Recall that BEAUTY-PS obtains the tightest possible
lower bound l̄∗ for c(π), which can then either be interpreted as L∗

if opt = true is returned, or as an upper bound for L∗ otherwise.
When BEAUTY is called with its hyper-parameters set to ∞, it is
optimal; BEAUTY-PS has nothing to improve. However, when it
is called as part of A-BEAUTY, the hyper-parameters are different,
which gives BEAUTY-PS the potential to improve the results before
the next iteration.

The results provide insight to the efficacy of this procedure. When
calling BEAUTY-PS after BEAUTY is run with lest = 0 and
lprune = ∞ (the least informative hyper-parameters), BEAUTY-
PS returns on average l̄∗ = 1.0082 × L∗, i.e., only 0.82% higher
than L∗, with standard deviation of 3.31%, where in the worst case
l̄∗ was 33.33% higher than L∗. This means that just one iteration
of BEAUTY that uses the cheapest lower bounds during the search,
followed by BEAUTY-PS, typically returns a very good approxima-
tion of L∗ in the form of a very informed upper bound for it. Fur-
thermore, BEAUTY-PS utilizes only a tiny fraction of the expensive
estimators, as it only estimates edges on the solution path. Thus, on
average, BEAUTY with lest = 0, lprune = ∞ was able to generate
a very accurate approximation of the optimal solution, though at the
loss of guaranteed optimality, at minimal estimation effort overhead.



5.4 Different Accuracy Levels

Table 1 determines the accuracy range of estimators in our experi-
ments. Indeed, for an edge e, the accuracy of its first cost estimate
l1e relative to its best estimate l3e is l1e/l

3
e = f1/f3. A high ratio of

f1/f3 implies that a cheap estimator yields a good approximation of
the best estimate. It is thus interesting to test the sensitivity of the
algorithms discussed in this section w.r.t. different accuracy levels.

To that end, we ran another experiment with the same setting as de-
scribed before, in four domains (Barman, Settlers, Sokoban, Tetris),
and with f1 ∈ {10, 11, 12}, f2 ∈ {f1 + 1, f1 + 2, f1 + 3}, f3 ∈
{f2 + 1}, which resulted in significantly higher ratios of f1/f3.
Specifically, the range of f1/f3 changed from 20%−60% to roughly
71.43%− 83.33%.

The results of expensive estimator usage (i.e., rL3 of BEAUTY,
A-BEAUTY-2 and A-BEAUTY-10) are almost identical to the re-
sults reported in Table 2, with at most 1% difference in any entry.
However, the convergence of A-BEAUTY-10 was faster, where the
average number of iterations until convergence changed from 9 in
the first experiment to 5.65 in the second experiment. This suggests
that relatively accurate cheap estimators do not affect the number of
expensive estimations required to achieve optimality, but reduce the
number of iterations necessary for convergence.

6 Conclusions
This paper presents a generalized framework for estimated weighted
directed graphs, where the cost of each edge can be estimated by
multiple estimators, where every estimator has its own run-time and
returns lower and upper bounds on the edge weight. This allows to
address novel settings of combinatorial search problems that support
an explicit trade-off of search and estimation time. We focus on the
shortest path tightest lower bound (SLB) problem, which we for-
mally define. SLB problems involve finding a path with the tightest
lower bound on the optimal cost. We present two algorithms for solv-
ing SLB problems in a guaranteed manner. Experiments reveal the
dramatic computational savings they offer.

There are many directions for future research. We believe the per-
formance of the algorithms can be further improved (e.g., by utilizing
priors on estimation times to choose estimators across edges). We
plan to investigate shortest path variants that minimize path upper-
bound and B-admissibility. Extensions for undirected graphs and for
informed search are also of significant interest.
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