An Architecture for Hybrid P2P Free-Text Search*

Avi Rosenfeld?, Claudia V. Goldmah, Gal A. Kamink&, and Sarit Kraus

! Department of Industrial Engineering
Jerusalem College of Technology, Jerusalem, Israel
2 Department of Computer Science Bar llan University, Rana,Gsrael
3 Samsung Telecom Research Israel, Herzliya, Israel
Email: {rosenfa, galk, safi@cs.biu.ac.il, c.goldman@samsung.com

Abstract. Recent advances in peer to peer (P2P) search algorithmsphave
sented viable structured and unstructured approacheallietext search. We
posit that these existing approaches are each best suitatifferent types of
queries. We present PHIRST, the first system to facilitdeette full-text search
within P2P networks. PHIRST works by effectively leveraglretween the rela-
tive strengths of these approaches. Similar to structuppdoaches, agents first
publish terms within their stored documents. However,dssd terms are quickly
identified and not exhaustively stored, resulting in a digantly reduction in
the system'’s storage requirements. During query lookugnisguse unstructured
searches to compensate for the lack of fully published teAdditionally, they
explicitly weigh between the costs involved with structiesd unstructured ap-
proaches, allowing for a significant reduction in query so$¥e evaluated the
effectiveness of our approach using both real-world anificai queries. We
found that in most situations our approach yields near peréeall. We discuss
the limitations of our system, as well as possible compengatrategies.

1 Introduction

Full-text searching, or the ability to locate documentseiasn terms found within
documents, is arguably one of the most essential tasks imliatrjouted network [5].
Search engines such as Google [16] have demonstrated #ogiwefhess of centralized
search. However, classic solutions also demonstrate tilkenlge of large-scale search.
For example, a search on Google for the word, “a”, currergtynns over 10 billion
pages [16].

In this paper, we address the challenge of implementingtéuxli searches within
peer-to-peer (P2P) networks. Our motivation is to demaistthe feasibility of im-
plementing a P2P network comprised of resource limited mnash such as handheld
devices. Thus, any solution must be keenly aware of theviiig constraintsCost -
Many networks, such as cellular networks, have cost ageabigth each message. One
key goal of the system is to keep communication coststtavdwar elimitations - we
assume each device is limited in the amount of storage itA@gsproposed solution
must take this limitation into consideratidDistributed - any proposed solution must
be distributed equitably. As we assume a network of agenktssirmilar hardware com-
position, no one agent can be required to have storage or comation requirements
grossly beyond that of other machines.

* This material is based upon work supported in part by the ISF.

To date, three basic approaches have been proposed faexukearches within
P2P networks [15]. Structured approaches are based oricclagsmation Retrieval
theory [2], and use inverted lists to quickly find query tertdewever, they rely on ex-
pensive publishing and query lookup stages. A second appi@aates super-peers, or
nodes that are able to locally interact with a large subsagehts. While this approach
does significantly reduce publishing costs, it violatesdiséributed requirement in our
system. Finally, unstructured approaches involve no phlvlg, but are not successful
in locating hard to find items [15].

In this paper we present PHIRST, a system Raer-to-PeeHybrid Restricted
Search forText. PHIRST is a hybrid approach that leverages the advastafystruc-
tured and unstructured search algorithms. Similar to &irad approaches, agents pub-
lish terms within their documents as they join or add documémthe P2P network.
This information is necessary to successfully locate hasfind items. Unstructured
search is used to effectively find common terms without exwerlookups of inverted
lists. Another key feature in PHIRST is its ability to restrthe number of peer ad-
dresses stored within inverted lists. Not only does thisiieghat the hardware limi-
tations of agent nodes are not exceeded, it also betteibdists the system’s storage.
We also present a full-text query algorithm where nodesieXlylreason based on es-
timated search costs about which search approach to usejmgdjuery costs as well.

To validate the effectiveness of PHIRST, we used a real wepuso[11]. We
found that the hybrid approach we present used significaesly storage to store all
inverted lists than previous approaches where all terme wablished [5, 15]. Next,
we used artificial and real queries to evaluate the systemartficial queries demon-
strated the strengths and limitations of our system. Théruectsired component of
PHIRST was extremely successful in finding frequent termd, the structured com-
ponent was equally successful in finding any term pairs wheteast one term was
not frequent. In both of these cases, the recall of our systamalways 10%. The
system'’s performance did have less than%0@call when terms of 2 or more words
of medium frequency were constructed. We present severapensatory strategies
for addressing this limitation in the system. Finally, t@kate the practical impact of
this potential drawback, we studied real queries taken figidB’s movie database
(www.imdb.com) and found PHIRST was in fact effective inwaasng these queries.

2 Redated Work

Classical Information Retrieval (IR) systems use a ceiatgdlserver to store inverted
lists of every document within the system [2]. These lists ‘anverted” in that the
server stores lists of the location for each term, and naieime itself. Inverted lists can
store other information, such as the term’s location in theusnent, the number of oc-
currences for that term, etc. Search results are then egtilnyintersecting the inverted
lists for all terms in the query. These results are then glficanked using heuristics
such as TF/IDF [3]. For example, if searching for the terrfesytily movie”, one would
first lookup the inverted list of “family”, intersect that dilwith that of “movie”, and
then order the results before sending them back to the user.

The goal of a P2P system is to provide results of equal gquaidifyout needing a
centralized server with the inverted lists. Potentialg tistributed solution may have

advantages such as no single point of failure, lower maimtea costs, and more up-to-
date data. Toward this goal a variety of distributed medrasihave been proposed.

Structures such as Distributed Hash Tables (DHTSs) are onetovdistribute the
process of storing inverted lists. Many DHT frameworks hagen presented, such as
Bamboo [13], Chord [9], and Tapestry [14]. A DHT could thenused for IR in two
stages: publishing and query lookups. As agents join thearkt they need to update
the system'’s inverted lists with their terms. This is dorretigh every agent sending a
“publish” message to the DHT with the unique terms it corgain DHT systems, these
messages are routed to the peer with the inverted list in Llogdé, with N being the
total number of agents in the network [9, 13]. During quegkiops, an agent must first
identify which peer(s) store the inverted lists for the degiterm(s). Again, this lookup
can be done in LogN hops [9, 13]. Then, the agent must rettimse lists and intersect
them to find which peer(s) contain all of the terms.

Li et al. [5] present formidable challenges in implementiagh the publishing and
lookup phases of this approach in large distributed neta:@kksuming a word exists in
all documents, its inverted list will contain N entries. Bhthe storage requirements for
these inverted lists are likely to exceed the hardwaretigsilof agents in these systems.
Furthermore, sending large lists will incur a large comngation cost, even potentially
exceeding the bandwidth limitation of the network. Becaofsthese difficulties, they
concluded that naive implementations of P2P full-text sleare simply not feasible.

Several recent developments have been suggested to makeextulistributed
system viable. One suggestion is to process the structesrdtsstarting with the node
storing the term with the fewest peer entries in its invelidThat node then forwards
its list to the node with the next longest list, where the te@me locally intersected
before being forwarded. This approach can offer significast savings by insuring
that no agent can send an inverted list longer than the onedshry theleast common
term [15]. Reynolds and Vahdat also suggest encoding ieddigts as Bloom filters to
reduce their size [12]. These filters can also be cached tcesthe frequency these
files must be sent. Finally, they suggest using incremeesallts, where only a partial
set of results are returned allowing search operationsitatfter finding a fixed number
of results, making search costs proportional to the humb&ocuments returned.

Unstructured search protocols provide an alternative ithased within Gnutella
and other P2P networks [1]. These protocols have no pubfisteiquirements. To find
a document, the searching query sends its query around thenke until a prede-
fined number of results have been found, or a predefined TTh€Tio Live) has been
reached. Assuming the search terms are in fact populagpipi©ach will be successful
after searching a fraction of the network. Various optirti@as have again been sug-
gested within this approach. It has been found that randolksveae more effective
than simply flooding the network with the query [8]. Furthems, one can initiate mul-
tiple simultaneous “walks” to find items more quickly, or ustate-keeping to prevent
“walkers” from revisiting the same nodes [8]. Despite thegtmizations, unstructured
searches have been found to be unsuccessful in finding rame [&].

In super-peer networks, certain agents store an invegetbli all peer documents
for which it assumes responsibility. Instead of publishingies over a distributed DHT
network, agents send copies of their lists to their assignger-peers. As agents are

assumed to have direct communication with its super-peaty, one hop is needed
to publish a message, instead of the LogN paths within DHTesys. During query

processing, an agent forwards its request to its super-pier then takes the inter-
section between the inverted lists of all super-peers. KMewehis approach requires
that certain nodes have higher bandwidth and storage daigstil 5] — something we

could not assume within our system.

Hybrid architectures involve using elements from multipfgroaches. Loo et al.
[6,7] propose a hybrid approach where a DHT is used withiresypeers to locate
infrequent files, and unstructured query flooding is usedrtd §iommon files. This
approach is most similar to ours in that we also use a DHT toififrdquent terms and
unstructured search for frequent terms. However, severaldifferences exist. First,
their approach was a hybrid approach between Gnutellapens (super-peers) and
unstructured flooding. We present a hybrid approach thageaerically use any form
of structured or unstructured approaches, such as randtia inatead of unstructured
flooding or global DHT’s instead of a super-peer system. 8ecin determining if
a file was common or not, they needed to rely on locally avlaiformation from
super-peers, and used a variety of heuristics to attemptttapmlate this information
for the global network [6]. As we build PHIRST based on a glddT, we are able to
identify rare-items based on complete information. Pdgsitost significantly, Loo et
al. [7] only published the files’ names, and not their cont@stthey considered full text
search to be infeasible for the reasons previously pred§siteheir system was limited
to performing searches based on the data’s file name, andatett within that data.
As our next section details, we present a publishing algarithat actually becomes
cheaper to use as subsequent nodes are added. Thus, PHIR®Tiist system to
facilitate effective full-text search even within largefP@etworks.

3 PHIRST Overview

First, we present an overview of the PHIRST system and hopuiltdishing and query
algorithms interconnect. While this section describes hoiermation is published
within the Chord DHT [9], PHIRST’s publishing algorithm iegerally presented in
section 4 so it may be used within other DHT’s as well. Sinhilasection 5 presents a
guery algorithm (algorithm 2) which generally selects tlestisearch algorithm based
on the estimated cost of performing the search algorithntseatiser’'s disposal. The
selection algorithm is generically written such that newarsh algorithms can be in-
troduced without affecting the algorithm’s structure. PHter, in algorithm 3 do we
present how these costs are calculated specific to the DHTrstductured search al-
gorithms we used.

In order to facilitate structured full-text search for eviefrequent words, search
keys must be stored within structured network overlays sischord. Briefly, Chord
uses consistent hash functions to create an m-bit idenfiffezse identifiers form a
circle modulo2™. The node responsible for storing any given key is found liggia
preselected hash function, such as SHA-1, to compute thevadise of that key. Chord
then routes the key to the agent whose Chord identifier islequa is the successor
(the next existent node) of that value [9]. For example, Fegliis a simple example

with an identifier space of 8, and 3 nodes. Assuming the kelydst® a value of 6, that
key needs to be stored on the next node within the circularespa node 0. Assuming
the key hashes to 1, itis stored on node 1.

o identifier
@ node

key

identifier

successor{6) = 0 E circle 2 successor{2) = 3

Fig. 1. An example of a Chord ring with m=3. Figure based on Chord pgje

The hashing quality within the Chord algorithm has severgiartant qualities.
First, it creates important performance guarantees, sutb@N average search length.
Furthermore, nodes can be easily added (joins) or removgdifts) by inserting them
into the circular space, and re-indexing only a fractiorhefpointers within the system.
Finally, the persistent hashing function used by Chord hagjtality that no agent will
get more than O(LogN) keys than the average [9]. We refer ¢ader to the Chord
paper for further details [9].

However, the DHT’s performance guarantees only balandiegnumber of keys
stored per node, but not the number of addresses storedimviréed lists for each key.
For example, Table 1, gives an example of the inverted lmtgife words. Common
words, such as “a” and “the” within the table, will produce chuong inverted lists,
than uncommon words such as “aardvark” and “zygote”. Dug#xs restrictions we
will only present up to the first 7 inverted entries for eachrdyamut of a potential
length of N rows. Balancing guarantees only apply to the nremolbwords (out of N),
but not the size of each inverted list (the length of that t@®@cause word distribution
within documents typically follow Zipf's law, some of the wds within documents
occur very frequently while many others occur rarely [4]amextreme example, one
node may be responsible for storing extremely common wardk as “the” and “a”,
while other nodes are assigned only rare terms. Thus, onedtagibution of this paper
is a publishing algorithm that can equitable distributesthentries by allowing agents
to cap the number of inverted list entries they will store.

Once the publishing stage has been begun, a distributelladsaxists to search the
network for full-text queries. We define the search task atirfima number of results,

Table 1. Example of several words (keys within the DHT), and theieied lists.

Word (key) Address]Address2Address3Address4AddressbAddressbAddress]
a111-1111112-1112111-1113111-1114111-111%111-1116111-1117
aardvark111-4323
thel111-1111111-1112111-1113111-1114111-111%111-1116111-111
700123-4214123-9714333-9714
zygote548-4342

T, that match all query terms within the documents’ text. @ag a query at T results is
needed within unstructured searches, as there is no glaaianism for knowing the
total number of matches [15]. Finding only a limited numbe&results has also been
previously suggested within structured searches to redogenunication costs [12].
The second key contribution of this paper is a novel quergiggrithm that leverages
between structured and unstructured searches to efflgcfine matches despite the
limit in the amount of data each peer stores.

4 The Publishing Algorithm

Every time an agent joins the network, or an existing ageshes to add a new docu-
ment, it must publish the words in its document(s) as desdrib Algorithm 4. First,
the agent generates a setofiz terms it wishes to add (line 1). Similar to other studies
[15] we assume that the agent preprocesses its documentéeeextraneous informa-
tion such as HTML tags and duplicate instances of terms. @iam or reducing each
word to its root form, is also done as it has been observedpodwe the accuracy of the
search [15]. Furthermore, as we detail in the ExperimenéaliRs section (section 6),
stemming also further reduces the amount of informatiordeddo be published and
stored. The publishing agemDgs,.rce, then sends every unique terffigrm;, to be
stored in an inverted list on peéDp st (lines 3-4). The keys being stored are these
words that are sent, with each word either creating a newtestdist, or being added
to an existing file. In addition to these terms, the agent ajsdates a counter of the
total number of documents contained between all agentsnitie system (line 4). For
simplicity, let us assume this global counter is stored anfitst agent/D;. We will
see that this value is needed by the query algorithm desthélw.

Algorithm 1 Publishing Algorithm(Document Doc)

. Terms< Preprocessed words in Doc

: for i =Termi to Termmas do

PUBLISH('erm;, I Dsource, IDDEST)

: PUBLISH(DOC-COUNTER+1] D1)

: for i =Term to Termyeceiveq dO

if S|ZE(IDDEST, Termi) < dthen
ADD-Term(I'ermi, I Dsource)

UPDATE-Counter{’erm;, COUNTER)

PHIRST's publishing algorithm enforces an equitable teistrithution by only stor-
ing inverted lists until a length of.. For every term nodel'erm; out of a total of

received terms,I Dpggr is requested to store it must decide if it should fulfill that
request. As lines 6 and 7 of the algorithm detail, assumirenefD pgs currently
has fewer thar entries forl'erm;, it adds the valud Dg,.... t0 its list (or creates an
inverted list if this is the first occurrence). Either waydes log that a certain number
of COUNTER instances of that term exist (lines 8). This informationsed by the
query algorithm to determine the global frequency of thisteBecause we limit each
node to only storing out of a possibléV terms, the storage requirements of the system
are reduced td* N from N* N. As we setd << N, we found this savings to be quite
significant.

Theoretically, additional information about each term nl@ypublished, such as
the position that term occurred or how many instances oftdrat existed within the
documentand aggregate this and similar information intdiag for the term it is about
to publish. This information may be especially importanewimore tham instances of
that term exist. The receiving agenf) p g s, could then decide whicliterm instances
to store by continuously sorting scores of the terms it had,raaintaining only those
with the topd highest rating. In a similar vein, if more tharinstances of erm, exist,
it may be advantageous to store tthenost recent documents, especially if turnover
exists within nodes.

The performance guarantees of DHT'’s such as Chord insurpuhlshing algo-
rithm runs with fairly low cost. Because each nodlB,s,,-.., needs LogN hops to find
the agent]/ Dp s, responsible for storing that term’s inverted list, thetotumber of
messages needed to publish a document is of @detax * logN') where max is the
number of terms in that document. Note that the publishiggrithm described here
sends all terms, even those which in fact do not need pubtidhécause they already
contained{ instances.

5 The Search Algorithm

The search algorithm is called once any agent wishes to abraddistributed full-text
search. As Algorithm 2 describes, this process operatewanstages. First, we re-
trieve the global frequencies of all search terms (line 1) sort all terms from least to
most frequent (line 2). This value can be calculated thrdaghing up the frequency

of that term COU NTER), and dividing this number by the total number of docu-
ments DOC — COUNT ER). Finding these values requires one lookup of the value
of DOC — COUNTER (assumed to be stored on agéii}; in the publishing algo-
rithm), as well as a lookup for the frequencies of each teomfthe agent storing term
Term;. Referring back to algorithm 4 note that the peer stofifagm; has a counter
with this value even if more thadinstances of this term occurred.

Once the frequency of all terms are known, the algorithm teasons about which
algorithm to select. This process iteratively calls theléif function which we de-
fine below (algorithm 3). If unstructured search is deemed keostly, all terms are
immediately searched for simultaneously (lines 7—10)sTpe of search can either
terminate because T matches have been found or the seamh lspabeen exhaus-
tively searched. If structured search is deemed less calstly term’s inverted list is
requested, and the search space is intersected with thag ofetv term (line 12). As-
suming we have reached the last term (lines 12-17) we reterfirst T matches found

Algorithm 2 Hybrid Search Algorithm(String Query; . . . Querymaz)

1: space<= oo {Used for initialization to all P2P nodgs

2: Retrieve Frequencies QJuery; ... Querymax

3: Term < Sorted Query Terms Least to most FrequgFerm is an array

4: for 1 = Termq to Termmaqs dO

5 Frequency= Product of FrequencieBerm; ... Termmaz)

6: Tradeoff< Calculate-Tradeoff(spac&erm; ... Termmas, Frequency)
7:

8

if Tradeoff> 0 then
while Found< T AND NOT Exhausted(spaceo

9: Search-Unstruct(spacEerm; . .. Termmaz)
10: Break
11: €dse
12: space= List(Term;) N space
13: if i=Termmaz then
14: if space> T then
15: return first T list entries
16: else
17: return all list entries

after all terms were successfully intersected. Once thetsired search identifies that
fewer matches than T matches were found (line 15) it retuitisteentries (line 17).
This algorithm has several key features. First, the seamtegs is begun starting
with the least frequent term. This is done following presw@pproaches [15] to save
on communication costs. We denote the inverted list lenfthedeast common search
term as lengthi{'erm;) where length is a function that returns the size of an imcert
list andT'erm; is the first term after the terms are sorted based on frequé&amh
successive peer receives the previously intersectedfidtlocally intersects this infor-
mation with that of its term (line 13). The result of this pess is that intersected lists
become progressively smaller (or at worse case stay the Siagjewith the maximum
information any peer can send being bounded by lefigth{:,). Second, one might
guestion why agents do not immediately return the entirerien list of the terms they
store, instead of first returning the term’s frequency. Tihidone because the infor-
mation gained from this frequency information, such as loiinn search costs to the
size of the least frequent term, far outweighs the seards aosolved with processing
the query in two stages. Finally, as the search goal is tanrétuesults, the last node
within a structured search does not need to return its @ntiegted list. Instead, it only
needs to send the first T results (or failure or NULL as in lirfeiflunder T results
exist). Because of this, the maximal structured searchwitidbe of order (nax-1) *
length(Term,) + T wheremax is the number of terms in the search query.
Arguably the most important feature of this algorithm isatsility to switch be-
tween using structured and unstructured searches midwaygh processing the query
terms. Even if structured search is used for the first terntifg) algorithm iteratively
calls the tradeoff algorithm (algorithm 3) after each te@nce the algorithm notes that
unstructured search is cheaper, it immediately uses tipioaph to find all remaining
terms. For example, assume a multi-word query containgaes@mmon and uncom-
mon words. The algorithm may first take the intersection efitiverted lists for all

infrequent words to create a ligt The algorithm may then switch to use unstructured
search withinf to find the remaining common words.

Similarly, note that this approach lacks a TTL (Time To LiVe) its unstructured
search. We assume unstructured searches are to be usedham\tive expected cost
of using an unstructured search is low (see algorithm 3 beMig expect this to occur
when the unstructured search will terminate quickly, suctviaen: (i) the search terms
are very common from the onset or (ii) unstructured searakeésl to find the remaining
common terms after structured search generated an invisttefl f terms.

We now turn to the search specific mechanism needed to igenttith search types
will have the higher expected cost. This tradeoff dependE @n the number of search
terms wanted, the costs specific to using the different tygfesearches, and or the
maximal number of inverted list entries published for eamimt Algorithm 3 details
this process as follows:

Algorithm 3 Calculate-Tradeoff(Space, T'erm; ... Termym,, Frequency)

: Expect-Visit< T / Frequency{ Number of nodes Unstructured search will likely visit
: COSTS«< Cy*(Expect-Visit) - Cs *(Sending(query-terms))
if COSTS> Othen
RETURN 1{pure unstructured seargh
: elseif COSTS< 0 AND Size(lerm;) < dthen
RETURN -1{pure structured search for this tefm
else
space<= List(T'erm;) N space
RETURN 1{Use unstructured afterwards because of lack of more vhlues

CxNARr®NE

First, the algorithm calculates the expected cost of cotggian unstructured search.
The expected number of documents that will be visited in astruntured search be-
fore finding T results is: T / term-frequency (line 1). For eqae, if we wish to find
20 results, and the frequency of the term(s) is 0.5, thiscbeiarexpected to visit 40
documents before terminating. We can compare this valueettoof using a structured
search, whose cost is also known, and is proportional toethgth of the inverted lists
that need to be sent. We assume there is someCpsassociated with conducting an
unstructured search on one peer. We also assume that som@scigsassociated with
sending one entry from the inverted list (line 2). Becausectist of unstructured search
is Cy * T / Frequency, and the cost of structured search is bounge&tst* ((maz-1)

* length(T'erm;) + T), the algorithm can compare the expected cost of botitkea
before deciding how to proceed (lines 3-6).

For many cases, a clear choice exists for which search #igoiio use. Let us
assume thaty = Cs = 1, and assume that all documents have been indexed, or
d=DOC — COUNT ER. When searching for common words, the cost of using the un-
structured search is likely to be approximately T. Procesie same query with struc-
tured search will be approximately the number of documedte(¢ — COUNTER)
or a number much larger than T. Conversely, for infrequembse say with one term
occurring only T times, the cost of an unstructured seardtb@iDOC —-COUNTER
or a number much larger than T, while the structured searttfomly cost a maximum

10

of T* max-1 + T. Finally, structured search is also the clear choicgteeries involv-
ing one term. Note that in these cases, no inverted lists toeleel sent{paz-1=0), and
only the first T terms are returned. The cost of using unatrectsearch will be greater
than this amount (except for the trivial case where the feagy of the term is 1.0).

There are two reasons why the most challenging cases ingolgges with terms
of medium frequency. In these cases, the cost of using bethkttbctured and unstruc-
tured searches are likely to be similar. However, the exgueitequency of terms is not
necessarily equal to their actual frequency. For exampélewhe words “new” and
“york” may be relatively rare, the frequency of “new york”ligely to be higher than
the product of both individual terms. As a result, the PHIR§proach is most likely
to deviate from the optimal choice in these types of cases.

A second challenge results from the fact that we only pubtishp tod instances
of a given term. In cases where inverted lists were publishigabut limitation, e.g.
d equalsN (DOC — COUNTER), the second algorithm contains only two possible
outcomes — either the expected cost is larger for usingtstrent search, or it is not.
However, our assumption is that hardware limitations pmegtoring this number of
terms, and/ must be set much lower than N. As a result, situations wileavwwhere we
wouldliketo use inverted lists, but as these files have incompletedsdihis approach
will fail in finding results in position d+. While other options may be possible, in these
cases our algorithm (in lines 7-9) takes theerms from the inverted lists, and conducts
an unstructured search for all remaining terms. In genasafound this approach will
be effective so long as the & d, or the relationship, K d << N exists. We further
explore the impact of this limitation in the next section.

6 Experimental Results

In this section we present experimental results used talatithe effectiveness of
the algorithms in this paper. As our research goal was tokcHd@HIRST is appro-
priate for medium sized newsgroups, we chose a corpus of Z#)Gnovie websites
to conduct our experiments [11]. The results from the pbbiig experiments demon-
strate that PHIRST actually becomes more feasible as manentkents and agents are
added to the network. We also created two types of query arpats. In one group
we created artificial queries based on the frequency of wdts experiment demon-
strated the theoretical strengths and weaknesses of PHIRSAlso studied real movie
queries based on the Internet Movie Database (www.imdb.cbhrese experiments
demonstrated that any weakness in PHIRST is likely to bgmniftant in handling real
queries.

6.1 Publishing Experiments

Recall that the publishing algorithm is based on storing aimam of d entries in

a given term’s inverted list. We simulated the publishinggass to study how this
parameter affected the average number of stored inverteédewith and without term
stemming. Figure 2 displays the average number of inveetmad (Y-axis) in groups of
50, 250, 500, 1000 and 2000 agents (X-axis). We assumedwbit agent published

11

1 document taken from the movie corpus [11]. In the left grapb used the Paice
stemming algorithm [10] on each term before storing it. Tightrgraph published each
term without stemming. In both graphs we also ran the pulbigshlgorithm withd=25
and 75.

350 400

300 |4 — 350
o Y 4
g \ ——Fully z n
2 250 : 9 = 300
e \ Published =g \
[200 8 E 250
% \ d=25 % 5 20
S 310 S &
[Ran o B 150
? 100 \ d=75 ¥ =
] T~ g~ 100
> >
< 50 < 50

il 0

50 250 500 1000 2000 50 250 500 1000 2000
Number of Nodes Number of Nodes

Fig. 2. Comparing publishing requirements of full publishing werpublishing limited tal=75.

Several interesting results can be seen from this grapst, Bin average stemming
saved approximately 50 words per document. This is becaesersng lumps similar
words, reducing the number of unique words occurring peudwnt. Second, note the
publishing algorithm has progressively larger storagéngmvas the number of nodes
grows. Assuming/=N, all terms will be stored, and no publishing gain will belreed
by using the PHIRST approach. However, assuniiirgkept fixed, the more documents
that are added, the gap betweémnd N grows. This results in progressively more
words exceeding thé threshold, and no longer needing to be stored. As a resaelt, th
publishing algorithm becomeawore scalable the more nodes that are added, making
full text search feasible even in very large P2P networks.

Table 2. Average number of inverted list entries if 1 document puidi for every 2 agents.

Number of Nodes 500 250 500 1000 2009
Fully Publishedi150.43151.51153.13153.1265157.8343
d=25138.8493.106 72.17 53.97 40.605
d=75150.43127.14105.72 84.3§ 67.035

Finally, in this experiment we assumed each node had 1 danum@ublish. We
also ran this approach with more dense (e.g. 2 document®pe) or more sparse (e.qg.
1 document every 2 nodes) network assumptions. As one wapkceg the number of
terms each node stores is proportional to the total numheoaés. For example, Table
2 shows the sparse assumption of 1 document published foy &ve nodes. These
values are identical to those in Figure 2 * 0.5.

We also found a Zipfian distribution of terms with a long tdiliofrequent terms
(see Figure 3). Similar distributions have been found in BRems for items such as
file frequency [6, 7] and term frequency [4]. The storagersgvesults we found were

12

from words with frequencies greater thdnor those terms towards the head of this
distribution.

1
0.4
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

H
0

Word Frequency

ML

1 2001 4001 ®001 8001 10001 12007 14001 16001 18001 20001 22001
Word Rank Position

Fig. 3. Distribution of words by rank order within a movie corpus.

6.2 Query Experiments

We first conducted query experiments based on artificialigsiehosen based on term
frequency. Figure 3 displays the rank order of all words imitthe 2000 document
corpus. We considered words of high frequency if they apmkar 30% or more of
the documents. There were 200 words in this category. Natehigh frequency words
are not just “stop” words like “the”, “and”, or “a”, but can kepecific to the corpus.
For example, these words included movie specific terms ssc¢hharacter”, “play”,
and “plot”. At the other extreme, we define low frequency vwes those appearing
50 times or less (frequency 2bor less). The large majority of terms were within
this category due to the long tail of the term distributiomaHy, we assume medium
frequency words are those between these extremes.

We created paired terms (2 terms) of all permutations ofetlvasegories. This in-
volves words both with high frequency (HH), both of low fresey (LL), both of
medium frequency (MM), low high combinations (LH), low madi combinations
(LM), and medium high combinations (MH). Note that the ordéithe words does
not impact the query algorithm as terms are first sorted bygtieey algorithm based on
their frequency. For example, the low medium category (L8gonsequently equiva-
lent to the medium low one (ML).

Next, we generated 1000 artificial queries from each cajegbe studied how
many results were returned from each of the 4 search algusitithe Structured Search
(SS) method published all terms and sent these indices betvggmmisas necessary dur-
ing queries. The Unstructured Searttsj used no publishing and used a random walk
approach to find query results. The TTL=100 method used amuatgred search, but

13

terminated after visiting 100 agents. Finally, the hybiitlRST approach implemented
the publishing and query algorithms described in this padpethese experiments we
used a value of=75 in the PHIRST method.

Table 3. Comparing cost levels of SS, US, TTL, and PHIRST methods inllM, LH, MM,
MH, and HH artificial queries.

SS US |TTL=100|PHIRST
LL | 1466 |{2000000 100000| 1466
LM | 2206 (2000000 100000| 2142
LH | 3177 (1987754 100000| 2010
MM | 20732|1865474 99953 | 13256
MH | 60188| 234211| 95624 | 18075
HH|871986 19746 | 20077 | 19995

Table 3 displays the average number of nodes visited (indke of unstructured
search) and/ or the inverted list entries sent (for str@ctgearch) in finding 20 matches
from each query (T=20). For simplicity, we assume that thstsof visiting nodes
through unstructured search, and sending inverted listesraire equal, o€y = Cs.
As expected, we find that Structured Search (SS) is most sikgeim finding com-
mon terms; where Unstructured Search (US) is most effedfieaversely, SS is most
effective in finding rare terms. The hybrid PHIRST approapbrates similarly to SS
in finding rare terms (LL) and US in finding common items (HH)t& that in mid-
dle categories (for example MH) this approach sent the l@astunt of information.
PHIRST saves costs by only sending a maximuna @ntries even when structured
search is deemed necessary. Furthermore, this approattinssvbetween the SS and
US methods as needed, saving additional costs.

The results in Table 4 display the number of query resultsrned from each
search algorithm. This result underlies the potentiahgfttes and weakness within the
PHIRST method. Despite the lower costs of PHIRST, this apgitavas overall equally
effective in returning the query results. When word combares were frequent, the
unstructured search component of the PHIRST method stilhdahese results (thus
MH was still successful). At the other extreme, assumingvibed frequency of any
term was less thad, at least one term was fully indexed. In these cases, coen@eall
was also guaranteed if structured search is used on thedddesm(s) followed by un-
structured search to find all remaining terms. In these éxpets, all terms taken from
the L category were in less thandocuments (e.g. L values had 50 or fewer instances
while d=75), resulting in full recall for all of these categoried (LM, and LH) as well.
As predicted in section 5, the query algorithm did have sligbuble in finding series
of terms of medium frequency. Note that the PHIRST methodetidrn slightly fewer
results in the MM case (870 versus 874).

We found that this limitation was negligible in answeringlr@orld queries oncé
was significantly higher than T. To verify this claim we uskd 1000 most popular real
movie keywords taken from the Internet Movie Database i@eMovie Databage

4 (http://www.imdb.com/Search/keywords)

14

Table 4. Comparing recall levels of SS, US, TTL, and PHIRST methodsLinLM, LH, MM,
MH, and HH artificial queries.

SS | US |TTL=100PHIRST
LL|{ 3 | 3 0 3

LM | 68 | 68 2 68

LH |1167116 47 1167
MM | 874|874 93 870
MH 46264629 1180 | 4626
HH 50005000 4997 | 5000

taken from October 25, 2006. These queries were typicaltwden 1 and 4 words
(mean 1.94).

Table 5 compares the number of results found from these epivith SS, US,
and TTL=100 methods, and the PHIRST method with d=75 withetée values for T.
Note that the PHIRST algorithm found nearly all results 8%) when only 5 results
were requested (T=5). PHIRST held up fairly well even whem2iches (T=20) were
required with 97.7% of all matches found. The recall of the PHIRST approach dedpp
with T (92.7% at T=50, and only 33.28 at T=N). This confirms the claim that in real
queries the recall of the PHIRST approach will be nearlyZ86r T << d (e.g., T=5),
but performed poorly once > d (e.g., T=N).

Table 5. Comparing recall levels of SS, US, TTL, and PHIRST methodkb végard to different
numbers of results (T).

SS US|TTL=100PHIRS
T=5 4592 4592 2138 4587
T=20 | 1559§ 15598 3717 15252
T=50 | 30347 30347 4534 28154

T=2000105649105644 5254 35087

Table 6 displays the search costs for finding these real egiéoi the 4 algorithms
described in this paper assumiafg = Cyy = 1, and each agent stored only one docu-
ment. We again found the PHIRST approach had significantigtsearch costs that
all three of the other approaches. Again, observe that tharddge to the PHIRST ap-
proach is most effective when=@>T. If T=5, the PHIRST approach has nearly 1/5 the
cost of the next best method (SS) (with a high recall of 9%B9f T=20, its cost is
still nearly 1/3 that of the next best method (SS) (recall kigh at 97.78%). If T=N,
the cost advantage of the PHIRST approach is under 1/2 frermétxt best method
(TTL=100) (recall only 33.2%).

7 Conclusion

In this work we present PHIRST, a hybrid P2P search apprdaghl¢éverages the
strengths of structured and unstructured search. We gra$¥2P publishing algorithm
that insures that no agent can hold more thaentries in its inverted list of a given
term. This ensures that no one agent is required to hold absptional amounts of
data. PHIRST is highly scalable in that every agent typycatbres fewer entries as

15

Table 6. Comparing cost levels of SS, US, TTL, and PHIRST methods wetfard to different
numbers of results (T).

S US|TTL=100PHIRS
T=5 | 57680 591841 86578 12006
T=20 | 68696118151% 97735 249764
T=50 | 834351567039 99269 38744

T=20001587372000000 100000 68610

the number of agents grows. This allows us to partially inadiéxvords in the corpus
while keeping storage costs low. We also present a querygugithm that selects the
best search approach based on global frequencies of alkvimttie corpus. This al-
lows us to choose the best method based on estimated cofSFHlses unstructured
search to compensate for the lack of published invertettlists and structured search
to location rare terms.

References

1. Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and Bhi&n. Making gnutella-like
p2p systems scalable. \GCOMM ' 03, pages 407—418, 2003.

2. L. Gravano, H. Garcia-Molina, and A. Tomasic. Glosst-source discovery over the internet.
ACM Trans. Database Syst., 24(2):229-264, 1999.

3. T. Joachims. A probabilistic analysis of the Rocchio &tge with TFIDF for text catego-
rization. InProceedings of ICML-97, pages 143-151, 1997.

4. Y. Joung, C. Fang, and L. Yang. Keyword search in dht-basea-to-peer networks. In
ICDCS’ 05, pages 339-348, 2005.

5. J. Li, B. T. Loo, J. M. Hellerstein, M. F. Kaashoek, D. R. Ker, and R. Morris. On the
feasibility of peer-to-peer web indexing and search. IrcPHBTPS, 2003.

6. B. T. Loo, J. M. Hellerstein, R. Huebsch, S. Shenker, amdStoica. Enhancing p2p file-
sharing with an internet-scale query processor. In Prangeaf VLDB, pages 432—-443, 2004.

7. B. T. Loo, R. Huebsch, I. Stoica, and J. M. Hellerstein. Thee for a hybrid p2p search
infrastructure, In Proc. IPTPS, 2004.

8. Q. Ly, P. Cao, E. Cohen, K. Li, and S. Shenker. Search ani¢aépn in unstructured peer-
to-peer networks. IhCS’02, pages 84-95, 2002.

9. R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan.or@hA Scalable Peer-to-Peer
Lookup Service for Internet Applications. ACM SGCOMM 2001, pages 149-160, 2001.

10. C. D. Paice. Another stemm@&lGIR Forum, 24(3):56-61, 1990.

11. B. Pang, L. Lee, and S. Vaithyanathan. Thumbs up?: sentiatassification using machine
learning techniques. IBMNLP '02, pages 79-86, 2002.

12. P. Reynolds and A. Vahdat. Efficient peer-to-peer keyveaarching. IMiddleware, pages
21-40, 20083.

13. S. Rhea, Dennis Geels, Timothy Roscoe, and John KuhiioWandling churn in a DHT.
In USENIX 04, pages 127-140, June 2004.

14. B.Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Josapld J. D. Kubiatowicz. Tapestry:
a resilient global-scale overlay for service deploymetEEE Journal on Selected Areas in
Communications, 22(1):41-53, 2004.

15. Y. Yang, R. Dunlap, M. Rexroad, and B. F. Cooper. Perfoicaaof full text search in
structured and unstructured peer-to-peer systemdEHE INFOCOM, 2006.

16. www.google.com

