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Abstract

Intention recognition is one of the core components of mindreading, an im-
portant process in social cognition. Human beings, from age of 18 months,
have been shown to be able to extrapolate intentions from observed actions,
even when the performer failed at achieving the goal. Existing accounts of
intention recognition emphasize the use of an intent (plan) library, which
is matched against observed actions for recognition. These therefore can-
not account for recognition of failed sequences of actions, nor novel actions.
In this paper, we begin to tackle these open questions by examining com-
putational models for components of human intention recognition, which
emphasize the ability of humans to detect and identify intentions in a se-
quence of observed actions, based solely on the rationality of movement (its
efficiency). We provide a high-level overview of intention recognition as a
whole, and then elaborate on two components of the model, which we be-
lieve to be at its core, namely, those of intention detection and intention
prediction. By intention detection we mean the ability to discern whether
a sequence of actions has any underlying intention at all, or whether it was
performed in an arbitrary manner with no goal in mind. By intention pre-
diction we mean the ability to extend an incomplete sequence of actions to
its most likely intended goal. We evaluate the model, and these two com-
ponents, in context of existing literature, and in a number of experiments
with more than 140 human subjects. For intention detection, our model
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was able to attribute high levels of intention to those traces perceived by
humans as intentional, and vice versa. For intention prediction as well, our
model performed in a way that closely matched that of humans. The work
highlights the intimate relationship between the ability to generate plans,
and the ability to recognize intentions.

Keywords: Intention Recognition, Intention Prediction, Cognitive
Modeling

1. Introduction

Intention recognition is one of the core processes of mindreading, an
important component in social cognition. Intention recognition involves
identifying the goal of an observed sequence of actions, performed by some
acting agent. It is a process by which an agent can gain access to the goals
of another, and predict its future actions and trajectories. While it is not
sufficient, by itself, for full mental state attribution (e.g., it does not ascribe
beliefs to the observed agent), it is of critical importance in social interaction,
and is of obvious evolutionary benefit. Indeed, human beings, from age of 18
months, have been shown to be able to extrapolate intentions from observed
actions, even when the performer failed at achieving the goal (Meltzoff,
1995).

Existing accounts of intention recognition in artificial intelligence (plan
recognition) and machine vision (activity recognition) emphasize the use of
an intent (plan, activity) library, which is matched against observed actions
for recognition. These therefore cannot account for recognition of failed se-
quences actions, nor novel actions. Moreover, these accounts ignore cognitive
science literature, which shows that the process involves a number of com-
ponent processes: recognizing the agent as capable of possessing intentions,
recognizing that the observed action sequence is intentional, hypothesizing
the intent of the sequence (even if the sequence results in a failing), and
more (we discuss this in Section 2).

In this paper, we focus on modeling two of these components, intention
detection and intention prediction. By intention detection we mean the
ability to discern whether a sequence of actions has any underlying intention
at all, or whether it was performed in an arbitrary manner with no goal in
mind. By intention prediction we mean the ability to extend an incomplete
sequence of actions to its most likely intended goal.

In particular, we focus on the use of rationality (efficiency) of an observed
action trajectory or plan as a possible basis for intention recognition. We
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argue that while there are several different ways in which humans may carry
out intention detection and prediction (discussed in detail in Section 2), it is
often possible to determine a level of intentionality of an observed sequence
of actions, based solely on the observed actions, and the ability to plan
(optimally). We thus highlight a role for planning within recognition.

Following Section 2, which motivates our work in context of existing
literature, we begin in Section 3 with a brief description of an abstract in-
tention recognition model, in which two of the components are intention
detection and intention prediction (we describe this abstract model to put
the component processes in context of the larger area of research). We then
provide a detailed account of the computational models underlying these
processes from our perspective, which focuses on rationality. In Sections 4
and 5 we evaluate the hypothesized models for intention detection and in-
tention recognition processes, respectively.

In particular, in Section 4, the intention detection model was evaluated
in a discrete-state recreation of key experiments in humans (Meltzoff, 1995),
and in detecting intentionality in activity recognition videos. In both set-
tings for evaluating the first component of intention detection, the results
confirm that our model closely matches human performance. Traces of ac-
tion that were deemed by human observers as highly intentional, were ranked
similarly by our model, while traces of action that were judged by humans
as less intentional, achieved lower grades of intention by our model as well.
Thus, the predictions of the model were successfully compared to those of
human subjects. In addition, our findings show that our model proves useful
for detecting sub-goals as well.

In a final set of experiments (Section 5), the intention prediction com-
ponent was evaluated with data from human subjects, manipulating two-
dimensional objects in a computer-based experiment. These experiments
show equally promising results. Our model was able to predict the correct
intention of various action traces with high accuracy, using our suggested
heuristic. Two other heuristics are evaluated as well, and show significantly
inferior prediction ability.

Finally, in Section 6, we discuss the significance of the results, highlight-
ing several aspects such as the use of different measures of intentionality
and the role of the intention detection method we propose, along-side and
complementary to other methods in intention recognition. We also suggest
possible directions for future research.
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2. Background and Related Work

First introduced by Premack & Woodruff (1978), theory of mind (also:
folk psychology, mentalizing, and mindreading) is the ability to attribute
mental states (beliefs, intents, desires, etc.) to oneself and to others. As
originally defined, it enables one to understand that mental states can be
the cause of others’ behavior, thereby allowing one to explain and predict the
observed actions produced by others. This ability enables a psychological
attribution of causality to human acts, rather than the physical causality
generally attributed to inanimate objects (Meltzoff, 1995).

Different accounts are given by psychologists for the mechanism under-
lying this ability. One of them, known as simulation theory (Gordon, 1986;
Davies & Stone, 1995; Heal, 2003), has gained popularity and credibility
lately, in part due to the discovery of mirror neurons (Gallese et al., 1996;
Gallese & Goldman, 1998; Fogassi et al., 2005; Dapretto et al., 2005). In the
words of Breazeal et al. (2005), simulation theory posits that by simulating
another person’s actions and the stimuli the other is experiencing using their
own behavioral and stimulus processing mechanisms, humans can make pre-
dictions about the behaviors and mental states of the other based on the
mental states and behaviors that they themselves would possess if they were
in the other’s situation. In short, by thinking ”as if” we were the other per-
son, we can use our own cognitive, behavioral, and motivational systems to
understand what is going on in the head of the other.

Thus theory of mind is intimately related to imitation, in subtle
ways (Meltzoff & Moore, 1992, 1994, 1995; Meltzoff & Decety, 2003; Meltzoff
& Gopnik, 1993). On the one hand, basic imitation of movement is a precur-
sor to the development of theory of mind skills, by laying the foundations for
what Meltzoff calls the ”like me” framework for recognizing and becoming an
intentional agent (Meltzoff, 2007). Once the infant learns by imitation that
her body, along with its inputs and outputs, is similar to those of the adults
she sees around her, then she can simulate their behavior within her own
mind. On the other hand, once this capacity is developed, theory of mind
can be put to use for the explanation and prediction of actions observed.

This paper is motivated by one specific line of investigations on the rela-
tion between theory of mind and imitation, that begins with an experiment
by Meltzoff (1995). The experiment makes use of infants’ tendency to imi-
tate, to explore their mindreading capabilities, and specifically their ability
to recognize the intent behind an observed sequence of actions. We discuss
this experiment in Section 2.1. We then step back to discuss various per-
spectives on intentional actions, and define a scope for the definition used
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in this paper (Section 2.2). Next, we survey literature pertaining to the two
main contributions in this work, intention detection (Section 2.3), and in-
tention prediction (Section 2.4). We close with a discussion of affordances, a
notion which we (and others) build on heavily in intention prediction (Sec-
tion 2.5).

2.1. Meltzoff’s Experiment

We elaborate here on a description of Meltzoff’s (1995) experiment. The
purpose of his experiment was to test whether children of 18 months of age
are able to understand the underlying intention of a sequence of actions,
even when that intention is not realized, i.e., when the acting agent failed
to achieve the goal. Since children of such young an age are not verbally
proficient, he used a re-enactment procedure which builds upon the tendency
of toddlers to imitate adults.

For each of five different novel toy objects, a target action was cho-
sen. For example, for a two-piece dumbbell-shaped toy, the target action
was pulling it apart. For a loop and prong device, the target action was
to fit the loop onto the prong. The children were divided into four groups:
Demonstration Target, Demonstration Intention, Control Baseline and Con-
trol Manipulation. Each child was seated in front of an adult with a table
between them, on which lay one of the five objects, and was exposed to
a demonstration, depending on the experimental group to which he or she
belonged:

• The children in the Demonstration Target group were shown three
repetitions of a successfully completed act, such as pulling apart the
dumbbell, or hanging the loop on the prong; in general, their voluntary
response was to reproduce the same act when the objects were handed
to them.

• The children in the Demonstration Intention group were shown three
failed attempts of the adult to produce the goal, where the adult (seem-
ingly) failed at reaching it, and they never saw the actual goal. These
children’s re-enactment of the goal reached a level comparable to that of
the children who saw the successful attempts. This shows that children
can see through the actions to the underlying intention, and extrapo-
late the goal from the failing actions.

• The children in the Control Manipulation group saw the object ma-
nipulated three times in ways that were not an attempt to reach the
chosen target act. This was done in order to make sure that mere
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manipulation of the object is not enough for the children to repro-
duce the goal. This control group did not show significant success at
reproducing the target act.

• A second control group—Control Baseline—had the children just see
the object, without it being manipulated at all, in order to test whether
they would reproduce the goal on their own. This control group, too,
did not show significant success at reproducing the target act.

When do children choose to act in a way that imitates the adult, and
when do they choose to remain passive and not act? Meltzoff’s (1995) ex-
periment shows that when children discern an underlying intention, as in
the two Demonstration groups, they attempt to imitate it. When they do
not detect such an intention, as in the Control groups, they do nothing, or
sometimes mimic the arbitrary acts of the adult (in the Control Manipu-
lation group; obviously, children were imitating what they understood to be
the intention of the adult). Only when no intention was apparent from the
actions of the adult did the children remain passive and not produce any
action.

Thus a complete model of intention recognition must first be able to
model the ability to discern whether or not there is an underlying inten-
tion. Only then is it relevant to attempt to infer what that intention is.
Allowing for such a preliminary stage would explain why children in both
Demonstration groups were motivated to look for an underlying intention,
while children in the Control Baseline group were not. This also explains
why children in the Control Manipulation group sometimes reproduced the
actions of the adult, even when it was not exactly what the experimenter
had in mind. Indeed, several past investigations show that humans react
differently to sequences of observation which convey some intention, than to
sequences of arbitrary actions (Woodward, 1998; Gergely et al., 1995).

Motivated by this insight, this paper addresses intention detection, sep-
arately from intention prediction. Intention detection is the problem of
detecting whether the observed sequence is intentional (i.e., has a specific
goal). We discuss previous work related to it in Section 2.3. Intention pre-
diction deals with the challenge of identifying (predicting) the specific goal of
a sequence of actions. We discuss previous work related to it in Section 2.4.

However, before discussing these two main areas of contribution, we
qualify the scope of our work. Meltzoff’s experiments focused on intentions
conveyed in sequences of actions. We follow in this, and restrict ourselves
to such observations. Section 2.2 below discusses of how such intentional
actions fit within a larger understanding of intentions.
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2.2. Intentional Actions

Meltzoff’s experiments examined human responses to stimuli involving
an observed sequence of actions, which were designed to achieve (or fail to
achieve) some specific goal. The stimuli differed not only in their outcome
(success or failure to achieve the goal), but also in the sequence of actions
leading towards it.

Indeed, throughout this work, the term intentional action refers to ac-
tions which are performed by an agent with the purpose of bringing about
some desired final state. Three keywords should be emphasized here: action,
purpose, and final state. Each such keyword distinguishes our definition of
intentional action from alternative definitions, and should be kept in mind
throughout this work. This is important since the experiments presented
here were designed according to this understanding of the term, and the
results might not necessarily be relevant to other understandings of it.

In particular, we use the term actions as causing a change in the world,
observable to the agent that is attempting to recognize intentions. The term
final state refers to the world state at the end of the observed sequence. The
term purpose relates to the desired final state, whether achieved or not.

Thus purpose is relevant to the relation of the notions of success and
failure to the notion of intention. In this work we specifically address the
possibility of failure in the execution of action, however, this does not render
the actions intention-less. The actual outcome of the actions might indeed
be unintended, i.e., a failed goal, yet the actions themselves were neverthe-
less performed with an intention in mind. According to this understanding,
Intentional actions terminating in failure or accidents would still be consid-
ered as intentional. The important criterion here is that there was a purpose
which drove the actions, even if that purpose was not realized.

In contrast, Harui et al. (2005) utilize a different definition. They too
aim to distinguish between intentional and unintentional action. However,
in their proposed implementation, their distinction is actually between in-
tentional outcomes and accidental outcomes. For this they made use of
prosody and verbal utterances (such as “oops”) and their timing within
the stream of action. The distinction we wish to make here is of another
kind: between action performed with a specific intention in mind, to action
performed without any intention in mind.

Thus observing a person reaching for a cup of coffee, and causing it
to spill (possibly uttering “ooops!”), we would classify the action sequence
as intentional (possessing intention), but failing to achieve it. Harui et al.
would classify it as unintentional.
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There are several psychological theories regarding the stance taken when
dealing with intention. Meltzoff (2002) takes the mentalistic stance, that
infants’ ability to interpret intention makes use of an existing theory of
mind—reasoning about the intents, desires and beliefs of others. Gergely &
Csibra (2003), on the other hand, take a teleological stance, that infants ap-
ply a non-mentalistic, reality-based action interpretation system to explain
and predict goal-directed actions. As Gergely and Csibra say themselves,
this teleological evaluation should provide the same results as the applica-
tion of the mentalistic stance as long as the actor’s actions are driven by
true beliefs. In their own words, ”... when beliefs correspond to reality, the
non-mentalistic teleological stance continues to be sufficient for interpreting
action even after the mentalistic stance, which includes fictional states in
its ontology, has become available” (Csibra & Gergely, 1998, p. 258). The
teleological interpretation would break down, however, if the interpreted ac-
tions were based on pretense or false beliefs. Since the scenarios we address
here do not deal with false beliefs, and assume that the agent’s beliefs cor-
respond to reality, we can ignore this distinction for now and take Gergely
and Csibra’s psychological theories as motivation for our model, without
decreeing which of the two stances humans actually take.

There is also philosophical opinion, which views all conscious action as
intentional (e.g., Banchetti-Robino (2004)). While this may be so, it is
possible to distinguish between two types of intention, as expressed in action.
There is one type of intentional action, in which it is the motion itself which
is the goal of the actor, rather than some end-state of the motion.

Consider, for example, a dancer: there is no end-state which the dancer
is aiming to bring about, rather, the motion itself—the particular sequence
of actions—is the goal. Likewise, waving good-bye is another example. Here
we do not care about the ending position of the hand at the end of the wave,
but rather for the repeated left and right motion of an open hand. The same
motion with a closed fist, would not signify the same intent, nor would a
forward-backward motion with an open hand. In the context of this work,
we exclude such notion of intentional actions, limiting ourselves to motions
or plans which are carried out to bring about a certain goal end-state.

Indeed, this paper is restricted to handling detecting and predicting
intentions relating to achievement goals (some desired final state), rather
than detecting and predicting maintenance goals, where actions are taken
to maintain some world state over time, rather than to bring it about once.
Thus for instance, observing one person following another at a fixed dis-
tance, the techniques we describe here may or may not detect intention in
the follower, depending the actions of the person being followed. If the lat-
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ter moves purposefully, then so may the follower, and thus our intention
detection technique may detect an intention in the movement. However,
our intention prediction techniques will certainly not be able to identify
“maintain distance” as the intention of the follower.

Finally, as opposed to intention in action, other forms of intention, such
as intention in thought or intention in speech, do not bring about observable
changes in the world state, but in the state of mind of an agent. As such,
they require different tools and mechanisms, and are out of the scope of this
work.

2.3. Detecting Intentionality

Within the scope of intentional actions, as described above, we posit
that the actions themselves can be inspected for underlying intention.

In particular, we build heavily on the Principle of Rational Action
(Gergely & Csibra, 2003; Watson, 2005). This principle states that in-
tentional action functions to bring about future goal states by the most
rational means available to the actor within the constraints of the situation.
We hypothesize that detecting such rationality in the choice of actions is a
sufficient condition for declaring the observed actions intentional.

Kiraly et al. (2003) break down the rationality principle into two as-
sumptions which respectively provide two perceptual cues indicating goal-
directedness. The first assumption is that the basic function of actions is
to bring about some particular change of state in the world. This specifies
that the outcome of the action should involve a salient change of state in
the environment. When trying to determine whether the end-state arrived
at is the intended goal or whether it is a failure or an accident, this could
come in handy. The second assumption is that agents will employ the most
efficient (rational) means available to them within the constraints of the sit-
uation. This specifies that the actor should be capable of equifinal variation
of actions, meaning that when the situational constraints change, the agent
will take different actions in order to reach the goal efficiently. It is this
second assumption which we will take advantage of here for our purposes.
In attempting to determine whether an action sequence is intentional or not,
we will be looking for efficiency—in time, space, effort, or any other resource
utilized in the process.

There are many other factors, aside from the Principle of Rational Ac-
tion, which play a role in determining intentionality. These can be used as a
basis for detecting intentionality in a sequence of actions (the scope of this
paper), and also in other forms of intentional actions not addressed here.
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A complete model of human intention recognition would of course take into
account all other factors as well.

Some of the other factors in determining intentionality include: affective
vocal and facial cues (Carpenter et al., 1998), animate movement which
is self-propelled, possibly along a nonlinear path and undergoing sudden
changes of velocity (Blakemore & Decety, 2001), persistence in repeating
actions over and over, or reaching the same final state again and again in
multiple demonstrations (Meltzoff et al., 1999; Huang et al., 2002), duration
of observing the action (Marhasev et al., 2009; Huang et al., 2002), and
expending of effort (Heider, 1958). In our proposed model we focus on the
Principle of Rational Action and ignore for now other features, as we attempt
to isolate sufficient conditions for detecting intentionality within the scope
discussed above (sequences of actions for achieving a goal). We are inspired
in this pursuit by research that has shown that eliminating affective vocal
and facial cues from the demonstration does not impair infants’ ability to
discern intention (Meltzoff, 1995). Our results show that indeed rationality
of action might be a strong enough indication of intention in some cases.

And yet understanding the role of different factors in detecting inten-
tionality is very challenging, as they affect each other. For instance, several
psychological experiments, by Meltzoff and colleagues (Meltzoff, 1995; Melt-
zoff et al., 1999) and others (Huang et al., 2002), have made use of repetition
in their demonstrations of intention. That is, the sequences of action were
shown not once, but several times, in order to facilitate the correct guessing
of the actor’s intention. These studies suggest that perhaps, in certain situ-
ations (e.g. when the actions result in failure), repetition is at least useful,
for guessing the correct intention.

In Meltzoff (1995)’s original experiment, children were shown to be able
to predict the intended goal in two conditions: when the goal was success-
fully achieved (Demonstration Target), and when the goal was attempted
but failed (Demonstration Intention). According to these results, perceived
intention is enough for predicting the goal. Follow-up studies by Meltzoff
et al. (1999) have shown that one failed attempt demonstration was not
enough to produce imitation by the observing children, as opposed to one
successful demonstration, which was sufficient. According to this account,
when dealing with failed goals, repetition is necessary for the process of
intention recognition. However, it has been suggested (Huang, personal
communication) that it is not the repetition per se which plays a role here,
but rather the longer exposure time to the stimulus, which the repetition
allows for. Another possibility is that each repetition serves to strengthen
the certainty of the inferred intention, so as to drive the value over some
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required decision threshold.
In our experiments we did not make use of repetition, nor did we incor-

porate it into our model. We look forward to continuing research in experi-
mental psychology which will clarify how and where repetition is made use
of in determining and predicting intention. These findings can be used to
correctly include repetition in our model.

2.4. Predicting Intention

As opposed to intention detection (i.e. determining whether or not the
observed actions were performed intentionally), intention prediction (i.e.
identifying the goal which the observed actions were aimed at bringing
about) has been the focus of much research, regarding both its appearance
in humans and its implementation in artificial systems. We review here the
major findings from psychology and neuroscience, and several important
implementations in computer science and engineering.

Cognitive Modeling and Developmental Psychology. Huang et al. (2002) sug-
gest several candidate ”clues” which the infants might make use of in their
attempt to identify the intention underlying the observed actions. One clue
which they confirmed plays an important role is stimulus enhancement by
spatial contiguity, i.e. the proximity of the object parts relevant to the
realization of the intended goal. In order to make use of this clue, infants—
and artificial agents with the same social abilities—must be able to identify
what actions can be performed with objects, i.e., the objects’ affordances.
We make significant use of affordances in our model of intention prediction,
and discuss affordances in Section 2.5. We examine this clue of stimulus
enhancement, and show that while it is a useful one, it is by no means the
only one, nor the most significant.

Research in psychology attempts to pinpoint the age at which inten-
tion understanding matures. By correctly placing it within the context of
other developing skills, speculations can be explored regarding the various
relationships between the different skills.

One such study has shown that understanding failed reaching actions is
present at 10 months of age (Brandone &Wellman, 2009), and is preceded by
the understanding of successful reaching actions. In addition, development
of the understanding of failed actions has been shown to occur at the same
time as initiation of joint attention and the ability to locomote independently
(Brandone, 2010).

Identifying the relationship between various skills enables correctly iden-
tifying and implementing the building blocks of artificial cognitive systems
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with intention understanding abilities. Nehaniv & Dautenhahn (2007), Oz-
top & Kawato (2005), Meltzoff & Decety (2003) and Meltzoff et al. (1999)
are all examples of this approach.

Goal and Plan Recognition. A closely related yet conceptually distinct area
of research is that of plan and goal recognition, in the field of artificial
intelligence. Here too, the aim is to develop a system which is able to
correctly understand the goal underlying an observed sequence of actions.

However, two challenges raised by Meltzoff’s (1995) experiments are
rarely, if at all, addressed in plan recognition literature: How is intention
prediction possible when only a failed sequence of actions is demonstrated?
And how is intention prediction possible when the actions are performed on
novel objects, about which the observer seemingly has no prior knowledge?

We note that most recent plan recognition works focus on using prob-
ability distributions over possible explanations for an observed sequence of
actions (Charniak & Goldman, 1993; Geib & Goldman, 2005). Using con-
sistency rules (Lesh & Etzioni, 1995; Hong, 2001) and learning (Blaylock
& Allen, 2006; Wang et al., 2012), earlier goal recognition systems return
a likelihood-ranked set of goals consistent with the observed sequence. We
too evaluate the use of a probability distribution over possible goals. How-
ever, as we show, people utilize additional information (aside from a-priori
likelihood and distance) in making their inference. Avrahami-Zilberbrand &
Kaminka (2007) discuss additional ways, such as a bias towards hypotheses
that signify threat.

Another method which utilizes probability distributions over possible
goals is that of Kelley et al. (2008). Their method uses Hidden Markov
Models and is implemented on a robot, dealing with recognition of activity,
such as ”following”, ”meeting”, ”passing by”. We target a different cate-
gory of intentions, namely, those which can be formulated as a state of the
environment which serves as a goal.

Kelley et al. (2012) further develop their system for intention recognition,
based on contextual information, and employing affordances. Our approach
differs from theirs in several aspects, first and foremost in that we separate
intentionality detection from prediction. That aside, their work makes use
of relevant contextual information (i.e., the context to the observed actions),
while we concentrate on the information available in the action stream alone
(though possibly, as the actions imply relations between objects). In prin-
ciple, the two approaches are complementary. See also the discussion on
affordances in Section 2.5.

Another system which recognizes intentional actions has been imple-
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mented by Hongeng & Wyatt (2008) on a robot. Their work differs from
ours in several respects. First and foremost, they emphasize the visual input
analysis, which is outside the scope of our work. Second, they aim to identify
actions, such as grasp, reach, push, and not states, i.e., desired end-states of
the world, which is what we do. Towards the end of their article, they point
out that their system behaves in a way which fits the Principle of Rational
Action. However, this principle is not explicitly part of their system, as it
is in ours. Finally, they do not compare the performance of their system to
that of humans, as we do here.

An approach similar to ours has been suggested by Ramirez & Geffner
(2010). In both systems—ours and theirs—the actions are used in order
to determine which of a predefined set of goals is the one intended by the
actor. However, while they aim specifically to solve the automated planning
problem, we work within the context of human intention recognition. Addi-
tionally, we address intention detection, which is outside the scope of their
work. Finally, since we are interested in how humans perform the task, we
conduct experiments in which we compare the performance of our model to
that of humans.

Robot Imitation. Another field in which there is work relevant to ours, is
that of robot imitation, where one of the key challenges is recognizing the
goal to be imitated, in our words, ”intention prediction” (for a review, see
Breazeal & Scassellati, 2002).

Recent work in this area emphasizes the use of affordances (see Sec-
tion 2.5 below), which we make use of as well. For instance, Lopes et al.
(2007) show how a robot can learn a task, or a policy, after observing re-
peated demonstrations by a human. As defined above, the term intention
in our context does not include tasks, or sequences of actions, but rather
end-states. More importantly, our experiments show that in our model, ob-
servation of one demonstration is enough for predicting intention. Another
difference is that the repeated demonstrations familiarize the robot with the
objects, thus allowing it to learn the relevant affordances.

2.5. Affordances

An affordance is a quality of an object, or an environment, that allows
an individual to perform an action. For example, ”sitting” is an affordance
offered by a chair. In the present work, we claim that affordances play a
role in the process of intention prediction. In order to lay the ground for
the understanding of this role, the following section presents a short review
of the topic, which refers only to those aspects which are relevant to the
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current work. For a more complete review see St. Amant (1999) and Sahin
et al. (2007).

Since Gibson’s (1977) introduction of affordances, as ecological prop-
erties of the environment which depend on the perceiver, the concept has
evolved into various forms. The term ”affordance” is thus used loosely, and
the different contexts in which it appears possibly refer to different mean-
ings of it. Therefore, any work which makes use of the notion of affordances
should begin with a clarification of what exactly is meant by the term. In
the following we do this, putting the notion into the context of intention
prediction.

Action-State Duality of Affordances. One level of abstraction of the notion
of affordances, which follows naturally from the original definition, tends
to blur the distinction between affordances and actions. On this level, ev-
ery affordance is an action. For example, Gaver (1991) defines affordances
as ”potentials for action”. The same is true of Cisek (2007), who refers
to potential actions as affordances. Neurophysiological data supports this
abstraction. Using fMRI, Grezes et al. (2003) have shown that viewing an
object potentiates brain activity in motor areas corresponding to the actions
that the object affords.

The action-state duality in the artificial intelligence planning literature
suggests viewing affordances from the point of view of states, rather than
actions. Since every sequence of actions has a sequence of states induced
from it, and vice versa, every executed sequence of states has a sequence of
actions which induced it, we propose here to view affordances not as possible
actions which can be performed on the environment, but as possible states
which the environment can be brought to. This duality allows us to refer
to possible goal states as affordances. In other words, when attempting to
recognize the intention underlying a sequence of actions, we can consider the
affordances available in the environment, in the form of possible goal states.
Although this is not a common view in the affordance literature, we exploit
this duality and suggest that findings regarding affordances as actions are
valid regarding affordances as states.

Affordances as Interactions and Relationships Between Objects. While the
framework described here is applicable to affordances in general, when deal-
ing with the prediction of intentions, our experiments deal with a specific
subset of affordances, namely, those which can be described as interactions
and relationships between objects in the environment. This subset has been
dealt with in the context of object-oriented programming (Baldoni et al.,
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2006), and fits in well with our view of affordances as states: two objects
can define different states, depending on the relationship they hold with
each other. Several examples studied by developmental psychologists are
”passing-through” and ”support” (Sitskoorn & Smitsman, 1995), ”contain-
ment” (Carona et al., 1988; Chiarello et al., 2003), ”above” and ”below”
(Quinn, 1994) and ”tight-fit” (Casasola & Cohen, 2002).

Development of an Affordance Library. Regarding how and when the ability
to recognize affordances is acquired, much research has been done in the
field of developmental psychology. The works quoted above (Sitskoorn &
Smitsman, 1995; Carona et al., 1988; Chiarello et al., 2003; Quinn, 1994;
Casasola & Cohen, 2002) attempt to determine the age at which various
spatial relationships are incorporated into the cognition of the normally
developing infant.

Learning functional categorization of objects based on object parts is
also seen as acquisition of affordances, and has been extensively studied
from a developmental perspective. Infants as young as ten months old, who
have been familiarized with the same action performed on different objects,
increase their attention when a familiar object is combined with a novel
action (Horst et al., 2005). By 14 to 18 months, infants who have been
familiarized with two objects, each of which was combined with a certain
action, dishabituate to novel combinations of the familiar objects and actions
(Madole et al., 1993; Madole & Cohen, 1995). These findings indicate that
objects become associated with actions through experience. Infants aged
14 and 18 months can also attend to relations between function and the
presence of certain object parts (Booth & Waxman, 2002), thus confirming
that generalization can be made and applied to novel objects, based on
familiar functional parts.

While there is ongoing debate as to the exact developmental time-line, all
agree that throughout infancy and toddler-hood these and other concepts of
functions and spatial relationships which objects afford are incorporated into
the cognition of the developing child. We refer to this dynamically growing
structure as an ”affordance library”. The existence of such a library enables
humans to recognize possible actions which can be performed on objects—
including novel ones—and possible states to which these objects can be
brought about to, in relation to other objects in the environment. Our
model makes use of such an affordance library.

Accessing the Affordance Library. Studies in experimental psychology sup-
port the claim that perception of an object serves as a prime which can
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potentiate or inhibit reaction time to commands to execute afforded actions
on the object. Craighero et al. (1996) have shown how a prime visually con-
gruent with an object to be grasped markedly reduces the reaction time for
grasping. Tucker & Ellis (1998) employed a stimulus-response compatibility
paradigm whose results were consistent with the view that seen objects auto-
matically potentiate components of the actions they afford, even in absence
of explicit intentions to act. This behavioral data shows that the percep-
tion of an object automatically potentiates motor components of possible
actions toward that object, irrespective of the subject’s intention. In terms
of an affordance library, we interpret this as having the library accessed and
the relevant affordance extracted and made available upon perception of the
object.

Neurophysiological experiments complement the above results. Fogassi
et al. (2005) showed how mirror neurons encode goals (such as eating an
apple or placing it in a cup). These neurons fire upon view of the grasping
configuration of the actor’s hand on the object, and so prove how the type
of action alone, and not the kinematic force with which actors manipulated
objects, determined neuron activity. Other research goes further, to state
that even before an action is initiated, merely the observation of the object
itself is enough to cause neuronal activity in specific motor regions (e.g.,
Grezes & Decety (2002); Grezes et al. (2003)).

Thus, results from both behavioral and neuroimaging studies confirm
that affordances of an object become available to the observer upon the
object’s perception—even before action has been initiated on the object, and
before the observer formulates an intention to do so or recognizes such an
intention by a confederate. In other words, perception of the environment
causes constant access to the affordance library—at every given moment,
the perceiver has at hand possible affordances which are compatible with
the current perception of the environment.

Probability Distribution Over Affordances. Having established that affor-
dances are made available upon perception, we go on to claim that more than
one affordance can be invoked by an object, and these multiple affordances
have a probability distribution over them. In a hypotheses formulated and
tested behaviorally and neurophysiologically, namely, the affordance com-
petition hypothesis, Cisek (2007) sets forth a parallel mechanism by which
biological agents choose actions. According to this hypothesis, at every given
moment, when receiving input from the environment, an agent is presented
with several action possibilities, and must choose between them in order to
act. Disregarding the action selection stage, we borrow from here the notion
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that upon observing the environment and the objects present in it, an agent
is aware of several possible affordances competing between them. In the
work of Cisek (2007) this competition is settled for the purpose of action
selection, while in ours it is used for the purpose of intention prediction. Ye
et al. (2009) have recently shown how the perception of one affordance can
interfere with the possibility that another affordance will be detected for
the same object. Based on their findings, we conclude that several different
affordances can be invoked simultaneously with different likelihoods. The
model we propose shows how the principle of rationality is used to choose
between affordances invoked by an observed sequence of actions, and we
indeed demonstrate that rationality overrides a-priori likelihoods.

3. Intention Recognition Processes

Intention recognition involves—in addition to other processes—both de-
tection of the presence of intention, and prediction of the intention. These
are two separate core processes. We believe them to be conceptually and
practically distinct: given an observed sequence of actions, the observing
agent first decides whether the actions were performed intentionally or not.
This is what we refer to as detection of intention. Next, the agent goes on to
determine the content of the intention, a stage which we name prediction of
intention. Prediction—since the agent must determine the intention before
it has been realized, as in the case where the actions resulted in failure.

The importance of this distinction is first and foremost in explaining
and describing the process of intention recognition, as it appears in humans
(see Section 2.3). We propose, in accordance with the findings from the
work of Meltzoff (1995) (see Section 2.1) that the determining factor in
the decision to imitate or not to imitate the observed acting adult, is the
perceived presence of intention. When the participating children detected
intention in the actions of the adult, they made the effort to guess what that
intention was, and then went on to imitate it. While, if no intention was
detected by them, they did not trouble themselves to imitate the actions of
the adult. In addition, this distinction could prove useful in computational
implementations of the process. Attempting to predict the intention of an
acting agent when no such intention is present would both be wasteful in
terms of computational resources, as well as result in a wrong answer.

In this section, we first describe an abstract view of intention recognition
as a whole, with some of its major components evident from previous work
(Section 3.1). We then describe each of the components (Sections 3.2–3.5).
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The main contributions of this paper focus in particular around the use of ra-
tionality in detecting intention (Section 3.3) and predicting it (Section 3.5).
The others are discussed briefly, to provide context.

3.1. Overview

We propose an abstract model of intention recognition (schematically
described in Figure 1) to put the work described in this paper in context.
The model consists of several modules—Intentional Being Detector, Inten-
tion Detector, Affordance Extractor, Success Detector, and Intention Pre-
dictor, connected between them by flow of relevant information from one
to another. The input to the process as a whole consists of the observed
agent A and the state-trace induced by its observed actions s0, s1, ..., sn.
The desired output is a goal state most likely intended by the acting agent.
In the following, theoretical justification will be given for the modules and
the connections between them, and in the next sections, empirical evidence
will be provided for those two modules which are at the core of the model:
Intention Detection and Intention Prediction.

The process begins with the perception of an agent performing actions
within an environment. This is the input. The expected output is a goal
which is most likely intended by the actor. First, the observing agent de-
termines whether or not the acting agent is at all capable of intention. If
the answer is ”no”, there is no point in continuing the process, and it is
terminated. Section 3.2 discusses this in detail.

If the answer is ”yes”, the observing agent determines whether this par-
ticular instance of actions is being performed intentionally or not. Answering
this question—detecting intention—is one of the core modules we elaborate
upon in this work. Again, if the answer is ”no”, the process is terminated,
since there is no goal to look for. Section 3.3 elaborates on this.

If the answer is ”yes”, that is, the actions are identified as intentional,
the intended goal must now be predicted. This can be done online—while
the actions are being performed, before the acting agent has achieved its
goal, or offline, after the acting agent has stopped acting, and the observing
agent can ask whether or not the terminal state at which the actor has
stopped is its intended goal. We specifically deal with the possibility that
the actor failed at bringing about its goal, and want our model to be able
to detect these cases and ”fix” them, i.e., correctly predict what the actor
was intending to do.

In order to answer the ”success or failure” question, we propose using
the notion of affordances, as discussed above. Recall that affordances in
our context are possible goal states which are likely to be performed on
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the objects in the environment. These are extracted from the environment,
and then made use of in answering the question. If the actions are deemed
successful, the process can terminate with the answer that the achieved
terminal state is the intended goal.

In the case that the actions are deemed to have failed, the observing
agent must now guess what the intended goal was. This is the second of the
two modules which are at the focus of this work.

The final output of the model is the intended goal—whether it has been
successfully achieved by the acting agent or not—or an answer indicating
either that the acting agent is not an intentional being, or that its actions
were not performed intentionally.

3.2. Intentional Being Detection

Experiments with children have shown that when the same actions are
performed by a human and by a mechanical arm, the observers tend to at-
tribute intention only to the human, and not to the mechanical being (Melt-
zoff, 1995). Another set of studies (Woodward et al., 2001) indicate that
agents lacking certain specific human-like characteristics do not induce imi-
tative behavior in children observing them. Hofer et al. (2005) have shown
that while 12-month-old infants relate to a mechanical claw as possessing
intentions, 9-month-old infants do not do so unless they are first shown that
a human hand is activating the claw. All this goes to show that in order to
be able to attribute intentions to an acting agent, humans must first possess
an understanding regarding the ability of that agent to act intentionally.

The above serves as conceptual justification to our position that a pre-
liminary condition which actions must fulfill in order to have intention at-
tributed to them, is that they be performed by an intentional being. In
addition, there is also the practical consideration: if would be futile and
misleading to attempt to decipher a sequence of actions regarding its un-
derlying intention, when it was performed by an agent not at all capable of
intention.

The input relevant for this module is the perception of the acting agent.
The module answers the question: Is the observed agent an intentional
being? The output is a binary answer: True if the agent is deemed capable
of intention, and False otherwise.

3.3. Intention Detection

This module consists of the first of the two main processes we identify in
the problem of intention recognition. The question it answers is whether the
observed sequence of actions was performed intentionally or not. Again, the
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Figure 1: Scheme of Proposed Model.
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answer is binary: True if the action sequence is deemed intentional, False
otherwise.

How can this question be answered? As described above (Section 2),
we hypothesize that a sufficient condition of intentional action, under some
conditions, is that it is efficient, in the sense of the Principle of Rational
Action (Gergely & Csibra, 2003; Watson, 2005). It is reasonable to expect
that a trace with an underlying intention will exhibit a clear progression
from the initial state towards the goal state, i.e., an efficient way to bring
about that goal, given the initial state. On the other hand, unintentional
traces would not be driven by such efficiency, and would fluctuate towards
and away from the initial state, without any clear directionality.

We propose that the rationality principle serves as a sufficient condition
in many settings. In order to establish this, we make the notion of efficiency
more concrete, so that it can be translated into a computable form. To this
end, we introduce a measure of intentionality.

We denote the observation trace by s0, ..., sn, i.e. a sequence of states,
brought about by the actions of the demonstrating agent. s0 is the initial
state, and sn is the terminal state. The task of the observing agent is
to decide, given this trace, whether there was an underlying intention or
whether the acting agent behaved unintentionally.

We define a state-distance measure dist, which measures the optimal
sequence of actions between two states of the world, given all possible actions
that can transform one state to the other. It should naturally be positive for
two states that are different, and equal to 0 when measuring from a state
to itself. We do not require this distance to obey symmetry (d(s1, s2) =
d(s2, s1)).

Note that this definition includes the Euclidean distance in space (under
the assumption that spatial motion is a possible action, but instant star trek-
like transportation is not), but is not limited to it. For instance, one can
measure the shortest sequence of otherwise-equal actions to load a delivery
truck and send it on its way, or to build a stack of blocks in a particular
order (two examples that sometimes appear in artificial intelligence planning
literature). The requirement is that dist capture the notion of optimality.

Thus, from the original state trace we induce a sequence of distance
measurements d1 = dist(s1, s0), ..., dn = dist(sn, s0), measuring the optimal
(minimal) distance between each state in the sequence, and the initial state.
In this way, for every state we have an indication of how much the demon-
strating agent would have had to invest (in time, number of atomic actions,
or any other resource, depending on how the distance is defined), had it
been intending to reach that state. We posit that enough information is

21



preserved in this sequence for our observing agent to come to a satisfying
decision regarding the presence of an underlying intention.

The behavior of the sequence of distances conveys how efficiently the
demonstrating agent performed is actions. If it acted efficiently—taking
only optimal action steps that bring it closer to the goal—then the sequence
of distances will be monotonically increasing, since every state reached will
be more distant from the initial state than the state at which the agent
was at one time step before. While if the agent acted randomly, executing
various actions that do not necessarily lead anywhere, then the sequence
of distances will fluctuate, and will not display any clear progression away
from the initial state.

We want to quantify this intuitive reasoning and calculate from the dis-
tance sequence a measure of intention. A naive approach would be to check
the monotonicity of the sequence—if the distances of each state from the
initial state increase monotonically, then we have a very strong indication
of efficiency, which conforms to the rationality principle, and therefore, we
can strongly conclude the presence of intention. However, expecting the
sequence to strictly increase, or even merely non-decrease, at every point, is
too strong a requirement, and would not stand up to the flexibility inherent
in real-life motion. Very rarely will human motion display complete mono-
tonicity of this distance sequence, no matter how intentional the actions
from which it was induced.

We therefore use a different, softer, approach: for every state, we check
if the distance from it to the initial state is greater than that of the previous
state. We call this a local increase, and we take the proportion of local
increases in the sequence to be our intention measure. That is, we look to
see at how many of the states along the trace has the distance from the
initial state increased, as compared to the previous state, out of the total
number of states in the trace. This will give us an idea of how efficient the
action sequence is. Of course, if the sequence does happen to be completely
monotonic, then a local increase will be found at every point, and so the
proportion will equal 1. Yet, for the less-than-perfect sequences, there will
still be ample margin to convey their intentionality.

More formally,
u = |{si : di > di−1}ni=1| (1)

is the number of states in the trace where the distance from the initial state
increases, as compared to the distance at the previous state. Taking this
number and dividing it by the total number of states in the trace,

t =
u

n
(2)
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gives us a measure of intention for the action sequence.
The higher the resulting t, the more intention is attributed to the action.

If a binary answer is preferred, we can determine a cutoff level which serves
as a threshold above which we conclude intention is present, and below
which we conclude it is not. In Section 4 we experiment with this measure
evaluating sequences of actions in two different domains. We show that
this simple intuitive method does indeed produce promising results, when
compared to human assessment of the same sequences.

3.4. Affordance Extraction

If in the previous stage the presence of intention has been established
(indicated by an output of True) the process continues to the task of de-
termining the actual content of the intention. To this end, we propose
employing a variation on the theme of affordances, as described in Section
2.5. The environment and the objects in it can be analyzed and their affor-
dances extracted, and these affordances will play a part in the next stages
of the process.

Follow-up studies using Meltzoff’s (1995) original re-enactment paradigm
have shown that the ability to imitate unsuccessful goals is existent at 18
months of age, but not at 12 months (Bellagamba & Tomasello, 1999). How-
ever, recent developments seem to indicate that what differentiates the chil-
dren in these two age groups is not their intention-reading ability per se, but
rather their ability to limit the range of possible outcomes to a small set of
goals. Limiting the range of possible outcomes is crucial, since this is what
makes the behavior transparent to its goal (Csibra & Gergely, 2006). Nielsen
(2009) has shown that once 12-month-old children become acquainted with
the affordances of the objects and their parts, they are then able to deduce
the intended goal of the actor manipulating the objects. Yet, when the affor-
dances are not made explicit to the children (as was the case in Bellagamba &
Tomasello’s (1999) experiment), they are unable to interpret the intentions
of the actor. This is strong evidence to the fact that the ability to extract
affordances from objects, based on prior knowledge, is a prerequisite to the
ability to read the intentions underlying actions performed on those objects.
For this reason we incorporate the Affordance Extractor sub-module into
our model.

The module of affordance extraction takes as input only the environment
and the objects in it—it does not make use of the observed action sequence.
As such, it could theoretically be executed independently of the previous
modules. Nevertheless, we place it within the model at this point, since it
would be inefficient to extract affordances before the presence of intention
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has been ascertained. The output of this module is a set of k affordances,
{gj}kj=1, in the sense of states which could serve as the intended goal of the
acting agent.

The subject of affordances is tangent to the subject of this research,
however, it is not directly related to intention. For this reason, we do not
propose a model for extracting affordances from objects. A large body of
research has accumulated, both theoretical and practical—as described in
Section 2.5—which can facilitate the implementation of such a module and
its incorporation into the proposed cognitive model of intention recognition.
We build on this research, and focus on how such an module can be made
use of in our context.

3.5. Intention Prediction

This module is the second of the two main topics of this paper. It is
concerned with predicting the intention underlying the observed stream of
actions. Its input is the trace of actions along with the list of possible
afforded goals, as returned from the Affordance Extractor. Its output is the
final output of the whole process of intention recognition, namely, a goal
g ∈ {gj}kj=1, which is most likely the intended goal, given the observations.

We next present a formalization of the problem at hand, followed by
three possible heuristics which can be employed for this task. The first two
heuristics are operationalizations of clues suggested by others, in previous
work. Our model is based on a third heuristic of efficiency and rationality.
The experiments contrast this third heuristic with the previous two, and
show that it turns out to give better results.

Based on the findings from the affordance literature (quoted above in
Section 2.5), we posit that observation of the objects invokes possible goal
states, along with a distribution over them. Recall the notation g1, ..., gk
for k possible afforded goals, and p1, ..., pk for their respective likelihoods,
with p1 + ... + pk = 1. These gi are the goal-states considered as possible
intentions underlying the observed actions.

For the case of sn coinciding with one of the goals gi, it would make sense
to conclude that the sequence of actions was successful in achieving this goal.
If sn is not one of these goals, we conclude failure, and seek a way of choosing
which gi is the intended goal. This in essence, is the content of the Success
Detector module, which, as explained above, can be ignored without loss of
functionality or efficiency. It is actually built into the Intention Predictor,
and only conceptually distinct from it.

We contrast three different heuristics for intention prediction. We will
show how these heuristics play a role in the way humans determine which
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goal is the one most likely intended by the acting agent. The first heuristic
takes into account only the objects in the environment, disregarding the
observed actions and their effect on the objects. It is defined by the prior
probability distribution pi. Acting according to this heuristic alone would
produce the choice of that gi with the highest pi. This corresponds to work
by Cisek (2007), who suggested an affordance competition hypothesis for
action selection.

The second heuristic considers further information, namely, that of the
state of the environment brought about by the actions, sn. A distance
function, dist(si, sj), between states, is utilized here. The distance measure
could be the same one utilized in the Intention Detection module (above,
Section 3.3), or not, as long as it fulfills the same requirements, mentioned
above, and it is always optimal.

Given such a distance function, we compute k values, di = dist(sn, gi),
for each of the k possible goals, gi. Our second proposed heuristic utilizes
this distance sequence, di. A reasonable way of acting according to it would
be to choose that gi with the lowest di, i.e. the goal closest to the terminal
state arrived at. This can be seen as a realization of the mechanism of
stimulus enhancement by spatial contiguity, mentioned as one of the clues
for predicting intention by Huang et al. (2002).

The third heuristic is novel, a contribution of our work. It is motivated
by the psychological Principle of Rational Action (Gergely & Csibra, 2003).
Consider g to be the intended goal, then the sequence of states beginning
with s0, ..., sn and continuing directly to g should exhibit efficiency. Making
use of the complete trace of action available to the perceiver, s0, ..., sn, we
define an intention measure which attributes a value to each of the potential
goals, gj . For each goal gj , we measure the length of the plan s0, ..., sn, gj ,
and the length of the plan going optimally from s0 to gj , and divide the
second by the first:

rj =
dist(s0, gj)∑n

i=1 dist(si−1, si) + dist(sn, gj)

These lengths are calculated using the same distance function as above.
The resulting ratio relays how long the actual plan from s0 to gj would be,
compared to how long it could optimally be. These ratios, rj , define our
third heuristic of choosing the gj with the highest intention, rj .

Each of these heuristics could potentially serve to rank the afforded goals,
and choose the highest ranking one as that most likely intended by the acting
agent. In the section describing the experiments for the Intention Prediction
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module (Section 5) we evaluate the effectiveness of these heuristics at the
task of intention prediction, compared to human performance.

3.6. Success Detection

Given as input an action sequence already determined to be intentional
by the Intention Detector module, and a list of affordances from the Affor-
dance Extractor module, the question of whether or not the actor succeeded
in achieving its goal can now be answered. This answer can be given in a
very straightforward manner, after the previous stages have been completed.
Formally, the question and answer can be described as sn ∈ {g1, ...gk}, where
sn is the observed terminal state and {gj}kj=1 are the affordances extracted
from the objects in the environment.

Simply, if the terminal state which the acting agent has brought about
by its actions is one of the affordances, we assume that it is the intended
goal at which the actions were aimed, and that the agent has successfully
achieved it. If, on the other hand, the terminal state is not one of the
affordances, we assume the agent failed at realizing its intention. This follows
from our premise that the intended goal coincides with one of the extracted
affordances.

This stage of Success Detection is of conceptual importance more than
practical. If answering the question of whether or not the acting agent
was successful is not of interest, then it can be ignored. Under the strong
assumption that the affordance extraction module is complete (i.e., gener-
ates all possible affordances), the implementation itself consists of nothing
more than a simple logical test. However, given an incomplete set of af-
fordances, the decision on success or failure can be complex, involving for
instance recognition of facial and vocal expressions, common sense reasoning
(background knowledge), recognition of gestures, etc. Expanding on this is
outside the scope of this paper.

4. Experiments in Intention Detection

In this section we describe the experiments used to evaluate the proposed
measure of intention detection, discussed in Section 3.3. We now go on to de-
scribe two experimental setups in which this measure of intention was tested.
The first environment is an artificial replication of Meltzoff’s experiment,
using standard AI planning problem description language (STRIPS1). The

1PDDL files which support STRIPS notation, compatible with the software employed,
were used.
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second environment uses real life data from the online CAVIAR database of
surveillance videos.

4.1. Experiment I: Discrete Version of Meltzoff’s Experiment

The first environment in which we evaluated the proposed measure of
intention consists of a discrete abstraction of Meltzoff’s (1995) experiments.
First, we describe how we rendered Meltzoff’s experiments into a compu-
tational form, using standard AI planning problem description language
(STRIPS) (4.1.1). This is followed by a results section which shows the
performance of the model in this environment (4.1.2).

4.1.1. Experimental Setup

We modeled Meltzoff’s experiment environment as an 8-by-8 grid, with
several objects and several possible actions which the agent can execute with
its hands, such as grasping and moving. We implemented two of the five
object-manipulation experiments mentioned by Meltzoff: the dumbbell and
the loop-and-prong. For the dumbbell, there is one object in the world,
which consists of two separable parts. The dumbbell can be grasped by one
or both hands, and can be pulled apart. For the loop-and-prong, there are
two objects in the world, one stationary (the prong), and one that can be
moved about (the loop). The loop can be grasped by the hand, and released
on the prong or anywhere else on the grid.

To compute the distance measure dist, we use Bonet & Geffner’s (1999)
HSP2 (Heuristic Search Planner): given two states of the world, HSP finds
the optimal sequence of operators (pickup, put down, move hand) leading
from one given state to another. The number of actions in the optimal plan
is taken to be the distance between the two given states. We note that this
distance measure is not Euclidean, as it considers actions that do not move
in space (e.g., grasp, release), and in any case motions are only allowed
between grid cells, not arbitrary angles. We also note that the measure
gives the same weight to all actions (that is, releasing has the same weight
as moving one cell).

We manually created several traces for the dumbbell and for the loop
and prong scenarios, according to the descriptions found in Meltzoff’s ex-
periment, to fit the four different experimental groups. In addition, we
created a random trace, which does not exhibit any regularity. We added
this trace since the children in Meltzoff’s Control Manipulation group were

2HSP is downloadable from http://www.ldc.usb.ve/˜bonet/
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sometimes shown a sequence with underlying intention, albeit not the tar-
get one. Since we want to test our model on traces that have no underlying
intention whatsoever, we artificially created such a random trace.

For the dumbbell scenario, all traces start out with both hands at posi-
tion (1,1), and the dumbbell is stationary at position (5,5). The traces are
verbally described in Table 1. A graphic description is given as well for the
first trace, in Figure 2. For the loop and prong scenario, there is only one
active hand on the scene, which in all traces starts out at position (1,1).
The loop starts out at position (3,3), and the prong is stationary at position
(5,5). The traces for this pair of objects are described in Table 2. For each
trace we calculated the sequence of distances, using the above mentioned
HSP algorithm, and then computed the proportion t.

Trace Name Trace Description

Demonstration Target Left and right hands move from initial po-
sition towards the dumbbell, grasp it and
pull it apart.
A visual representation of this trace is
given in Figure 2(a-n).

Demonstration Intention I Left and right hands move from initial po-
sition to dumbbell, grasp it and pull, with
left hand slipping off, leaving the dumb-
bell intact.

Demonstration Intention II Same as above, with right hand instead of
left slipping off.

Control Baseline No movement—both hands remain static
at initial position.

Control Manipulation Left and right hands move from initial po-
sition to dumbbell, grasp it and remain
static in that position for several steps.

Random Right hand moves towards the dumbbell
and grasps it, then releases it and moves
away.
Then left hand wanders around the grid,
then right hand joins left.

Table 1: Description of traces for each of the experimental groups in the
dumbbell experiment.

4.1.2. Results

Figure 3 shows plots of the sequences of distances associated with the
dumbbell experiments. The step number in the sequence is depicted in the
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Trace Name Trace Description

Demonstration Target Hand moves from initial position to loop,
grasps it and places it on prong.

Demonstration Intention I Hand moves from initial position to loop,
grasps it and places it to the right of
the prong (in our interpretation, the loop
”misses” the prong).

Demonstration Intention II Hand moves from initial position to loop,
grasps it and places it to the left of the
prong.

Control Baseline No movement—hand remains static at
initial position.

Control Manipulation I Hand moves from initial position to loop,
grasps it and moves it along top of prong,
from right to left.

Control Manipulation II Hand moves from initial position to loop,
grasps it and moves it along top of prong,
from left to right.

Control Manipulation III Hand moves from initial position to loop,
grasps it and places it just below the
prong.

Random Hand moves from initial position to
loop,grasps it and then releases, then
moves away to wander about the grid.

Table 2: Description of traces for each of the experimental groups in the
prong and loop experiment.
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(a) Initial state. Both
hands at (1,1), dumbbell
at (5,5).

(b) Step one. Right hand
moving towards dumb-
bell.

(c) Step two. Right hand
continuing towards dumb-
bell.

(d) Step three. Right
hand continuing towards
dumbbell.

(e) Step four. Right hand
at dumbbell.

(f) Step five. Right hand
grasping.

(g) Step six. Left hand
moving towards dumb-
bell.

(h) Step seven. Left hand
continuing towards dumb-
bell.

Figure 2: Dumbbell Demonstration Target Trace.

30



(i) Step eight. Left hand
continuing towards dumb-
bell.

(j) Step nine. Left hand
at dumbbell.

(k) Step ten. Left hand
grasping dumbbell.

(l) Step eleven. Pulling
apart.

(m) Step twelve. Releas-
ing one hand.

(n) Step thirteen. Releas-
ing other hand.

Figure 2: Dumbbell Demonstration Target Trace (cont).

X axis. The Y axis measures the distance of the respective state from the
initial state. Figure 4 shows the same for the prong and loop experiments.
In Meltzoff’s experiments, every child was shown three traces, and only then
was handed the objects. There is certainly information in this seeming re-
dundancy; Meltzoff et al. (1999) show that when only one trace was shown
to the children in the Demonstration Intention group, they were unable to
reproduce the goal. However, we do not incorporate the redundant infor-
mation at this stage in our model (see the discussion on the unclear role of
repetition in Section 2.3 for more on this). So, while every child was shown
three possibly different traces, we calculated the measure of intention sepa-
rately for each of these traces, which is why we have more than one row in
the table for some of the groups.

For example, the prong and loop procedure failed in two different ways
in Meltzoff’s Demonstration Intention condition—either with the loop being
placed too far to the right of the prong (Demonstration Intention I in Table
4), or too far to the left (Demonstration Intention II in Table 4). The
children in Meltzoff’s Demonstration Intention experimental group each saw
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three demonstrations—first Demonstration Intention I, then Demonstration
Intention II, and then once again Demonstration Intention I—while in our
replication of the experiment, every such trace was a demonstration in itself.
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(a) Demonstration Target
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(b) Demonstration Intention I

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1 2 3 4 5 6 7 8 9 10 11 12

state

d
is

ta
n

ce

(c) Demonstration Intention II
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(d) Random
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(e) Control Manipulation
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(f) Control Baseline

Figure 3: Distance as a Function of State in the Dumbbell Experiments.

Table 3 shows the calculated measure of intention for each of the traces
in the dumbbell experiment, and Table 4 shows the same for the prong
and loop experiment. In both tables, each row corresponds to a different
type of state sequence. The right column shows the measure of intention as
computed by the method described above.

Figure 3a shows the distance sequence for the Demonstration Target
trace, for the thirteen-state trace graphically depicted in Figure 2. The

32



0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7

state

d
is

ta
n

ce

(a) Demonstration Target

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7

state

d
is

ta
n

ce

(b) Demonstration Intention I
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(c) Demonstration Intention II
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(e) Control Manipulation I
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(f) Control Manipulation II

Figure 4: Distance as a Function of State in the Prong and Loop Experi-
ments.

Trace Measure of Intention

Demonstration Target 1
Demonstration Intention I 0.8333
Demonstration Intention II 0.9166
Random 0.5384
Control Manipulation 0.8333
Control Baseline 0

Table 3: Calculated Measure of Intention for STRIPS Implementation of
Dumbbell Experiment.
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(g) Control Manipulation III
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(h) Control Baseline

Figure 4: Distance as a Function of State in the Prong and Loop Experi-
ments (cont).

Trace Measure of Intention

Demonstration Target 1
Demonstration Intention I 1
Demonstration Intention II 1
Random 0.5555
Control Manipulation I 0.7777
Control Manipulation II 0.7777
Control Manipulation III 1
Control Baseline 0

Table 4: Calculated Measure of Intention for STRIPS Implementation of
Prong and Loop Experiment.

graph is monotonically increasing, since at every state the demonstrating
agent moved farther and farther away from the initial state, and closer to
the goal state. Since at each of the twelve states following the initial state
there was an increase in the distance, the intention measure calculated from
this sequence is 12/12, i.e. 1, as seen in the first row of 3. This, of course,
is the highest possible score, thereby clearly indicating intention, according
to our interpretation.

The same can be seen for the Demonstration Target sequence of the
loop and prong objects. Figure 4a shows the clear progression away from
the initial state in a seven-state sequence. This too results in an intention
measure of 7/7, i.e. 1, as seen in the first row of Table 4.

In the case of Demonstration Intention traces, we also get a high measure
of intention. See for example the distance sequences of the Demonstration
Intention traces in the dumbbell experiment in Figures 3b and 3c. The
distance increases along the traces, until the actor stumbles, so to speak,
and takes steps that are unproductive in bringing him nearer to the goal
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that would realize his intention. This stumbling is expressed in the drop
towards the end of the distance sequences. The corresponding measures of
intention are therefore less than 1, yet still high enough to communicate the
presence of intention. In the first Demonstration Intention trace we have the
left hand slip off the dumbbell to the left, resulting in a state in which the
hand is closer to where it previously was, with respect to the initial state.
So there are nine out of eleven steps which increase the distance, resulting in
the score shown in the second row of Table 3. In Demonstration Intention II,
it is the right hand which slips off to the right, bringing it to a state which
is yet farther away from the initial state. So there are ten out of eleven
steps which increase the distance, as seen in the third row of the table. High
measures of intention are also achieved for the two Demonstration Intention
traces of the prong and loop experiment shown in Figures 4b and 4c. In fact,
in this case the maximum score of 1 is reached (see the two corresponding
rows in Table 4), even though the acting agent failed at reaching its goal.
Although the agent ”stumbled” here too, the stumbling happened in a way
which resulted in a state which was farther away from the initial state than
the previous state. We see here that our measure of intention is only useful
for recognizing the presence of intention, but not for recognizing whether
that intention was successfully fulfilled or not.

So far we have seen that action sequences with underlying intention,
whether or not successfully realized, receive a high score of intention. What
about action sequences which were performed as manipulation, and not
aimed at achieving the target action? The case of the Control Baseline
trace is simple—since no movement was executed whatsoever, the distance
sequence remains a flat zero all along, as seen in Figure 3f for the dumb-
bell experiment and in Figure 4h for the loop and prong experiment. The
resulting intention scores are therefore zero, as Tables 3 and 4 show.

The Control Manipulation traces necessitate a deeper inspection. While
our experiments show that the scores they achieved were generally lower
than those for the intentional traces, these scores were nevertheless rela-
tively high, and in one case (Control Manipulation III of the loop and prong
experiment), maximal. Indeed, the graph of this trace shows it is monotoni-
cally increasing. How can this be explained? Interestingly, Meltzoff’s results
showed that the children in the Control Manipulation conditions sometimes
imitated the actions of the adult, bringing the objects to the same end-state
as in the demonstration. This end-state was not the target action chosen
for the experiment, yet, obviously, the children were detecting here some
other intention worth imitating. So, although the demonstration was a ma-
nipulation with respect to the chosen target action, it was interpreted as
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intentional with respect to the perceived end-state by the children. This is
more rigorously controlled and explored by Huang et al. (2002), with the
same conclusion—that the children were detecting an underlying intention,
even though it was not that which the experimenters had in mind.

For this reason we designed what we called Random traces—traces with
no underlying intention whatsoever, that have the agent move its hands
about the state-space in an undirected manner. The distance graphs for
these traces fluctuate, as seen in Figures 3d and 4d, which justly earn them
the significantly lower scores appearing in the respective rows of Tables 3
and 4.

4.2. Experiment II: Surveillance Videos, Comparison with Human Subjects

The second environment in which we evaluated the utility of the proposed
measure of intention for detecting the presence of intention, uses surveillance
videos. These were taken from the CAVIAR database3. Section 4.2.1 de-
scribes the environment, followed by a description of the results (Section
4.2.2), comparing the intention of the observed data according to the pro-
posed measure of intention and according to human judgment. In addition,
we inspect the possibility of using the measure of intention for segmenting
subgoals.

4.2.1. Experimental Setup

The Data. The CAVIAR project contains video clips taken with a wide
angle camera lens in the entrance lobby of the INRIA Labs at Grenoble,
France. In the videos, people are seen walking about and interacting with
each other. A typical screen shot from one such video is shown in Figure 5.
Each video comes with an XML file of the ground truth coordinates of
movement for the people seen in the video. We selected a dozen of these
movies, and cut from them clips in which single people are seen moving
about. Table 5 enumerates the clips and the videos in the repository from
which they were taken. Some videos had more than one clip extracted from
them, in which different characters moved about. In the XML files, these
characters are distinguished by unique numbers, named Object IDs. These
clips were shown to human subjects, while the ground truth coordinates
of the character’s movement were extracted from the XML files and fed as
input for calculating the intention measure. Clip number 5 was given as an
example to the subjects, and therefore does not appear in further analysis.

3The EC Funded CAVIAR project/IST 2001 37540, found at URL:
http://homepages.inf.ed.ac.uk/rbf/CAVIAR/.
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Figure 5: Typical Screen Shot from a CAVIAR Video, with Character Seen
Entering From Bottom.

Clip Number File Name XML File Name Object ID

1 Walk1.mpg wk1gt.xml 1
2 Walk2.mpg wk2gt.xml 4
3 Walk3.mpg wk3gt.xml 4
4 Walk3.mpg wk3gt.xml 2
5 Walk3.mpg wk3gt.xml 3
6 Browse1.mpg br1gt.xml 3
7 Browse2.mpg br2gt.xml 3
8 Browse3.mpg br3gt.xml 1
9 Browse4.mpg br4gt.xml 1
10 Browse4.mpg br4gt.xml 2
11 Browse WhileWaiting1.mpg bww1gt.xml 2
12 Browse WhileWaiting2.mpg bww2gt.xml 0

Table 5: Clip numbers with their corresponding video file name, xml file
name and object ID in the CAVIAR repository, from which they were taken.
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With respect to intention, the clips we chose show movement ranging
from very deliberate (e.g. a person crossing a lobby towards an exit), to
not very clear (e.g. a person walking to a paper stand and browsing, then
moving leisurely to a different location, etc.). We compared human subjects’
judgment of the intention of motions in these videos, to the predictions of
our model.

Applying the Measure of Intention to the Data. Let us begin by describing
how we measure intention in this domain. We used the ground truth posi-
tion data of the selected videos as a basis for our intention measurements.
Every frame in the video was taken as a state in the trace, with the planar
coordinates of the filmed character describing it. The Euclidean distance
was used as the distance measure, as it approximates the optimal motion in
space4. As above, for every state we calculated the distance from the initial
state, and then checked for how many of those states the distance increased,
relative to the previous state.

Figure 6a plots the path of movement of the observed character, in planar
coordinates, for clip number 6, which was taken from video br1gt.mpg of
the repository. The character starts moving from the left towards the right,
where he spends some time standing in place (since we are only plotting
planar coordinates, the amount of time spent at each point is not represented
here). From there the character turns downwards, then back upwards, once
again spending time at the same spot, and finally moving leftwards, towards
the starting point. Figure 6b graphs the distances of each state in the path,
from the initial state. The X axis marks the video frame number, and
the Y axis measures the distance from the initial location of the person in
question. Note how for the first 300 frames or so, the graph rises gradually,
corresponding to the part of the path where the character moves away from
the starting point. Where the character stands in place, the distance graph
stays more or less constant. Towards the end of the clip, when the character
moves back towards the starting point, the distance drops. The measure of
intention for this movement path, as we calculated it, was t = 0.4. Using
a cutoff value of 0.5, this movement was classified as non-intentional. The
interested reader is invited to watch the video and compare it to the graphs
presented here.

4It is only an approximation of the optimal motion, as it ignores obstacles that are
present along the path, which the human in the video necessarily avoids.
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Figure 6: Examples from Clip Number 6.

Comparing to Human Judgment. These same video clips were shown to 12
human subjects who were asked to write down their opinion regarding the
intention of the viewed character. Each human subject saw all 12 clips.
They were given the option of segmenting the video if they thought the
character changed its intention along the trace. Segmentation was enabled
at a resolution of seconds.

Here we faced some difficulty in the experiment design. In pilot experi-
ments, it became clear that asking the subjects to directly rank the ”strength
of intention” of a video segment leads to meaningless results. For instance,
some subjects in pilot experiments chose to give high intention scores to a
video segment showing a person seemingly walking around aimlessly. When
we asked for an explanation, the answer was that the person in the video
clearly intended to pass the time. Such an understanding does not fit the
sense of intention with which we are dealing in this study.

We thus needed to measure intention indirectly. To do this, subjects
were requested to write down a sentence describing the perceived intention
of the person in the video, typically beginning with the words ”the person
intends to ...”. The idea behind this is that in segments where there is clear
intention, a clear answer would emerge (for instance, ”The person intends to
exit the room”); in other video segments, the unclear intention would result
in more highly varied answers (e.g., some would write ”intends to pass the
time”, while others would write ”intends to walk”, etc.).

This divergence can be measured by various means; we chose the infor-
mation entropy function as it is used in statistics to measure dispersion of
categorical data. To do this, we first had to standardize the replies, which
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were given as natural language answers to an open-ended question. A fi-
nite number of categories needed to be chosen and assigned to the different
descriptions, in a consistent and reliable way.

We turned to the social sciences methodology for studying the content
of communication, known as content analysis (Babbie, 2003), and used this
for the analysis described in the following. Two independent coders each
analyzed all the input from the 12 subjects. From every description, a
verb (e.g. walk, look) and a noun (e.g. location, object) were extracted,
reducing the sentence to two words, which together consisted of a unique
category. Where the two coders disagreed as to the category to be applied
to a given description, a third arbitrator decided between them. The chosen
categories were then applied to the data. For every video clip the entropy
was calculated per second and then averaged over time, producing a single
entropy value for each of the video clips.

4.2.2. Results

Measure of Intention Correlates With Human Judgment. Table 6 summa-
rizes the resulting entropy values of this analysis, alongside the intention
scores as returned by our method. Figure 7 plots entropy versus intention
of the eleven video clips analyzed. Every point in the graph represents one
video clip, analyzed as described above to produce two values. The X axis
is the intention measure as calculated by our method, and the Y axis is
the entropy value, reached by calculating the divergence of categories across
subjects per second, averaged over time.

A negative correlation between entropy and our measure implies a posi-
tive correlation between human judgment and our measure. Smaller values
of entropy signify more agreement between subjects, and thus clearer per-
ceived intention.

We calculated the correlation between the entropy and the intention, and
found it to be strongly negative at -0.685. The significance of this value was
checked using Fisher’s r to z transform, and a Z test to check the probability
of the null hypothesis that the entropy and the intention are uncorrelated,
which resulted in P=0.0096. We conclude that the correlation is indeed
significant.

This result confirms our conjecture that our method does capture the
notion of intention, as judged by humans. This is what we were expecting
to see—that the entropy is significantly negatively correlated with the in-
tention. The higher the entropy of a given video segment, the less clear that
character conveyed intention to the observing subjects, the lower the inten-
tion measure calculated by our method. The inverse is true as well—the
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lower the entropy, the clearer its intention was to the human observers, and
the higher the intention score achieved by our method.

Clip Number 1 2 3 4 6 7 8 9 10 11 12
Intention 0.644 0.552 0.861 0.636 0.408 0.366 0.431 0.449 0.611 0.481 0.094
Entropy 0.370 0.622 0.160 0.730 0.514 0.483 0.495 0.871 0.521 0.879 0.999

Table 6: Measure of Intention and Entropy of Human Judgments for Video
Clips.
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Figure 7: Plot of Entropy vs. Intention. Correlation= -0.686.

Using Intention Detection for Segmenting Subgoals. While analyzing the
results of the second experiment, the matter of parsing streams of action ac-
cording to sub-goals arose. Several of the clips we analyzed clearly show
changing intentions, e.g. when the character stops in mid-track, turns
around 180 degrees, and moves in the opposite direction. If a sequence
of actions is expected to have at most one possible goal, when in fact it is
composed of several sub-goals, then an observing agent behaving according
to our measure of intention would be confused. Take for example the case
of a person intending to reach one location, and having accomplished that,
moves on to the goal of returning to his original location. If we consider this
to be one coherent stream of action, with one goal, which is the resulting
end-state, then obviously an agent using this measure would come to the
conclusion that there is no underlying intention, since, had the person been
intending to be at his original location, he would not have taken the unnec-
essary and inefficient steps of moving to a different location and then back
home. If, on the other hand, it is understood that the stream of action must
first be parsed into sub-streams, then each sub-stream can be dealt with

41



separately, by applying the measure of intention to it. Every sub-stream
could then be seen as efficient in bringing about its respective sub-goal.

In this experiment, we allowed the participating subjects to write down
more than one intention per video clip, in accordance with the way they
perceived the intentions changing with time. However, the intention score
given to a trace of movement according to our method takes into account the
complete trace from beginning to end, without allowing for the possibility
of changing intentions along the way.

We turn to this possibility now, asking how can these changing intentions
be dealt with? Instead of taking only one final intention score, we calculated
our measure at every point in the path, and inspected the changes along the
resulting graph. We wanted to see if the behavior of the graph of intention,
as measured by us, could indicate significant changes in the intention of
the observed character. If so, this could prove a useful tool for segmenting
sequences of action into subgoals.

To do this, for each video clip we examined the graph of intention and
marked the first clear change of trend in the graph. Reaching an obvious
maximum, minimum, or plateau were considered to be clear changes in
trend. At the marked point a new subgoal was assumed found, and a new
intention score was calculated, using the previous segment’s terminating
state as the new segment’s initial state. Once again, the first change of trend
was marked, and so on, until the end of the intention graph was reached.
Given the time frames at which the graph was segmented, the corresponding
points along the path of movement were indicated.

Video clip number 6 is given as an example, in Figure 8. The plot area
is divided into alternating white and gray strips, corresponding to subgoals
found according to the process described above. In the first vertical white
area, the plot of intention begins. Where it first peaks significantly, a subgoal
is parsed, and the calculation of intention begins again, with the terminal
state of the previous segment taken as the initial state for the current seg-
ment. In the subsequent vertical gray area, the previous segment’s intention
plot is continued, so as to demonstrate the significance of the peak, and
the second segment’s intention plot begins. Where a significant minimum is
reached in it, a new vertical white area begins, indicating the new subgoal
found. In this area, again, the segment of the previous subgoal continues,
so as to demonstrate the minimum found, and the plot of intention for the
third subgoal begins. The first subgoal’s plot is no longer shown here. And
so on—every strip in the plot contains two subgoals’ intention plots—the
previous and the current (except for the first strip, which contains only the
first subgoal).
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(a) Subgoal Parsing from Intention Graph
of Video Clip 6.
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Figure 8: Analysis of Video Clip 6.
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Figure 8c shows where the points found fall along the path. Clearly,
the places where subgoals were found to begin mark significant changes of
direction or movement—the segment between the ”start” point and subgoal
1 have the character moving from left to right, between points 1 and 2 the
character is standing in place, between 2 and 3 moving down, 3 and 4 moving
up, 4 and 5 standing in place, 5 and 6 moving to the right. This data is
summarized textually in Table 7.

Frames Seconds Coordinates Trend Character intention
1-265 1-11 (26,164)-(277,96) increases walks to ATM 0.653
265-402 11-16 (277,96)-(301,97) decreases stands at ATM 0.257
402-495 16-20 (301,97)-(278,212) increases walks down 0.774
495-590 20-24 (278,212)-(299,96) increases walks up 0.811
590-631 24-25 (299,96)-(304,93) decreases stands at ATM 0.220
631-707 25-28 (304,93)-(203,97) increases walks up 0.766

Table 7: Description of Subgoals Found in Video Clip 6.

Figure 8b shows the plot of entropy as it changes over time, with numbers
indicating where subgoals were found. Note that the behavior of the entropy
graph is somewhat inverse to the behaviors of the intention graphs of the
subgoals—for the first subgoal, the intention graph is increasing, while the
entropy graph in that section is decreasing. For the second subgoal, the
intention decreases while the entropy increases. The third subgoal also holds
this inverse relationship, but the last 3 subgoals do not continue to show such
a correspondence. Perhaps this is so since those last sections are not very
long, and don’t contain enough data for the trends to come forth strongly.

Figure 9 depicts the same analysis applied to video clip number 7, serving
as another example of the value of the proposed measure of intention for
parsing subgoals. A textual summary of the subgoals is given in Table 8

Frames Seconds Coordinates Trend Character intention
1-231 1-9 (91,70)-(291,98) increasing walks to ATM 0.645
231-451 9-18 (291,98)-(306,98) decreasing stands at ATM 0.04
451-561 18-22 (306,98)-(287,0) increasing leaves ATM 0.679

Table 8: Description of Subgoals Found in Video Clip 7.

Another example is given in video number 3. This is a simpler example,
in which no subgoals were found. Its analysis is shown in Figure 10. The
character in this video moves in a straightforward manner from the bottom
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Figure 9: Analysis of Video Clip 7.
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of the screen to the top. Fittingly, the intention score achieved is high, and
the entropy is low. The intention graph is smooth—no clear peaks or troughs
are present—and so does not indicate any points of changing intentions. The
slight change noticed right at the beginning of the path—from moving left to
moving up—is obscured by the general noise always present at the beginning
of intention graphs, until enough data has accumulated to give a meaningful
score.
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Figure 10: Analysis of Video Clip 3.

While our results do indicate that the proposed measure of intention
can be useful for parsing subgoals, there are some examples in which the
segmentation is less than perfect. In some cases, subgoals are found where
they don’t exist, as in video clip number 1, shown in Figure 11. Table 9
describes the two subgoals found for this clip. In this example, there is an
apparent change of curvature in the path at the segmentation point, however
it does not seem prominent enough to justify parsing. Indeed, the change
of trend in the intention graph is not prominent either, so perhaps using a
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stricter definition for identifying changes of trend would eliminate such false
positive instances.
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Figure 11: Analysis of Video Clip 1.

Frames Seconds Coordinates Trend Character intention
1-113 1-6 (244,285)-(39,132) increase walks up 0.842
113-274 6-11 (139,132)-(82,63) decrease walks up 0.503

Table 9: Description of Subgoals Found in Video Clip 1.

Another example is given in Figure 12, this time of the false negative
kind, with the description of subgoals in Table 10. Using our method, three
subgoals were found, while it seemed to us that the third subgoal should
have been parsed into an additional subgoal, at the sharp turn the character
takes halfway through the subgoal. Perhaps the short length of this segment
did not contain enough data for such a precise cut. Another possibility is
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that this is another case where more rigorous criteria for changes of trend
in the intention graph might fix the problem. Since overall our method
does succeed at segmenting subgoals—as the first few examples show—we
did not go into the fine tuning of the parameters. The exact parameters
for subgoal parsing need to be found when bringing this method down to
practical implementation.
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Figure 12: Analysis of Video Clip 11.

Frames Seconds Coordinates Trend Character Intention
1-344 1-15 (29,163)-(177,204) increase strolls down 0.474
344-458 15-19 (177,204)-(174,217) decrease walks around 0.404
458-509 19-21 (174,217)-(237,283) plateau walks down 0.961

Table 10: Description of Subgoals Found in Video Clip 11.

48



5. Experiments for Evaluating Heuristics of Intention Prediction

We turn now to the task of determining the content of the intention
detected in an observed sequence of actions, i.e., predicting the goal state
which the actor was intending to bring about by his actions.

According to the theoretical background on affordances reviewed above,
we posit that upon perception of objects in the environment, afforded goal
states are invoked in the mind of the observer. Our task, therefore, is to
extract information from the observed sequence of actions performed on the
objects, in order to determine which of the afforded goal states is the one at
which the actions are aimed.

In the following section we describe our experiment, in which human
subjects were asked to determine the intention underlying an observed action
sequence. We show how the observed process of human intention recognition
can be explained according to the three values produced by the heuristics
discussed in Section 3.5—the prior pj (an operationalization of the clue
arising from the work of Cisek (2007)), the distance dj (an operationalization
of the clue arising from the work of Huang et al. (2002)) and the intention
measure rj , computed for each afforded goal state gj=1,...,k (the heuristic
suggested in this paper). We hypothesize that choosing the highest ranking
goal according to the intention measure rj , best approximates the preference
demonstrated by the subjects participating in the experiment. The data
confirms this. It also shows that dj and pj can play secondary roles with
regard to this task.

5.1. Experimental Setup

As an environment in which to evaluate our model, we chose what could
be seen as a two-dimensional version of Meltzoff’s setup: scenarios in which
two geometric objects exist, one stationary and the other movable. We used
several pairs of such objects.

Part I of the experiment was meant to determine the various possible
afforded goal configurations of each pair of objects, i.e., the gj ’s, along with
their associated prior probabilities, the pj ’s. This is in line with our asser-
tion that upon perceiving the objects, several possible goal-states would be
retrieved from the so-called affordance library of the perceiver, along with a
distribution over them.

Part II of the experiment shows how the priors for these goals interact
with the two other values mentioned (distance and intention) in order to
determine the intention underlying the observed sequences of actions. We
used the Euclidean distance as our distance measure.
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The experiment was run as two web applications—one for each part—
and the URL addresses were given to approximately 140 computer science
undergraduates, who participated in return for credit (mean age: 21.2(3.57),
112 male). The first application consisted of a succession of nine screens,
in each of which a pair of objects was presented to the subjects: a black
stationary one, and a gray movable one. The subjects were instructed to
drag the gray object to whichever configuration seemed ”natural” to them,
in relation to the black object. The locations chosen by each subject were
recorded, for each pair of objects, as were the trajectories of movement
leading to those choices. The pairs of objects used are shown in Figure 13,
with a corresponding identification code for each.

(a) 1a (b) 1b (c) 2a

(d) 2b (e) 3a (f) 3b

(g) 3c (h) 4a (i) 5a

Figure 13: Object-Pairs and Their Identification Codes.

Two weeks after the results of the first part were analyzed, the second
application was designed and implemented. It had the subjects view manip-
ulations of the gray object for five of the nine object-pairs used in the first
part. For each pair, several paths were constructed, and the gray object was
animated along those paths. The subjects were told that the animations
they were viewing were from the results of one of the subjects (”student X”)
on the first part of the experiment—student X had dragged the gray object
in each pair to a specific location, but only the first part of the trajectory
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was being shown. The subjects were instructed to complete the trajectory
and drag the gray object to the location where they thought student X had
intended to place it. In both applications the order in which the screens
were presented was randomized.

5.2. Results

The results of the first part of the experiment justify our understanding
that non trivial priors exist for possible goals. According to the results of the
second part of the experiment, the heuristic based on the intention measure
proves most useful for correctly predicting the intended goal. In addition
to these two major results, we also suggest using the distance measure or
the prior distribution for choosing among afforded goal states for which the
intention measure is maximal, i.e. in the case of a tie. The last point of
interest arising from the results concerns the generation of new affordances.
As this is not the topic of this study, we only briefly touch upon it at the
end of the results section.

5.2.1. Part I: Existence of Non Trivial Priors for Possible Goals

The null hypothesis for the first part of the experiment would be that,
having never before seen the objects presented, the subjects would choose
all possible goal configurations with equal probability. The results, however,
clearly reveal that non trivial priors do exist for the object-pairs presented.
Of course, some object-pairs are more natural than others. For example, pair
1a begs to be configured as a house (Figure 14), with the gray triangle placed
atop the black square, which is presumably why this goal configuration was
chosen by 96.49% of the subjects. Other pairs also produced a clear tendency

Figure 14: Most Frequent State (A) for Object-Pair 1a, with Prior 96.49%.

among the subjects to prefer one configuration over another. As an example,
consider pair 3a (Figure 15), for which the subjects chose to place the gray
circle in the middle indentation at the bottom of the black object with
69.29% frequency, while they placed the gray circle in the right hole with
10.71% frequency and in the left hole with 12.86% frequency. Such choices
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could be due to properties such as symmetry and size, however, we are
not interested in why these preferences emerge, but rather in the fact that
they do indeed emerge. Obviously, different pairs of objects afford different
configurations, which is why we have taken the liberty to refer to these states
as ”affordances”.

Prior probabilities of states, as determined by the frequencies at which
subjects chose the different configurations in the first part of the experiment,
are shown in the following figures, for each of the remaining object-pairs.
Capital letters denote the states—this lettering was chosen arbitrarily, and
is not ordered by frequency. In addition, the lettering for each object-pair
is independent—there is no relationship between states of different object-
pairs which happen to have the same capital letter. Only states which were
chosen by the subjects with frequency above 3% are shown, which is why the
sum of frequencies does not always amount to 100%—states with negligible
frequency are not shown.

(a) State A (69.29%) (b) State B (10.71%) (c) State C (12.86%)

Figure 15: Most Frequent States for Object-Pair 3a with Their Priors.

Figure 16 shows the empirical priors for object-pair 2a (note that in state
D—Figure 16d—the gray square is placed behind the black square, thus
obscured by it). Figure 17 shows the priors for object-pair 1b. Figures 18,
19, 20, 21 and 22 show the priors for affordances of object-pairs 2b, 3b, 3c,
4a and 5a, respectively. Figure 17c shows a configuration which was not
chosen at all in this first part of the experiment, but was in the second part
of the experiment, discussed later.

5.2.2. Part II: Intention Measure for Ranking Goals

Of the three heuristics proposed, the one guided by our intention measure
proves to be most informative for inferring the intended goal. Ranking the
candidate goals from Part I, gj , according to their intention measures, rj , and
choosing the highest ranking one, results in the same goal most frequently
chosen by the subjects in Part II. In other words, the goal with the highest
intention measure coincides with the goal most frequently chosen by the
subjects. This observation holds for all five object-pairs and their respective
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(a) State A (24.56%) (b) State B (51.75%) (c) State C (3.51%)

(d) State D (7.89%) (e) State E (3.51%) (f) State F (3.51%)

Figure 16: Most Frequent States for Object-Pair 2a with their Priors.

(a) State A (85.82%) (b) State B (11.35%) (c) State E (0.00%)
(see text)

Figure 17: Most Frequent States for Object-Pair 1b with their Priors.

(a) State A (68.42%) (b) State B (30.70%)

Figure 18: Most Frequent States for Object-Pair 2b with their Priors.
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(a) State A (5.63%) (b) State B (77.46%) (c) State C (11.27%)

(d) State F (1.41%) (e) State I (0.00%) (f) State J (0.00%)

Figure 19: Most Frequent States for Object-Pair 3b with Their Priors.

(a) State A (30.22%) (b) State B (17.99%) (c) State C (48.20%)

Figure 20: Most Frequent States for Object-Pair 3c with Their Priors.

(a) State A (19.15%) (b) State B (68.09%) (c) State C (3.55%)

(d) State D (4.96%)

Figure 21: Most Frequent States for Object-Pair 4a with Their Priors.
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(a) State A (41.23%) (b) State B (23.68%) (c) State C (33.33%)

Figure 22: Most Frequent States for Object-Pair 5a with Their Priors.

paths of movement demonstrated in the experiment, except for one case, as
will be shown in the following.

Before going into the detailed quantitative results, we first present a
qualitative summary, in Figure 23. This figure shows the success rate of
each of the heuristics, at matching the goal state most often chosen by the
subjects as the intended one.
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Figure 23: Success Rate of Each Heuristic at Predicting the Correct Goal.

The details of these matchings are given in Table 11. Every row in
the table corresponds to one demonstration of movement—identified by an
object-pair and a path. For each such demonstration, the goals with the
highest rank are given, according to each measure. The column titled ”Most
Frequent” gives the goal state most frequently chosen by the subjects in Part
II. This is the goal state we are attempting to guess. The next column, titled
”Maximal Intention”, gives the goal state achieving the highest intention
measure. Next, ”Minimal Distance”, gives the goal state which has the
shortest distance from the terminal state of the observed path. And last,
”Maximal Prior”, gives the goal state chosen most frequently by the subjects
in Part I (this prior is constant across all paths of a given object-pair). In
several instances, more than one goal state achieved the highest value for a
given measure. In those cases, all those goal states are given, separated by
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commas.
Note that in both parts of the experiment we measured the frequencies

of choices of the various resulting goal states—in the first part, given the
object-pairs alone, and in the second part, given the object-pairs being ma-
nipulated in movement. When referring to the results of Part I, we call
these frequencies priors. They should not be confused with the frequencies
of choice from Part II, which are the results of the observed behavior which
we are attempting to match.

(Object-Pair, Path) Most Frequent Maximal Intention Minimal Distance Maximal Prior
(1b, I) B B A A
(1b, II) B B B A
(1b, III) A A B A
(3a, I) C C A A
(3a, II) C C C A
(3a, III) A A,B A,C A
(3b, I) J A C B
(3b, II) A A C B
(3b, III) B B,C C B
(3c, I) B B C C
(3c, II) B B C C
(3c, III) A A,B,C A C
(4a, I) A A B B
(4a, II) A A A B

Table 11: Most Frequently Chosen Goal State vs. Choice According to
Heuristics per Object-Pair and Path.

Note how column ”Maximal Intention” matches column ”Most Fre-
quent” in all but one of the total 14 demonstrations (object-pair 3b, Path I),
while column ”Minimal Distance” does not match in nine of them. ”Max-
imal Prior” matches in only three of the 14 demonstrations. This analysis
summarizes the findings and justifies our conclusion that, of the three heuris-
tics proposed, the intention measure is best at predicting the intended goal.
We next go into the details of the results, pointing out various aspects of
the findings along the way.

Object-Pair 1b. For object-pair 1b, three paths were shown to the subjects
(Figure 24). Paths I and II share a common initial state, with Path II
continuing on past the terminal state of Path I. Paths II and III share a
common terminal state, and differ with regards to their initial state. The
three afforded states most frequently chosen by the subjects in Part II were
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A, B and E (refer to the above-mentioned Figure 17), and the frequencies
according to which they were chosen, for each path, are given in Table 12.

(a) Path I (b) Path II (c) Path III

Figure 24: Paths for Object-Pair 1b.

state\path I II III

A 16.67 8.33 90.91
B 65.15 78.79 1.52
E 9.85 9.85 3.79

Table 12: Frequencies of Choices for Object-Pair 1b.

We now compare these empirical results for this object-pair to the pre-
diction based on ranking according to the intention measure. Note that we
calculate the intention measure only for states A and B, since these are the
only states which achieved significant positive priors in the first part of the
experiment (85.82% and 11.35% respectively, as shown in Figure 17). These
values of the intention measure are shown in Table 13. The results show
that for each path, the state scoring the highest intention is also that which
was most often chosen by the subjects. Noticeably, by manipulating the
trajectory, we were able to cause the subjects to infer a goal which had a
relatively low prior probability.

state\path I II III

A 0.996 0.949 0.999
B 1.000 1.000 0.973

Table 13: Measure of Intention for Object-Pair 1b.

It is interesting to further compare paths I and II: the results show that
the longer Path II left less room for ambiguity in the subjects’ decision
between states A and B, so that although state A was not chosen with
highest frequency for either path, its frequency of choice for Path I was
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higher than for Path II. The measure of intention also reflects this—state A
received a lower value of intention in Path II than in Path I.

Another point worth noting is that both states received high measures of
intention for all three paths, and the differences between these values, while
significant, are not great. This does not reflect the substantial gaps between
their respective values of frequency of choice. For example, in Path III, the
measure of intention of state A is greater than that of state B by 0.026%,
while the frequency of choice of state A is greater than that of state B by
89.39%. Thus, while ranking according to this intention measure preserves
the order of frequency of choice, the relative weights of the values do not
correspond. However, since for the task at hand we are only interested in
choosing the highest ranking afforded state, we need not be concerned about
normalization.

Object-Pair 3a. Object-pair 3a supports these results as well. Here too,
three paths were shown to the subjects (Figure 25). Path II begins as Path

(a) Path I (b) Path II (c) Path III

Figure 25: Paths for Object-Pair 3a.

I does, and continues further. Paths II and III end at the same position,
but begin at different ones. Table 14 presents the empirical results for
this object-pair—only the three most frequently chosen states are shown,
since the others achieved negligible frequencies. The states themselves are
depicted in Figure 15.

state\path I II III

A 14.18 3.73 79.85
B 0.00 0.00 16.42
C 78.36 92.54 0.75

Table 14: Frequencies of Choices for Object-Pair 3a.

Table 15 gives the calculated measure of intention for each of the three
paths and the three most frequently afforded states (from the first part of
the experiment). Ranking the possible intended states according to this
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measure, we arrive at results quite close to those of our subjects’. The only
difference is in Path III, where states A and B both achieve the maximal
intention score of 1. We later show what information can be used to break
such a tie.

state\path I II III

A 0.98 0.79 1.00
B 0.94 0.72 1.00
C 1.00 1.00 0.75

Table 15: Measure of Intention for Object-Pair 3a.

Object-Pair 3b. Results for object-pair 3b are shown next. Figure 26 depicts
the three different paths shown to the subjects. Here, the movable object in
all three paths starts out at the same position. Path II begins as Path I, and
continues a bit farther, while Path III moves in a slightly different direction
from the start. Table 16 shows the subjects’ choice of goal states for each
of the paths. Table 17 shows the measure of intention for each of the goal
states which achieved significant priors (above 3%) in the first part.

Notice that three new goal states appear at this stage, in Table 16—
goals which were not chosen with significant frequency in the first part of
the experiment (or not at all), yet in the second part they were. In Paths
II and III, this does not affect our prediction according to the measure of
intention, since the goal states achieving the highest rank according to this
measure turn out to be one of the original three which achieved high priors
(A, B, C). However, in Path I, the original three goal states, A, B and
C are each chosen by the subjects in this second part of the experiment
with frequency below 20%. Only goal state J , which in the first part of the
experiment was not chosen by any of the subjects, received the most ”votes”
here—25.18%. This is the only case in which our measure of intention fails
to predict the correct goal state. We will return to this issue when discussing
dealing with new affordances.

Object-Pair 3c. The fourth of the object-pairs presented to the subjects
was 3c. The three paths for this pair are given in Figure 27. Here, Path
II is a short ”version” of Path I, while Path III shares nothing in common
with them. The frequencies of the subjects’ choices are given in Table 18,
and the measures of intention in Table 19. For Paths I and II, the highest
ranking goal state according to the measure of intention matches the one
most frequently chosen by the subjects. However, for Path III, all three
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(a) Path I (b) Path II (c) Path III

Figure 26: Paths for Object-Pair 3b.

state\path I II III

A 13.67 41.73 0.00
B 18.71 7.19 59.71
C 14.39 0.00 36.69
F 7.19 28.06 0.00
I 17.27 0.72 0.72
J 25.18 18.71 0.00

Table 16: Frequencies of Choices for Object-Pair 3b.

state\path I II III

A 0.999997339 0.999988829 0.998315324
B 0.998137457 0.99167065 1
C 0.988936353 0.484244163 1

Table 17: Measure of Intention for Object-Pair 3b.
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candidate goal states achieved the maximal value of intention. As mentioned
above, we will discuss strategies for disambiguating between such tied goal
states in the following.

(a) Path I (b) Path II (c) Path III

Figure 27: Paths for Object-Pair 3c.

state\path I II III

A 8.09 11.03 72.79
B 83.82 66.18 8.82
C 2.94 16.91 15.44

Table 18: Frequencies of Choices for Object-Pair 3c.

state\path I II III

A 0.994128317 0.998505671 1
B 0.999995551 0.99998616 1
C 0.718324618 0.948277727 1

Table 19: Measure of Intention for Object-Pair 3c.

Object-Pair 4a. Object-pair 4a was the last of the five object-pairs used
in this part of the experiment. The two paths for this pair are given in
Figure 28, and the resulting frequencies for the four most chosen goal states
are in Table 20. For both paths, state A was most often chosen even though
its prior is significantly lower than that of state B. Calculated measures of
intention are given in Table 21, and once again, the highest ranking goal
state matches that which was most often chosen by the subjects.

5.2.3. Breaking Ties: The Role of Priors and Distance.

The above analysis has shown that choosing the goal state with the
highest intention measure will almost always correctly predict the intended
goal state in a way which matches human predictions. However, in three
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(a) Path I (b) Path II

Figure 28: Paths for Object-Pair 4a.

state\path I II

A 69.29 85.00
B 19.29 2.14
C 1.43 2.14
D 2.14 1.43

Table 20: Frequencies of Choices for Object-Pair 4a.

state\path I II

A 0.999991597 0.999999761
B 0.918639653 0.463140117
C 0.972263947 0.791587525
D 0.992876392 0.950940113

Table 21: Measure of Intention for Object-Pair 4a.
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cases (Path III of object-pair 3a, Path III of object-pair 3b, and Path III
of object-pair 3c), more than one goal state achieved the highest value of
intention, according to our measure. In all these cases, one of the tied goal
states coincides with the goal state most frequently chosen as the intended
one by the subjects. We will now discuss possible ways of decreeing which
of the tied goal states should be chosen as the intended one.

While the distance measure and the prior values of the goal states proved
to be inferior to the intention measure at the task of predicting intention,
we propose that they can play a secondary role, for breaking ties. Given
tied goal states, we can rank them according to their distance measures and
according to their priors. Which of the two is better at breaking the ties
and decreeing the intention in accordance with the subjects’ choices?

Table 22 shows the highest ranking goal states for these three cases,
where for the ”Minimal Distance” and ”Maximal Prior” column, the ranking
was only between those goal states ranked equally maximally according to
”Maximal intention”.

(Object-Pair, Path) Most Frequent Maximal intention Minimal Distance Maximal Prior
(3a, III) A A,B A A
(3b, III) B B,C C B
(3c, III) A A,B,C A C

Table 22: Most Frequently Chosen Goal State vs. Choice According to
Heuristics per Object-Pair and Path, for Tied Goal States.

Inspection of this table does not resolve the issue. For the tied goal states
of the case of object-pair 3a (A and B), both the distance measure and the
prior prefer goal state A, which is what the subjects most often preferred.
For the tied goal states of the case of object-pair 3b (B and C), the distance
measure wrongly ranks C over B, while the prior correctly ranks B first.
The inverse is true of the tied goal states of the case of object-pair 3c (A, B
and C): the distance measure correctly decrees goal state A as the intended
one, while the prior wrongly prefers C over A.

Nevertheless, it seems to us that the distance measure should be used for
breaking ties. This, for the simple reason that it contains more information
than the prior does—it takes into account the terminal state of the observed
trajectory of motion, while the prior relies only on the affordances inherent in
the objects themselves, regardless of the intentional manipulation performed
on them. In addition, referring back to Figure 23, note that overall, distance
was a better predictor of intention than prior.
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Numerical details of the calculation of distance measure for each object-
pair and each path, are given in the following Tables 23, 24, 25, 26, and 27.
Note that the numbers given are not the absolute distance of the terminal
state from the goal state, but rather that distance, divided by the total
length of the path. This is for normalization purposes, and does not affect
the relative ranking of the goal states.

state\path I II III

A 0.671867777 0.161047671 0.133559308
B 0.673362408 0.123362611 0.101528092
E 0.627397208 0 0

Table 23: Distances for Object-Pair 1b.

state\path I II III

A 0.73 0.29 0.38
B 0.79 0.48 0.59
C 0.78 0.28 0.38

Table 24: Distances for Object-Pair 3a.

state\path I II III

A 0.875117165 0.625354683 0.876706556
B 0.855813708 0.57024362 0.857142857
C 0.5 0.26550759 0.5

Table 25: Distances for Object-Pair 3b.

5.2.4. Dynamic Generation of New Affordances

The one case in which our measure of intention failed at predicting the
intended goal state occurred in the first path of object-pair 3b. Since the
measure of intention is only calculated for those goal states which received a
significant prior (above 3%) in the first part of the experiment, goal state J ,
the one voted most likely to be the intended goal, was not even considered.
Had it been considered, its value of intention would have competed with that
of goal state A, and then ties would have had to be broken, as discussed
above. However, when using the intention measure within our framework
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state\path I II III

A 0.505994833 0.821498 0.62962963
B 0.409780754 0.787669299 0.72972973
C 0.340439936 0.686763288 0.836065574

Table 26: Distances for Object-Pair 3c.

state\path I II

A 0.792008403 0.201331258
B 0.668779763 0.358788311
C 0.795203728 0.359743257
D 0.844938759 0.429732538

Table 27: Distances for Object-Pair 4a.

for predicting the intended goal, we can only take into account afforded goal
states—as determined by their priors.

This situation hints at the preliminary stage of acquiring affordances.
While for the purposes of this study we assume a library of affordances
already exists, along with a prior distribution over them, obviously, this
assumption is not entirely correct. New affordances can be dynamically
generated based on the observation sequence, and the perceived intention
plays a role in their generation.

To see this, note that the failure of correctly predicting goal J in the
first path of object-pair 3b demonstrates a new affordance being ”born”—
although the goal state J was not chosen by any of the subjects as a possible
configuration for object-pair 3b during the first part of the experiment, when
presented with a display of intentional movement which did not seem to be
aimed at any of the high-prior goal states (A, B or C), a new goal state
somehow afforded itself to the observers.

The same can be seen in the case of object-pair 1b. There, state E
achieved a prior of zero during the first part of the experiment, yet, in
the second part of the experiment it was chosen with significant frequency
(9.85% in each of Paths I and II, and 3.79% in Path III). However, in this
case, this phenomenon of a new afforded state being ”born” did not affect
the performance of the prediction process, as compared to the results of the
second part of the experiment, since, while this new goal state was chosen
relatively often, it was not often enough to overcome the frequency of choice
of the intended goal state—one which had achieved a high prior in the first
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part of the experiment.
In accordance with this, a complete model of the cognitive ability of

goal prediction would have to take into account the process of affordance
generation, and not rely only on those affordances already present in the
repertoire of the observer. As crucial as this is for completing the picture,
since it is an entirely different area of study, worthy of its own research,
we do not go into it here. We only point out that even when leaving out
this important ability of affordance generation, the process we described was
able to correctly predict the intended goal with close to 93% accuracy.

6. Discussion and Future Work

Several points pertaining to the above-presented results deserve further
considerations. Some of them require further clarification within the field
of psychology, and as such are left for future research. We conclude with a
short summary of the contributions of this work.

6.1. Plan Generation and Intention Recognition, and Ties to Mirroring

A key insight we ourselves draw from this work is on the intimate re-
lationship between the ability to plan towards a goal, and the ability to
recognize intentions. Optimal planning is inspired by the principle of ra-
tionality. And this paper shows that at least for some forms of intentional
actions, so is intention recognition. Thus conceptually, the capabilities are
linked.

The link between plan generation and intent recognition is in fact very
strong in this work. To detect intentionality using the principle of rational
action, this paper suggests using a heuristic measure which computes the ra-
tio between the length of the observed sequence (in plan steps, generalizable
to plan step costs), and an optimal plan for achieving the same end-state of
the sequence. This definition makes it a clear requirement for the observing
agent to be able to generate a hypothesized optimal plan, using the actions
available to the observed agent. This raises two separate issues.

First, much depends here on the planning capabilities of the observer.
For instance, if we had observed someone drawing a circle in continuous
motion (e.g., using a marker on a whiteboard), we may not be able to detect
the motion’s intentionality with ease, if we had known the drawer had the
ability to draw a circle in a single action (e.g., via a stamp in the shape
of a circle). Or observing someone erasing a whiteboard, we could not use
the Euclidean distance measure as the basis for detecting intentionality, as
in Section 4.2. This is because the optimal plan for erasing a whiteboard
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(against which the observed sequence is compared), is not a plan that moves
in a straight line (which the Euclidean distance can quickly summarize), but
rather an optimal coverage plan, that moves optimally through the entire
space of the whiteboard5. When compared to such a plan, a systematic back-
and-forth motion of an eraser would be closer to optimality than random
erasing motion (touch here, touch there, until the entire whiteboard is clean.)
And as a result, recognizing intentionality in the first (systematic) case would
be successful using the measure we proposed.

Second, the definition emphasizes that the observing agent must not only
be able to recognize the actions in the observed sequence, it must also be
able to use them (and others) to compute a hypothetical optimal plan, to
compare against. In other words, knowledge of these actions must be stored
in a way that is accessible both for planning as well as for recognition. This
begs the question of a possible relation between intention recognition as de-
scribed here, and action recognition, e.g., via mirror neurons and mirroring
processes. We hypothesize as to that relation elsewhere (Kaminka, 2013).

6.2. Different Measures of Intention

Two related problems were addressed in this work. For each problem, a
different measure of intention was proposed. The question begs to be asked:
could not one unified measure be devised, so as to solve both problems?
After all, both measures claim to capture a sense of intention.

Yet, there are inherent difference between the problems. For example,
for determining the existence of intention (first problem), at each point
in the trace we look back at the observed sequence of movement so far.
While for determining the content of the intention (second problem), we
look forward, from the last observed state, to possible goals. In addition,
artificial examples can be devised, for which the first measure fails on the
second problem, and vice versa.

A deeper inspection of the two problems and how they relate to each
other is called for. We hope that future research might reveal a unified
measure for both problems.

6.3. Determining the Point of Failure

According to our model, once failure has been determined (at the stage of
Success Detection, Section 3.6), the process of Intention Prediction kicks in.

5Incidentally, this is an area in which we have some experience, see Hazon & Kaminka
(2008).
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For this, the observed sequence of actions is extended to each of the possible
afforded goals, and each of these is compared to the optimal sequence, from
the initial state to the respective goal. This was described in detail above
(Section 3.5). It is worth noting that the process can be refined if the action
sequence is not extended from the (failed) end-state, but rather from the
point at which failure commenced.

How can the point at which failure commenced be identified? Once
again, the Principle of Rational Action, as it is captured by our measure for
intention detection, can be utilized. The measure of intention can be cal-
culated for every state along the trace of observed action, and the resulting
behavior of the resulting graph can be analyzed. A noticeable point at which
the graph significantly dips, towards the end of the trace (assuming the ac-
tion was halted close to where the failing began), conveys a meaningful drop
in intention, and can be taken as a breakpoint at which failure commenced.
Calculating the measure of intention detection through this breakpoint, in-
stead of through the observed end-state, would result in a more accurate
hypothesis regarding the intended goal.

6.4. False Beliefs and Environmental Constraints

In this work we assumed there were no environmental or psychological
constraints which had to be taken into account. Environmental constraints
could be, for example, physical obstacles. Dealing with these can easily be
incorporated into our model: the distance function used by the measures of
intentionality must simply be adapted so that it captures the information
regarding obstacles. Thus, for example, when using the Euclidean distance,
instead of measuring the direct distance between two points, the distance
would be measured by a path which circumvents the obstacle in the most
direct way possible.

By psychological constraints we are referring to the problem of false
beliefs. As mentioned in Section 2.2, the Principle of Rational Action on
which our measure of intentionality were based, stems from Gergely & Csibra
(2003)’s teleological stance. This stance would not necessarily be able to
deal with interpretation of actions which is based on false beliefs. It would
be interesting to attempt to expand our model to include such cases, and
observe if and how the model would then be able to handle them.

6.5. Summary

In this work we have presented a cognitive model of human intention
recognition. Its main contribution is meant to be, firstly, in the explanation
of the process as a whole and the interaction between the modules composing
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it. We have tried to justify this with reference to the large body of research
which has accumulated on the topic of intention in the field of psychology.

Secondly, we elaborated on two of the core modules, those of intention de-
tection and intention prediction, describing a way to translate psychological
principles, such as the Principle of Rational Action, affordances, and stim-
ulus enhancement by spatial contiguity, into measures and concepts which
can be computationally implemented. These translations were evaluated
in comparison to human judgment of intention, proving their validity and
utility at solving the task at hand.

To summarize, the contributions of this paper are:

• A proposal of an abstract model relating all the necessary components
which play a part in the process of intention recognition for intentional
actions whose purpose is to achieve a goal (as discussed in Section 2.2).

• Introduction of measures of intention which are used for detecting the
presence of intention in a sequence of observed actions, and predicting
their intended outcome.

• Devising experimental methods for testing these measures of inten-
tion, and comparing their usefulness at the task at hand to human
performance.

This research can be taken forward on several fronts. We intend to
use the insights from this work to fill in the details in the abstract model
described above. We would additionally need to add details as to how af-
fordances are extracted, and how optimal plans are generated. Once fully
implemented, such a model could be applied to a complete intention recog-
nition task of any one of the CAVIAR activities: from detecting presence
of intention to detecting the underlying intentions in a sequence, including
sub-goals.

At the same time, the model can be expanded to deal with false beliefs
and pretense, as well as static and dynamic environmental constraints, and
to incorporate additional methods of intention detection, as discussed in
Section 2.2, and other categories of intention, as mentioned in Section 2.3.
In addition, other distance measures need to be devised and evaluated, for
this model to be implemented in different environments. To do this, a lan-
guage needs to be developed, with which to describe affordances in various
environments. Given this, a complete cycle of detection and prediction can
be executed–something which we could not do in our experiments on the
CAVIAR repository, since the only information available was spatial coor-
dinates of movement.
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While there is still some way to go in order to render the ideas presented
here into a full working implementation, we believe this work greatly ad-
vances the current understanding of the process of intention recognition. As
such, we hope it will be of interest and of use to researchers in the multidis-
ciplinary communities dealing with intention recognition, as a component in
mindreading.
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