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Abstract

It is important for robots to model other robots’ unobserved plans, goals and
behaviors, based on their observable actions. This process of modeling others
based on observations is known as behavior- or plan-recognition. Behavior-recognition
algorithms work by first matching observed actions to a template model (called
the plan- or behavior-library), and then propagating the implications of match-
ing actions to determine possible hypotheses that explain the observed behavior.
However, classic plan recognition algorithms are ill-suited to modeling robots in
state-of-the-art applications: (i) they assume that only a single atomic feature (i.e.,
the action of the observed robot) is observable at any given point; and (ii) they as-
sume that all such actions are always observable (i.e., the observer never loses
an observation). As a result, existing behavior-recognition algorithms are often
inefficient, and may fail catastrophically in face of lossy observation streams.

This thesis presents a set of behavior-recognition algorithms that are specif-
ically suited for modeling behavior-based robots. First, the algorithms use a
decision-tree structure to efficiently match complex (multi-feature) observations
to behaviors, reducing the run-time complexity of the observation-matching phase
from O(F'L) to O(F + L) in the worst case. Second, the algorithms are able
to handle lossy observations gracefully. The algorithms are correct (in that all
matching hypotheses are produced), and symbolic (in that they do not provide an
ordering over hypotheses). The algorithms’ run-time is linear in the size of the
behavior-library. We provide an extensive empirical evaluation of the algorithms
in scaled-up simulation experiments.
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Chapter 1
Introduction

It is important for agents to be able to reason about other agents’ internal state,
such as their selected behaviors, plans, intentions, and goals. A model of other
agents is important, for instance, in assisting other agents [22], countering their
adversarial actions [38], imitating them [2] and detecting failures in multi-agents
environments [19, 18]. Since it is often impractical for a agent to rely on its peers
to continuously transmit their internal unobservable state to it, an agent modeling
its peers must often rely on inferring its peers’ unobservable state based on their
observable actions.

The problem of inferring another agent’s intentions based on set of obser-
vations is often callegblan recognition Plan recognition is useful in many ar-
eas, some applications are natural language question answering systems and story
understanding (e.g.,[1, 25, 39]), intelligent user interfaces (e.g.,[12]), automated
description of image sequences [31], and multi agent coordination (e.g.,[16, 15,
17, 19, 18]). Although much research has dealt with plan recognition, there are
number of problems when dealing with large scale of behaviors and real world
applications [4].

Most plan recognition methods are ill-suited to modeling modern robots. First,
plan recognition typically assumes that observed actions are atomic and instanta-
neous. However, robots often take continuous actions that have duration, and are
complex (multi-featured), as they affect several actuators at once (e.g., maintain
velocity and direction over a period of time). Second, plan recognition focuses
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on observed actions, and ignores how world state may affect the observed robot’s
state (e.g., a robotic soccer player’s internal decision making will be affected by
its position on the field, or its uniform number). Third, the representation un-
derlying plan-recognition is based on STRIPS-like operators, a representation not
commonly used in generating reactive behavior in robots. A plan-based model of
a robot’s interaction with the environment would not capture the reactive compo-
nents of its behavior. Fourth, plan-recognition typically focus on small class of
agent behaviors (plan-based), as seen in static, single agent domains.

There have been attempts at addressing these challenges (see Section 2 for de-
tails). RESC [38] and RESL [19] use a behavior-based representation to infer the
current behaviors selected by observed agents. However, they do not take a history
of observations into account, and assume that agents do not change states (behav-
iors) unobservably. Other methods are often able to take a history of observations
into account, but assume all relevant features (e.g., actions of the robot) will al-
ways be observable (e.g., [16, 30, 13]). Moreover, these methods require a trans-
lation of the observed robots behavior-based control structure into a form suitable
for the probabilistic recognition algorithms used in these approaches. Also, none
of the approaches discussed above can utilize negative evidence, i.e., inference
from a lack of an observation [11].

This thesis focuses on a set of comprehensive mechanisishawior recog-
nition, the task of recognizing the unobservable behavior-based state of an agent,
given observations of its interaction with its environment. We examine the key
behavior recognition queries that may be asked of a behavior recognition sys-
tem, and provide algorithms to infer the answers to these queries, building on a a
representation of hierarchical behavior that is general and compatible with many
existing behavior-based control methodologies. We analyze the complexity of
the algorithms, and show that they are efficient, even when handling loss of ob-
servations, and negative evidence. The algorithms are all symbolic, in that they
produce all possible hypotheses that are consistent with the observations, but do
not provide a probability distribution over the hypotheses space. However, their
efficiency makes them suitable as a basis for additional probabilistic reasoning.

In addition, we address the efficiency of matching observations to behaviors,
a key basic step common to all behavior recognition algorithms. Previous work
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has assumed observed actions are atomic (have a single observable feature), and
scaled up linearly in the size of the library. Instead, we develop a method for au-
tomatically generating a decision-tree that efficiently matches observations, based
on the values of observed features, to appropriate behaviors. This method reduces
the complexity of matching fron®(F' L), whereF' is the number of observable
features, and the size of the behavior library, ©(F + L) in the worst case.

In addition to the development and analysis of these algorithms, we present
an extensive empirical investigation of the performance of the behavior recogni-
tion mechanisms on simulated data. The experiments show the efficacy of the
proposed techniques, as well as the scope of their strengths and weaknesses.



Chapter 2
Background and Related work

Plan recognition is the task of inferring the intentions, plans, and/or goals of an
agent based on observations of its actions. To demonstrate it, lets take a simple
example, where we observe a person leaving her house. There are number of
possibilities as to her intentions: going to work, taking out the garbage, going to
the fitness club, walking with the dog and so on. Suppose that some time before,
we saw her taking the car keys and her work bag. Now, we can disqualify a
lot of hypotheses as to her intentions and infer that she is going to work. A lot
of research has been done in the plan recognition area, [33] made psychological
research that support evidence that humans infer the plans of other agents, and
therefore engage in plan recognition. Behavior recognition is a specialized form
of plan recognition. Here the task focuses on inferring the internally-selected
behavior-based control module of another agent from a set of observations of its
actions.

The recognition system can be characterized by the following properties:

1. Keyholeandintendedrecognition are two types that were identified by [7].
In keyhole recognition, the observed agent does not impact on the recog-
nition process, whereas in intended recognition, the observed agent does
deliberate actions to help the recognition. Another class was identified by
[9], adversarial recognitionwhere the observed agent is hostile (e.g, net-
work security) and takes steps to confuse the observer. Most of previous
work investigated keyhole recognition (e.g,[21, 6, 19, 38]). We would also

10
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focus on the keyhole recognition, where the observed agent does not impact
the recognition process.

2. The recognition system needs to represent its hypotheses in some fashion. It
typically holds a structure, which defines the expected relationships among
goals, behaviors, plans and primitive actions that possible in the specific
domain. This is often referred to as the representation of the plan-library
(and in our case, behavior library), which bounds the expected behavioral
repertoire of the observed agent.

Many different representations have been proposed in previous work: Ac-

tion taxonomies [21], hierarchical task network (HTN) [23], Bayesian networks[6],
behavior-based control methodologies (e.g., [8, 29, 28, 26, 3]) and many
others. In our work we utilize a hierarchical behavior-based recognition
representation which serves as the basis for representing the modeled be-
haviors of the observed agent. The representation is generic, and be used to
represent behavior-based controllers of various forms. We follow the bulk

of earlier work in assuming the library is correct and complete with respect

to the actual behaviors used by the observed agent.

3. There are various assumptions that can be made as to what the observation
should include. Most Recognition systems (e.g, [21, 38, 6]) take into ac-
count just the actions taken by the agent, they do not refer to the changes
in the state of the world, beliefs of the agent, and many other features that
can influence on the recognition process. Moreover, many approaches as-
sume that the sequence of observations is fully-observable, meaning all
actions done by the agent can be observed, with no gaps in the sequence
(e.q,[21, 19, 6, 31, 38]). However, in real world applications this is not al-
ways the case, some actions may be intermittently unobservable, e.g., due
to hardware failures. In our work we consider complex observations, that
consist of a tuple of observed features, including states of the world, actions
taken by the agents, and execution conditions maintained by the agent. See
chapter 4 for more details.

4. Taking in to account an ordered history of observations of the agent also
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need to be considered when characterizing recognition systems. There are
approaches that do not consider at all the history of observations (e.g, [38,
19]), whereas most approaches consider the history of observations (e.qg,
[5, 6, 9]). In our work we are utilize the history of observations to disqualify
hypotheses.

5. There are approaches that do not consider the possible order between be-
haviors of agents (e.g, [38, 19, 6]), whereas approaches that do take into
account the ordering constrains between behaviors (e.g,[9]). Our work uses
temporal constraints to disambiguate hypotheses.

6. A plan- or behavior-recognition system may answer several different queries:
(i) current state query—what is the current behavior the agent has selected
now? (ii) history states query—what is the sequence of behaviors the agent
has selected over time? (iii) future states query—what is the next behavior
to be selected by the agent? etc. Most approaches can give an answer just to
the current state query, some of them gives the answer without history con-
sideration (e.g, [38, 19]), and others take into account the history (e.g, [9]).
As to our knowledge, none of the approaches give answer to the history
state query. We provide algorithms for both of these queries.

7. Correctness and completenedsis likely, in realistic settings, that more
than one behavior will match a set of observations, and this may result in
multiple hypotheses as to the internal state of the observed agent (or se-
guence of internal states). Recognition algorithms are caledpleteif
they return all hypotheses that match the observationscamdct if they
return only hypotheses that match the observations. Symbolic approaches
(such as ours) may be characterized based on their correctness and com-
pleteness [21, 19]. Probabilistic approaches provide a ranking of hypothe-
ses to indicate likely useful hypotheses. Some approaches provide multiple
hypotheses (with or without ranking), while others commit to a single hy-
potheses [38]. We choose to deal with the symbolic approach for number of
reasons: First, symbolic computations are sufficient for specific tasks (such
as failure detection [19]). Second, they are generally much more efficient
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than probabilistic approaches, and can thus serve as a useful pre-processing
step to such approaches, to limit their run-time in practice.

8. The recognition process, in most applications, is done online (in real time),
and therefore the recognition algorithms must be efficient. Most algorithms
in the plan recognition area use small domains, with few number of plans
and goals. The problem of scalability and complexity was mentioned as
problem from the early work of plan recognition [20]. Here in our work,
we present algorithms that are efficient: linear in the size of the behavior
tree, and can deal with large number of behavior and hypotheses to answer
queries.

9. Negative evidence Exploiting new events to disambiguate previous hy-
potheses that were considered as true. Few works has addressed to this

property (e.g,[11]).

The well-known work of Kautz [21] provided a formal theory of plan recog-
nition. In this work the problem is viewed as a deductive inference, and relies on
a representation callezttion taxonomywhere every observed action is a part of
one or more "top level plans”. The task of the plan recognition is to find minimal
set of top plans that explain the observations. Kautz’s work handled many difficult
cases, such as allowing for observations to come in at any order.

However, this approach faces inherent difficulties when applied to the com-
plex, dynamic settings in which agents are typically deployed. First, agents may
take continuous (servo) actions, intended to maintain some interaction with their
environment (e.g., velocity or heading). The actions in this case are not discrete
and instantaneous, but instead are composed of multiple continuous changes to
approximate some target function [29]. Modeling such actions using discrete op-
erators is difficult at best. Second, since the input to classic plan recognition al-
gorithms is a stream of actions, it is difficult to incorporate additional context that
may be observable, and may be affecting the internal decision-making of the ob-
served robot. For instance, a robotic soccer player knows its own uniform number,
which can be also observable to the modeling robot. Its uniform number affects
its unobservable state but knowledge of the uniform number is not utilized by plan
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recognition techniques. Third, agents that operate in complex, dynamic settings,

may interrupt planned action sequences in order to react to unexpected situations.
To do this, many robots utilize a behavior-based control approach, which executes
multiple control modules (called behaviors) so as to produce the desired behavior,

while still maintaining the ability to react to unexpected situations [26, 29, 3, 24].

An ideal behavior recognition system would be able to address the deficiencies
above, while taking into account a history of observations to infer answers for
several types of recognition queries

There have been several relevant previous investigations. RESC [38] uses a
hierarchical behavior-based representation to infer the current behaviors selected
by observed robots. In each run-time cycle, RESC maintains only a single hy-
pothesis as to the current state of the observed robot. RESL [19] is similar, but
maintains multiple hypotheses as to the current state. Both algorithms essentially
reset with every new observation, and do not take a history of observations into
account. Thus they cannot provide hypotheses as to the sequence of unobservable
states that the observed agents has gone through, nor can they provide predictions
as to the next possible state. Finally, RESC and RESL assume that any change in
the internal state will have some observable evidence.

Other alternatives to classic plan recognition are also relevant. Many of these
are probabilistic in nature, and also are able to take a history of observations into
account (though they often ignore the history of internal states).

[5, 6] constructed the first Bayesian plan inference system. Their system
first retrieve candidate explanations, then these explanations were inserted to the
Bayesian network. In the Bayesian network, the random variables (nodes) repre-
sented propositions, the root nodes represented hypotheses about an agent’s plan.
Each node’s probability, represents the likelihood of the proposition given the
evidence provided by its parents and its children. As new evidence is added to
the network, the probabilities at each node are recomputed, by propagating the
evidence through the nodes. This approach has number deficiencies: First, this
approach requires a large number of prior and conditional probabilities, that not
always available. Second, there is no distinction between plans and actions, there
IS no consideration on other features, such as state of the world. Third, it is not
sensitive to the order of the plans. The complexity of reasoning using this rep-
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resentation is that of general Bayesian network, i.e., NP-Complete in the general
case.
[16] also explores an approach in which a Bayesian network for plan-recognition
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be applied to real time dynamic domains with unobservable actions, it assumes
that the initial state of the world before each observation is known, can not do
predictions, and finally it can not utilize the negative evidence property.



Chapter 3
Representation

Many state-of-the-art robotic controllers employ hierarchical behavior-based con-
trol methodologies (e.g., [8, 29, 28, 26, 3]). A behavior is a controller for reaching
and/or maintaining a particular goal (see, for instance, [26]). For example in the
robot domainfollowingis a controller that keep the robot moving within a fixed
region behind another moving agent. Often, behaviors are applied in parallel,
in a hierarchical fashion. In addition, behaviors may be connected via edges, to
constrain the sequence of their execution (see, for instance, [3]).

We utilize a behavior-based recognition representation which serves as the
basis for representing the modeled behaviors of the observed robot. In choos-
ing a representation for recognition, we are fortunately not constrained by a spe-
cific behavior-based control methodology—since the representation does not ex-
press executable controllers—but instead can focus on common features to these
methodologies. As a result, the representation is generic, and be used to represent
controllers of various forms.

We follow previous work in representations for monitoring [37], and represent
the behavior-based controllers of an observed robot as a directed acyclic con-
nected graph, where vertices denote behaviors, and edges can be of two types:
vertical edges that decompose top behaviors into sub-behaviors, and sequential
edges that specify the expected temporal order of execution. Temporal edges may
form cycles, but decomposition edges may not: A behavior cannot be its own par-
ent, but may be selected again after it has already been selected and terminated.

17
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Each behavior has associated with it a set of conditions on observable features
of the robot or world that specify the settings under which observations are said
to match the behavior. The behavior may also have associated preconditions and
termination conditions that may be observable, and may thus be used to include or
exclude it from an hypothesis. For example, lets take the existing robotic soccer
teams [34], the kick-to-goal behavior has the following preconditions: The ball
must be visible, the distance to the ball is within a given range, and the opponent
goal is visible within shooting distance. If all the above conditions are satisfied,
the behavior is applicable.

A behavior graph which includes all possible behaviors that the observed agent
may execute (its complete behavioral repertoire) is calledodteavior library
Typically, a behavior library has a single dummy root node. At any given time,
the observed robot is assumed to be controlled bglaavior-path a root-to-leaf
path of behaviors that follows decomposition edges. Figure 3.1 shows an example
portion of a behavior graph, inspired by the behavior hierarchies of the robotic
soccer teams (e.g., [34]). The figure shows decomposition edges (solid arrows)
and sequential edges (dashed arrows). For presentation clarity, we show the de-
composition edges only to the first (in temporal order) child behaviors.

Given a set of observations as to the state of the world and the agent within
it, the behavior recognizer’s task is to determine which of the behavior paths in
the behavior library match the observations. For example, based on this behavior
library (Figure 3.1), the behavior patiaot — defend — turn — with ball can
be an hypothesis as to the current internal state of an observed robot. A set of such
behavior paths would constitute a set of hypotheses.

An observed agent may change its internal state in two ways. First, it may fol-
low the sequential edges, such that when no further sequential links are available,
control goes back to the parent (which then continues using its own sequential
edges, if they exist). Second, control may be interrupted at any time to respond
reactively to the environment, and a new (first) behavior may be selected.

For instance, suppose a robot was executing — defend — turn —
with ball, and then interrupted this behavior. It may now choogg¢ — attack —
pass, but notroot — attack — turn. The figure does not show the observation
conditions associated with behaviors. For instance, suppose we there is a feature
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Figure 3.1: Example behavior graph.

have_ball whose value is true whenever the ball is observed to be in close proxim-
ity to the observed robotic soccer player. The behakiiok may have a condition
that specifieqave_ball = true, while the behavioupproach_ball would test for
have_ball = false. Given appropriate observations, this behavior may be tagged
as matching.

We assume that each behavior has self cycle, to allow for the duration of be-
havior execution. The behavior can be executed for several time-stamps. For
example the duration of the approach ball behavior depends on the distance of the
agent from the ball. If the robot is near the ball it can take one unit of time, and if
the robot is far it can take 3 units. The same goes for behaviors in higher levels.
For example, the score behavior can be executed several times, after the agent
executed the attack behavior, the agent can execute several behaviors under the
score behavior. For example, after executingt — attack — pass, the robot
can choose theoot — score — position, and afterward-oot — score — kick.

The next sections will address key algorithms in using such a behavior library
to recognize the internal choices made by behavior-based agents, given multi-
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feature observations of their interaction with the world. Chapter 4 presents an
efficient method for matching observed features against behaviors, and tagging
those that match. Chapter 5 presents algorithms that propagate such tags to make
inferences of complete paths, in order to answer behavior recognition queries.



Chapter 4
Matching Observations to Behaviors

We begin by examining the first phase of behavior recognition, in which the obser-
vations made by the observing agent are matched against behaviors in the behavior
library. The next chapter will address inference based on these matched behaviors.

In contrast with previous work, we consider complex observations, that consist
of a tuple of observed features, including states of the world (e.g.,an observed
soccer-playing robot’s uniform number), actions taken by the robots (€.,
turn), and execution conditions maintained by the robot (esgeed = 200).

It is likely, in realistic settings, that more than one behavior will match a set of
observations, and this may result in multiple hypotheses as to the internal state of
the observed robot.

Matching observations to behaviors can be expensive, if we go over all be-
haviors and for each behavior check all observed features. This, in fact, is what
previous work essentially proposes. For instance, RESL goes over all behaviors,
and for each, compares all observations against the expected observations given
for these behaviors [19]. Since not all behaviors utilize all observed features in
their associated observation conditions (see previous section), much of this effort
may be wasted. Given the total number of featuresnd the behavior graph of
size L, RESL's worst-case matching run time will 6& F'L). In the best-case,
where at most a single feature is associated with each behavior, its execution time
will be O(L).

To speed this process, we augment the behavior graph with a novel data-

21
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structure, aeature Decision Tre¢FDT), which allows efficient mapping from
observations to behaviors that may match them. An FDT works similarly to a
machine-learning decision tree [27, 32], and is constructed similarly, but with im-
portant differences.

Each node in an FDT corresponds to an observation feature (e.g., velocity,
heading, etc.). Each branch descending from a node, represents one of the possible
values of this feature. Unlike traditional decision trees, each node also has pointers
that point to the behaviors that test for the feature represented by the node. In this
way, each node in the FDT divides a set of behaviors to subsets according to values
of one feature. Thus determining the behaviors that match a set of observations
features is efficiently achieved by traversing the FDT top-down, taking branches
that correspond to the observed values of features, until a leaf node is reached. The
behaviors a leaf points to are those that match the conjunctive set of observations.

An FDT can be built automatically. Unlike machine-learning decision trees,
that are built based on examples of the target data, here we base the construction
of the decision tree on the behavior graph which is given to us by the designer of
the behavior recognition system. This behavior graph contains all the behaviors
executable in principle by an observed robot. There is no uncertainty in determin-
ing which behaviors match a set of observations, and no need to prune nodes to
prevent over-fitting ([27]). However, more than one behavior may match a set of
observations. In case some behaviors do not test a feature, they are simply passed
in the construction phase to all children FDT nodes, as they are consistent with
all values of the features they do not test. Behaviors which have no associated
observable features are excluded from this process, since they will appear in all
nodes. Instead, these behaviors are handled in the propagating phase (section 5.1).

To generate the FDT, we first need to translate the behavior tree to set of in-
stances, called training set. Each behavior in the behavior tree will represent one
instance in the training set. An instance is a fixed set of values of features (e.qg,
velocity) and the class of the instance, in our case the class is the behavior itself.
Note that each Behavior will appear just once in the training set, since the same
behavior has the same features. In case that a behavior do not test a feature we
put a question mark to denote missing values for that feature, otherwise we put
the value of the feature. For example, let us consider three behawbr$2, B3
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classes\ features | al| a2 | a3
bl T|?|T
b2 ? | F|?
b3 T|T

Table 4.1: Example training set, generated from behaviors

and three boolean featuresl, a2, a3. Suppose the following conditions on the
behaviors:B1 is possible ifal A a3, B2 if —a2, and B3 if al A a2 A a3. The
resulting training set shown in table 4.1.

After generating the training set, the construction of the FDT is done similar
to that of a decision tree with missing values [32]. Similarly to a decision tree, the
construction of the FDT can use information gain to determine the most important
features to test first, thus hopefully testing fewer features. We briefly review this
well-known process here. The reader is referred to [27, 32] for detalils.

The FDT construction algorithm is presented below (Algorithm 1). First, we
check if the instances can not be divided, meaning that a node points at only a
single behavior, or there are no more features that can differentiate between the
behaviors associated with the instances. In this case we create a leaf (lines 1-2).
Otherwise, we create a node, and associates it with the feature that provides the
greatest information gain (lines 3—4) (intuitively, that divides behaviors that test
it as uniformly as possible). We then create children FDT nodes for each of its
values (lines 5-9), and recursively repeat the process of selecting a feature that
best divides the behaviors associated with the node. The children constructed as
follows: for each possible value of the selected feature, we select all instances
that correspond to this value or have missing value. For each selected instance,
we update its weight in the following manner: if there is a missing value, then
we divide its weight in the number of the values of this feature, otherwise the
weight remains the same. We also updatetthaeed F'eatures set with the new
tested feature. Then we recursively repeat on this process of selecting a feature
that best divides the behaviors associated with the node with the new instances,
new weights and the new tested features, and dividing accordingly.

To understand the selection of the best feature (line 3 of Algorithm 1 we need
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Algorithm 1 formTree( Instances, weights, TestedFeatures)
1: if (there are no features to test)single behaviorjhen
2. returncreateLea f(Instances)
3: bestFeature < best feature that was not tested
4: createNode(best Feature)
5. for all possible values of best featurez missing valuado
6: newlnstances < all instances with value
7. newWeights < calculate weights ofiewInstances
8: newTestedFeatures «— TestedFeatures U bestFeature
9:  formTree(newlnstances, newW eights, newTested Features)

to understand the calculation of the information gain. There are some notations
that accepted in the literature. we denote the training set with T. Suppose we have
n possible values for the feature we divide the training set according to these
values: T, Ts, ..., T,,. We denote the number of cases in T that belong to class
C; with freq(C;, T), and the total classes with k. We will also use the standard
notation in which| 7' | denotes the number of cases in set T. And we kise

to denote the fraction of known values for featuren the training set. Now,

to compute the gain of feature x, we will use the three following equations as
explained in [32]:

gain, = Fx (info(T) —info(T)) (4.2)
info(T) = Z / Te‘f(f*f ) |ogz(%) (4.2)

: _ |7
mfo,(T) = ZZ:; | T 4.3)

However, in our caséreq(C;, T) is equal to one, since we have just one case
for each class (each class is one behavior, that appear just once in the training
set). And the number of elements in T, are the same as the number of classes in
T, in our notations: =| 7" | (because each class appear just once in T). So we can
simplify equation number (2), and write it as follows:
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k
wfot) = =3 o) = lon(r) (44

Note thatin fo(T") andin f o, (T) are calculated only with the cases with known
values for feature:. To illustrate this, we will go back to the previous example
and compute the gain of the features al,a2 and a3. Gihisea boolean feature,
we will have two subsets of T: the firstis T1, which contains all instances that the
value of al is equal to one. And T2 will contain all instances that the value of al
is equal to zero. S@; = {b1,b3}, andT; = ) . Theinfo,i(T) is as follows:

infoa () = —g X (IOQQ(%)) =1 (4.5)
info(l) = — IOQQ(L%) =2 (4.6)
So the gain is:
_ 2
gaing = 3 x (2—-1) =0.66 4.7)

To compute the gain of a2, we will do the same. T is divided iffto= {63} and
Now, we computén foq.(T):

infon(T) = 7 x (Iog,(1)) + 5 x (Iog,(1)) = 0 (4.8)
gaing = % x (2—-0)=1.33 4.9

The gain ofu3 is equal to the gain afl. So, the best attribute in this case will

bea2. And the FDT of this example illustrated in figure 4.1. Note that just on the
leafs there are pointers in the FDT, and not as in figure 4.1.

Figure 4.2, shows the connection between the FDT and the behavior graph. It
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a2 {b1,b2 b3}

az2=1 a2=0

{0103 | al {wb1b2]

al=1 al=0

{101} { b2}

Figure 4.1: simple example for FDT

shows a portion of an FDT using features associated with behaviors in Figure 3.1.
Each behavior executed by the robot, can be identified according to observed fea-
tures, such as: Distance from other playésye_ball, opponent goal visibility,
uniform number of agent. The FDT separates the behaviors according to the val-
ues of these features. To determine matching behaviors, the matching algorithm
first checks théiave_ball feature. Based on its value, it continues the appropriate
branch to test in sequence other features, until it finally reaches a leaf node. This
leaf node will have pointers to all instances of the behaviors associated with it in
the behavior graph. For instance the leaf-nodeéaition will have four separate
pointers into the behavior graph in Figure 3.1. Note that since the behavior

is applicable regardless of whethietve ball is true or false, a node associated
with it will appear in both left and right subtrees of theve_ball root node.

The Matching algorithm (Algorithm 2) matches the observations to the be-
haviors in the behavior tree using a FDT. The Match algorithm operates as follow:
when observation is made about an agent we traverse on the FDT according to the
values of the observed features until we get to a leaf (lines 2—4). Then, after get-
ting to the appropriate node in the FDT, we have pointers to the relevant behaviors
in the behavior tree. So, we return these pointers that match this node (line 5).
Thus every feature is tested at most once (according to how we built the FDT),
and from this go to the relevant behaviors in the behavior tree.

Matching behaviors to observations is efficiently done using an FDT, by fol-
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Figure 4.2: Example FDT with behavior tree.

Algorithm 2 Matching(Observationg’, Timestampt, Behavior graphG, Fea-
ture Treefdt)

v «— root(fdt)

2: while v is not a leaido

3. i+« featurelndex(fdt,v)

4: v« child(fdt,v, F[i])

5: return all behaviors inG that match behavior in

=
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lowing a root-to-leaf path along the height of the tree. The height of an FDT is
(in the worst case)) (F) whereF is the number of the features. This would be
true only if a behavior test all available features, an unrealistic case. We believe
that in realistic settings, the height of the tree would be closer to the best case
of O(logF’). This result should be contrasted with previous algorithms such as
RESC or RESL. In these algorithms, the matching step goes over all behaviors,
and for each behavior tests all features, therefore the time complexity of these two
algorithm for the matching step @(F'L), whereL is the number of vertices in

the behavior graph.

The number of behaviors pointed to by an FDT lead{d.) in the worst-case,
wherelL is the number of nodes in the behavior graptiL) is an unrealistic worst
case, since it implies a case where a set of observations matches all behaviors in
the library—thus recognition is futile.

Overall, the run time complexity of the process in the worst caégis+ L),
andO(logF’) in the best-case.

The output of the matching phase is all behaviors that do not contradict the
observations. Therefore, behaviors that were not included in the output, are defi-
nitely not matching (except those with empty features). The matching behaviors
are given in Breadth-first search (BFS) order. i.e., parents will appear before their
children. This fact does not influence on the matching process, but helps in the
propagating process (discussed in the next chapter)



Chapter 5
Queries

We now turn to presenting symbolic behavior recognition (SBR) algorithms, that
utilize the representation above. These algorithms answer two types of queries:
(i) What are the possible current states of the observed robot (Section 5.1); and (ii)
What are the possible sequences of states of robot, given the observation history
(Section 5.2).

5.1 Current State Query

This query answer the question: what are the possible paths in the behavior graph,
that the robot is currently executes? or in other words what are the hypotheses
regarding the current state of the robot. The answer that the algorithms give is
complete, but not accurate, i.e, the answer will include the correct hypothesis,
but can include other hypotheses beside the correct one (hypotheses that based on
given observations, could not been disqualified by the algorithm). The algorithms
we present here are more accurate and more efficient than previous algorithms
(e.g., RESL [19]). Unlike previous symbolic algorithms, SBR algorithms take
into account previous observations in addition to the current observation, without
any additional space or runtime overhead. The algorithms execute in two phases:
(i) matching phase; (ii) tagging and propagating phase. The matching phase has
been described previously. The propagation phase is described below.

Once matching behaviors are found, they are tagged by the time-stamp of

29
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the observation. These tags are then propagated up the behavior graphs, so that
complete behavior-paths (root to leaf) are tagged to indicate they constitute hy-
potheses as to the internal state of the observed robot when the observations were
made. However, the propagation is not a simple matter of following child and
parent edges.

One complication in tagging is that a behavior may match the observations
(and is therefore tagged), and yet it cannot be a part of a valid hypothesis, when
a history of observations is considered, i.e., itegporally inconsistentFor in-
stance, suppose that the first set of observations matchtheehavior (Figure
5.1). The FDT would point the propagation algorithm to the three instances of
turn, underde fend, attack, andscore. However, only the behavior instance un-
der score is valid, since it is the only instance in whic¢lhrn could have been
selected without first going throughvsition. Since this is the first set of ob-
servations, and assuming no observations were lost (an assumption we address
in Section 8), it is impossible for the two oth&rrn instances to be valid, since
they strictly follow aposition behavior, which was not previously matched. This
reasoning about hypothesis consistency over time is a key novelty compared to
previous symbolic behavior recognition algorithms (e.g., RESC and RESL [38]).

Another complication in tagging is that a behavior may match the observa-
tions, but its parent will not match the observation, Or in the opposite way, the
behavior will match, but none of the children under this behavior will match .In
both cases the behavior should be disqualified, since the matching phase should
have returned all possible matching behaviors. For example, suppose, we got from
the matching phase the following behaviorgtack, withoutball and position
(Figure 5.1). Thevithoutball behavior should be disqualified, since the features
of the turn behavior failed to match the observation. The only path that should
be tagged is this stagevot — attack — position.

The propagating process is formalized in the Propagate algorithm (Algorithm
3). The propagate algorithm contains two parts:Plippagate up—tagging and
propagating up time-stamps of the matching behaviors, according to time-stamp
constrains (Algorithm 4); (iiEliminate—eliminating disqualified behaviors, i.e.,
erase tags from behaviors that were tagged otheagateUp process, but none
of their children were tagged. The propagate algorithm operates as follows: Lines
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Figure 5.1: Example of the propagating process.

1-3 for each matching behavior it calls to tReopagatingUp algorithm (Algo-

rithm 4). If the PropagateUp did not succeed in propagating up the time-stamp,
then all tagged behaviors in this iteration will be erased (Lines 4-5). Otherwise,
we will move on to the next matching behavior. After going over on all matching
results, we will start the&Zliminate process(Lines 6), which erase tags from all
disqualified behaviors, i.e., behaviors that match but their children do not match

(5).

Algorithm 3 Propagate(Matching Resultsatch Res, Behavior Graphy, Time-
stampt)

1: for all v € matchRes do

2. Tagged — ()

3. if =propagateUp(v,t, Tagged) then
4 forall a € Tagged do

5: delete_tag(a,t)

6. Eliminate(matchRes)

The Propagate upalgorithm (Algorithm 4), which is called for each of the
behaviors that match the observations, takes a pointer to a matching behavior, and
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tags behaviors using time-stamps to keep track of the order in which the hypothe-
ses are formed. It exploits the sequential edges and the time-stamps to disqualify
hypotheses that are inconsistent gieehistoryof observations. It also disquali-

fies behaviors that were matched, but their parents were not tagged. To do so, it
relies on the fact that the matching phase returns the matching behaviors in BFS
order, therefore in the propagating up phase, first the father will be tagged and
afterward, its children. This fact enable us to disqualify inappropriate behaviors.

The propagateUp algorithm operates as follow: Lines 4-13 climb up the
graph, tagging the behavior-path towards the root. Propagation is determined us-
ing the conditions (lines 5-6, Algorithm 4. These conditions are the key to the
temporal validity of the hypothesis. First, the propagate algorithm check the par-
ent validity: parent is tagged with time-stampr contains empty features (Line
5). Second, it checks the node in question, there are three cases: (a) the node in
guestion tagged at time— 1; or (b) the node follows a sequential edge from a
behavior that was successfully tagged at tirael; or (c) the node is a first child
(there is no sequential edge leading into it). A first child may be selected at any
time (for instance, if another behavior was interrupted). If neither of these cases
is applicable, then the node is not part of a temporally-consistent hypothesis, and
its tag should be deleted, along with all tags that it has caused in climbing up the
graph (line 6 3).

The Eliminatealgorithm (Algorithm 5), is called after we tagged with current
time-stamp all matching behaviors, and propagated up these tags. In this stage,
we erase tags from behaviors that are tagged, but none of their children were
tagged. The algorithm operates as follows: line 1 go over on all matching behav-
iors, and for each matching behavior checks if the behavior tagged and if exists
at least one child that is tagged with current time-stamp (line 2). If all children
were not tagged with current time-stamp, it erase the current time-stamp from the
guestioned behavior(line 3), and goes up to check the parent (line 4).

Figure 5.1 shows the process in action (the circled numbers in the figure denote
the time-stamps). Assume that the matching algorithm matches at tiriethe
multiple instances of thgosition behavior. At timef = 1, Propagate (Algorithm
3) begins with the fouposition instances. It immediately fails to tag the instance
that followsclear andapproachball, since these were not taggediat 0. The
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Algorithm 4 PropagateUp(Node, Behavior Graply, Time-stamp)
1. T—0
2: propagateUpSuccess < true
3 V—w
4: while v # root(g) A propagateUpSuccess N —tagged(v,t) do

5. if tagged(parent(v),t) V features(parent(v)) = () then
6: if tagged(v,t — 1) V dPreviousSeqFEdgeTaggedWith(v,t — 1) V
NoSeqEdges(v) then
7: tag(v,t)
8: Tagged «— tagged U {v}
9: v« parent(v)
10: propagateUpSuccess < true
11: else
12: propagateUpSuccess < false
13: else
14: propagateUpSuccess < false

15: return(propagateUpSuccess)

Algorithm 5 Eliminate(Matching Resultswatch Res, Behavior Graply, Time-
stampt)

1: for all v € matchRes do

2. while tagged(v,t) AN =3ChildT agged(t) do

3: delete_tag(v,t)

4: v «— parent(v)
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position instance undegcore is initially tagged, but in propagating the tag up,
the parentcore fails, because it followsttack, andattack is not tagged = 0.
Therefore, all tags = 1 will be removed fromscore and its childposition.

The two remaining instances successfully tag up and down, and result in possible
hypothesesoot — de fend — position androot — attack — position.

At time ¢t = 2, suppose the observations match then behavior (three in-
stances). The tag= 2 propagates successfully up and down in the behavior tree,
for all instances. Now, there are six possible hypotheses (we omit the common
root prefix): defend — turn — without ball, defend — turn — with ball,
attack — turn — without ball, attack — turn — with ball, score — turn —
without ball, score — turn — without ball. Now, we can not decide which of
the three main behaviors took plac&:fend, attack or score. However, getting
the next observation can disambiguate the hypotheses. If we will next observe a
clear or approach ball, then it would be clear that the observed robot is executing
the defend hypothesis. Otherwise, we can eliminate this hypothesis. In other
words, we can exploit negative evidence to disambiguate the hypotheses space.
This process is tightly coupled to the hypothesis generation phase, described next.
Complexity Analysis. For each behavior instance that matches the observations,
the entire propagation traverses the height of the behavior graph, and may thus
take O(L) in a theoretical worst case in which the behaviors form a degenerate
hierarchy. Realistically, we believe the height of the graph tree will often be closer
to O(logL).

This complexity is the same for previous algorithms (e.g., RESC [38]), despite
the fact that they do not consider a history of observations, admit temporally-
inconsistent hypotheses, and cannot answer queries as to hypothesized sequence
of states.

5.2 History of States Query

This query answer the question: what were all possible sequences of behaviors
that the robot executed from tinte= 0 until the current time + k£, £ > 0? Like

the answer of theurrent state querythe SBR response to this query is complete,
but not accurate. However, the answer become more accurate tiamant state
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query, as we exploitnegative evidenct disambiguate the hypotheses space.
Previous algorithms (e.g., [10, 19]) can not answer this type of queries. Here we
present an algorithm, that answer this type of queries in efficient way.

We begin by defininghegative evidencglQ], as an observation at timeg
whose occurrence at this time contradicts hypotheses based on observations made
up until timet — k, &k > 0. For example, let us take behaviats B, C, D with
temporal constrainsA — B — C or A — B — D. If we observedA at
t=0,B,t =1, andD,t = 2, thenD serves as negative evidence with respect
to hypothesisA — B — (. lItis thelack of observatiorof C' that rules out the
hypothesis.

Generating hypotheses about the current selected state (behavior path) is de-
scribed in the previous section: Given the latest tigyeve traverse the behavior-
graph, identifying complete behavior paths that are tagged,. The set of these
behavior paths constitutes the response to this type of query.

However, generating hypotheses as tosbquencef states that was selected
over time is not a simple matter of enumerating combinations of the above queries
fortimest = 0,t = 1...,t = t,. The reason for this is that new hypotheses,
generated at some timg, may serve to rule out hypotheses that successfully
matched at time < t,, by exploiting failures to observe expected behaviors, i.e.,
negative evidence as defined above.

Before discussing the hypotheses generation method, it would be useful to see
an example of how reasoning about a sequence of behavior paths can lead to using
negative evidence. Suppose that after having made the observations attines
andt = 2 in the example of the previous section, we now make observations at
time ¢ = 3 that matchkick. The score behavior is the only behavior consistent
with ¢ = 3, though bothde fend and attack are tagged for timeg = [1,2].
However, after having made the observation at 3, we can safely rule out
the possibility thatde fend was ever selected by the robot, becasvse-e can
only follow attack, and the lack of evidence for eithetear or approach ball
at timet = 3 (which would have madée fend a possibility at this time) can be
used to rule it out. Thus we infer that the sequence of behavior paths that was
selected by the robot isttack — position (att = 1), attack — turn att = 2
(though we cannot be sure which onegwofn’s children was selected), and finally
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score — kick.

We now turn to the hypothesis generation method. Extracting all paths is not
trivial (since as we saw, some successful tags at timet, are invalid att =
to. Here we present an incrementally-maintained structure that holds hypotheses
according to time stamps. One advantage is that with every time stame
can use the structure to eliminate hypotheses that were tagged dt-tirhethat
have become invalid. Another advantage is that the algorithm is flexible, it is
not necessary to call it after each matching-propagating steps, but according to
gueries.

We use a connected graph, calledHypotheses Graplwhose vertices corre-
spond to successfully-tagged behavior paths in the behavior graph (i.e., hypothe-
ses). Edges ik’ connect hypothesis vertices tagged with time statephypoth-
esis vertices tagged with time stamp- 1. GG’ is therefore built in levels, where
each level represents hypotheses that hold in each time stamp. For each set of
observations made at tintg, we add toG’ a levelt, all possible hypotheses that
were tagged = t, and propagated successfully in the behavior graph. We then
create edges between verticss. . ., x,, in levelt to verticesy, ..., y,, in level
t — 1 in the following manner: Ifz; is not part of a sequence (i.e., it is a first
child), then we connect; to each vertexy; (j=1...m); otherwise, ifz; is part of
a sequence, we connegtto y; (j=1...m) if any of the behaviors ip; has a se-
quential edge to any behavior in. If z; is equal toy;, we connect them, since
we assume that we have durations.

The hypotheses graph is built based on the propagated time-stamps in the be-
havior library (Section 5.1). This fact, make our approach different and more ef-
ficient, from other graph-based approaches in behavior recognition (for example
[14]). First, the hypotheses graph utilizes the negative evidence property. Sec-
ond, it can be built in any stage, according to the query i.e, it can be built after
each observation at timeor as needed, since all the relevant data is saved in the
behavior library’s time-stamps. Third, not all the levels need to be built, we can
generate the graph in tinte with k previous levels (it may be less accurate, but
still complete). The only algorithm of which we are aware that utilizes negative
evidence do not have these capabilities.

To generate all sequences of behavior paths that are consistent with the obser-
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Figure 5.2: An example extracting graph.

vations, we traversé&’ from level to level, keeping track of afl’ paths that take
us from the last level (the most recent observation) to the first level. This can be
done incrementally, after each observation is made, or it can be made only when
needed.

For example, based on the behavior tree in Figure 3.1, we conétr(ieigure
5.2). In the first level, we put all paths in the behavior tree that were tagged with
time-stamp 1, in the next level we put all paths that were tagged with time-stamp
2. Now, from each node in time-stamp 2, we check which nodes can be appro-
priate in time-stamp 1. The = 1 nodedefend — position can be connected
to thet = 2 nodesdefend — turn — without ball anddefend — turn —
with ball, because there exist sequential edges in the behavior graphs that con-
nectposition to turn underde fend. Similarly, attack — position has edges
to score — turn — without ball and score — turn — with ball. Once we
add the observations far= 3, the variousde fend hypotheses have no link to
time ¢t = 3. If we now go back to asking what hypotheses exist for the current
behavior paths at time = 2, we will getattack — turn — without ball and
attack — turn — with ball. Here we can see the advantage of ugiigOut of
six hypotheses that matched the observations until time-stamp 2, four hypotheses
are eliminated once we incorporate the evidence in time-stamp 3.
Complexity Analysis. The worst-case runtime complexity of constructi@Gg
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over N observation time steps (V L?), where and. is the worst-case number

of behaviors that the matching algorithm had returned given a single observation.
For each node i7" with time stampt (of which there could be at mosi(L)),

we check all nodes in time stanp- 1 (again,0O(L)), thus a factor of.? for each

step of adding another level. However, Note thatth@mponent is a purely the-
oretical worst-case, as it corresponds to a recognition system that simply returns
all behaviors in the behavior graph.



Chapter 6
Lossy Observations

Real-world applications sometimes violate assumptions that are made in recogni-
tion systems. One common violation of assumption involve intermittent observa-
tion failures. This section addresses this challenge.

In Chapter 4, we showed how to efficiently determine which behaviors match
a set of observations. An implicit assumption was made (present also in most
related work) that all relevant features were in fact observables. However, in re-
alistic settings, some features may be intermittently unobservable, e.g., due to
hardware failures, communication errors, etc. Observations that are lost would
fail the conditions associated with behavior, and thus the matching phase will fail.

We propose to use an augmented FDT, called LFDT (Lossy Feature Decision
Tree), which has all the properties of FDT, but deals with lossy observations (fig-
ure 6.1). The LFDT representation is the same as FDT, except that for each node,
we add an extra branch that representaissing value During construction of
the LFDT, all behaviors that are consistent with the node (and which are divided
based on the value of the feature associated with the node) would be passed as-is
to the missing value branch. When the LFDT is traversed, if a feature is temporar-
ily unobservable, we will follow the missing value branch instead of one of the
normal branches.

To construct the LFDT, we need a preprocessing phase, which generate train-
ing set according to the given behaviors in the behavior graph. This preprocessing
is exactly the same as done for the FDT, and was demonstrated in section 4. The

39
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Figure 6.1: An example Lossy Feature decision Tree (LFDT).

construction of the LFDT, is also done similarly to the FDT construction.

The LFDT construction algorithm is presented below (Algorithm 6). This al-
gorithm is a little bit different from the algorithm of the FDT (Algorithm 6). The
change is in lines 5-8. The different is caused by the fact that here we add an
extra branch which denotmissing value For this branch the instances remain
as its parent (line 7), and the weights also remain the same (line 8). This child
is different from his parent , only by the best features that it can select (line 12).
Although, this node did not really divided the instances according to the best fea-
ture, we refer it as the best feature was already tested. Note that the computation
of the information gain also remain the same for the LFDT.

The Matching algorithm also similar to that presented for the FDT (Algorithm
2). The LFDT Match algorithm operates as follow: when observation is made
about an agent we traverse on the LFDT according to the values of the observed
features, if we do not have the observed feature value, or the value is unreasonable,
we turn to themissing valuébranch. This process is done until we get to a leaf.
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Algorithm 6 formTree( Instances, weights, TestedFeatures)
1: if (there are no features to test)single behaviorjhen
returncreateLea f(Instances)
. bestFeature «— best feature that was not tested
create N ode(best Feature)
. for all possible values of best featurelo
if v = missing valughen
newlInstances «— Instances
newWeights < Weights
else
10: newlInstances < all instances with value
11: newW eights < calculate weights ofew Instances
12:  newTestedFeatures < TestedFeatures U best Feature
13:  formTree(newlInstances, newW eights, newT ested Features)

n

© N OR®

Then, after getting to the appropriate node in the LFDT, we have pointers to the
relevant behaviors in the behavior tree, the same as we have in the FDT. So, we
return these pointers that match this node. Thus, every feature is still tested at
most once, and from this go to the relevant behaviors in the behavior tree.
Complexity Analysis. The runtime complexity of LFDT is the same as FDT
(Section 4), though the size of the LFDT would be greater: (a) it will have more
branches than FDT (extra branch for each feature); (b) its height may be deeper
than FDT (because of the need to handle missing features at the leaves). However,
the complexity will be stillO(F). To lower the size of the LFDT we can add an
extra branch just to lossy features, i.e., not all features, but the ones we know we
can lose. The space complexity of the LFDT is obviously greater then of the FDT,
since we have an extra branch. However, it is almost the same as having more
values to each feature.



Chapter 7
Experiments

To empirically evaluate the performance of the algorithms, we conducted an ex-
tensive set of experiments, varying a number of parameters that affect their per-
formance. In particular, the performance of algorithms depends very much on
the structure and size of the behavior library, as well as the set of observations
presented to the behavior-recognition system.

We first describe the experimental setup and the parameters defining the scope
of the experiments (Section 7.1). We then turn to presenting the results of the
algorithms presented above; first, the efficient matching (Section 7.2), and then
generating and extracting hypotheses (Sections 7.3 and 7.4).

7.1 Experiment Set-Up

To systematically evaluate the performance of the algorithms given the variety of
possible behavior libraries, we builtBehavior Tree Generatawvhich generates
behavior-libraries (based on given parameters—see below), atbservation
Generatorwhich generates sequences of legal observations, given a behavior li-
brary. All algorithms were implemented in C++ and tested them on Pentium 4
processor with 1GB of RAM and 2.40GHz CPU, in Linux.

The Behavior Tree Generatagenerates random behavior libraries that con-
form to the following parameters:

Top Level Branching Factor. The branching factor of the root node (number of
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children for the root node). This corresponds to the number of different
independent high-level behaviors in the library, referred to as number of
roots in [10].

Depth. The depth of the behavior library, from the root.
Branching Factor. The branching factor of all nodes (other than root).

Sequential edges typeFollowing [10], we vary the ordering constraints between
nodes in the library, using different sequential edges between nodes. There
are six types (Figure 7.1):

Totaly ordered. All children with the same parent node, are connected
with single sequential edges, i,e., siblings form a single chain.

First. First node will have ordering constraint (sequential edge) to all other
nodes under its parent.

Last. All nodes will have single ordering constraint to the last node.

Partial A. Each node will have random number of ordering constraint, the
number of constraints will be between zero to number of brothers of
this node. Cycles will be prevented at generation.

Partial B. Each node will have zero or one sequential edge to its brothers.

Unordered. No ordering constraints between nodes.

One exception is that top-level behaviors (children of the root node) are
always unordered.

Number of possible features.Sets the number of observable features (overall).

Number of features in each node.Sets the complexity of observations associ-
ated with each node, i.e., the number of features associated with a single
observations.

Duplication. The fraction of top-level behaviors that are duplicated in order to
generate ambiguous paths. To make sure some differences between dupli-
cated still exist, the last leaf behavior in duplicated top-level behaviors is
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Figure 7.1: Sequential Links types. Partial A and Partial B are not shown, as they
are non-deterministic, and may take different forms.

made different. For instance, a fraction of 0.4 means that 40% of the top-
level behaviors are duplicates of others (i.e., approximately 80% of top-level
behaviors are not unique—except for their last leaf).

The size of the behavior hierarchy is affected by the top-level branching fac-
tor, the normal-node branching factor, and by the depth. For the purposes of the
experiments, we have fixed the normal-node branching factor at 3, and only varied
the top-level branching factor and the depth.

Each behavior in the tree is uniquely identified, but may have the same set
of associated features as other behaviors, in which case they will be considered
equal—and will both match given the same set of observations. The inherent
ambiguity of the behavior-hierarchy (how many different hypotheses are valid
given a sequence of observations) is goverend by the duplication parameter (larger
means more ambiguity), by the number of overall features (more overall features
enable in principle greater differentiation between behaviors), and the number
of features observable per behavior node (smaller number will cause less variety
in behaviors, and thus increased ambiguity). In the experiments reported below,
we chose values that are conservative for the techniques we developed, and thus
represent worst-case scenarios: The number of overall features (which increases
FDT size) was set at 10, creating the largest FDT to fit in the computer memory.
The duplication fraction was set at 0.4. The number of features per behavior was
set at 1, which essentially treats features as atomic, and thus lessens the expected
effect of using the FDT.
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TheObservation Generatagenerates legal sequences of observations accord-
ing to a given generated behavior library. To generate legal observation, it sSimu-
lated execution and selection of behaviors. It randomly chooses a path in the be-
havior library and uses all the features in this path to generate observation. Then,
according to the sequential edges, the Observation Generator chooses another path
in the tree. The selection is done in the following manner: It first finishes all chil-
dren under the parent, then if there is a sequential edge, it prefers to follow the se-
guential edge,otherwise it goes up to choose other child. Behavior will be selected
again, until we visited all sequential edges from this behavior, and all children of
the behavior.

7.2 Matching Observations To Behaviors

The first set of experiments tests the run-time of the observation matching phase,
using an FDT (Section 7.2.1). It then explores the computational cost associated
with FDT in terms of building run-time (Section 7.2.2).

7.2.1 Matching Runtime

We investigate how the run-time of the matching phase scales with the size of the
behavior-hierarchy. The run-time using an FDT is contrasted with the matching
run-time of the RESL algorithm [19], the most relevant of related works.

Three parameters affect the matching timethe size of the behavior library
(which affects how many behaviors there are to match agaifisthe number of
overall features, and, the number of features associated with each behaviors (of
course,f < F).

As reported in Chapter 4, RESL's worst-case run-time in theoi(i58'L),
and its best-case run-timeds f ). The FDT’s worst-case run-time (3(F + L),
and its best-case 3(log f).

In the following experiments, we varied by varying the number of top-level
behaviors (5,50,100) and the depth of the behavior library (3£5)as fixed at
10, andf was varied between 1,3,5,7. For each of these values, we generated 180
random observations sets based on the given behavior-libraries, and averaged the



CHAPTER 7. EXPERIMENTS 46

x10™ Depth3 x10° Depth 4 x10° Depth5
[$) [$] (8]
8 6 8 15 7 3 4 =
c c c S
o - ° . s 3 N
E 4 4 £ 1 S € 8\,
§ -, L 5 ,8'\ E 2 f\
o 2 's ® 05 L o ’
o %’ 5] ]
> > >
<0 < 0 <0
1 3 5 7 1 3 5 7 1 3 5 7
Nigrber of actions in each node  Number of actions in each node Number of actions in each node
g6 g 0.015 g 0.04
2] 7] [%2] »
= £ 7 S 0.03 .
x v . .
24 P £ o001 x g 4
= K k=] K = Nd
5 - § * 5 0.02 ,,(
o 2 » w 0.005 R4 ® .
2 v 2 < goo1f »
) * o ]
> B >
<0-o—0—0—0 —< oL-e—eo—o—8 X 0
1 3 5 7 1 3 5 7 1 3 5 7
Number of actions in each node Number of actions in each node Number of actions in each node
g 001 g 0.03 g 0.08
(2] A 2] %]
3 » s - S 0.06 %
£ ; £ 0.02 %’ £ ’(\
€ 0.005 ’ 5 N4 S 0.04 N4
2 2 . 2 ’
g - 2 0011 o ¥ ) o
© x @ ® 0.02 x’
g g g
< clLe—eo—eo—o < Lo—e—e—e i (Lo0—e—e—0
1 3 5 7 1 3 5 7 1 3 5 7

Number of actions in each node Number of actions in each node Number of actions in each node

Figure 7.2: Average matching runtime of FDT and RESL, as a functioffof
varying depth and top level roots

run-time for matching these using RESL and using a generated FDT.

The average runtime of the matching algorithms are shown in figure 7.2.1. The
horizontal (X) axis shows the number of features associated with each behavior
(f)- The vertical axis shows the average matching time in seconds. First line is
for 5 top-level behaviors, second line is for 50 top-level behaviors and third line is
for 100 top-level behaviors. The columns represent varying depth of the behavior
library (3-5). For example, top left figure the depth of the behavior library is fixed
at 3, and the top-level behavior branching factor was fixed at 5. For each value of
the number of features per behavior, we repeated the experiment 180 times.

Clearly, the use of the FDT leads to very significant improvements in the
matching time, compared to RESL. Furthermore, its growth curve (with respect
to the number of features associated with each behavior) indicates that its benefits
scale up well as the observed behavior increases in complexity.
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Figure 7.3: Average matching run-time of FDT and RESL, worst-case (for FDT),
as library increases in size.

We now turn to the question of how this performance varies with the size
of the behavior hierarchy. We focus on the worst-case scenario of the FDT in
comparison with RESL, where the number of features per behavjoad. We
then variedL by varying the number of top-level behaviors (10,50,100) and the
depth of the behavior library (3—6). Agaif, was fixed at 10. For each of these
values, we generated 720 random observations sets based on the given behavior-
libraries, and averaged the run-time for matching these using RESL and using a
generated FDT.

The results in figure 7.2.1 show that the FDT-based matching algorithm is
significantly faster than the RESL algorithm, and the runtime gap grows with the
size of the library. This result is expected, given the complexity analysis of RESL
vs. the FDT-based matching.

Since, the action DB is fixed here to 10, naturally, the number of matching
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Figure 7.4: Matching Experiment: Number of matching behaviors

behaviors is also increase with the size of the tree (figure 7.4). This fact cause
overhead that should be considered when exploring the matching runtime and the
building FDT runtime.

7.2.2 FDT Build time

The use of the FDT leads to very significant savings in matching run-time. How-
ever, it does necessitates carry a one-time cost of building the FDT for usage. This
section evaluates the this cost to argue that it is feasible.

We first explore how the FDT construction runtime changes as the number of
features per behavior is varied. Figure 7.5 shows the average runtime for building
theFDT as number of features per behavior varies between 1,3,5,7. The left figure
is for top-level behaviors fixed to 50 and the right figure is for top-level behaviors
fixed to 100. The depth of the behavior library (3-6). For each of these values,
we generated 30 random observations sets based on the given behavior-libraries.
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Figure 7.5: Matching Experiment2: Average runtime of buildi#igT

The average time for building the FDT decreases as the number of features in
each behavior increases. The reason for this is that behaviors that do not test a
feature simply pass down (in the construction phase) to all children FDT nodes,
as they are consistent with all values of the features they do not test (as explained
in Section 4).

We again focus on the worst-case scenario; here, the construction run-time
when only a single feature is associated with each behavior. Figure 7.2.2 shows
the average runtime for building the FDT for a behavior libraries of various sizes.
The horizontal axis shows the depth of the library (3—6), while the different graphs
correspond to the 10,50 and 100 top level behaviors. For each of these values, we
generated 48 random observations sets based on the given behavior-libraries.The
vertical (Y) axis shows the average run-time in seconds. While the graphs hint that
the construction time may be exponential in the size of the hierarchy, we remind
the reader that building the FDT is a one-time offline cost, while matching takes
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place many time in realistic settings.

7.3 Current State Query

We now turn to evaluate oiBBRalgorithms with respect to their ability to answer
the current-state query. We tested the SBR propagation algorithm (the key algo-
rithm used in answering this query, once matching is done), in terms of scalability
(efficiency) and accuracy. We contrast these results with the RESL algorithm [19].
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10 roots| 50 roots| 100 roots
Number Hypotheses SBR 5.47 12.39 20.93
Number Hypotheses RESL 9.75 29.17 53.37

Table 7.1: Average number of hypotheses after propagation, RESL vs. SBR.

7.3.1 Accuracy

A key advantage of SBR over RESL is its ability to use the history of observa-
tions, together with the sequential edges, to rule out certain hypotheses that match
current observations, but are not feasible given the history of observations. Thus
given a valid sequence of observations, and depending on the existence of se-
qguential edges in the behavior library, we expect to see fewer hypotheses as to the
current state of the observed robot, in comparison with RESL's output.

We fixed the number of features per behaviof s 1 (since it does not affect
directly on the propagating). We then variedby varying the number of top-level
behaviors (10,50,100) and the depth of the behavior library (3—6). Agawas
fixed at 10. For each of these values, we generated 720 random observations sets
based on the given behavior-libraries.

Figure 7.3.1 compares the average number of hypotheses after propagating
in SBR algorithm to the number of hypotheses after propagating in RESL algo-
rithm.The results are also shown in table 7.1. More than 50% of the hypotheses
we get in resl propagating algorithm, were ruled out by the SBR propagation al-
gorithm.

The ability of SBR propagation to use the history of observations relies on
the sequential edges to rule out hypotheses. Thus it makes sense to examine how
different structures, in terms of sequential edges, affect the number of hypotheses
generated by SBR.

Figure 7.8 shows the effect of various sequential edges types on the number
of hypotheses. There are four graphs, each for different depth varying between
3-6. For SBR, the number of hypotheses depends on the type of sequential edges
used in the behavior library. Totally-ordered behavior libraries allow SBR to max-
imally use past observations, and thus on average result in the fewest number of
hypotheses. In contrast, unordered behavior libraries have no sequential edges,
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Figure 7.8: Average number of hypotheses after propagation, RESL vs. SBR,
with different sequential-edge types.

and thus do not allow SBR to use a history of observations. Thus the number of
hypotheses generated in this case is exactly the same as generated by RESL. The
number of hypotheses in RESL algorithm is not affected by the type of sequential
edges, so only a single solid line shows the average results of running RESL.

7.3.2 Runtime

Given the significant improvement in accuracy, one may expect that there is an
associated significant computational cost to the use of the propagation algorithm.
Surprisingly, this is not the case. Figure 7.9 shows the average run-time of the
SBR propagation algorithm in the above experiments, in comparison to that of
RESL. The horizontal axis shows the top-level branching factor, while the vertical
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axis shows the runtime in seconds. RESL is only slightly faster than SBR. A close
examination of the propagation algorithm shows that the only difference between
the two propagation algorithms is that in comparison to RESL, SBR carries out
a few additional checks (for incoming sequential edges) as its propagates time-
stamps up and down the behavior hierarchy. Thus the addition to runtime is minor.

7.4 History of States Query

As mentioned in Chapter 5, there are three phases to answer this query: (i) match-
ing; (ii) propagating; and (iii) generating hypotheses. The first two phases are
done also to answer ti@urrent State Queryand therefore were analyzed in sec-

tion 7.3. In this section we will evaluate the third phase, generating hypothe-
ses, which allows answering queries as to the possible sequence of behaviors se-
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lected by the observed robot. This phase can be incremental to the previous two
stages,i.e, done after each propagating phase, or after any number of matching-
propagating iterations. Algorithms such as RESL do not have the ability to answer
theHistory of States Query

7.4.1 Generating behavior-history hypotheses

The hypotheses graph is used to disqualify hypotheses which are ruled out by
negative evidence. Given an observation at timeis sometimes possible to rule

out the suitability of an hypothesis as to the selected behavior of the robot at time
t —1. Thus the hypotheses graph is has an important role in confirming and ruling

out hypotheses as to current state at a given time.

However, the hypotheses graph is also used to generate hypotheses as to the
sequence of behaviors selected by the observed robot over time (Section 5.2).
Here, we want not only to determine the possible current state of the robot, but
the possible sequence of states (leading to the current state). Given the sequential
edges in a behavior library, it should be possible to rule out hypotheses over time
(as we have seen), and thereby restrict the number of hypotheses as to the sequence
of behaviors. This of course depends on the structure of the sequential edges in
the behavior library.

Figures 7.10,7.11 and 7.12 show the number of possible behavior-history hy-
potheses evolving over time for 5,10,50 top-behaviors, for libraries with different
types of sequential edges. In all graphs, the vertical X axis shows the observations
from 1 to 10 (this is for observation sequences of length 10). The Y axis shows
the number of hypotheses. The results are averaged over 30 trials, depths of 3-6,
and over top-level branching factors of 5 7.10, 107.11, and 507.12. [Each point is
thus the average of 30 trials.]

For example, the upper left figure of 7.11 notes trees with depth fixed to 3
with different types of sequential edges, after the first observation there are on
average 2.4 possible hypotheses about the behaviors selected by the robots thus
far. After the second observation, there is a slight increase in the average number
of hypotheses, to 2.5 (i.e., there are—on average—between two and three possi-
ble sequences of behaviors that may have been selected by the robot leading to
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Figure 7.10: Number hypotheses over history for each sequential edge type, 5 top
level behaviors

its current hypothesized state). After the third observation, ambiguity is reduced
on average, as we have in average just 1.6 possible hypotheses. This is due to
the characteristics of the artificial duplication factor, where the last leaf (the third,
given the branching factor of 3) was artificially made different in otherwise dupli-
cate top-level behaviors. After 10 observations, only 6.8 hypotheses are possible
on average (the results are also displayed in Table 7.2).

In contrast, where there are no sequential edges (7.11), the ambiguity is very
large since all possible combinations of all current-state hypotheses over time
t =1...10 are possible. In other words, if we mark Asthe number of current-
state hypotheses at tinte the number of unordered state history hypotheses is
H, x Hy x ... H,. Thus after 10 observations, for instance, the number of state
history hypotheses in the unordered behavior library case is 13859 (compare to
6.8 for the totally ordered case).
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Figure 7.11: Number hypotheses over history for each sequential edge type, 10
top level behaviors

Totaly | First Last | PartialA | PartialB | Unordered
2.4 2.7 2.2 1.9 1.9333 2.7333
2.4667| 2.3 |2.7333| 3.6333 | 3.2333 8.8333
1.6667| 7.8667| 8.2333| 5.3333 | 4.5333 24.733
4.1 |5.6333| 14.633| 14.467 | 10.567 60.867
4.3333| 11.533| 42.767| 46.9 19.033 147.23
1.9 9.9 |17.533| 38.733 | 54.533 469.9
5.0333| 26.5 | 44.467| 108.03 109.2 1018.2
5.2333| 24.033| 36 52.5 130.07 2701.2
3.4 49.4 | 89.067| 141.27 | 337.43 7805.3
6.8333| 41.4 | 62.733| 159.5 368.87 13859

Boo~v~ouobwnpek

Table 7.2: Number of Hypotheses over history
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7.4.2 Runtime

The Generating Hypotheses phase is not expensive in means of runtime, com-
pared to matching and propagating phase. Figure 7.13 compares the average run-
time of the three phases mentioned above, for the following conditions: number
of features per behavior i = 1,L varying the number of top-level behaviors
(10,50,100) and the depth of the behavior library (3—6). The average runtime
shown Figure 7.13 represents the average runtime time to build the graph in each
step and also to extract all paths from time stamp t=0, until current time stamp,
where in each phase we use the results from the previous stage. Note that the
extraction does not enumerate the resulting hypotheses—otherwise its runtime
would grow combinatorically large—but simply marks them efficiently on the hy-
potheses graph.

An important feature of the SBR extraction phase is that it can take place at a
different time than propagation. Indeed, if there’s no need for answering state his-
tory query, the extracting phases is not needed at all (though the hypotheses graph
may still be useful) to maintain direct pointers to current state hypotheses. Al-
though we incrementally computed the hypotheses graph in the extraction phase,
the average runtime results in Figure 7.13 would be the same if the process was
instead carried out once, at the end of the sequence of observations.

Figure 7.14 differentiates the runtime involves in building and maintaining the
hypotheses graph, in contrast with the runtime spent marking possible hypotheses
from timet = 0 to the current time. The total runtime includes both of these com-
ponents. We used the same conditions as above (number of features per behavior
is f = 1,L varying the number of top-level behaviors (10,50,100) and the depth
of the behavior library (3—6)). Each data point represents 2880 observations.
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Chapter 8
Conclusion and Future Work

It is important for an agent to monitor other agents in order to carry out its tasks.
To do this, agents must often rely on their observations of others, to infer their
unobservable internal state, such as goals, plans, or selected behaviors. However,
plan-recognition approaches to this task are insufficient for modern agents appli-
cations, such as robotics.

This thesis addresses this challenge by defining a behavior-based recognition
representation and a comprehensive set of algorithms that can answer a variety of
recognition queries. The algorithms we propose are efficient, and can handle im-
portant real-world challenges to existing techniques, such as intermittent failures
in observations, behaviors with duration, etc. Surprisingly, we found that the bulk
of these new features can be achieved in the same run-time complexity of previous
algorithms—that lack these features.

In future work we intend to expand the algorithms we presented and test them
on real world applications. Here we suggest some of the areas that should be
explored:

Testing on dynamic, complex domains.In this thesis we explored and tested
our algorithms on synthetic data that we created. To understand our contri-
bution, we intend to test our algorithms on real world data taken from Mod-
Saf domain, which is a commercially-developed virtual environment with
synthetic helicopter pilot agents that carry out a variety of missions [35].
And on RoboCup, which is soccer simulation, with dynamic multi-agent

62
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environment which requires real-time teamwork and coordination [36].

Multi-agents Tracking. Here we presented tracking on single agent (although
the agent can be in dynamic multi agent environment). Tracking in multi-
agents environment is very challenging. First, we can utilize the information
from group of agents. Second, tracking multi-agents raises naturally more
hypotheses, and thus the observer needs to be selective.

Lossy observations.In Chapter , we suggested solution to the problem of lossy
observations. As mentioned before lossy observations are the case that some
features can not be seen in some point of time, for example due to hardware
failures. In the literature there is an hidden assumption that all features
can be observed. There are few works that tried to deal with the problem
(e.9,[9]), but even in these works, just limited cases can be dealt with, cases
that actions were observed without having seen previous actions that must
be preliminary, or state of the world has changed without seeing actions that
can explain these changes. Moreover, there is not any investigations on how
efficiently these methods work, and what is the accuracy when there are
missing observations. In future work we intend to implement the solution
we suggested on section , and to explore more deeply the lossy observa-
tions case. We also intend to test it both on synthetic data and on dynamic,
complex domains, such as ModSaf and RoboCup.

Probabilistic recognition. A limitation in our symbolic algorithms is that some-
times, more than one hypothesis is recognized, and we can not tell which
hypothesis is more probable. There are some cases that some behaviors are
more probable than others, for example when a person is going to the bank,
it is more probable that he is going to do actions in his account, and not
to rob the bank. There are behavior recognition systems that have the abil-
ity to rank hypotheses. However, these methods can not take into account
state of the world, ordering between behaviors, lossy observations and are
not capable of working with large number of behaviors, for more details see
section 2. In future work, we intend to investigate the possibility of incorpo-
rating probabilistic inferring and extend our algorithms to deal with ranking
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hypotheses, while keeping all the advantages in our model.

Interleaved behaviors. Another limitation in our model is that it is not capable
with copping with agent that pursuing multiple goals. In our model we
considered just the cases that the agent finishes series of behaviors in order
to finish one goal, and just then move on to pursuing another goal. In some
domains this is the case, but in others agent can start with one goal, then
move to another goal, and finally return to accomplish the first goal. To
our knowledge of the literature, just few works can deal with interleaved
behaviors [11].

Prediction. Currently we can answer to two key queries: (i) what does the agent
do now? and (ii) What did the agent do until now?. A query we have not yet
considered is the agent likely to do next, considering the states or actions it
executed up to now. While there exists much work on prediction (e.g., in
the context of unix command-line predictions), this work is not integrated
with plan-recognition work. Such integration would be interesting.

Suspicious behavior.We intend to apply our model to recognizing suspicious
behaviors, i.e., behaviors that are not recognized exactly by the behavior
library.



Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

J. F. Allen and C. R. Perrault. Analyzing intentions in utteran@esficial
Intelligence 15:81-115, 1980.

P. Bakker and Y. Kuniyoshi. Robot see, robot do: an overview of robot imi-
tation. Inthe AISB Workshop on Learning in Robots and AnirrBigyhton,
UK, 1996.

T. Balch. Behavioral Diversity in Learning Robot Teant3hD thesis, Geor-
gia Institute of Technology, 1998.

S. Carrbery. Techniques for plan recognitiobser Modeling and User-
Adapted Interaction11:31-48, 2001.

E. Charniak and R. P. Goldman. A probabilistic model of plan recognition.
In AAAI-9], 1991.

E. Charniak and R. P. Goldman. A Bayesian model of plan recognifith.
64(1):53-79, Nov. 1993.

P. R. Cohen, C. R. Perrault, and J. F. Allen. Beyond question answering. In
W. G. Lehnert and M. H. Ringle, editorStrategies for Natural Language
Processingpages 245-274. Erlbaum, Hillsdale, NJ, 1982.

R. J. Firby. An investigation into reactive planning in complex domains. In
AAAI-87, 1987.

C. W. Geib and R. P. Goldman. Plan recognition in intrusion detection sys-
tems. Inin DARPA Information Survivability Conference and Exposition
(DISCEX) June 2001.

65



BIBLIOGRAPHY 66

[10] C. W. Geib and S. A. Harp. Empirical analysis of a probalistic task tracking
algorithm. InAAMAS workshop on Modeling Other agents from Observa-
tions (MOO-04) 2004.

[11] R. P. Goldman, C. W. Geib, and C. A. Miller. A new model of plan recogni-
tion. In UAI-1999 Stockholm, Sweden, July 1999.

[12] L. D. Goodman, B.A. On the interaction between plan recognition and intel-
ligent interfaces.User Modeling and User-Adapted Interactjad2i83—-115,
1992.

[13] K. Han and M. Veloso. Automated robot behavior recognition applied to
robotic soccer. IrProceedings of the IJCAI-99 Workshop on Team Behav-
ior and Plan-Recognition1999. Also appears in Proceedings of the 9th
International Symposium of Robotics Research (ISSR-99).

[14] J. Hong. Goal recognition through goal graph analy#dR, 15:1-30, 2001.

[15] M. J. Huber and E. H. Durfee. Deciding when to commit to action during
observation-based coordination. IbMAS-95 pages 163-170, 1995.

[16] M. J. Huber, E. H. Durfee, and M. P. Wellman. The automated mapping of
plans for plan recognition. IRroceedings of UAI-941994.

[17] G. A. Kaminka and M. Bowling. Robust teams with many agents. In
AAMAS-022002.

[18] G. A. Kaminka, D. V. Pynadath, and M. Tambe. Monitoring teams by over-
hearing: A multi-agent plan recognition approadlournal of Artificial In-
telligence Researc¢ti7, 2002.

[19] G. A. Kaminka and M. Tambe. Robust agent teams via socially-attentive
monitoring. Journal of Artificial Intelligence Research2, 2000.

[20] H. A. Kautz. In P. Cohen, J. Morgan, and M. Pollack, editdnsentions
in Communicationschapter A Circumscriptive Theory of Plan Recognition.
MIT Press, 1990.



BIBLIOGRAPHY 67

[21] H. A. Kautz and J. F. Allen. Generalized plan recognition. AlRAI-86
pages 32-37. AAAI press, 1986.

[22] Y. Kuniyoshi, S. Rougeaux, M. Ishii, N. Kita, S. Sakane, and M. Kakikura.
Cooperation by observation—the framework and the basic task patterns. In
the IEEE International Conference on Robotics and Automapages 767—
773, San-Diego, CA, May 1994. IEEE Computer Society Press.

[23] E. Kutluhan, J. Hendler, and D. Nau. A sound and complete procedure for
hierarchical task network planning. 1994.

[24] S. Lenser, J. Bruce, and M. Veloso. CMPack: A complete software system
for autonomous legged soccer robots.Agents-01 pages 204-211. ACM
Press, May 2001.

[25] J. F. Litman D., Allen. A plan recognition model for subdialogues in con-
versation.Cognitive Sciengel1:163-200, 1987.

[26] M. J. Mataric. Interaction and Intelligent Behavior PhD thesis, Mas-
sachusetts Institute of Technology, 1994.

[27] T. M. Mitchell. Machine Learning McGraw-Hill, 1997.

[28] A. Newell. Unified Theories of CognitionHarvard University Press, Cam-
bridge, Massachusetts, 1990.

[29] M. Nicolescu and M. J. Mataric. A hierarchical architecture for behavior-
based robots. IMAMAS-02 pages 227-233, Bologna, Italy, July 15-19
2002.

[30] D. V. Pynadath and M. P. Wellman. Probabilistic state-dependent grammars
for plan recognition. 1rJAI-200Q pages 507-514, 2000.

[31] G. Retz-Schmidt. Recognizing intentions, interactions, and causes of plan
failures. User Modeling and User-Adapted Interactich173—-202, 1991.

[32] Q. J. Ross.C4.5 Programs for machine learnindglorgan Kaufmann Pub-
lishers,Inc, 1992.



BIBLIOGRAPHY 68

[33]

[34]

[35]

[36]

[37]

[38]

[39]

C. Schmidt, N. Sridhan, and J. Goodson. The plan recognition problem: an
intersection of psychology and artificial intelligenca@rtificial Intelligent,
11:45-83, 1978.

M. Tambe, J. Adibi, Y. Al-Onaizan, A. Erdem, G. A. Kaminka, S. C.
Marsella, and I. Muslea. Building agent teams using an explicit teamwork
model and learningAlJ, 111(1):215-239, 1999.

M. Tambe, W. L. Johnson, R. Jones, F. Koss, J. E. Laird, P. S. Rosenbloom,
and K. Schwamb. Intelligent agents for interactive simulation environments.
Al Magazing 16(1), Spring 1995.

M. Tambe, G. A. Kaminka, S. C. Marsella, I. Muslea, and T. Raines. Two
fielded teams and two experts: A robocup challenge response from the
trenches. INJCAI-99 volume 1, pages 276—281, August 1999.

M. Tambe, D. V. Pynadath, N. Chauvat, A. Das, and G. A. Kaminka. Adap-
tive agent integration architectures for heterogeneous team members. In
ICMAS-00 pages 301-308, Boston, MA, 2000.

M. Tambe and P. S. Rosenbloom. RESC: An approach to agent tracking in a
real-time, dynamic environment. 1CAI-95 August 1995.

G. Weiss, editorPlan Recognition in Natural Language Dialogufie MIT
Press, 1990.



