
Construction of Optimal Control Graphs in
Multi-Robot Systems

Gal A. Kaminka and Ilan Lupu and Noa Agmon

Abstract Control graphs are used in multi-robot systems to maintain information

about which robot senses another robot, and at what position. Control graphs allow

robots to localize relative to others, and maintain stable formations. Previous work

makes two critical assumptions. First, it assumes edge weights of control graphs

are deterministic scalars, while in reality they represent complex stochastic factors.

Second, it assumes that a single robot is pre-determined to serve as the global anchor

for the robots’ relative estimates. However, optimal selection of this robot is an open

problem. In this work, we address these two issues. We show that existing work may

be recast as graph-theoretic algorithms inducing control graphs for more general

representation of the sensing capabilities of robots. We then formulate the problem

of optimal selection of an anchor, and present a centralized algorithm for solving it.

We evaluate use of these algorithm on physical and simulated robots and show they

very significantly improve on existing work.

1 Introduction

Control graphs are used in multi-robot systems to maintain information about which

robot senses another robot, and at what position. In such control graphs, nodes rep-

resent robots in given positions. Weighted edges represent sensing capabilities; an

edge from node A to node B, with weight w, represents the fact that robot A can

sense robot B, with preference w (typically, smaller weight indicates stronger pref-

Gal A. Kaminka

Computer Science Department and Gonda Brain Research Center, Bar Ilan University, Israel e-

mail: galk@cs.biu.ac.il

Ilan Lupu

Computer Science Department, Bar Ilan University, Israel

Noa Agmon

Computer Science Department, Bar Ilan University, Israel e-mail: agmon@cs.biu.ac.il

1

2 Kaminka, Lupu, and Agmon

erence). On the basis of such graphs, it is possible to build a shared coordinate sys-

tem (e.g., [11]), compute message passing paths in ad-hoc networks, and maintain

stable formations (e.g., [3, 7]).

Existing work utilizing control graphs raises several open challenges. First, it

offers no systematic treatment of the edge weights, how they are determined, and

how they should be utilized in the computation of optimal control graphs. Different

tasks (e.g., building a coordinate system versus formation maintenance) utilizes the

edge weights differently. Second, it makes the assumption that a single robot is

given, chosen to serve as the global anchor of the shared coordinate system, leader

of the formation, or origin of a message whose position is taken as the basis for the

robots’ relative positioning and location estimates. Third, it ignores uncertainty in

the weights of edges, such that, for instance, if the edge weight denotes a distance,

it assumes the distance is known with certainty, despite the inherent uncertainty that

exists in real-world sensing. In this work, we tackle these open challenges.

First, we synthesize from existing work, and then generalize the notion of con-

trol graphs and their uses. We begin by refining the definition of monitoring multi-

graphs [7], which distinguish between different sensing configurations of robots.

We show how existing techniques (e.g., for computing shared coordinate systems)

can be optimized by re-casting them in terms of graph-theoretic algorithms for in-

ducing directed trees from the multi-graphs, such that the trees optimize for a given

criteria (e.g., team costs, individual position error). Each such tree is an optimal

control graph for a given task (e.g., message passing, formation maintenance).

Second, on the basis of this more general understanding of how control graphs

are generated from monitoring multi-graphs, we formulate the problem of optimal

selection of leader or global anchor in a given monitoring multi-graph. A leader

robot serves as the root of the control graph (tree) generated from it. We present a

centralized algorithm that efficiently determines the optimal leader for a given task,

as well as the resulting control graph.

We evaluate use of the novel algorithms on physical and simulated robots

equipped with depth and image sensors (RGB-D cameras), and contrast them with

results obtained from existing work. The results show very significant improvements

from using these algorithms for coordinate frame alignment, in both simulated and

real robots, in static and dynamic settings.

2 Related Work

The use of graph theory for reasoning about roles of robots in cooperative multi-

robot tasks has a long history. We survey below only the most related, recent work.

Formation maintenance. Here the robots move while maintaining a shape, dictated

by their relative positions. Desai et al. [3] defined a control graph as an unweighted

directed graph (digraph) whose vertices are the robots in the formation. An edge

from A to B represents that robot A monitors robot B’s position. They show that

Optimal Control Graphs in Multi-Robot Systems 3

a formation can be stably maintained if the control graph implies each robot (ex-

cept a single leader) maintains its bearing (angle) and separation (distance) with

respect to one other robot (target). This type of formation control is known as SBC

(Separation-Bearing Control). Without referring to control graphs, Fredslund and

Matarić [4] propose a distributed algorithm for generating SBC monitoring rules

(i.e., which robot monitors whom) given a target placement of the robots and the

leader. In contrast, we consider weighted edges in our control graphs, and show

how to induce optimal control graphs for different tasks (not just formations). We

also address the question of leader selection. However, our algorithms here are cen-

tralized.

Kaminka et al. [7] generalized on these works. They defined a weighted monitor-

ing multi-graph, which compactly represents all possible SBC control graphs for a

given placement of robots. Each edge represents a possible configuration of the fol-

lower robot by which it can sense a target robot, and its weight represents its cost.

They present a centralized algorithm for inducing a specific control graph, which

optimizes the selection of targets, assuming a pre-determined leader. We show that

their representation and algorithm is in a special case of a broader definition of

monitoring multi-graphs, and we address the question of leader selection, which

they leave open.

Lemay et al. [8] present a distributed method of assigning robots to formation

positions. The computation relies on a cost function that considers distances and

angles to the teammates; it outputs the lowest-cost assignment of robots to positions,

and a leader that minimizes costs over all possible assignments. In contrast, we

begin with robots already assigned to positions, and only then select a leader and

SBC targets. However, we explicitly consider sensor capabilities, including errors.

Shared Coordinate Systems (Coordinate Frame Alignment). Another common

task is that of multiple robots agreeing on a common coordinate system (axes and

origin), e.g., as the basis for multi-robot mapping. There are several studies regard-

ing the construction and alignment of coordinate systems (e.g., [5, 10, 12, 15]).

Briefly, the task here is for robots to identify their alignment (translation and rota-

tion) with respect to each other (typically one of the robots serves as a global an-

chor). As not all robots can sense the global anchors, they may instead localize via

anchor chains, i.e., localize with respect to local anchors, who sense other anchors,

etc. This is also referred to as coordinate frame alignment.

Most such work focuses on the filtering mechanisms able to cope with the uncer-

tainty inherent to this process, and with various types of errors (e.g., receiving only

range information). However, recently, Nagavalli et al. [11] presented a distributed

method for improving the accuracy of such alignments, by utilizing a breadth-first

search (BFS) to minimize the number of anchors in anchor chains, all beginning

with a selected global anchor. In this paper we present a centralized algorithm for

selecting an optimal global anchor in this task, and show that this further improves

(significantly) the position estimates of the robots. Moreover, this works with an-

chors that are not part of the team, such as objects in the team surroundings that the

robots can identify.

4 Kaminka, Lupu, and Agmon

3 Optimal Construction of Control Graphs

We begin with robots placed in fixed relative positions, and no leader assigned. In

Section 3.1 we show how to compactly represent all the different possibilities for

robots to sense each other in their positions, using a refined definition of monitoring

multi-graphs, originally presented in [7]. Then, in Section 3.1 we show how existing

work can be re-cast in terms of graph-theoretical algorithms, properly extended to

run on monitoring multi-graphs. Existing work leaves open the question of optimal

leader selection, which we address in Section 3.2.

3.1 Monitoring Multi-Graphs

A monitoring multigraph captures all the potential control graphs for a group of

robots in fixed positions. As defined in [7], it is a directed, weighted multigraph

G = 〈V,E〉, where V is a set of vertices representing robots, and E is a bag (multi-

set) of weighted edges between vertices.

Each vi ∈ V represents a unique robot i, identified by its index, and having a

specific pose in space. The function pos : V 7→ ℜn identifies the unique pose of

each robot v ∈ V (typically, n = 3, with the pose determined by the position and

orientation of the robot v).

Let vi,v j ∈ V be two robots. Suppose vi can use a specific configuration of its

sensors to sense v j, i.e., vi computes an estimate of pos(v j), denoted by ˆpos(v j).
Denote the specific configuration by x. For instance, it may refer to a specific pan

of a camera or Lidar, combined with a specific sensor processing algorithms (e.g.,

visual marking recognition, depth perception), or a specific choice of resolution or

focus. [7] propose using a single scalar value cx
i j as the edge weight, indicating

preferences for using the sensor in this configuration, e.g.. based on reliability. We

depart from this definition in two ways. First, we distinguish between directly mea-

surable resource costs (such as expenditure of power, computation time, or sensor

processing latency), and errors in the estimate ˆpos(v j), which are given in terms

of deviations from the ground truth. Second, we accept that realistically, costs and

errors can only be estimated with uncertainty. Thus we model them as random vari-

ables, with a known probability distribution function.

More precisely, with each measurable cost factor k in the operation of the sen-

sor, and each component of error m resulting from it in ˆpos(v j), we associate a

known probability distribution C
x,k
i j (R

x,m
i j , respectively), explicitly or parametrically

represented. For instance, if the perception latency l is known to be uniformly dis-

tributed in the range 20ms–30ms, this may be explicitly represented by setting

C
x,l
i j ≡ U (20,30). If the distance from vi to v j is d, measured by a Lidar with a

3% error, we may set R
x,d
i j ≡ U (−0.015d,+0.015d). As vi only approximates the

true position of v j with ˆpos(v j)), we use an approximate distance measure d, and

update it as additional measurements are made. The overall costs associated with the

Optimal Control Graphs in Multi-Robot Systems 5

edge ei j are then drawn from the joint distribution of all C
x,k
i j , denote Cx

i j. Likewise,

we denote the errors by Rx
i j.

Given these definitions, we define the edges in E as follows. An edge ex
i j ∈ E is

a tuple ex
i j = 〈vi,v j,C

x
i j,R

x
i j〉. When clear from the context, we omit the superscript

x. This definition departs from [7] in that we add the representation of errors, and

distinguish multiple components in costs and errors. We also depart from [7] in

that we assume that the sensing robot can identify the sensed robot id and contrast

the graph with the existing edges without assuming all possible edges can exist and

eliminating edges that are occluded by other robots. Alternative configurations may

result in improved costs or lower errors; often a robot may trade these off, e.g., by

spending more computation time or more energy to improve its position estimate

of the other robot. Given |X | configurations for robot vi to monitor v j (which are

usually determined by the number of different sensors the robot has), there exist

edges e1
i j,e

2
i j, . . . ,e

|X |
i j ∈ E.

Inducing Control Graphs with Uncertainty: Managing Risk. Following [9], we

refer to a multigraph with random-variable weights as a stochastic multigraph. Dif-

ferent tasks, such as formation maintenance, may reduce to selecting paths in the

multigraph. The length of a path in a stochastic graph is a function of random events

characterized by the probability distributions associated with the cost along the path.

We therefore have to decide how we would like to deal with the uncertainty. The

common approach to dealing with uncertainty is by considering the risk involved

in the decision. Standard policies include risk-aversion (hoping to reduce risk, even

at higher cost, i.e., minimize the expected maximal cost/error); risk-seeking (in-

versely); and risk-neutrality (perfectly balancing risk and costs). Different decision

strategies can lead to different shortest path selections.

Several such algorithms appear elsewhere [6, 9], and are outside the scope of

this paper. However, it has been shown that risk-neutral selection both works cor-

rectly [9], and is safe, in the sense that it minimizes notions of regret [14]. For the

remainder of the work, and in the experiments, we therefore used the risk-neutral

policy, by using the expected (mean) value of the distributions E[Cx
i j] (or, as needed,

E[Rx
i j]) as the edge weights. Here E[P] is the expected (mean) value of the probabil-

ity distribution P.

Inducing Control Graphs (for a Given Robot). Monitoring multigraphs com-

pactly represent all potential ways in which robots could monitor each other in their

positions. Given a task which requires robots to monitor each other’s positions (e.g.,

formation maintenance), we want to induce a control graph: a subset of the moni-

toring graph, which specifies for each robot which sensor configuration to use, and

what other robot(s) to monitor, in order to improve task performance.

Table 1 summarizes the progression in previous work. In the column marked “Ar-

bitrary leader, arbitrary control graph” we list previous works which utilize heuristic

algorithms for constructing control graphs which are not guaranteed to be optimal

(in the sense of reducing accumulating errors or costs). In the next column, marked

“Arbitrary leader, Optimal control graph”, we list investigations which, for a pre-

6 Kaminka, Lupu, and Agmon

determined leader, generate an optimal control graphs minimizing accumulating er-

rors or costs (assuming scalar edge weights). A variant of Dijkstra’s single-source

shortest path (S3P), described in [7] is optimal for such cases.

Arbitrary leader, Arbitrary leader, Optimal leader,

arbitrary control graph Optimal control graph Optimal control graph

Algorithm type Heuristic Dijkstra’s All Pairs

Shortest Path

Formation maintenance [4] [7] This

Relative Localization [5, 15] [11] Work

Table 1: Related work utilizing accumulating factors, re-cast by type of algorithm

and problem settings. [7] uses costs to represent errors. [11] assumes uniform errors,

allowing use of BFS instead of Dijkstra’s algorithm.

3.2 Inducing Control Graphs with Optimal Global Anchor

Thus the challenge remains of determining the optimal leader (i.e., one whose asso-

ciated control graph is superior to those of other leaders). Our task here is to select

a single robot which will serve as a leader of a formation, or the origin point (global

anchor) for an agreed-upon shared coordinate system. We will therefore optimize

the leader selection and associated control graph to reduce the errors Rx
i j.

3.2.1 Problem Formulation

K robots are positioned in space. Each robot is equipped with sensors, allowing it to

identify (some) other robots in its vicinity, and to estimate their position with respect

to itself (i.e., their position in its own ego-centric coordinate frames). Furthermore,

we assume robots are able to communicate with their peers, at least with those they

are able to observe. The settings are captured by a monitoring multi-graph GK . The

task is to extract a control graph where the coordinate frame of a single robot (global

anchor) is used as the origin, and all robots align their coordinate frames to it. Be-

cause not all robots can directly sense the global anchor, each robot can decide to

align its coordinate system with respect to one other robot (called local anchor),

who aligns itself to the global anchor, or to another local anchor. Thus a coordinate

frame alignment control graph has the following properties:

• The vertex representing the global anchor has an out-degree of 0.

• All other vertices (robots) have an out-degree of 1.

• There exist a path from every vertex (robot) to the vertex representing the global

anchor.

Optimal Control Graphs in Multi-Robot Systems 7

A coordinate frame alignment control graph is optimal with respect to the se-

lected global anchor vA if it minimizes the errors in position estimates of the robots.

Suppose we have a robot v0. Its position estimate in the shared coordinate system

accumulates errors with every local anchor it uses on a path from itself to the global

anchor in the control graph. It thus seeks to minimize the sum of expected errors

∑
ei j

E[Ri j] where ei j is an edge on the path from v0 to vA. The question is how to

choose vA.

3.2.2 Optimal Global Anchor Selection

A global anchor vA is called optimal, if its associated control graph is superior to

the control graphs associated with any other potential global anchor. We consider

two different ways a control graph may be superior to another: It may reduce the

average position error for the group (a societal view of errors), or it may reduce the

maximal position error (an individual view of errors). Our task here is to determine

the optimal global anchor for both definitions. The process includes the following

steps (see details next).

1. Transform the stochastic monitoring multigraph GK into an intermediate repre-

sentation, G′K , which is a deterministically-weighted regular digraph (embedding

errors, and reversing direction of edges). This step is carried out in time O(|E|),
where E is the bag of edges in GK .

2. Apply an All Pairs Shortest Path (APSP) algorithm to the graph G′K . The time

needed depends on the algorithm chosen, but is generally O(|V |3), where V is

the set of vertices in G′K (normally, |V |= K).

3. Determine for each robot v ∈ V the set of shortest paths leading from it Pv. For

each such set Pv, determine the sum of the path lengths Sv, or the maximal path

length Mv, depending on the global anchor selection criteria. This is carried out

in time O(|V |2).
4. The global anchor vA is one that minimizes SvA

or MvA
. This is determined in

time O(|V |).

Transformation of GK into G′K . This step is carried out to transform the stochas-

tic directed monitoring multigraph into a deterministic graph, which embeds the

necessary information, yet amenable to the execution of familiar graph-theoretic

algorithm. The graph G′K = 〈V ′,E ′〉 is built as follows.

First, we set V ′ ← V . Then, for each pair of vertices vi,v j ∈ V , we do the fol-

lowing: (1) If an edge ex
i j exists, with error distribution Rx

i j, then create a temporary

reversed edge, e′xji, with scalar weight rx
ji =E[Rx

i j]. (2) Among all edges e′xji, select the

one with minimum rx
ji, i.e., e ji = argmin

e′xji

(rx
ji). Finally, (3) add e ji to E ′. The result

is a directed graph, with scalar deterministic edge weights, in which all errors have

8 Kaminka, Lupu, and Agmon

Kinect RGB

Kinect RGB & Depth

Hokuyo URG04

Kinect RGB

Kinect RGB & Depth

Hokuyo URG04

Kinect RGB

Kinect RGB & Depth

Hokuyo URG04

Fig. 1: An example for a monitoring multigraph (left), and two resulting monitoring

graphs: one that minimizes the maximal path length (middle), and one that mini-

mizes the sum of path lengths (right).

been folded into the edge weights using the risk-neutral policy, redundant edges in

the multigraph removed, and edge direction reversed.1

All Pairs Shortest Paths. We now run an algorithm for determining the shortest

paths for all pairs of vertices. In our implementation we utilized Johnson’s algo-

rithm [2]. Given the size of V ′ is the number of robots K, the algorithm runs in

O(K2 logK +K|E|). The result is often represented in a matrix L, such that matrix

cell l ji contains the length of the shortest path from vertex j to vertex i (or ∞ if

none exists). As edges are reversed in direction compared to the sensing direction,

l ji is the accumulating error in position estimates, from robot vi to robot v j, where

vi,v j ∈V .

Determine Sv and/or Mv. We propose two different criteria for selecting a global

anchor that, if used as the origin for a shared coordinate system, would result in

smaller position estimate errors for the team of K robots. One possible criterion is

to minimize the mean position error of all K robots. This is a societal criterion, as

it balances the errors across all robots. An alternative criterion is to minimize the

worst-case error of any single robot, possibly resulting in some robots accepting a

larger error than individually needed, in order to reduce the error of the other robots.

We examine the matrix L. Let S,M be vectors of dimension K. We denote Sv

the component of S associated with a given v (and similarly, Mv). For all v ∈ V ,

Sv =
1
K

K

∑
i=1

lvi, i.e., the sum of all cells in row v divided by K, or more intuitively,

the mean length of shortest paths from all robots i to robot v. As these shortest path

represent smallest errors, this is the mean smallest error in position estimates, if v

is selected as global anchor. Similarly, for all v ∈V , Mv =
K

max
i=1

lvi, i.e., the maximal

smallest error in position estimate for any robot i, if v is the global anchor.

Determine global anchor vA. Finally, a new global anchor can be chosen, by setting

vA = argminv∈V ′ Sv, if we prefer a global anchor that minimizes the average position

error, or vA = argminv∈V ′Mv, if we prefer to minimize the maximal error instead. If

1 Note that one can decide at this step to use any function combining C and R.

Optimal Control Graphs in Multi-Robot Systems 9

there are ties, they can be broken by preferring according to the other criterion, or

arbitrarily.

4 Evaluation

To evaluate the effects of using the techniques presented in this work, we imple-

mented the algorithms for optimal global-anchor selection and coordinate frame

alignment in ROS (Robot Operating System), to be used on Gazebo-simulatedand

real RoboTICan Lizirobots (shown in Figure 2(b)). All robots in the team were

marked with unique visual markers identifying each robot. Using image and depth

data from an RGB-D sensor, each robot identified its neighbors and measured their

relative position in its reference frame. A calibrated sensor model was used to esti-

mate the error measurements Ri j.

We compared the global position errors resulting from using the optimal vA algo-

rithm above, to the errors resulting from using an arbitrary robot [11]. Specifically,

we contrast the robots’ estimates with the ground truth measured externally. This

was done by carrying out five repeated trials in each setting, each lasting two min-

utes, resulting in thousands of data points, for each robot.

We have carried out experiments in three types of settings: robots standing

still, robots moving while maintaining a static formation, and robots moving while

changing formation. In the first two settings, the relative positions of the robots are

maintained: by definition in the first setting, and using feedback control in the sec-

ond. In the third setting, moving robots changed their initial formation, requiring

them to select a new global anchor.

Our first experiment recreates an experiment in [11]. Six Lizi robots are placed

as shown in Figure 2(a). All robots are static, and align their coordinate system

with respect to the selected global anchor. Similar experiments involve placing three

robots as shown in Figure 2(b). These were conducted both in simulation, as well

as in real robots. Robot 1 (bottom of the image) could monitor robot 2 (center) and

vice versa; robot 3 could see robot 2.

We then turned to experiments where robots moved while continually estimating

their position based on a shared coordinate system, with the origin at the selected

global anchor. We placed four robots in the formation shown in Figure 3(a), again

both in simulation as well as in the lab. Robot 1 (front of the formation) could

monitor robot 2 (center) and vice versa, robots 3 and 4 (side by side, bottom) could

monitor robot 2. Figure 3(b) shows the real robots in one of the trials. In the arbitrary

ID settings, robot 1 was selected as the global anchor. In the optimal settings, our

algorithm chose robot 2 as the global anchor.

As a final experiment, we tested the ability of the algorithm to adjust the global

anchor while moving, when the relative position of robots is changed. Four simu-

lated robots were placed as shown in Figure 3(c). All robots moved forward; robots

1–3 at constant speed, and robot 4 three time faster, along the dotted path shown

in the figure, and until it pulled ahead of everyone else. While moving, the robots

10 Kaminka, Lupu, and Agmon

(a) Six simulated robots. (b) Three real robots.

Simulated robots placed

likewise.

Fig. 2: Formation in static experiments.

(a) Static formation place-

ment.

(b) Static real robots. (c) Dynamic formation. Robot

#4 overtaking others.

Fig. 3: Formations maintained while moving.

continually checked and recomputed the global anchor appropriate to their current

settings. At the beginning of each run, robot 1 was chosen as global anchor vA, and

the algorithm chose local anchors for all other robots: robot 4 monitored 3, which

monitored 2, which monitored 1. However, as robot 4 begins to overtake it peers,

its local anchor changes from 3 to 2, then to 1, until finally it overtakes robot 1, at

which point it becomes the global anchor, and root 1 switches to monitor it.

Figure 4 shows the mean error (error bars indicate standard deviation) of robot

4 during the experiment. It shows that between 0.1 minutes and 0.5 minutes into

a trial, when robot 4’s local anchor is robot 3, the error in position (in the shared

coordinate system where robot 1 is the origin) is around 40cm. After passing robot

3, robot 4 changes local anchor based on the optimal selection, first to robot 2 and

Optimal Control Graphs in Multi-Robot Systems 11

then to robot 1. Approximately 0.95 minutes into the run, and until 1.15 minutes

in it, robot 4’s local anchor is robot 1 which is still the global anchor vA. We see

a corresponding decrease in robot 4’s position error as it now monitors the global

anchor directly. After 1.15 minutes, robot 4 cannot see any other robot and its error

increases due to moving and assuming location in its last position. With real robot

it is possible to change the localization method to less accurate one such as GPS in

this situation. After robot 4 enters robot 1’s field of view, the algorithm sets robot 4

to serve as vA.

Fig. 4: Changing control graph in real time

Results. The results, summarized in Table 2, show the use of the leader-selection

algorithm leads to very significant improvements in the position estimates of the

robots in the shared coordinate system. In many cases, the mean error is reduced

by 50% or more. For example, in the experiment with six standing robots, when

using the minimal robot ID as a global anchor the farthest robot (#6) was located

five hops away, and accumulated approximately 13cm in error. However, using the

global anchor selected by our algorithm, the average error for the same robot, now

located 3 hops away, drops to 6cm. This improvement is statistically significant

(one tailed t-test, p < 7.49×10−16). Similar improvements can be seen in the other

experiments, both in simulated and real robots. Over all trials, these results are over

approximately 5000 measurements in each settings, for each robot.

5 Conclusions and Future Work

Control graphs are used in multi-robot systems to maintain information about which

robot senses another robot, and at what position. On the basis of such graphs, it

is possible to compute a shared coordinate system, localize relative to others, and

maintain stable formations. In this work, we demonstrated that previous work as-

sumes that a robot is pre-determined, to serve as global anchor (origin point) for co-

ordinate frame alignment. We extended previous notions of monitoring multigraphs,

12 Kaminka, Lupu, and Agmon

Type Experiment Robot Arbitrary vA Optimal vA Significance p value

ID Error in meters Error in meters (one-tailed t-test)

Standing

3-line (simulation) 3 0.058 (0.102) 0.036 (0.009) 7.12×10−15

3-line (real robots) 3 0.107 (0.019) 0.049 (0.001) 0 (below excel limit)

6 zigzag (simulation) 2 0.031 (0.021) 0.014 (0.006) 2.62×10−78

4 0.073 (0.142) 0.030 (0.005) 4.12×10−15

5 0.086 (0.181) 0.032 (0.005) 4.90×10−15

6 0.134 (0.239) 0.061 (0.033) 7.49×10−16

Moving

Simulation 4 center 3 0.036 (0.014) 0.019 (0.018) 1.72×10−98

4 0.032 (0.017) 0.013 (0.012) 5.92×10−143

Real moving 4 center 3 0.155 (0.076) 0.095 (0.009) 8.31×10−6

4 0.140 (0.105) 0.084 (0.038) 0.00056

Table 2: All experiment results, including mean errors in meters (standard devia-

tions), and t-test significance testing. Robot ID is shown for robots not acting as

global anchor vA in either setting. The optimal global anchor column shows signifi-

cant improvement in all experiments.

a construct intended to compactly represent all possible control graphs. We focused

on risk-neutral decision policy, which allows us to replace stochastic edge weights

with the deterministic expected value of the distributions. Second, we demonstrated

that an All Pairs Shortest Path algorithm can be utilized, on the extended monitor-

ing multi-graph, through some transformations. This facilitates the automatic deter-

mination of an optimal robot to lead a formation or serve as a global anchor. We

conducted extensive experiments in real and simulated robots; these show very sig-

nificant improvement to the robots’ position estimates. In future work, we hope to

examine alternative methods for dealing with decision policies that are risk-averse,

or risk-seeking.

The algorithms presented herein assume that all information about the sensing

capabilities and location of the robots is known - either to a centralized unit, or

to one of the robots. Using this information, the optimal local and global anchors

are determined. It would be interesting to extend these results to a decentralized

setting. In this case, choosing a local anchor may be straightforward, yet choosing

an optimal global anchor would require using innovative methods.

Acknowledgements We gratefully acknowledge support by ISF grants #1511/12 and #1337/15.

As always, thanks to K. Ushi.

References

1. T. Balch and R. Arkin. Behavior-based formation control for multi-robot teams. IEEE Trans.

on Robotics and Automation, 14(6):926–939, 1998.

2. T. T. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press, 1990.

Optimal Control Graphs in Multi-Robot Systems 13

3. J. P. Desai. Modeling multiple teams of mobile robots: A graph-theoretic approach. In IROS,

volume 1, pages 381–386, 2001.

4. J. Fredslund and M. J. Mataric. A general algorithm for robot formations using local sensing

and minimal communications. IEEE Transactions on Robotics and Automation, 18(5):837–

846, 2002.

5. A. Howard, M. J. Matarić, and G. S. Sukhatme. Putting the ‘i’ in ‘team’: an ego-centric

approach to cooperative localization. In ICRA, pages 868–892, 2003.

6. L. K. Hwang. Stochastic shortest path algorithm based on lagrangian relaxation. Master’s

thesis, University of Illinois at Urbana-Champaign, 2010.

7. G. A. Kaminka, R. Schechter-Glick, and V. Sadov. Using sensor morphology for multi-robot

formations. IEEE Transactions on Robotics, pages 271–282, 2008.

8. M. Lemay, F. Michaud, D. Létourneau, and J.-M. Valin. Autonomous initialization of robot

formations. In ICRA-04, 2004.

9. R. P. Loui. Optimal paths in graphs with stochastic or multidimensional weights. Technical

Report TR115, Computer Science Department, University of Rochester, 1982.

10. A. Martinelli, F. Pont, and R. Siegwart. Multi-robot localization using relative observations.

In ICRA-05, pages 2797–2802. IEEE, 2005.

11. S. Nagavalli, A. Lybarger, L. Luo, N. Chakraborty, and K. Sycara. Aligning coordinate frames

in multi-robot systems with relative sensing information. In IROS-14, pages 388–395. IEEE,

2014.

12. G. Piovan, I. Shames, B. Fidan, F. Bullo, and B. D. O. Anderson. On frame and orientation

localization for relative sensing networks. Automatica, 49(1):206–213, 2013.

13. E. C. S. Y Chiem. Vision-based robot formations with bézier trajectories. In IAS-8, volume

IOS Press, 2004.

14. M. Traub, G. A. Kaminka, and N. Agmon. Who goes there? using social regret to select a

robot to reach a goal. In AAMAS-11, 2011.

15. N. Trawny, X. S. Zhou, K. Zhou, and S. I. Roumeliotis. Interrobot transformations in 3-d.

IEEE Trans. on Robotics, 26(2):226–243, April 2010.

