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Abstract. Recent advances in peer to peer (P2P) search algorithms havepre-
sented viable structured and unstructured approaches for full-text search. We
posit that these existing approaches are each best suited for different types of
queries. We present PHIRST, the first system to facilitate effective full-text search
within P2P networks. PHIRST works by effectively leveraging between the rela-
tive strengths of these approaches. Similar to structured approaches, agents first
publish terms within their stored documents. However, frequent terms are quickly
identified and not exhaustively stored, resulting in a significantly reduction in
the system’s storage requirements. During query lookup, agents use unstructured
searches to compensate for the lack of fully published terms. Additionally, they
explicitly weigh between the costs involved with structured and unstructured ap-
proaches, allowing for a significant reduction in query costs. We evaluated the
effectiveness of our approach using both real-world and artificial queries. We
found that in most situations our approach yields near perfect recall. We discuss
the limitations of our system, as well as possible compensatory strategies.

1 Introduction

Full-text searching, or the ability to locate documents based on terms found within
documents, is arguably one of the most essential tasks in anydistributed network [5].
Search engines such as Google [16] have demonstrated the effectiveness of centralized
search. However, classic solutions also demonstrate the challenge of large-scale search.
For example, a search on Google for the word, “a”, currently returns over 10 billion
pages [16].

In this paper, we address the challenge of implementing full-text searches within
peer-to-peer (P2P) networks. Our motivation is to demonstrate the feasibility of im-
plementing a P2P network comprised of resource limited machines, such as handheld
devices. Thus, any solution must be keenly aware of the following constraints:Cost -
Many networks, such as cellular networks, have cost associated with each message. One
key goal of the system is to keep communication costs low.Hardware limitations - we
assume each device is limited in the amount of storage it has.Any proposed solution
must take this limitation into consideration.Distributed - any proposed solution must
be distributed equitably. As we assume a network of agents with similar hardware com-
position, no one agent can be required to have storage or communication requirements
grossly beyond that of other machines.

⋆ This material is based upon work supported in part by the ISF.



2

To date, three basic approaches have been proposed for full-text searches within
P2P networks [15]. Structured approaches are based on classic Information Retrieval
theory [2], and use inverted lists to quickly find query terms. However, they rely on ex-
pensive publishing and query lookup stages. A second approach creates super-peers, or
nodes that are able to locally interact with a large subset ofagents. While this approach
does significantly reduce publishing costs, it violates thedistributed requirement in our
system. Finally, unstructured approaches involve no publishing, but are not successful
in locating hard to find items [15].

In this paper we present PHIRST, a system forPeer-to-PeerHybrid Restricted
Search forText. PHIRST is a hybrid approach that leverages the advantages of struc-
tured and unstructured search algorithms. Similar to structured approaches, agents pub-
lish terms within their documents as they join or add documents to the P2P network.
This information is necessary to successfully locate hard-to-find items. Unstructured
search is used to effectively find common terms without expensive lookups of inverted
lists. Another key feature in PHIRST is its ability to restrict the number of peer ad-
dresses stored within inverted lists. Not only does this insure that the hardware limi-
tations of agent nodes are not exceeded, it also better distributes the system’s storage.
We also present a full-text query algorithm where nodes explicitly reason based on es-
timated search costs about which search approach to use, reducing query costs as well.

To validate the effectiveness of PHIRST, we used a real web corpus [11]. We
found that the hybrid approach we present used significantlyless storage to store all
inverted lists than previous approaches where all terms were published [5, 15]. Next,
we used artificial and real queries to evaluate the system. The artificial queries demon-
strated the strengths and limitations of our system. The unstructured component of
PHIRST was extremely successful in finding frequent terms, and the structured com-
ponent was equally successful in finding any term pairs whereat least one term was
not frequent. In both of these cases, the recall of our systemwas always 100%. The
system’s performance did have less than 100% recall when terms of 2 or more words
of medium frequency were constructed. We present several compensatory strategies
for addressing this limitation in the system. Finally, to evaluate the practical impact of
this potential drawback, we studied real queries taken fromIMDB’s movie database
(www.imdb.com) and found PHIRST was in fact effective in answering these queries.

2 Related Work

Classical Information Retrieval (IR) systems use a centralized server to store inverted
lists of every document within the system [2]. These lists are “inverted” in that the
server stores lists of the location for each term, and not theterm itself. Inverted lists can
store other information, such as the term’s location in the document, the number of oc-
currences for that term, etc. Search results are then returned by intersecting the inverted
lists for all terms in the query. These results are then typically ranked using heuristics
such as TF/IDF [3]. For example, if searching for the terms, “family movie”, one would
first lookup the inverted list of “family”, intersect that file with that of “movie”, and
then order the results before sending them back to the user.

The goal of a P2P system is to provide results of equal qualitywithout needing a
centralized server with the inverted lists. Potentially, the distributed solution may have
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advantages such as no single point of failure, lower maintenance costs, and more up-to-
date data. Toward this goal a variety of distributed mechanisms have been proposed.

Structures such as Distributed Hash Tables (DHTs) are one way to distribute the
process of storing inverted lists. Many DHT frameworks havebeen presented, such as
Bamboo [13], Chord [9], and Tapestry [14]. A DHT could then beused for IR in two
stages: publishing and query lookups. As agents join the network, they need to update
the system’s inverted lists with their terms. This is done through every agent sending a
“publish” message to the DHT with the unique terms it contains. In DHT systems, these
messages are routed to the peer with the inverted list in LogNhops, with N being the
total number of agents in the network [9, 13]. During query lookups, an agent must first
identify which peer(s) store the inverted lists for the desired term(s). Again, this lookup
can be done in LogN hops [9, 13]. Then, the agent must retrievethese lists and intersect
them to find which peer(s) contain all of the terms.

Li et al. [5] present formidable challenges in implementingboth the publishing and
lookup phases of this approach in large distributed networks. Assuming a word exists in
all documents, its inverted list will contain N entries. Thus, the storage requirements for
these inverted lists are likely to exceed the hardware abilities of agents in these systems.
Furthermore, sending large lists will incur a large communication cost, even potentially
exceeding the bandwidth limitation of the network. Becauseof these difficulties, they
concluded that naive implementations of P2P full-text search are simply not feasible.

Several recent developments have been suggested to make a full text distributed
system viable. One suggestion is to process the structured search starting with the node
storing the term with the fewest peer entries in its invertedlist. That node then forwards
its list to the node with the next longest list, where the terms are locally intersected
before being forwarded. This approach can offer significantcost savings by insuring
that no agent can send an inverted list longer than the one stored by theleast common
term [15]. Reynolds and Vahdat also suggest encoding inverted lists as Bloom filters to
reduce their size [12]. These filters can also be cached to reduce the frequency these
files must be sent. Finally, they suggest using incremental results, where only a partial
set of results are returned allowing search operations to halt after finding a fixed number
of results, making search costs proportional to the number of documents returned.

Unstructured search protocols provide an alternative thatis used within Gnutella
and other P2P networks [1]. These protocols have no publishing requirements. To find
a document, the searching query sends its query around the network, until a prede-
fined number of results have been found, or a predefined TTL (Time To Live) has been
reached. Assuming the search terms are in fact popular, thisapproach will be successful
after searching a fraction of the network. Various optimizations have again been sug-
gested within this approach. It has been found that random walks are more effective
than simply flooding the network with the query [8]. Furthermore, one can initiate mul-
tiple simultaneous “walks” to find items more quickly, or usestate-keeping to prevent
“walkers” from revisiting the same nodes [8]. Despite theseoptimizations, unstructured
searches have been found to be unsuccessful in finding rare terms [1].

In super-peer networks, certain agents store an inverted list for all peer documents
for which it assumes responsibility. Instead of publishingcopies over a distributed DHT
network, agents send copies of their lists to their assignedsuper-peers. As agents are
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assumed to have direct communication with its super-peers,only one hop is needed
to publish a message, instead of the LogN paths within DHT systems. During query
processing, an agent forwards its request to its super-peer, who then takes the inter-
section between the inverted lists of all super-peers. However, this approach requires
that certain nodes have higher bandwidth and storage capabilities [15] – something we
could not assume within our system.

Hybrid architectures involve using elements from multipleapproaches. Loo et al.
[6, 7] propose a hybrid approach where a DHT is used within super-peers to locate
infrequent files, and unstructured query flooding is used to find common files. This
approach is most similar to ours in that we also use a DHT to findinfrequent terms and
unstructured search for frequent terms. However, several key differences exist. First,
their approach was a hybrid approach between Gnutella ultrapeers (super-peers) and
unstructured flooding. We present a hybrid approach that cangenerically use any form
of structured or unstructured approaches, such as random walks instead of unstructured
flooding or global DHT’s instead of a super-peer system. Second, in determining if
a file was common or not, they needed to rely on locally available information from
super-peers, and used a variety of heuristics to attempt to extrapolate this information
for the global network [6]. As we build PHIRST based on a global DHT, we are able to
identify rare-items based on complete information. Possibly most significantly, Loo et
al. [7] only published the files’ names, and not their content. As they considered full text
search to be infeasible for the reasons previously presented [5], their system was limited
to performing searches based on the data’s file name, and not the text within that data.
As our next section details, we present a publishing algorithm that actually becomes
cheaper to use as subsequent nodes are added. Thus, PHIRST isthe first system to
facilitate effective full-text search even within large P2P networks.

3 PHIRST Overview

First, we present an overview of the PHIRST system and how itspublishing and query
algorithms interconnect. While this section describes howinformation is published
within the Chord DHT [9], PHIRST’s publishing algorithm is generally presented in
section 4 so it may be used within other DHT’s as well. Similarly, section 5 presents a
query algorithm (algorithm 2) which generally selects the best search algorithm based
on the estimated cost of performing the search algorithms atthe user’s disposal. The
selection algorithm is generically written such that new search algorithms can be in-
troduced without affecting the algorithm’s structure. Only later, in algorithm 3 do we
present how these costs are calculated specific to the DHT andunstructured search al-
gorithms we used.

In order to facilitate structured full-text search for eveninfrequent words, search
keys must be stored within structured network overlays suchas Chord. Briefly, Chord
uses consistent hash functions to create an m-bit identifier. These identifiers form a
circle modulo2m. The node responsible for storing any given key is found by using a
preselected hash function, such as SHA-1, to compute the hash value of that key. Chord
then routes the key to the agent whose Chord identifier is equal to or is the successor
(the next existent node) of that value [9]. For example, Figure 1 is a simple example
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with an identifier space of 8, and 3 nodes. Assuming the key hashes to a value of 6, that
key needs to be stored on the next node within the circular space, or node 0. Assuming
the key hashes to 1, it is stored on node 1.

Fig. 1. An example of a Chord ring with m=3. Figure based on Chord paper [9].

The hashing quality within the Chord algorithm has several important qualities.
First, it creates important performance guarantees, such as LogN average search length.
Furthermore, nodes can be easily added (joins) or removed (disjoins) by inserting them
into the circular space, and re-indexing only a fraction of the pointers within the system.
Finally, the persistent hashing function used by Chord has the quality that no agent will
get more than O(LogN) keys than the average [9]. We refer the reader to the Chord
paper for further details [9].

However, the DHT’s performance guarantees only balancing the number of keys
stored per node, but not the number of addresses stored in theinverted lists for each key.
For example, Table 1, gives an example of the inverted lists for five words. Common
words, such as “a” and “the” within the table, will produce much long inverted lists,
than uncommon words such as “aardvark” and “zygote”. Due to space restrictions we
will only present up to the first 7 inverted entries for each word, out of a potential
length of N rows. Balancing guarantees only apply to the number of words (out of N),
but not the size of each inverted list (the length of that row). Because word distribution
within documents typically follow Zipf’s law, some of the words within documents
occur very frequently while many others occur rarely [4]. Inan extreme example, one
node may be responsible for storing extremely common words such as “the” and “a”,
while other nodes are assigned only rare terms. Thus, one keycontribution of this paper
is a publishing algorithm that can equitable distribute these entries by allowing agents
to cap the number of inverted list entries they will store.

Once the publishing stage has been begun, a distributed database exists to search the
network for full-text queries. We define the search task as finding a number of results,
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Table 1. Example of several words (keys within the DHT), and their inverted lists.

Word (key) Address1Address2Address3Address4Address5Address6Address7
a 111-1111111-1112111-1113111-1114111-1115111-1116111-1117

aardvark111-4323
the111-1111111-1112111-1113111-1114111-1115111-1116111-1117
zoo 123-4214123-9714333-9714

zygote548-4342

T, that match all query terms within the documents’ text. Capping a query at T results is
needed within unstructured searches, as there is no global mechanism for knowing the
total number of matches [15]. Finding only a limited number of results has also been
previously suggested within structured searches to reducecommunication costs [12].
The second key contribution of this paper is a novel queryingalgorithm that leverages
between structured and unstructured searches to effectively find matches despite the
limit in the amount of data each peer stores.

4 The Publishing Algorithm
Every time an agent joins the network, or an existing agent wishes to add a new docu-
ment, it must publish the words in its document(s) as described in Algorithm 4. First,
the agent generates a set ofmax terms it wishes to add (line 1). Similar to other studies
[15] we assume that the agent preprocesses its document to remove extraneous informa-
tion such as HTML tags and duplicate instances of terms. Stemming, or reducing each
word to its root form, is also done as it has been observed to improve the accuracy of the
search [15]. Furthermore, as we detail in the Experimental Results section (section 6),
stemming also further reduces the amount of information needed to be published and
stored. The publishing agent,IDSource, then sends every unique term,Termi, to be
stored in an inverted list on peerIDDEST (lines 3-4). The keys being stored are these
words that are sent, with each word either creating a new inverted list, or being added
to an existing file. In addition to these terms, the agent alsoupdates a counter of the
total number of documents contained between all agents within the system (line 4). For
simplicity, let us assume this global counter is stored on the first agent,ID1. We will
see that this value is needed by the query algorithm described below.

Algorithm 1 Publishing Algorithm(Document Doc)
1: Terms⇐ Preprocessed words in Doc
2: for i = Term1 to Termmax do
3: PUBLISH(Termi, IDSource, IDDEST )
4: PUBLISH(DOC-COUNTER+1,ID1)
5: for i = Term1 to Termreceived do
6: if SIZE(IDDEST , Termi) < d then
7: ADD-Term(Termi, IDSource)
8: UPDATE-Counter(Termi, COUNTER)

PHIRST’s publishing algorithm enforces an equitable term distribution by only stor-
ing inverted lists until a length ofd. For every term node,Termi out of a total of
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received terms,IDDEST is requested to store it must decide if it should fulfill that
request. As lines 6 and 7 of the algorithm detail, assuming agent IDDEST currently
has fewer thand entries forTermi, it adds the valueIDSource to its list (or creates an
inverted list if this is the first occurrence). Either way, nodes log that a certain number
of COUNTER instances of that term exist (lines 8). This information is used by the
query algorithm to determine the global frequency of this term. Because we limit each
node to only storingd out of a possibleN terms, the storage requirements of the system
are reduced tod*N from N*N . As we setd << N, we found this savings to be quite
significant.

Theoretically, additional information about each term maybe published, such as
the position that term occurred or how many instances of thatterm existed within the
document and aggregate this and similar information into a rating for the term it is about
to publish. This information may be especially important when more thand instances of
that term exist. The receiving agent,IDDEST , could then decide whichd term instances
to store by continuously sorting scores of the terms it has, and maintaining only those
with the topd highest rating. In a similar vein, if more thand instances ofTermi exist,
it may be advantageous to store thed most recent documents, especially if turnover
exists within nodes.

The performance guarantees of DHT’s such as Chord insure thepublishing algo-
rithm runs with fairly low cost. Because each node,IDSource, needs LogN hops to find
the agent,IDDEST , responsible for storing that term’s inverted list, the total number of
messages needed to publish a document is of orderO(max ∗ logN) where max is the
number of terms in that document. Note that the publishing algorithm described here
sends all terms, even those which in fact do not need publishing because they already
containedd instances.

5 The Search Algorithm

The search algorithm is called once any agent wishes to conduct a distributed full-text
search. As Algorithm 2 describes, this process operates in two stages. First, we re-
trieve the global frequencies of all search terms (line 1) and sort all terms from least to
most frequent (line 2). This value can be calculated throughlooking up the frequency
of that term (COUNTER), and dividing this number by the total number of docu-
ments (DOC − COUNTER). Finding these values requires one lookup of the value
of DOC − COUNTER (assumed to be stored on agentID1 in the publishing algo-
rithm), as well as a lookup for the frequencies of each term from the agent storing term
Termi. Referring back to algorithm 4 note that the peer storingTermi has a counter
with this value even if more thand instances of this term occurred.

Once the frequency of all terms are known, the algorithm thenreasons about which
algorithm to select. This process iteratively calls the tradeoff function which we de-
fine below (algorithm 3). If unstructured search is deemed less costly, all terms are
immediately searched for simultaneously (lines 7–10). This type of search can either
terminate because T matches have been found or the search space has been exhaus-
tively searched. If structured search is deemed less costly, that term’s inverted list is
requested, and the search space is intersected with that of the new term (line 12). As-
suming we have reached the last term (lines 12-17) we return the first T matches found



8

Algorithm 2 Hybrid Search Algorithm(String Query1 . . . Querymax)
1: space⇐∞ {Used for initialization to all P2P nodes}
2: Retrieve Frequencies ofQuery1 . . . Querymax

3: Term ⇐ Sorted Query Terms Least to most Frequent{Term is an array}
4: for i = Term1 to Termmax do
5: Frequency⇐ Product of Frequencies(Termi . . . T ermmax)
6: Tradeoff⇐ Calculate-Tradeoff(space,Termi . . . T ermmax, Frequency)
7: if Tradeoff> 0 then
8: while Found< T AND NOT Exhausted(space)do
9: Search-Unstruct(space,Termi . . . T ermmax)

10: Break
11: else
12: space⇐ List(Termi) ∩ space
13: if i=Termmax then
14: if space> T then
15: return first T list entries
16: else
17: return all list entries

after all terms were successfully intersected. Once the structured search identifies that
fewer matches than T matches were found (line 15) it returns all list entries (line 17).

This algorithm has several key features. First, the search process is begun starting
with the least frequent term. This is done following previous approaches [15] to save
on communication costs. We denote the inverted list length of the least common search
term as length(Term1) where length is a function that returns the size of an inverted
list andTerm1 is the first term after the terms are sorted based on frequency. Each
successive peer receives the previously intersected list,and locally intersects this infor-
mation with that of its term (line 13). The result of this process is that intersected lists
become progressively smaller (or at worse case stay the samesize) with the maximum
information any peer can send being bounded by length(Term1). Second, one might
question why agents do not immediately return the entire inverted list of the terms they
store, instead of first returning the term’s frequency. Thisis done because the infor-
mation gained from this frequency information, such as bounding search costs to the
size of the least frequent term, far outweighs the search costs involved with processing
the query in two stages. Finally, as the search goal is to return T results, the last node
within a structured search does not need to return its entireinverted list. Instead, it only
needs to send the first T results (or failure or NULL as in line 17 if under T results
exist). Because of this, the maximal structured search costwill be of order (max-1) *
length(Term1) + T wheremax is the number of terms in the search query.

Arguably the most important feature of this algorithm is itsability to switch be-
tween using structured and unstructured searches midway through processing the query
terms. Even if structured search is used for the first term(s), the algorithm iteratively
calls the tradeoff algorithm (algorithm 3) after each term.Once the algorithm notes that
unstructured search is cheaper, it immediately uses this approach to find all remaining
terms. For example, assume a multi-word query contains several common and uncom-
mon words. The algorithm may first take the intersection of the inverted lists for all
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infrequent words to create a listf . The algorithm may then switch to use unstructured
search withinf to find the remaining common words.

Similarly, note that this approach lacks a TTL (Time To Live)for its unstructured
search. We assume unstructured searches are to be used only when the expected cost
of using an unstructured search is low (see algorithm 3 below). We expect this to occur
when the unstructured search will terminate quickly, such as when: (i) the search terms
are very common from the onset or (ii) unstructured search isused to find the remaining
common terms after structured search generated an invertedlist of f terms.

We now turn to the search specific mechanism needed to identify which search types
will have the higher expected cost. This tradeoff depends onT, or the number of search
terms wanted, the costs specific to using the different typesof searches, andd or the
maximal number of inverted list entries published for each term. Algorithm 3 details
this process as follows:

Algorithm 3 Calculate-Tradeoff(Space, Termi . . . T ermnum, Frequency )
1: Expect-Visit⇐ T / Frequency{Number of nodes Unstructured search will likely visit}
2: COSTS⇐ CU *(Expect-Visit) -CS *(Sending(query-terms))
3: if COSTS> 0 then
4: RETURN 1{pure unstructured search}
5: else if COSTS< 0 AND Size(Termi) < d then
6: RETURN -1{pure structured search for this term}
7: else
8: space⇐ List(Termi) ∩ space
9: RETURN 1{Use unstructured afterwards because of lack of more values}

First, the algorithm calculates the expected cost of conducting an unstructured search.
The expected number of documents that will be visited in an unstructured search be-
fore finding T results is: T / term-frequency (line 1). For example, if we wish to find
20 results, and the frequency of the term(s) is 0.5, this search is expected to visit 40
documents before terminating. We can compare this value to that of using a structured
search, whose cost is also known, and is proportional to the length of the inverted lists
that need to be sent. We assume there is some cost,CU associated with conducting an
unstructured search on one peer. We also assume that some cost CS is associated with
sending one entry from the inverted list (line 2). Because the cost of unstructured search
is CU * T / Frequency, and the cost of structured search is bounded by CS * ((max-1)
* length(Termi) + T), the algorithm can compare the expected cost of both searches
before deciding how to proceed (lines 3-6).

For many cases, a clear choice exists for which search algorithm to use. Let us
assume thatCU = CS = 1, and assume that all documents have been indexed, or
d=DOC−COUNTER. When searching for common words, the cost of using the un-
structured search is likely to be approximately T. Processing the same query with struc-
tured search will be approximately the number of documents (DOC − COUNTER)
or a number much larger than T. Conversely, for infrequent terms, say with one term
occurring only T times, the cost of an unstructured search will beDOC−COUNTER

or a number much larger than T, while the structured search will only cost a maximum
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of T * max-1 + T. Finally, structured search is also the clear choice for queries involv-
ing one term. Note that in these cases, no inverted lists needto be sent (max-1=0), and
only the first T terms are returned. The cost of using unstructured search will be greater
than this amount (except for the trivial case where the frequency of the term is 1.0).

There are two reasons why the most challenging cases involvequeries with terms
of medium frequency. In these cases, the cost of using both the structured and unstruc-
tured searches are likely to be similar. However, the expected frequency of terms is not
necessarily equal to their actual frequency. For example, while the words “new” and
“york” may be relatively rare, the frequency of “new york” islikely to be higher than
the product of both individual terms. As a result, the PHIRSTapproach is most likely
to deviate from the optimal choice in these types of cases.

A second challenge results from the fact that we only published up tod instances
of a given term. In cases where inverted lists were publishedwithout limitation, e.g.
d equalsN (DOC − COUNTER), the second algorithm contains only two possible
outcomes – either the expected cost is larger for using structured search, or it is not.
However, our assumption is that hardware limitations prevent storing this number of
terms, andd must be set much lower than N. As a result, situations will arise where we
would like to use inverted lists, but as these files have incomplete indices, this approach
will fail in finding results in position d+ǫ. While other options may be possible, in these
cases our algorithm (in lines 7-9) takes thed terms from the inverted lists, and conducts
an unstructured search for all remaining terms. In general,we found this approach will
be effective so long as the T< d, or the relationship, T< d << N exists. We further
explore the impact of this limitation in the next section.

6 Experimental Results

In this section we present experimental results used to validate the effectiveness of
the algorithms in this paper. As our research goal was to check if PHIRST is appro-
priate for medium sized newsgroups, we chose a corpus of 2000real movie websites
to conduct our experiments [11]. The results from the publishing experiments demon-
strate that PHIRST actually becomes more feasible as more documents and agents are
added to the network. We also created two types of query experiments. In one group
we created artificial queries based on the frequency of words. This experiment demon-
strated the theoretical strengths and weaknesses of PHIRST. We also studied real movie
queries based on the Internet Movie Database (www.imdb.com). These experiments
demonstrated that any weakness in PHIRST is likely to be insignificant in handling real
queries.

6.1 Publishing Experiments

Recall that the publishing algorithm is based on storing a maximum of d entries in
a given term’s inverted list. We simulated the publishing process to study how this
parameter affected the average number of stored inverted entries with and without term
stemming. Figure 2 displays the average number of inverted terms (Y-axis) in groups of
50, 250, 500, 1000 and 2000 agents (X-axis). We assumed that every agent published
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1 document taken from the movie corpus [11]. In the left graph, we used the Paice
stemming algorithm [10] on each term before storing it. The right graph published each
term without stemming. In both graphs we also ran the publishing algorithm withd=25
and 75.

Fig. 2. Comparing publishing requirements of full publishing versus publishing limited tod=75.

Several interesting results can be seen from this graph. First, on average stemming
saved approximately 50 words per document. This is because stemming lumps similar
words, reducing the number of unique words occurring per document. Second, note the
publishing algorithm has progressively larger storage savings as the number of nodes
grows. Assumingd=N, all terms will be stored, and no publishing gain will be realized
by using the PHIRST approach. However, assumingd is kept fixed, the more documents
that are added, the gap betweend and N grows. This results in progressively more
words exceeding thed threshold, and no longer needing to be stored. As a result, the
publishing algorithm becomesmore scalable the more nodes that are added, making
full text search feasible even in very large P2P networks.

Table 2. Average number of inverted list entries if 1 document published for every 2 agents.

Number of Nodes 50 250 500 1000 2000
Fully Published150.43151.51153.13153.1265157.8343

d=25138.8493.106 72.17 53.97 40.605
d=75150.43127.14105.72 84.38 67.035

Finally, in this experiment we assumed each node had 1 document to publish. We
also ran this approach with more dense (e.g. 2 documents per node) or more sparse (e.g.
1 document every 2 nodes) network assumptions. As one would expect, the number of
terms each node stores is proportional to the total number ofnodes. For example, Table
2 shows the sparse assumption of 1 document published for every two nodes. These
values are identical to those in Figure 2 * 0.5.

We also found a Zipfian distribution of terms with a long tail of infrequent terms
(see Figure 3). Similar distributions have been found in P2Psystems for items such as
file frequency [6, 7] and term frequency [4]. The storage saving results we found were
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from words with frequencies greater thand, or those terms towards the head of this
distribution.

Fig. 3. Distribution of words by rank order within a movie corpus.

6.2 Query Experiments

We first conducted query experiments based on artificial queries chosen based on term
frequency. Figure 3 displays the rank order of all words within the 2000 document
corpus. We considered words of high frequency if they appeared in 30% or more of
the documents. There were 200 words in this category. Note that high frequency words
are not just “stop” words like “the”, “and”, or “a”, but can bespecific to the corpus.
For example, these words included movie specific terms such as “character”, “play”,
and “plot”. At the other extreme, we define low frequency words as those appearing
50 times or less (frequency 2.5% or less). The large majority of terms were within
this category due to the long tail of the term distribution. Finally, we assume medium
frequency words are those between these extremes.

We created paired terms (2 terms) of all permutations of these categories. This in-
volves words both with high frequency (HH), both of low frequency (LL), both of
medium frequency (MM), low high combinations (LH), low medium combinations
(LM), and medium high combinations (MH). Note that the orderof the words does
not impact the query algorithm as terms are first sorted by thequery algorithm based on
their frequency. For example, the low medium category (LM) is consequently equiva-
lent to the medium low one (ML).

Next, we generated 1000 artificial queries from each category. We studied how
many results were returned from each of the 4 search algorithms. The Structured Search
(SS) method published all terms and sent these indices between agents as necessary dur-
ing queries. The Unstructured Search (US) used no publishing and used a random walk
approach to find query results. The TTL=100 method used an unstructured search, but
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terminated after visiting 100 agents. Finally, the hybrid PHIRST approach implemented
the publishing and query algorithms described in this paper. In these experiments we
used a value ofd=75 in the PHIRST method.

Table 3. Comparing cost levels of SS, US, TTL, and PHIRST methods in LL, LM, LH, MM,
MH, and HH artificial queries.

SS US TTL=100 PHIRST
LL 1466 2000000 100000 1466
LM 2206 2000000 100000 2142
LH 3177 1987754 100000 2010
MM 20732 1865474 99953 13256
MH 60188 234211 95624 18075
HH 871986 19746 20077 19995

Table 3 displays the average number of nodes visited (in the case of unstructured
search) and / or the inverted list entries sent (for structured search) in finding 20 matches
from each query (T=20). For simplicity, we assume that the costs of visiting nodes
through unstructured search, and sending inverted list entries are equal, orCU = CS .
As expected, we find that Structured Search (SS) is most expensive in finding com-
mon terms; where Unstructured Search (US) is most effective. Conversely, SS is most
effective in finding rare terms. The hybrid PHIRST approach operates similarly to SS
in finding rare terms (LL) and US in finding common items (HH). Note that in mid-
dle categories (for example MH) this approach sent the leastamount of information.
PHIRST saves costs by only sending a maximum ofd entries even when structured
search is deemed necessary. Furthermore, this approach switches between the SS and
US methods as needed, saving additional costs.

The results in Table 4 display the number of query results returned from each
search algorithm. This result underlies the potential strengths and weakness within the
PHIRST method. Despite the lower costs of PHIRST, this approach was overall equally
effective in returning the query results. When word combinations were frequent, the
unstructured search component of the PHIRST method still found these results (thus
MH was still successful). At the other extreme, assuming theword frequency of any
term was less thand, at least one term was fully indexed. In these cases, complete recall
was also guaranteed if structured search is used on the indexed term(s) followed by un-
structured search to find all remaining terms. In these experiments, all terms taken from
the L category were in less thand documents (e.g. L values had 50 or fewer instances
whiled=75), resulting in full recall for all of these categories (LL, LM, and LH) as well.
As predicted in section 5, the query algorithm did have slight trouble in finding series
of terms of medium frequency. Note that the PHIRST method didreturn slightly fewer
results in the MM case (870 versus 874).

We found that this limitation was negligible in answering real world queries onced
was significantly higher than T. To verify this claim we used the 1000 most popular real
movie keywords taken from the Internet Movie Database Internet Movie Database4

4 (http://www.imdb.com/Search/keywords)
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Table 4. Comparing recall levels of SS, US, TTL, and PHIRST methods inLL, LM, LH, MM,
MH, and HH artificial queries.

SS US TTL=100 PHIRST
LL 3 3 0 3
LM 68 68 2 68
LH 11671167 47 1167
MM 874 874 93 870
MH 46264626 1180 4626
HH 50005000 4997 5000

taken from October 25, 2006. These queries were typically between 1 and 4 words
(mean 1.94).

Table 5 compares the number of results found from these queries with SS, US,
and TTL=100 methods, and the PHIRST method with d=75 with variable values for T.
Note that the PHIRST algorithm found nearly all results (99.89%) when only 5 results
were requested (T=5). PHIRST held up fairly well even when 20matches (T=20) were
required with 97.78% of all matches found. The recall of the PHIRST approach dropped
with T (92.77% at T=50, and only 33.23% at T=N). This confirms the claim that in real
queries the recall of the PHIRST approach will be nearly 100% for T << d (e.g., T=5),
but performed poorly once T>> d (e.g., T=N).

Table 5. Comparing recall levels of SS, US, TTL, and PHIRST methods with regard to different
numbers of results (T).

SS US TTL=100 PHIRST
T=5 4592 4592 2138 4587
T=20 15598 15598 3712 15252
T=50 30347 30347 4534 28154

T=2000105649105649 5254 35087

Table 6 displays the search costs for finding these real queries for the 4 algorithms
described in this paper assumingCS = CU = 1, and each agent stored only one docu-
ment. We again found the PHIRST approach had significantly lower search costs that
all three of the other approaches. Again, observe that the advantage to the PHIRST ap-
proach is most effective when d>>T. If T=5, the PHIRST approach has nearly 1/5 the
cost of the next best method (SS) (with a high recall of 99.89%). If T=20, its cost is
still nearly 1/3 that of the next best method (SS) (recall still high at 97.78%). If T=N,
the cost advantage of the PHIRST approach is under 1/2 from the next best method
(TTL=100) (recall only 33.23%).

7 Conclusion

In this work we present PHIRST, a hybrid P2P search approach that leverages the
strengths of structured and unstructured search. We present a P2P publishing algorithm
that insures that no agent can hold more thand entries in its inverted list of a given
term. This ensures that no one agent is required to hold disproportional amounts of
data. PHIRST is highly scalable in that every agent typically stores fewer entries as
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Table 6. Comparing cost levels of SS, US, TTL, and PHIRST methods withregard to different
numbers of results (T).

SS US TTL=100 PHIRST
T=5 57680 591841 86578 12006
T=20 686961181515 97735 24976
T=50 834351567039 99269 38744

T=20001587372000000 100000 68610

the number of agents grows. This allows us to partially indexall words in the corpus
while keeping storage costs low. We also present a querying algorithm that selects the
best search approach based on global frequencies of all words in the corpus. This al-
lows us to choose the best method based on estimated cost. PHIRST uses unstructured
search to compensate for the lack of published inverted listterms and structured search
to location rare terms.
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