
Bar Ilan University

Predictive Execution
Monitoring for Layered
Hierarchical Recipes

Mika Barkan

Submitted in partial fulfillment of the requirements for the
Master’s Degree in the Department of Computer Science

Bar Ilan University

Ramat Gan, Israel 2019

This work was carried out under the supervision of Prof.

Gal A. Kaminka. Department of Computer Science.

Bar Ilan University.

This work was carried out under the supervision of Prof.

Gal A. Kaminka. Department of Computer Science.

Bar Ilan University.

ACKNOWLEDGMENTS

First of all, I would like to express my sincere gratitude to my advisor,
Professor Gal A. Kaminka, for his support of my research, his patience,
knowledge, enthusiasm, and encouragement. He was always accessible and
willing to help me with my research and general life question as well - and
for that, I am very grateful.

Secondly, I also would like to thank my lab colleagues, both from MAV-
ERICK and SMART labs, who supported me and entertain me in the most
difficult moments.

Last, but definitely not least, I would also like to thank my family. My
grandfather for encouraging me to get the high education, my parents for
always believing that I am capable of anything and my brothers for listening
to all my problems with patience and love.

Contents

English Abstract I

List of Figures II

List of Tables III

List of Algorithms IV

1 Introduction 1

2 Background and Related Work 4

3 Recipes 10
3.1 Beliefs, Recipes, and Plans . 10
3.2 BIS algorithm: Executing layered recipes 13

4 Predictive Monitoring of Recipes 15
4.1 Predicting Execution Possibilities 15
4.2 Searching Possible Future Executions 17
4.3 Execution Paths . 18
4.4 Simulating Future Decision: Expanding an Execution Path . . 19
4.5 Starting Node . 23
4.6 Testing Unknown Values . 24

4.6.1 Optimistic Testing is Complete 24
4.6.2 Pessimistic Testing is Sound 25
4.6.3 Sound and complete testing is generally impossible . . 26

4.7 Complexity of the Base Algorithm 27

5 Improving Efficiency by Pruning the Search 32
5.1 Naive approaches for visited check methods 32

5.1.1 Completeness . 33
5.1.2 Halting . 33

5.2 How to address cycles in the graph 34
5.3 Successful Visited . 35
5.4 Cycle Avoidance . 39
5.5 Merging paths . 40
5.6 Relations between the visited methods 43

Contents 5

6 Improving the Run-Time of Repeated Calls 46
6.1 Extrapolating the changes in the path 46
6.2 The checks in repeated calls 47

7 Experiments with random plans 52
7.1 Experiment Environment . 52
7.2 Recipe Graph Structure . 53
7.3 Knowledge State Space Size 54

8 Experiments With a Nao Robot 58
8.1 Experiment Environment . 58
8.2 Acyclic recipe . 62
8.3 Cyclic Recipe . 67

9 Discussion 79
9.1 Revise Function . 79
9.2 No feasible paths . 79
9.3 Choosing between feasible paths 80

10 Conclusion 81

11 Bibliography 82

12 Hebrew Abstract 88

English Abstract

Execution monitoring allows agents to assess plan execution progress,
determine the need for re-planning, identify opportunities, and re-
evaluate their commitments. While there exists extensive literature
on execution monitoring of classical and HTN plans, monitoring of lay-
ered hierarchical recipes is typically myopic, discovering failures late
in the execution, even if a failure of a future step may already be de-
termined given the current knowledge of the agent. This thesis exam-
ines the task of predictive execution monitoring in layered hierarchical
recipes. It provides a base algorithm, and shows that its complexity is
super-exponential in the general case, even under mild assumptions. It
then discusses several methods to determine what nodes where visited
thus reducing the search space, and formally shows their completeness.
Then we explore how using the results of previous calls to execution
monitoring can help reduce the time to execute it again. It evaluates
these methods in hundreds of experiments, and on a NAO robot.

I

List of Figures

1 A recipe for a robot fixing the drawer. Dashed lines are hier-
archical edges (H) while solid lines are sequential edges (N).
Nodes are behaviors (B). 12

2 A flat recipe example . 29
3 BIS recipe example 2 . 44
4 Total runtime for (t=1) (Lower is better) 55
5 Number of finished runs when (t=1) (higher is better). Note

the scale on the Y axis changes dramatically between subfigures. 56
6 Number timeout and finished recipes for each prunning method 57
7 Total runtime for (d=1,b=5) (Lower is better) 57
8 Total runtime for (d=3,b=3) (Lower is better) 58
9 Total runtime for (d=3,b=5) (Lower is better) 58
10 A recipe for a Nao robot to fix the drawer. Dashed lines are

hierarchical edges (H) while solid lines are sequential edges
(N). Nodes are behaviors (B). 59

11 Mean time spent in lookahead (acyclic) 63
12 Sum number of iteration (acyclic) 65
13 Total number of iteration for all calls in one scenario (acyclic). 66
14 Iteration per decision point, flat recipe no issue. 68
15 Iteration per decision point, flat recipe screwdrive taken. . . . 69
16 Mean time spent in lookahead (cyclic, no issue) . . . 71
17 Mean time spent in lookahead (cyclic, screwdriver

taken) . 72
18 Sum number of iteration (cyclic) 74
19 Iteration per decision point (cyclic, no issue) 77
20 Iteration per decision point (cyclic, screwdriver taken) 78

List of Tables

1 Example run of lookahead on BIS RECIPE example 2. 45
2 Number behaviors in a recipe graph 52
3 Experiment with a Nao Robot 61

List of Algorithms

1 BIS . 14
2 Lookahead . 16
3 Expand PreCheck. 20
4 Expand InCheck. 21
5 Expand TermCheck. 23
6 Optimistic Test. 25
7 Pessimistic Test. 26
8 Successful visited . 36
9 Successful visited processing. 37
10 Cycle avoidance . 39
11 Merge paths. 41
12 Repeated Calls . 50
13 Get Changes . 51

1

1 Introduction

Agents do not only generate and choose plans for execution, they also monitor
the execution of plans and handle contingencies and opportunities [41, 39, 15].
The capacity for execution monitoring allows agents to assess the execution
of plans, determine the need for re-planning, identify opportunities, and re-
evaluate goal selection.

There exist many techniques for execution monitoring (see Section 2
for details). Model-free, anomaly-detection methods utilize behavioral
expectations—e.g., action duration—to monitor for failures [9, 4, 40, 33, 31,
13, 30]. Model-based monitoring methods use the plan as a model, identifying
validity conditions to be checked during execution [1, 5, 49, 10, 47, 27, 28,
29, 26, 50, 3, 24, 36]. These model-based methods are currently limited to
agents utilizing classical or HTN plans.

However, agents and robots in dynamic settings often use recipes, not
plans, to guide their actions[41]. Recipes encode procedural knowledge, and
succinctly represent multiple potential execution trajectories, with no com-
mitment to complete grounding nor total ordering of actions until execution.
Notably, while recipe actions have preconditions (which check applicability
just as in planning), they do not have effects (which allow projection of state
changes). Instead, recipe actions have termination conditions that convey
partial information, allowing the agent to decide to terminate the action,
but not the full state of the world upon termination.

This is a source for the succinctness of recipes, as each recipe succinctly
represents many potential execution trajectories. It also makes it easy to
dynamically compose them, e.g., by sequencing. The control loop contains
a perception step which updates the agent’s beliefs, commonly followed by a
decision step, where the agent decides on the next action to take based on
its revised beliefs (given the recipe). It may also revise its plans (re-plan or
attempt plan repair), or reconsider its goals. The process by which a future
step is re-examined with respect to current beliefs is generally unspecified.

In practice, this often leads to myopic execution monitoring and decision-
making [17, 46]. To facilitate reactivity, practical recipe execution systems
test current beliefs against preconditions of possible current actions allowed
by the recipe. But they generally do not test future subsequent actions
against this belief: First because the partial action models do not facili-
tate straightforward simulation of the combination number of future world
states and second, because there are combination number of paths through

2

the recipe proceeding from a certain behavior. As a result, decisions are
made late (when a current belief is tested in a current condition), instead of
early (when a current belief is tested in a future step). This characterizes
most forms of behavior-based control and procedural plan execution systems
used in robots [23], and many BDI (belief, desire, intention) architecture
implementations [43, 16, 21].

For example, consider a robot sent to fix a loose screw in a room con-
taining drawers. It is given a recipe for the task: (1) if you do not have a
screwdriver, go pick one from the tool-shed; (2) if you are not next to the
drawers, navigate to room A, then B, then C where the drawers are located;
and then (3) if you have the screwdriver, use it to tighten the screw. Each
of these steps includes many sub-steps(see Figure 1), which may or may not
be executed depending on the position of the robot and contingencies (for
instance, the robot may need to stop to cool off its motors1). With myopic
monitoring, if the robot drops the screwdriver during navigation, it will not
immediately go back to the tool-shed, as navigation only stops when room C
is reached. Only then will the robot test whether it is holding a screwdriver.
Had the robot been following a classical or HTN plan, it could have utilized
predictive monitoring for detecting this as early as possible. However, no
such methods exist for recipes.

This paper examines the task of predictive monitoring in recipe execution.
Such capability is related in principle to BDI planning [44, 48, 8], in the sense
that both tasks require prediction of future world states, based on simulation
of actions taken. However, predictive monitoring does not require making
ordering decisions, as the order of steps is constrained by the structure of
the recipe. Monitoring would seem to therefore require lighter computation;
alas, such is not the case.

We provide a base algorithm for predictive execution monitoring for
flat and hierarchical plan recipes. We show that its complexity is super-
exponential in the general case. We then discuss how to implement the
visited test, an important part of graph search algorithms that usually cur-
tails the complexity and make sure the same node will not be searched twice.
First, we show two different methods to compare our search node and ana-
lyze this method in terms of completeness (returning all feasible execution
paths) and whether the algorithm will halt with them.

We explore visited methods that will return simple execution paths, a

1This really happens with the NAO used in the experiments.

3

path where all vertices are distinct, instead of all feasible paths. We then
explore how to use the information already collected in previous calls to
monitoring, and show that repeated calls can use this information to reduce
the time execution monitoring takes. We evaluate these methods in various
combinations in hundreds of experiments, utilizing approximately 4000 hours
of modern CPU time. We show the algorithm in action, with a recipe for an
actual robot, and show the effect of the algorithm on the general run time in
real life scenario.

The baseline lookahead algorithm proposed in this paper adds predictive
monitoring capabilities to layered hierarchical recipes by searching the recipe
. The lookahead algorithm traverses this recipe and finds all paths that
are feasible according to the current knowledge. The agent will calls this
lookahead algorithm before choosing the next behavior. The decision of
which behavior to use next will be done with consideration of which paths
were deemed feasible by the lookahead.

4

2 Background and Related Work

Plan execution monitoring is a broad and active area of research [14, 1, 10,
47, 50, 39, 15, 3, 37]. The capacity for execution monitoring allows agents
to assess the execution of plans, determine the need for re-planning, identify
opportunities, and re-evaluate goal selection.

One general approach is model free monitoring. It relies on superficial
models of execution (e.g., by contrasting execution times with those previ-
ously observed, or by other means of anomaly detection) [9, 4, 40, 33, 31, 13].
While broadly useful, model-free monitoring only provides general indications
of failures, and does not guide the execution towards deeper diagnosis of the
causes.

Other execution monitoring methods utilize a model of the agent and
its interactions with its environment. For example, Khalastchi and Kalech
[30] survey model-based fault detection and diagnosis (FDD) methods. First
they survey different characteristic of robotics systems and analyze which
FDD are appropriate for the varying degrees of each characteristic. They
show that most execution monitoring of this crucial deliberation (decision-
making) step is done using the plan as a model, showing different method
using the plan as a model.

Bouguerra et al.[3] proposes execution monitoring using the models of
the domain, rather than the plan, to detect plan execution failures. There
work focus on ways to determine if an outcome of an action is as expected by
using domain knowledge to derive implicit exception of the actions outcome
from the explicit expectation. They first present an algorithm that gives a
boolean outcome, that is whether the action failed or succeeded and then
a probabilistic outcome giving probabilities to the possible outcomes. Once
an action is determined to have failed then they re-plan using the current
knowledge with consideration of the probabilities of the outcomes in the
probabilistic outcomes. Their work still relies on the effects, or probabilities
on multiple effects, of an action. Our work differs in a few ways: first we do
not seek to determine if the outcome of our action is has expected, in fact
rely only on a partial knowledge of the changes an action can have on the
environment. Neither we have probabilities on those possible changes. In
addition we are not only considering whether an action failed, but whether
there were additional changes to the state of the world regardless of the
success of the action that will never-the-less affect future steps in the recipe.
For example if the action taken was the moving of a robot from one location

5

to another and then dig a hole in that location, then the robot can very well
succeeded in the action and reach the location but if its shovel was broken
on the way the plan can no longer go has planned.

Cohen, Amant and Hart[5] analyze the trade off between early detection
of failure and detecting a failure when there is none (false positive). They
analyze results from a slack time envelopes, decision rules that warn of plan
failures, for path planning. They show a way to build such envelopes where
the rate of false positive is lower, this envelopes are based on distance re-
maining to the goal. The trade off between early detection on false positive
is determined by the slack, a period of no progress that they permit at the
beginning.

Howe and Cohen[22] uses analysis of execution traces of a planner to
better improve future iterations of the planner. They show that statistic
analysis of the multiple execution trace can give us interesting patterns and
determine if they are significant. Then, using domain knowledge, the patterns
are interpreted to produce better planners (or plans).

Plan-based execution monitoring methods use the plan as a model. It
extracts validity conditions to be checked during execution. These conditions
must be met for the plan to remain valid. If they fail, the agent may revise its
plan, reconsider its goal, or re-plan [14, 1, 49, 47, 10, 35, 50, 37, 36, 30]. Some
previous work is focused on the integration of execution and monitoring [14,
1, 10, 49].

Veloso, Pollack, and Cox [47] and later Pollack and McCarthy[35] dis-
cuss monitoring of plans in dynamic environments when the planing stage
is still separate from the execution stage. They address the changes to the
environment occurring in the planning stage, this stage can be over hours or
days and thus the environment can indeed change. They propose mechanism
that monitors the features of the state of the world that were instrumental
in the plan construction and effected the decision of choosing one action over
anther, i.e preconditions or usability condition (conditions that the robot
cannot change but can still effect the plan construction). The planner mon-
itors such features and if they change then it can trigger a re-planning. Our
work focuses on preforming monitoring during execution stage.

McIlraith and Beck[37] proposed algorithms for execution monitoring of
partial ordered plans. In there work they define conditions for partial ordered
plan viability in a given state (in STRIPS language). They then describe how
to check the viability of the partial ordered plan using regression from the goal
to the current plan. They seek but one linearization of the plan, an ordering

6

of the action in a specific sequence, if such exist then the partial ordered plan
is viable. They then analyze there methods by running it on different domains
from IPC. In there analysis they too encounter the exponential explosion of
the complexity once parallel execution of action is allowed.

Predictive execution monitoring of recipes requires the agent to project
its current knowledge forward in time, to simulate future execution paths
and decisions with respect to contingencies. [48] used a state-based planner
to generate totally-ordered execution paths, one at a time, as the basis for
BDI (belief, desire intention) recipes. In contrast, our work is concerned with
eliminating paths which can be deemed a failure, but still leave the decision
making to be reactive at the moment of choosing without committing to the
full execution path.

We focus on hierarchical recipes, somewhat similar to HTN (hierarchical
task network) plans [18]. We therefore survey related work in HTN planning.

Earl, Handler and Nau [12] formalize Hierarchical Task Network (HTN)
planning. HTN has three types of tasks. Goal tasks represent what needs
to be true in order for the goal to be achieved. Primitive tasks correspond
to actions and their effect on the world. Compound tasks represent higher
level tasks that can be achieved with a sequence of other lower level tasks (i.g
having a house can be done either by building a house or buying a house).
The tasks are connected with a task network that give the tasks, their order
and conditions to accomplishing this task network. HTN planning builds a
task network that achieves the given goal task. Erol et al. gives a procedure
for HTN planning that is both sound and complete.

HTN total-order planning with variables (closest to our setting) is in 2-
EXPTIME [11]. We show below that the number of execution paths grows
exponentially, even in flat recipes, with no cycles and no alternatives to be
considered. This is due to the partial description of actions in recipes (see
below).

Belker, Hammel and Hertzberg [2] used HTN planning to estimate the
outcome of actions in navigation tasks. This in turn allows the agent to
choose alternative actions (if available) that improve the projected outcome
over the original chosen action, and results in a considerable performance
improvement (42%). Encouraged by this, we seek to use predictions to im-
prove the execution of layered hierarchical recipes in general, not only in
navigation.

HATP (Hierarchical Agent-based Task Planner) is an HTN planner built
to suit robotics problems [32]. It includes a domain representation language

7

for that purpose. This domain representation language is built in a way that
allows to represent different agents in the environment and distinguish be-
tween them and objects. This allows for planning for several agents, though
synchronization during execution is still needed. As HATP is an HTN plan-
ner it includes HTN style lookahead capabilities. However, HATP does not
include the execution of the plan or the synchronization between the agents.
This work intends to use lookahead during execution and not create a plan
in advance. We intend to use the knowledge gained in the lookahead for
decision making in real-time.

BDI is a well-known architecture used for incorporating deliberation with
execution in agents . BDI has also been used in robot agents . However, BDI
does not have a built in mechanism for planning. Lookahead and planning are
desired capabilities in decision making. It can give additional and sometimes
even critical information when choosing the next action.

BDI recipes are also very often hierarchical. Thus execution monitoring
of hierarchical plans is relevant to BDI systems. [6] have shown the close
similarities between BDI systems and HTN planning . In their work they
compare the run-time of an HTN planner and BDI system in both static
and dynamic environments, using the blocks world environment. Their work
shows that the BDI system has better results both in the static environment
and the dynamic one. However, the problems are created in a way that
there is no need for an HTN-style lookahead (prediction). This is done since
BDI does not have the capabilities to do so. In contrast, such capability for
prediction is exactly what we seek to investigate.

Tambe and Zhang [46] use predictive monitoring in the context of multi-
agent teams, which work for long period of times and need to reason about
future resource allocation, rather than just the resources needed for the im-
mediate goal. Each member of the team calculates the expected utility of
an action suggested to be selected. This action is specifically a coordination
action between the different team members. In contrast, we use lookahead
capabilities to reason about action choices (including their resources) and see
future implication not just for a certain action but all actions.

De Silva and Padgham [7] proposed a mechanism for on-demand planning
in BDI system. In their work, the programmer can specify places during
run-time, where an HTN planner should be run. The planner derives its
knowledge from the BDI goals and plan library, as well as the beliefs of the
agent at run time, relying on the similarities between BDI systems and HTN
planning. Our work uses lookahead automatically without the programmers

8

needing to do anything. However, in this paper we do not examine the
question of selective execution of the monitoring system—instead we focus
on its operation once invoked.

Walczak et al. [48] augmented a BDI system with a simple state based
planning. The BDI controller invokes the planner whenever the planes in
the plan library are not sufficient to satisfy the goals. Our intention is not
to create plans but use the already existing plans to estimate the current
actions influence in the future regarding the information the agent already
has. Their work can handle situation where a new plan needs to be created,
in this situation our system will fail to achieve the goal.

Sardina, de Silva and Padgham [44] used HTN planner to add lookahead
capabilities to BDI for planing purposes. As in [6] the HTN planner derives
its knowledge from the plan library of the BDI agent and its beliefs. The
HTN planner is invoked and does a full lookahead search. If a plan is found
then the BDI agent will follow it until goal is reached or until a step in the
plan is no longer possible. Detection of such a failure occurs late. They
make the assumption ”that agents are coherent—only the environment or
other concurrent intentions may make the failure condition of a goal-program
true”[44, p.5]. When dealing with robots we cannot make this assumption,
the outcome of an action is not always guaranteed. To address this, the
algorithms we present attempts to provide early detection of failures.

Sardina, de Silva and Padgham [8] worked on integrating first principle
planning in BDI. They created an algorithm for creating hybrid planes. These
plans included abstract operators, which can be mapped to BDI goals. This
allowed the BDI system to choose a plan from the plan library, whenever
such operators existed in the created plan. In that manner they are using
BDI plan selection and failure recovery. Our system still cannot create such
new plan. We are focusing first on using knowledge inherited in the existing
plans, to drive the best course of action from the possibilities given.

De Giacomo, Patrizi and Sardina [20] devised a technique to create a
controller for a goal behavior from available behaviors. In their work behav-
ior stands for any artifact that can operate in the environment, this means
that different robots can be represented as behaviors. Their technique cre-
ates something they call ”controller generator”, that represents all possible
compositions. This is similar to a recipe that represents the different ways of
achieving a goal. De Giacomo et al. indeed show that composition problem
are more similar to a generalized type of planning for maintaining a goal.
Thus their technique efficiently deals in a non-deterministic environment,

9

and maintaining goals. Their work creates the controller from the set of
available behaviors, unlike ours that receives the recipe form the program-
mer. However, they assume fully observable world, something that is rarely
true in the robotics field.

Ramirez, Yadav and Sardina [42] showed that solving behavior compo-
sition problem, is akin to finding ”a strong-cyclic plan for a special fully-
observable non-deterministic planning problem”[42, p.180]. They solve this
using a technique that dynamically define a goal to reach, that then allows
the plan to be executed infinite times to maintain the goal. While as with
[20], they create a plan, rather than get it from outside source, this tech-
nique is still dealing with a fully observable world, as with maintaining a
goal. Our algorithm deals with a partially observable goal, and is intended
to work without knowing whether the robots goal is maintain a certain goal
or simply achieve a goal.

10

3 Recipes

We start by clarifying our view of recipes. A recipe encodes procedural knowl-
edge. It specifies multiple possible executions and orderings, and actions that
are not fully instantiated (grounded). These are built to cover multiple pos-
sible contingencies, but are not a full pre-planned policy that covers every
possible state. Indeed, systems utilizing recipes are built to detect recipe
failures, and are built to replan if needed. Recipe execution systems work
by presenting the agent with a recipes that may be relevant to its task, and
allowing it to choose how to ground the recipe and instantiate it so as to
turn it into a grounded plan. The process typically proceeds incrementally.
The agent instantiates, executes, and monitors only the current step in the
recipe. It does not project ahead the current knowledge of the agent, and
thus only checks the preconditions of immediately-following plan-steps.

In contrast, we focus on predictive execution monitoring of hierarchical
recipes. The goal here is to detect branches in the recipe which can be
predicted to fail under current conditions, as early as possible—well before
the agent faces the opportunity to select them. This is difficult given that
their grounding is not yet complete, and also given that recipes have subtle,
but critical, differences compared to classical or hierarchical plans.

3.1 Beliefs, Recipes, and Plans

An agent utilizing recipes maintains a knowledge-base of beliefs, which are
revised and modified during the operation of the agent. Beliefs are fluents,
represented as tuples. Each belief is a tuple 〈k, v〉, where k is a unique key
(the fluent name and parameters) and v is its value. The collection of all
such tuples is the knowledgebase of the agent. For simplicity, we consider
values of >, ⊥, and ? (for true, false, and unknown).

A recipe is an augmented connected directed graph, defined by a tuple
〈F,B,H,N, b0〉. F is a set of keys and their possible values (i.e., the space
of fluents that may appear in the knowledgebase). B is a set of vertices
representing behaviors (see below). b0 ∈ B is the behavior in which execution
begins. H is a set of hierarchical task-decomposition edges, which allow
a higher-level behavior to be broken down into lower level behaviors, until
reaching a primitive behavior. N is a set of sequential edges, which constrain
the execution order of behaviors: Given b1, b2 ∈ B, a sequential edge from
b1 to b2 specifies that b1 must be executed before executing b2. Sequential

3.1 Beliefs, Recipes, and Plans 11

edges may form circles, but hierarchical edges cannot.
Behaviors change the values of beliefs in the knowledge-base, and its state

in the world (e.g., a command to move forward, changing its position in the
world). For every behavior b, we have preconditions (preconds(b)), a set of
beliefs that need to be true in order for this behavior to be selectable by the
agent; termination conditions (termconds(b)), a disjunction of beliefs that
signals that execution of the behavior should terminate (typically, because
of the achievement of the behavior goal, or its failure); and support keys
(support(b)), a set of keys for beliefs whose value might be changed by the
behavior.

An example for a recipe, for a robot trying to fix the drawer from section
1 can be found in Figure 1. The recipe works as follows, we start by assessing
the location of the robot, if the robot is in the start point then it will move
forward using the behavior from init, otherwise it will choose the behavior
of face west to turn until the robot is facing west, that is because the tool
shed is the farther west point in the robots environment. After going to the
tool shed the robot will pick a screwdriver if it is not holding one already,
otherwise it will move towards the resting point (if the robot does not rest
then its motors warm up and it collapses). Notice that reaching the resting
point can only be achieved by first visiting the tool shed, thus reaching the
resting always follows the same steps, turning east then moving forward until
reaching the resting point and then resting. The termination condition to
leave the resting point is if the robot rested. After resting the robot moves to
the drawer location, which is located at the farthest east point in the robot
environment, and then moves forward. If the robot is already facing east
then it will just move forward. Notice that all the behaviors are children of
initiate. Initiate is given as b0 for this recipe. In this paper we used recipes
that have a root behavior and a end behavior, in this case mission completed,
that was done so we will always have a behavior that signify the success of
the goal.

We emphasize that while recipes may look similar to HTN plans [19, 12],
the definition of higher level behaviors is different. In HTN a compound task
is not directly executed by the agent, but instead is decomposed into other
tasks, such that actions are carried out only by primitive, non-decomposed
tasks (the leaves of the HTN hierarchy). In contrast, here a higher level be-
havior is a program in and of itself, executed by the agent to affect change,
in parallel to its task decomposition children behaviors. Thus after choosing
a behavior and its decomposition, all the behaviors in the hierarchy work

3.1 Beliefs, Recipes, and Plans 12

Figure 1: A recipe for a robot fixing the drawer. Dashed lines are hierarchical
edges (H) while solid lines are sequential edges (N). Nodes are behaviors
(B).

simultaneously. Indeed, it is entirely plausible that a higher level behavior
has reached its termination conditions before its children. In this case, that
behavior along with all its children (every behavior lower then it in the hierar-
chy) is stopped. This means that a behavior can be stopped before reaching
its termination conditions. This type of layered-parallel execution is not as
common in HTN planning systems, but quite common in agents and robots.
This type of layered-parallel execution is used in Soar [38], BITE [25], and
many other systems.

Another important difference between layered recipes and HTN plans is
that recipes do not assume that the agent is the only cause of change in
the world (i.e., the environment is static). Indeed, two types of conditions
(for both preconditions, or termination conditions). An external condition
tests a belief that may change regardless of the robot action. In contrast, an
internal condition tests a belief whose value may change based on an action
(behavior) of the robot. A condition that is both internal and external is by
definition internal.

To illustrate, a robot waiting for a stop light to change cannot do anything
to change it. Thus a condition testing whether a stop light shows green is
an external condition. In contrast, a robot capable of moving can change its
position. A condition testing the current position is internal2.

2As an aside, we note that internal conditions can be identified by the presence of their
keys in the support keys of a behavior or its children.

3.2 BIS algorithm: Executing layered recipes 13

3.2 BIS algorithm: Executing layered recipes

The BIS algorithm (Alg. 1) executes layered recipes of the type described
above. The algorithm receives a recipe, a choosing mechanism for behaviors,
procedures to revise the knowledge base and test conditions. The algorithm
is based on BDI architect, and interleave between planning and execution.
The agent executes a recipe by matching its beliefs against the preconditions
of behaviors, and selecting between matching behaviors for execution. A se-
lected behavior logically allows one of its hierarchical children to be selected
(if their preconditions hold), and so on until no child behavior is available
whose preconditions match. Execution commences: the agent continually
perceives the world, revising its beliefs, and matching them against the ex-
ecuting behaviors’ termination conditions. If they match, execution of the
behaviors stops, and the agent re-evaluates its goals (possibly choosing a new
recipe), and the behavior selection begins anew, considering behaviors that
can be reached via sequential edges.

When the agent starts (by selecting the behavior b0 for execution line
3), it first engages in hierarchical decomposition, until a complete hierarchi-
cal path through the behavior graph—b0 through hierarchical edges, to an
atomic behavior ba is selected (lines 4–8). This path is added to the stack.
During this process, the preconditions of sub-plans (which begin execution
chains) are matched against the world model, to determine whether sub-
plans are selectable. The robot chooses among alternative decompositions.
Execution of the selected behaviors then commences (lines 9–10). The termi-
nation conditions of all running behaviors are continuously matched against
the world model, which is itself continuously updated by the perceptual pro-
cesses, and optionally by the behaviors themselves writing to internal state
variables (lines 12–15). Once one or more of the behaviors signals it is ready
for termination, its execution stops, as well as that of its running children
(lines 16–20). The robot then chooses from enabled behaviors next in the
sequence (if any)(line 24), or goes back to the parent behavior which is still
running (line 11).

3.2 BIS algorithm: Executing layered recipes 14

Algorithm 1 BIS

Require: Plan P = 〈B,H,N, b0〉
Require: Knowledebase W
Require: Choice Procedure Choose
Require: Condition Testing Procedure Test
Require: Belief Update Procedure Update
Require: Belief Revision Procedure Revise
Require: Start Execution Procedure Start
Require: Stop Execution Procedure Stop

1: S ← ∅ . New execution stack
2: b← b0
3: Push(S,b)
4: while ∃n, where (b, n) ∈ H do . b can be decomposed
5: A← {n|(b, n) ∈ H} . children of b
6: C ← {a|a ∈ A,Test(preconds(a),W)}
7: b← Choose(C,P, S,W) . Choose among C behaviors
8: Push(S,b)

9: for all s ∈ S do . Start execution of all behaviors in S
10: if s not running Start(s)

11: E ← ∅
12: while E = ∅ do . E is the set of terminating behaviors
13: K ← Update(W)
14: W ← Revise(W,K)
15: E ← {a|a ∈ S,Test(termconds(a),W)} . Check termination conditions

16: while E 6= ∅ do . Stop and pop all terminating behaviors and descendants
17: e← Pop(S)
18: Stop(e)
19: if e ∈ E then
20: E ← E − {e}

21: A← {n|(e, n) ∈ N} . sequential followers of e, topmost terminating behavior
22: C ← {a|a ∈ A,Test(preconds(a),W)}
23: if C 6= ∅ then . There are potential followers
24: b← Choose(C,P, S,W) . Choose among C behaviors
25: Goto 3
26: b← Peek(S) . No potential followers, continue with parent
27: if b 6= ∅ then
28: Goto 11
29: Halt.

15

4 Predictive Monitoring of Recipes

4.1 Predicting Execution Possibilities

During execution, the agent may eliminate potential execution paths that
are no longer feasible, given its current beliefs. Trivially this means ruling
out behaviors whose preconditions cannot be met.

However, looking ahead can give more information when choosing the
next action. In cases where an action can have undesirable or irreversible
effects that prevent the agent from reaching its goal, it is not just useful but
necessary. For example, a robot has a task of fixing a drawer with a loose
screw. First it needs to go to a toolbox and take a screwdriver, then it walks
to the drawer and screws the screw in. In the middle of the way the robot
needs to rest since its motors get too hot. If the screwdriver is taken by
someone at that point, the robot needs to go back to the toolbox and take
a new one. Without execution monitoring the robot will find out that the
screwdriver was taken only when it reaches the drawer.

While there are previous works that add this capabilities to robot decision
making in general [32] and in particular to agents using layered hierarchical
recipes [44], they where done using HTN planning. While there are noticeable
similarities between hierarchical and layered recipes, there are also important
differences.

Looking ahead in a recipe is a challenge. Recipe behaviors have only
partial effects in the form of a termination conditions, but no way of predict-
ing which termination condition will occur. The support keys hint at what
beliefs might change but not how. A simple traversal of the recipe paths
does not yield a complete simulation of the the changes to the world state,
as it may do in plans. Moreover, higher level behaviors in recipes can affect
the state of the world in parallel to their sub-behaviors, unlike HTN where
only the primitive actions, the leafs of the network, can effect changes in the
world. This means that there are more possible intersection in the search
that changes the state, thus adding more complexity to the search.

Predictive execution monitoring begins with (i) a recipe, (ii) the current
execution state in the recipe (that is, which behaviors are currently running),
(iii) the current knowledge-base of the agent (iv) the last behavior that ter-
minated. It then deduces, given the knowledge-base, whether any future
behaviors can be shown to be un-selectable, even given potential changes to
the beliefs of the agent, by behaviors possibly preceding this future behavior

4.1 Predicting Execution Possibilities 16

in the execution. To do this, the monitoring system considers possible paths
in the graph, from the current vertices, and projects potential changes to the
beliefs, which may prove a behavior’s preconditions to be false in all settings,
hence the behavior is unselectable in the future, given the current knowledge
of the agent.

Algorithm Lookahead (Alg. 2) searches the space of possible recipe exe-
cutions. Each discrete point in this space is a combination of a valid path
through the recipe graph (along hierarchical and sequential edges), coupled
with the knowledge-base which holds at the end of the path. With each search
iteration, the algorithm considers extending the path structurally. Each such
expansion can involve multiple possible knowledge-base revisions. Thus each
search iteration results in multiple discrete points in the search space, to be
considered. We describe the process in detail below.

Algorithm 2 Lookahead

Require: The Recipe P = 〈F,B,H,N, b0〉
Require: Current behavior bc
Require: Current Stack S
Require: Knowledgebase W
Require: A function to create the next states Expand
Require: A function to revise the knowledgebase Revise

1: Q← EmptyQueue()
2: successful paths← ∅
3: visited← ∅
4: pstart ← 〈S.pop,W 〉↓〈S.pop,W 〉↓...↓〈S.pop,W 〉↓〈bc,W 〉
5: Add(〈bc,W, pstart, termCheck〉, Q)
6: while Q 6= ∅ do
7: q ← pop(Q)
8: if checkIfLeaf(plan, q.b) then
9: add(q.path, successful paths)

10: Goto 6
11: E ← Expand(q, P,Revise, Test)
12: for all e ∈ E do
13: if e /∈ V isited then
14: Add(e,Q)
15: Add(e, visited)

16: return successful paths

4.2 Searching Possible Future Executions 17

4.2 Searching Possible Future Executions

The algorithm receives the following functions:

• Revise: Belief revision procedure described in Section 4.6

• Expand: This function returns the next states, i.e search nodes, in
accordance with the test type of the current search node. The functions
to expand search nodes can be found at Section 4.4

• Visited: This function decides which search nodes is considered as
visited and will not be added to the queue(Section 5)

The algorithm proceeds by iterating over a queue of execution traces to be
considered. Each element in the queue is a search node 〈b, w, p, c〉, where b is
the current behavior (vertex) in the graph, w is the current knowledgebase, p
is an execution path (see below), and c is the expansion type to be considered.
In each iteration, a new search node q is taken from the queue (line 6). If
the behavior b associated with it is a leaf (structurally, has no outgoing edges
and none of its parents has outgoing edges) then it is a possible termination
of the execution, and the path leading to it (q.path) is added to the set of
successful executions (lines 7–9). The algorithm halts when the queue is
empty.

Alg. 2 stops expanding a search node and adds its execution path to
the successful paths list, when it reaches a terminal behavior in the recipe
graph: a behavior that has no sequential followers, no hierarchical children,
and whose hierarchical ancestors do not have any sequential followers. We
assume that a recipe has at least one such behavior.

In addition, notice that p is never considered when deciding how to ex-
pand, thus it has no sway over the expansion. The reason the path is part
of the state is in order to keep the history of how we got here, since we are
not looking for one path to a behavior, but rather all paths to the terminal
behavior.

The expansion of the search occurs in lines 10–14. First (line 10), the
algorithm asks for the set E, all possible expansions of the current search
node q, by structural and belief revisions (the EXPAND method is explained
in section 4.4. This set is then checked against the already visited search
nodes (line 12) , to reduce the number of such expansions (this key step is
the subject of Section 5). Then, the new nodes are put on the queue and
marked as visited, so they do not get expanded again (line 14).

4.3 Execution Paths 18

The search bears some similarity to a BFS search through a graph. How-
ever, it does not stop when we found a single path to a target behavior, but
continues examining other paths, to other behaviors. Indeed if there is no
precondition elimination then we will traverse all the behaviors and all the
edges (hierarchical or sequential) of the recipe graph. Moreover, as we dis-
cuss in detail below, the presence of both hierarchical and sequential links,
which carry different execution semantics (parallel and sequential, resp.) is
also a significant challenge.

4.3 Execution Paths

Each search node q contains a valid possible execution path. This path records
a potential execution trace (behaviors and beliefs), beginning with the agent’s
beliefs and behaviors when Alg. 2 was called. The execution path contains
a sequence of behaviors selected for execution by the executive (BIS), in
response to possible revisions to the knowledgebase, made by behaviors.

An execution path p is an ordered sequence of execution elements. This
element is itself an ordered sequence of tuples 〈b, w〉 where b is a behavior and
w is the knowledgebase in effect when b was selected. An execution elements
represent one hierarchical decomposition of a behavior. Thus each b in a tuple
is the child of the behavior directly preceding it. That child does not have
to be a direct child (by hierarchical edge), but can be a sequential follower
of a child. In this case w is the knowledgebase created after the termination
conditions of the previous child. We denote hierarchical decomposition by ↓
and sequential edges by →. Thus the execution element does not just give
us the structural decomposition, but also the changes of the knowledgebase
during the parallel execution of lower level behaviors.

For example, we look at the BIS recipe in Figure
1. An example execution trace p in this recipe may be
(Initiate|w0)↓(tools shed|w0) → (Initiate|w0)↓(pick screwdriver|w1) →
(Initiate|w0)↓(resting point1|w2)↓(face east rest1|w2). In this case we
have three execution elements, which took place in sequence:

• First, the executing agent executed behaviors Initiate, concurrently
with its child behavior tools shed. At the time, the agent had specific
beliefs collected in knowledge base w0.

• Then, the beliefs of the agent have changed (resulting in w1), and the

4.4 Simulating Future Decision: Expanding an Execution Path 19

agent terminated tools shed and selected a different child of Initiate,
called pick screwdriver.

• Finally, the beliefs of the agent changed again (w2), resulting in the
selection of the behavior resting point1, which itself has an executing
child face east rest1.

We denote last(path) to be the last execution element in this path (i.g
last(p) = (Initiate|w0)↓(resting point1|w2)↓(face east rest1|w2)). We also
define subtraction between execution element of a path and a behavior in the
path. The difference is the element until the last place where the behavior
appeared. For example if we take last(p) and subtruct resting point1 we
get: last(p)\(resting point1) = (Initiate|w0). A subtraction of a behavior
from a path is done in the same way. It will be reduced until the first time
in the path that this behavior was encountered.

Notice there is a difference between an execution path and a graph path.
A graph path (from this point on, denoted gpath) is a sequence of behaviors
where each behavior is connected to the previous one either by hierarchical
edge or sequential edge (i.e., a path in the recipe graph). An execution path
(from this point on, denoted xpath) is a graph path with the addition of the
knowledgebase holding when each behavior was selected for execution.

4.4 Simulating Future Decision: Expanding an Execu-
tion Path

The role of the Expand procedure is to simulate the effects of all possible
executions of a behavior. Given a search node q to expand, the procedure
checks the expansion type specified in q, and generates new search nodes
to be put on the queue (if not previously visited). Each of these revises
q in some fashion, in accordance with the execution logic described above,
but without having access to a full model of the behavior. There are three
possible expansion type (PreCheck, TermCheck, InCheck), described in detail
below. We remind the reader that q contains the xpath p, the behavior b to
be expanded, and the knowledgebase w assumed to hold currently.

Each expand type will rely on at least one of these two procedures:

1. Revise, which generates a new knowledgebase w′ from the existing w
and a set of new beliefs B. For example, by overiding belief values in
w with new values from B.

4.4 Simulating Future Decision: Expanding an Execution Path 20

2. Test, which carries out the matching of the preconditions of behaviors
f against the revised w′.

(i) PreCheck : Select hierarchical child. Given that b was selected for
execution, one or more of its hierarchical children may be selected for exe-
cution. Algorithm 3. describes the process. The precoditions of all children
behaviors (reached by following a single hierarchical edge from b) are tested
against w (lines 2–4). In actual execution, only one would get selected. But
as we are simulating all possible executions, each possible matching child bi
(indeed, each possible combination of matching conditions, for each matching
child) would be a possible expansion of the current xpath. This is done by
generating a new search node for each match: a node in which w is the same,
but the xpath was amended to include b↓bi at the end of the last element
(line 4). Finally, the behavior b must also be expanded as it modified its
beliefs during its own execution (remember, b runs in parallel to any child
bi). Thus a final new expansion duplicates the original node, but with the
type of expansion set to InCheck (see below) in line 5.

Algorithm 3 Expand PreCheck.

Require: Current search node q = 〈b, p, w, c〉
Require: The plan P = 〈F,B,H,N, b0〉
Require: Condition Testing Procedure Test

1: E ← ∅
2: for all {h|(q.b, h) ∈ H} do
3: if Test(q.w,preconds(h)) then
4: E ← E ∪ 〈h, q.w, q.p↓〈q.w, h〉, preCheck〉
5: E ← E ∪ 〈q.b, q.w, q.p, inCheck〉
6: return E

(ii) InCheck : Simulate revisions by the behavior. When b begins
execution, it may directly revise the beliefs in w. A simulation of its execution
requires us to predict such revisions. Algorithm 4 describes the process. The
behavior’s support keys indicate the specific beliefs (fluents) whose values
may change, though we do not know how (as we do not have effects, as in
classical planning). We therefore expand the original search node by creating
a duplicate, but with a revised knowledgebase w′ , where the value of the keys

4.4 Simulating Future Decision: Expanding an Execution Path 21

specified in support(b) is set to unknown (line 4). In addition, the behavior b
may also terminate, and so we also set the expansion type set to TermCheck
(line 5).

Algorithm 4 Expand InCheck.

Require: Current search node q = 〈b, p, w, c〉
Require: The plan P = 〈F,B,H,N, b0〉
Require: Condition Testing Procedure Test

1: E ← ∅
2: newkb← q.w
3: for all {key|∀b ∈ last(p), key ∈ support(b)} do
4: newkb← Revise(newkb, 〈key, unknown〉)
5: E ← E ∪ 〈q.b, newkb, current.p, termCheck〉
6: return E

(iii) TermCheck: Simulate behavior termination. A final set of ex-
pansions of b simulates the effects of its termination. Algorithm 5 describes
the process.

When b terminates, then the termination conditions termconds(b) are
true. Thus in any TermCheck expansion of q, new nodes must have a revised
knowledgebase w′ where the termination conditions hold. In the common
case where termconds(b) are arranged as a disjunction (i.e., any one condition
may indicate termination), this means that each combinations of the beliefs
in termconds(b) (loop, line 6) generates a new w′ (line 7). We denote the
power set of a group T of termination conditions (that is all combination of
termination condition) as P(T)

In addition, there are two ways in which execution continues after b ter-
minates. First, its parent may terminate given the new knowledgebase w′

(line 8). Second, any behavior f that follows b (i.e., edge (b, f) ∈ N , loop in
line 9) may be selected, should its preconditions hold in w′ (line 10). Each f
must replace b as the last executing behavior in the path, with knowledgebase
w′ (lines 11–13).

We distinguish between internal and external termination conditions. In
the case of an external condition the termination condition can always be
changed to true, without a single child of the behavior executed. In the case
of an internal condition, the child need to first be executed before we can

4.4 Simulating Future Decision: Expanding an Execution Path 22

change the condition value to true. Thus we need to treat this two types of
condition differently when simulating possible executions.

To that extent we assume a list of keys for each behavior that holds all
the keys that the behavior and all is children will possibly change. This list
can be obtained by going over all the behaviors of a sub-tree of each behavior
and collect the support keys for each behavior.

We use this list to attain a new list of termination conditions. These
are the termination condition we want to revise to be true before continuing
forward. This list will be consistent with all the termination condition that
are either external or internal and there value is true or unknown (lines 3–5).
Thus if the condition already holds in the database there will be no change,
if it is unknown there will be no change. On the other hand if its an external
condition that is currently false in the knowledgebase it will be revised to
true in the new knowledgebase.

The internal condition which at the time of the parent are false will be
checked with new values when the parent is expanded again after the child
finished (line 8).

As there are often multiple follower behaviors f , and given the combina-
torial number of possible w′, this expansion is where most search nodes are
created and put on the queue.

The TermCheck expansion is where cycles are encountered, as cycles occur
when a follower of b is either b or a behavior that precedes it in execution. We
note that this type of expansion necessarily revises the knowledgebase; when
b terminates, it is always with a revised w′. Thus re-expanding a behavior
that has been expanded before is essentially valid, as it needs to be expanded
with w′. As there is a combinatorial number of w′, even a cycle from b to
itself in the recipe graph can result in a combinatorial number of expansions
to the earlier behavior.

If we enter a cycle in the recipe graph for the first time with a certain
knowledgebase, by the end of it we most likely get a different knowledgebase.
If we do the cycle again starting with a this new knowledgebase, we again
most likely get a third different knowledgebase. That can be repeated again
and again, until there are no new knowledgebase that can be created by
this cycle. Thus it is perfectly acceptable, and sometimes even necessary, to
repeat a cycle in the recipe a number of times. For that reason a cycle in the
recipe graph does not translate directly to cycles in the search space.

4.5 Starting Node 23

Algorithm 5 Expand TermCheck.

Require: Current search node q = 〈b, p, w, c〉
Require: The recipe P = 〈F,B,H,N, b0〉
Require: Belief Revision Procedure Revise
Require: Condition Testing Procedure Test

1: E ← ∅
2: Tnew ← ∅
3: for all t ∈ termconds(n) do
4: if Test(t, q.w) ∨ t /∈ internalCond(n) then
5: Tnew ← Tnew ∪ {t}
6: for all c ∈ P(Tnew) do . Disjunction? all belief combinations
7: w′ ← Revise(w, c)
8: E ← E ∪ {〈parent(n), w′, p, T ermCheck〉}
9: for all {f |(n, f) ∈ N} do

10: if Test(preconds(f), w′) then
11: p′ ← last(p)\n . Remove n from end of xpath
12: p′ ← p + p′↓〈f, w′〉 . Add f sequential follower of n
13: E ← E ∪ {〈f, w′, p′, P reCheck〉}
14: return E

4.5 Starting Node

The first search node added to the queue, depends on when the placement of
the Alg 2 in the BIS algorithm (Alg 1). If the call is made before line 4 of Alg
1 then the first search node will have type check of preCheck. Since we know
that the next part of the algorithm will select hierarchical decomposition, and
this is exactly what the expand preCheck considers.

However if the call is made before choosing a sequential follower for a
behavior (line 21 of Alg 1) then the check type should be termCheck, since
we are now considering which follower to select. However this expansion
is a little different, since we know which termination condition of the last
behavior happened, this is reflected already in the knowledgebase, there is
no need to check all the termination conditions of the current terminated
behavior. This means that we do not need the loop over P(Tnew), only the
loop over the followers and the addition of the parent behavior.

4.6 Testing Unknown Values 24

4.6 Testing Unknown Values

The Test procedure is in use in all the expansion types. Its task is to match
(or test) a belief or a set of beliefs against a given knowledgebaseW , returning
true if the beliefs are in the knowledgebase. However, a complication arises.
The InCheck expansion sets some beliefs in W to value unknown. How should
a belief 〈k, v〉 with a known value v in a precondition or termination condition
be matched against a belief 〈k, unknown〉 ∈ W with the same key but value
unknown.

We propose two possibilities below and examine them in two important
aspects:

• Soundness - Any xpath returned by lookahead is indeed feasible at
the time of the call. This means that lookahead only returns an xpath
if it is absolutely sure that the path will not fail.

• Complete - Lookahead returns all feasible xpath. However some of
the xpath it returns may not actually be feasible.

4.6.1 Optimistic Testing is Complete

Here, explicitly unknown values pass the test: ∀v, 〈k, v〉 = 〈k, unknown〉.
Thus, if there is a precondition that demands that some key k will have a
value v, but instead 〈k, unknown〉 ∈ W then the precondition holds. Triv-
ially, we can see that optimistic testing gives us complete but not necessarily
sound matching: It never rules out a possibility unless there is no way for
it to exist. Thus it never rejects possible matches, but may allow solutions
that turn out to be false.

That is because the test treats unknowns has an accepted precondition,
this latter can be found to not be the case. We can guaranty that a path that
deemed to not be feasible will indeed be infeasible unless an outside effort
will be made to make it feasible.

Theorem 4.1. Lookahead with optimistic testing is complete.

Proof. Let us assume for contradiction that there is such a xpath p that was
deemed infeasible, but is indeed feasible. This means that there exists a
behavior b that the algorithm decided to not explore further.

Let us denote the set of all possible combination of termination condition
and support conditions created knowledgebases that led to this behavior M .

4.6 Testing Unknown Values 25

This means that ∀m ∈ M, optimisitc− test(preconds(b),m) = False. Since
we treat every unknown has upholding the preconditions then ∀m ∈M,∃k ∈
preconds(n), such that m(k) = True ∨ m(k) = False since otherwise the
optimisitc− test(preconds(h),m) = True.

Let us assume w.l.o.g that ∀m ∈M, ∃k ∈ preconds(b), such that m(k) =
True ∧ preconds(b)(k) = False then this means that that no behavior that
led directly to this behavior caused a change in the keys value to match the
precondition.

If preconds(b) is an external condition, then Algorithm 6 will return true
and therefore the path will not be eliminated. Contradiction.

Thus preconds(b) must be an internal condition. But this means that its
value could not have been changed to False by a previously selected behavior
thus the path is infeasible since there is no other behavior changing it to the
correct value, again leading to contradiction.

Algorithm 6 Optimistic Test.

Require: Precondition Pb

Require: Knowledgebase W

1: for all 〈k, v〉 ∈ Pb do
2: if W [k] 6= v ∧W [k] 6= unknown ∧ k /∈ internalCond then
3: return ⊥
4: return >

4.6.2 Pessimistic Testing is Sound

The inverse of optimistic testing is pessimistic testing, where unknown values
do not pass the test. By definition, ∀v, 〈k, v〉 6= 〈k, unknown〉. Inversely
from the optimistic testing, pessimistic testing gives us sound solutions, but
is potentially incomplete.

Theorem 4.2. Lookahead with pessimistic testing is sound

Proof. Let us assume for contradiction that there is such a xpath p that was
deemed feasible, but is indeed infeasible. Then let assume that the behavior
b is the behavior that the algorithm decided is selectable but is indeed un-
selectable. This means that in the knowledgebase w that we entered with has

4.6 Testing Unknown Values 26

the property ∀k ∈ preconds(b), (w(k) = True ∧ preconds(b)(k) = True) ∨
(w(k) = False∧preconds(b)(k) = False) this means that either no behavior
before touched any of the keys in preconds(b) or that they where changed
by the termination condition. If no other behavior changed any of the keys
then this means that the only thing changing the keys to no longer match the
precondition is an exogenous event that makes the path no longer feasible,
but this is not an event known at the time of the call to lookahead. If the
termination condition changed the key then this means we know that this
execution path has gone through that behavior and the value changed to
make the path feasible, in contradiction to the path not being feasible.

We found pessimistic testing to be ineffective in practice, since it almost
invariably predicts complete plan failure within a few iterations of Algo-
rithm 2. This is because we most likely after a few iteration have at least
one of the precondition be unknown, and the path eliminated. In the experi-
ments, we therefor use optimistic testing. Each xpath we keep is a path that
is feasible. That is because we only took xpath that their precondition held
with the incomplete knowledge we have. Complete knowledge should not
change that. However, we will not get all the feasible xpath. We will elimi-
nate a xpath that is feasible because we did not have sufficient knowledge to
confirm it.

Algorithm 7 Pessimistic Test.

Require: Precondition Pb

Require: Knowledgebase W

1: for all 〈k, v〉 ∈ Pb do
2: if W [k] 6= v then
3: return ⊥
4: return >

4.6.3 Sound and complete testing is generally impossible

Theorem 4.3. There does not exist a general test method that give both
sound and complete output when unknown values exist in the knowledgebase,
without additional knowledge.

Proof. Let us assume a test method testopt that is both sound and complete.
Let us look at the following recipe:

4.7 Complexity of the Base Algorithm 27

Where k ∈ support(bn),k = True ∈ preconds(END1), k = False ∈
preconds(END2) and k /∈ termconds(bn) Let us first assume that the only
feasible path is p1 = b0 → b1 → ... → bn → END1 this means that key k
need to have value true to choose END1. We know that bn changes the value
to unknown. We know that testopt returns all feasible paths and only feasible
paths. This means that in this case it returns only p1. Let us now look at the
case where the feasible path is p2 = b0 → b1 → ...→ bn → END2. We know
then that testopt will return only p2. However, in both cases k = unknown
just before the choice of END1 and END2 there is no difference in the search
but testopt manged to choose the right behavior each time. This means that it
add additional knowledge outside of the knowledgebase and the precondition
and termination condition and support keys in contradiction to the theorem
basis.

4.7 Complexity of the Base Algorithm

We analyze the run-time complexity of Algorithm 2. Let us denote deg−S (b),
deg+S (b), deg−H(b), deg+H(b) the sequential in-degree of b, the sequential out-
degree of b, the hierarchical in-degree of b and the hierarchical out-degree of
b, respectively. We start by examining the number of execution paths for a
simple recipe, which is really just a set of behaviors arranged linearly in a
linked-list type of structure. No cycles, no hierarchical children, no choices
about order of execution.

Definition 1. A recipe G = (B,H,N, b0) is a simple recipe when ∀b ∈
B, deg−H(b) = deg+H(b) = 0 ∧ ∀b ∈ B\{b0, bn}, deg−S (b) = deg+S (b) = 1 ∧
deg−S (b0) = deg+S (bn) = 0 ∧ deg+S (b0) = deg−S (bn) = 1 and each behavior has
no support keys.

A simple recipe with n behaviors will look as follows:

4.7 Complexity of the Base Algorithm 28

Theorem 4.4. Let G be a simple recipe with |B| = n where n ≥ 2 and each
b ∈ B has t termination conditions. Then G has at most (2t)n−1 xpaths.

Proof. Let us prove by induction. Base case, n = 2: Let us denote the
second behavior in B as b1. Using the TermCheck expansion function
on b0 will produce the search nodes 〈b0,Revise(w0, k) = w′, 〈b0, w0〉 →
〈b1, w′〉, P reCheck〉 for ∀k ∈ P(termconds(b0)). Notice that each Revise
call produces a different knowledgebase, due to the different termination
conditions. Thus we have (2t)n−1 = (2t)2−1 = (2t)1 xpaths.

Induction step: Assume the theorem holds for k − 1, and show true for
n = k: Let us have a simple recipe G = (F,B,H, S, b0) with |B| = k nodes,
let us denote the last behavior in the recipe bk and the only directed edge to it
be (bk−1, bk). We make a new recipe Gk−1 = (B\bk, H = ∅, N\(bk−1, bk), b0).
We know by the induction that Gk−1 has at the most (2t)k−1−1 = (2t)k−2

xpath already in the queue. This means that if we add the behavior bk to the
end ofGk−1 then the expand function will be called for all (2t)k−2 search nodes
created for each xpath, because now bk−1 has a sequential follower. For each
such call the expand will produce 2t expanded nodes with the path 〈b0, w0〉 →
... → 〈bk−1, wtk−1〉 → 〈bk, wt〉 thus at the most, if termination conditions do
not contradict, we have (2t) · (2t)k−2 = (2t)k−1 = (2t)n−1 xpaths.

Therefore, the worst case run-time complexity of the algorithm on a sim-
ple recipe G = (B,H,N, b0) is O(2t·|B|).

Definition 2. A recipe G = (B,H,N, b0) is a flat acyclic recipe when ∀b ∈
B, deg−H(b) = deg+H(b) = 0 meaning H = ∅ and each behavior has no support
keys.

For example:

4.7 Complexity of the Base Algorithm 29

Figure 2: A flat recipe example

Theorem 4.5. Let G = (B,H,N, b0) be a flat recipe. We denote the number
of all gpaths as g. The worst case time complexity of lookahead on G is
O(g · 2tl) (where l is the length the longest gpath).

Before proving this formally, here is an intuition for the correctness of the
theorem. We decompose the graph in to its component simple recipes, and
add up there complexities.

Proof. For every gpath p, we create recipe Gp = (Bp, H,Np, b0), Bp = {b|b ∈
B ∧ b ∈ p}, Np = {(b, b′)|(b, b′) ∈ p}. We know that for the each Gp the
worst time complexity is O(2t|Bp|), notice that in the case of the simple
recipe the number of behaviors is also the length of the single path in the
recipe. Thus the time complexity is the combine passes over each path that
is O(

∑g
i=0 2t·|Bi|) ≤ O(

∑g
i=0 2t·l) = O(g · 2t·l).

We can see this in the Figure 2 above. The graph is composed of two
simple recipes Gb0→b1→b3 and Gb0→b2→b3 . Since this is true for each path
separately then for all the recipe we have O(2t·2) +O(2t·2) = 2 ·O(2t·2).

Anther way of looking at this is as follows. In a DAG there are at most
2|B|−2 simple paths between two nodes (that is because in a DAG we can do
a topological ordering of the vertices and then its a choice whether the vertex
is in the path or not where the start node and end node are always chosen
thus the −2). That means that in the case of a flat acyclic recipe we have at
most 2|B|−2 · 2tl that is O(2|B|+tl) where l is the length of the longest gpath.

Next we analyze the effects of the hierarchical edges on the complex-
ity. As with sequential edges, we start by analyzing the complexity over
a simple hierarchical recipe. That is a recipe G = (F,B,H, S, b0), S =
{(b0, END)},∀b ∈ Bdeg+H(b) = 1. That is a graph with one hierarchical
decomposition.

4.7 Complexity of the Base Algorithm 30

Theorem 4.6. Let G = (F,B,H, S, b0) be a a recipe with S = ∅,∀b ∈
Bdeg+H(b) = 1 and |B| = n where n ≥ 2 and each b ∈ B has t termination
conditions. G has at most (2t)n−1 search nodes.

Proof. Let G = (F,B,H, S, b0) be a a recipe with S = ∅,∀b ∈ B, deg+H(b) = 1
and |B| = n and each b ∈ B has t termination conditions. We denote the
behaviors in the recipe as b0, b1, ..., bn where b1 is the hierarchical child of
b0, b2 is the hierarchical child of b2 and so forth. Lets look at the run of
Alg 2 on this recipe. The first search node will be 〈b0,W0, b0, preCheck〉.
This search node will produce the search node 〈b1,W0, b0↓b1, preCheck〉
and so forth and so forth until we reach 〈bn,W0, b0↓b1↓...↓bn, preCheck〉.
This in turn will go through inCheck and then go to termCheck.
Since bn does not have a sequential follower the only search nodes
that the termCheck will produce will be sn = {〈bn−1,Revise(W0, t) =
w′, b0↓b1↓...↓bn, T ermCheck〉|t ∈ 2t}. Each s ∈ sn will produce the search
nodes sn−1 = {〈bn−2,Revise(w′, t), b0↓b1↓...↓bn, T ermCheck〉|t ∈ 2t}. Thus
we already have 2t · 2t search nodes. This search nodes will create similar
search nodes for the behavior bn−3 and so forth until we reach b0 again and
the search will stop. Thus we have 2t · ... · 2t︸ ︷︷ ︸

n-1

= 2t(n−1)

We now know the xpaths created for a single path through one path along
hierarchical edges. If we have S = ∅ we have a tree, i.e there is a single path
between the root and a leaf. Thus the number of paths is the number of leafs.
Thus such a recipe will have

∑number of leaf
i=1 (2tli). Where li is the length of

the path to leaf i.
Now we are ready to deal with the general case where we have both

sequential and hierarchical edges, though we still assume there are no cycles
in the recipe. We saw that whether its a sequential edge or an hierarchical
edge we multiple the search nodes created by that edge with any other edge.
Meaning all edge added to a graph path adds 2t execution paths. This
means that if all execution paths are feasible, in the base lookahead we will
traverse all this execution paths. Let us then look at all gpath in graph G,
where a path is an ordered sequence of behaviors where every two subsequent
behaviors are either connected with an hierarchical edge, a sequential edge
or the second behavior is a follower of an ancestor of the first behavior. We
denote the number of all gpath as gp then we will have at the most

∑gp
i=1 2t·il

termCheck search paths, where li is the length of the ith gpath. Notice since
we are still discussing a recipe with no cycles, this means that each node can

4.7 Complexity of the Base Algorithm 31

appear only once in each gpath thus we still have O(
∑2n−2

i=1 2t·li). This is not
a tight bound, since some of the 2n−2 paths cannot exist since only one child
of a behavior can be chosen and the same goes for followers of a behavior.

32

5 Improving Efficiency by Pruning the

Search

A key component in algorithm 2 run time complexity is the need to find all
feasible xpath. Each search node is a tuple 〈b, w, p, c〉, where b is the current
node in the graph, w is the current knowledgebase, p is the xpath that led
to it as explained in Section 4.3, and c is the type of expansion to do. In
principle, the lookahead algorithm can check the same node multiple times
(see below), and this adds very much to the running time. By introducing
methods for testing whether a node has been visited, the search space can
be pruned and the running time improved.

In classic search on a graph, the only thing we check is if the node in the
graph as already been seen before. When it comes to planning, the check is
to compare the search node, that is the action and the state of the world.
Since classical planning has one phase for each action, the action happens
and the world changes according to effects, this is enough. However in our
case we need to consider the actual execution state of the behavior and the
parallel choosing of its children behavior, this means we need all three phases
of c to accrue, we know that a search node 〈b, w, PreCheck〉 is not the same
as 〈b, w, InCheck〉, as they will yield different search nodes upon expansion.
Thus we need to compare at least these 3 elements.

The fourth element of the search node is the xpath p. p does not effect
the expansion of the node, nodes s = 〈b, w, p, c〉 and node s′ = 〈b, w, p′, c〉
will produce the same amount of search nodes, and this search nodes will be
the same except for the path.

5.1 Naive approaches for visited check methods

From the above we can see two kind of compression for two search node
s1 = 〈b1, w1, p1, c1〉 and s2 = 〈b2, w2, p2, c2〉.

1. NAIV E1 : b1 = b2 ∧ w1 = w2 ∧ c1 = c2 ∧ p1 = p2 ⇒ s1 = s2

2. NAIV E2 : b1 = b2 ∧ w1 = w2 ∧ c1 = c2 ⇒ s1 = s2

The question then is why do we need to compare xpath if it does not
effect the expansion. Let us then explore this two methods of comparison in
respect to two important factors:

5.1 Naive approaches for visited check methods 33

1. Is lookahead complete with this visited method, that is it returns all
feasible xpath

2. Does lookahead halts with this visited method

5.1.1 Completeness

We examine the first question: is lookahead complete with NAIV E1 or
NAIV E2.

Theorem 5.1. Lookahead is complete with NAIV E1 and optimistic testing

Proof. Let us assume for contradiction that there is such a xpath p that was
deemed infeasible, but is indeed feasible. Then let assume that the behavior
b is the behavior that the algorithm decided to not explore further. We
already saw that optimistic testing is complete, this means that there exits
at least one xpath p′ that is the prefix of p until b and manged to change the
keys value to match the precondition. Thus if this path was not returned
then NAIV E1 eliminated all the search nodes n = 〈b, w, p′, c〉, where w′ is
the knowledge base created by traversing p′. This means that n was put on
the queue at least once to be considered visited, contradicting b not being
explored further.

However the second method NAIV E2 is not complete. We can see this
in Figure 3 if we start with a knowledgebase of w0 = have− b = true;have−
c = true;have − d = false we will lose either the possible path 〈A,w0〉 →
〈B,w0〉 → 〈D,w′〉 or the path 〈A,w0〉 → 〈C,w0〉 → 〈D,w′〉 depending on
whether B or C is entered to the queue first. Once we get to D the second
time, we will discard the search node, since will have the same behavior,
same knowledgebase and same check (PreCheck) and thus we will not get
all feasible paths. This means we need to be able to keep track of the xpath
we traversed.

5.1.2 Halting

Let us then look at the second factor: does lookahead halt with NAIV E1 or
NAIV E2.

Theorem 5.2. Lookahead is halting with NAIV E1, if the recipe P has no
cycles.

5.2 How to address cycles in the graph 34

Proof. A graph with no cycles has a finite number of gpaths. Let us assume
w.l.o.g that our knowledge base has k number of keys with at most v different
values. Then our knowledgebase has at most vk possible states. This means
that for each node in a path we have vk possible knowledgebases. Then for
each path gpath we have vk

|p|
possible xpaths to explore. This is a finite

number and thus lookahead will halt.

However NAIV E1 will not be halting when the recipe has cycles. In
the proof above we used the fact that an acyclic graph has finite number of
gpath. This is not true for a cyclic graph, a cyclic graph has infinite number
of gpath since we can repeat vertices in a cycle infinite times, thus there will
be an infinite number of search nodes.

Let us look at NAIV E2, this method of comparison will be halting since
we have a finite number of knowledgebases (as shown in the proof above)
and finite number of behaviors, thus we will have at the most 3 ·nvk possible
checks to make.

5.2 How to address cycles in the graph

Notice that since we are looking for all feasible paths then since a cyclic graph
has infinite number of gpath, if we want the algorithm to be complete (re-
turning every feasible xpath) including xpaths that repeat the same behavior
and knowledgebase tuple multiple times it cannot be halting. However, what
we are looking for is not all xpath, for us the cycle is important only if it
changes the possibility of reaching the goal. If we have two xpaths p1 and p2
where p1 repeats a cycle n times and p2 repeat a cycle m times,n < m and
this is the only difference we do not gain any additional information from p2.
It does not add possible edges or knowledgebases that help us achieve the
goal that p1 did not already give us. That is if a cycle is repeated again and
the knowledgebase is the same when we leave the cycle as we started then
doing the cycle over again will not give us anything new that will eliminate
the possibilities to reach the goal that we did not already encountered. Thus
for us the repeating of a behavior in an execution path is only important if
it is with a new knowledgebase, that might resolve a future failure or create
a condition where a future failure can arise.

For this reason we need lookahead to return not all feasible paths but
all feasible simple paths, that is xpaths where all execution elements are
distinct, do not contain an execution element more then once. This is similar

5.3 Successful Visited 35

to definition of a simple path in graph theory, where any vertex in the path
is distinct. However in the case of xpath the equivalent of vertices are the
execution elements. Why a distinct execution element and not a tuple 〈b, w〉?
Notice that a behavior can be reached with the same knowledge base multiple
ways, including a decomposition that started with a different knowledgebase
and in then became the same. For example if we have the recipe:

An xpath 〈b0,W0〉↓〈b1,W0〉 → 〈b0,W0〉↓〈b2,W ′〉 → 〈b0,W ′′〉↓〈b1,W ′′〉 →
〈b0,W ′′〉↓〈b2,W ′〉 → 〈END,WEND〉 is a feasible xpath that we want to re-
turn, even though 〈b2,W ′〉 repeat twice, since it gives us the information that
b0 can also start with W ′′ and reach the end. Thus having the same tuple
can be needed.

We then demand that lookahead will be complete in respect to simple
xpath, that is return all feasible simple xpath. Notice that this does not
invalidate our proof of completeness from before, because if an algorithm
returns all feasible xpath then it also returns all feasible simple xpath since
this is a subset of the former.

We now present visited methods that will be both halting and complete.

5.3 Successful Visited

First let us continue with NAIV E1 as the base of our compression of equality
between two search nodes. When a path p from successful paths contains
a tuple 〈b, w〉 it means that 〈b, w〉 was already expended with a PreCheck,

5.3 Successful Visited 36

notice that a new tuple 〈b, w〉 is added to a path of a search node the check
type of that node is always PreCheck (in line 4 in Alg. 3 and line 13 of
Alg. 5). Thus if a search node 〈b, w, p′, P reCheck〉 is encountered after p
was added to the successful path list, the only difference between the search
nodes can be the execution path p′ . If p = p′ then NAIV E1 will cover it
and we will not add this search node to the queue. Let us then consider the
case where p 6= p′, notice that since we already had 〈b, w, PreCheck〉 in the
queue, all possible checks after this node was encountered where made, we
already showed that the execution path does not effect the type of checks
made. Thus we do not need to continue such expansions. However since we
know there is a successful path from 〈b, w〉 to the end, p′ should be in the
successful path list with the suffix of p after 〈b, w〉. Thus we can add p′ to
the successful path.

Successful visited (Alg. 8) derives from the successful paths list a set
of successful visited behaviors and the knowledgebase they started with
Successful visited = {〈b, w〉|∀p ∈ Successful, 〈b, w〉 ∈ p}. For each
new search node s = 〈b, w, p, PreCheck〉 the method checks if 〈b, w〉 ∈
Successful visited. If this is true then s is considered visited and not added
to the queue and p is add to successful paths.

Algorithm 8 Successful visited

Require: Successful paths list S
Require: Search node e = 〈b, w, p, c〉
Require: Visited list V

1: if e ∈ V then . checks with NAIV E1

2: return True
3: Snkb ← {〈b′, w′〉|∀p ∈ S, 〈b′, w′〉 ∈ p}
4: if 〈e.b, e.w〉 ∈ Snkb ∧ e.c = PreCheck then
5: add(e.p, successful paths)
6: return True
7: return False

In addition we add a call to Alg. 9 to the end of Alg. 2 before line 15.
This algorithm iterates over all paths in successful path list (line 2) for each
path if it includes the end behavior it adds it to the list as is (line 4–5). If not
this is a partial path added in line 5 of successful visited. We want to add the
appropriate suffixes. For that reason we extract all the paths that include
one of the tuples of the last execution element of the partial path (line 7)
and then add their suffixes after that last execution element (line 8). Notice

5.3 Successful Visited 37

that suffix(p′, 〈b, w〉, last(p)) is a function that return the suffix of the path
p after 〈b, w〉, this function can also changes the parents of 〈b, w〉 according
to the knowledgebases in last(p) for consistency. We saw in previous sections
that when a tuple match, not all the execution elements have to match.

Algorithm 9 Successful visited processing.

Require: Successful paths list S
1: Snew ← ∅
2: while S 6= ∅ do
3: p← S.Start
4: if END ∈ p then
5: Snew ← Snew ∪ {p}
6: else
7: sf = {p′|p′ ∈ Snew ∧ ∃〈b, w〉 ∈ last(p)⇒ 〈b, w〉 ∈ p′}
8: snew ← Snew ∪ {p′′|∀p′ ∈ sf, p′′ = p + suffix(p′, 〈b, w〉), last(p)}
9: S ← S\S.start

10: return Snew

Theorem 5.3. Lookahead using optimistic testing and successful visited is
complete.

Proof. Let us assume there is a simple xpath p that is a feasible but
was not returned by the algorithm. This means there was a search node
s = 〈b, w, pp, c〉 where pp is a prefix of p until 〈b, w〉 and s was eliminated
thus p was not returned (otherwise because lookahead is complete with op-
timistic testing we will have returned p). We know from the completeness
of optimistic testing with NAIV E1 that line 1 in Successful visited (Alg. 8)
will not remove it. Thus we know line 4 returned true. First this means
that c = PreCheck. Next, according to line 5 we added pp to the successful
path list. This means that in order for p to not be returned the suffix of p
after 〈b, w〉 did not exist in any of the paths in S at the end of the run of
lookahead. Let us denote this suffix as psuf .

In addition since line 4 returned true we know that there exist an xpath
p′ where p′ ∈ S ∧ 〈b, w〉 ∈ p′. In order for p′ to be in successful path, there
needed to be a search node s′ = 〈b, w, p′p, P reCheck〉 where p′p is the prefix
of p′ until 〈b, w〉, otherwise it will not be on a path in successful path list
with this tuple. Let us assume w.l.o.g that s′ is the first search node that

5.3 Successful Visited 38

included 〈b, w〉 (notice the first node to include any tuple that is in the path
has check type PreCheck since it is the only time we add to the path).

Let us look at s′, since s′ has a c = PreCheck we will expand it ac-
cording to Alg. 3. This means that we will create the the search nodes
S ′h = {〈h,w, p′p↓〈w, h〉, P reCheck〉|(n, h) ∈ H ∧ TEST(h,w) = True} and
an additional search node s′in = 〈n,w, p′p, InCheck〉.

Let us look at the node s. If we where to expand it, we will have created
the search nodes

Sh = {〈h,w, pp↓〈w, h〉, P reCheck〉|(n, h) ∈ H ∧TEST(h,w) = True}

and an additional search node sin = 〈n,w, pp, InCheck〉. So far the suffixes
of the paths are the same.

s′in will produce s′t = 〈n,w′, p′p, T ermCheck〉. In turn, s′t will produce the
search nodes

s′f = {〈f, w′′, p′′, P reCheck〉}

where ∀(n, f) ∈ N,∀t ∈ 2termconds(n) such that

w′′ = REVISE(w′, t)

and
TEST(f, w′′) = True

and
p′′ = p′p + (last(p′p)\b)↓〈f, w′′〉

and the search nodes

s′p = {〈parent(n), w′′, p′p, T ermCheck〉}

where ∀t ∈ termconds(n)⇒ w′′ = REVISE(w′, t)}.
On the other hand sin will have produces the search node st =

〈n,w′, pp, T ermCheck〉 where w′ = REVISE(w, support(n)). st will pro-
duce the search nodes

sf = {〈f, w′′, p′′, P reCheck〉}

where ∀(n, f) ∈ N, ∀t ∈ termconds(n), w′′ = REVISE(w′, t) and
TEST(f, w′′) = True and p′′ = pp + (last(pp)\b)↓〈f, w′′〉. Also,
sp = {〈parent(n), w′′, pp, T ermCheck〉}, where ∀t ∈ termconds(n), w′′ =
REVISE(w′, t).

5.4 Cycle Avoidance 39

Notice all the suffixes produced by s different then s′ only by the reduction
of b from the last execution element of pp and p′p respectively. This is taken
care of by the post processing that will change the elements to be the same.
This means that if a suffix will produced by s it will also be produced by s′.
This means the psuf was produced by s′ thus in successful paths.

Alg. 2 with successful visited is not necessarily halting. Notice that if
we enter a loop that repeat itself infinite number of time, without being able
to reach an END behavior, then the algorithm will keep expanding every
search node of the loop, since no path will be in the successful path list.

5.4 Cycle Avoidance

Deriving from the definition of simple xpath we can detect a recurring ex-
ecution element and ignore it, this what the cycle avoidance Alg. 10 do.
This visited method still uses NAIV E1 as basis but this time in addition to
comparing all the elements of the search node it also checks if the execution
path already contains 〈b, w〉. We reduce the last execution element from the
possible behaviors since this last execution element was created in this ex-
pansion, thus 〈b, w〉 will always be present in the last execution element. In
addition, we do this check only if the node has a check type of PreCheck
since we only add tuples to the execution path in the expansion of PreCheck
thus it is the only expansion that was already made just with a smaller path.

This is possible since the search node 〈b, w, p′, P reCheck〉, where p′ is the
part of p until the first occurrence of 〈b, w〉, was already explored and led to
this search node. Thus 〈b, w〉 is already expanded.

Algorithm 10 Cycle avoidance

Require: Search node e = 〈b, w, p, c〉
1: if e ∈ V then . checks with NAIV E1

2: return True
3: pnodes ← get nodes(e.p\LAST (e.p))
4: if 〈b, w〉 ∈ pnodes ∧ c = PreCheck then
5: return True
6: return False

Theorem 5.4. Lookahead with cycle avoidance and optimistic testing is com-
plete.

5.5 Merging paths 40

Proof. We saw in the proof for successful visitedthat if we have a path the
includes the tuple 〈b, w〉 means we checked all the possible paths from then
on starting with this knowledgebase. This is the case here as well, the only
difference is that we are checking if the tuple is in the same path of the search
node. For that reason we get that indeed if 〈b, w〉 ∈ (p− last(p)) then one of
this possibilities led us to the tuple again, but it also explored all the other
paths, thus we already have the feasible suffixes explored.

Theorem 5.5. Lookahead with cycle avoidance and optimistic testing is halt-
ing.

Proof. Remember that we have vk possible knowledgebases. This means
that an xpath can have a behavior b, vk times in it. If a search node s =
〈b, w, p, PreCheck〉 where b appears in p\last(p) vk times then s will be
eliminated. If all search nodes with PreCheck of b are eliminated then
there will be no more search nodes with InCheck of b. This means we also
eliminate all search nodes created in line 4 of Alg. 4. This leaves us with the
search nodes created in line 8 of Alg. 5. These search nodes are created by
the hierarchal children of b. However, since there are no more search nodes
with PreCheck of b then we stop creating search nodes with the children of
b. Since this only happens in Alg. 3 with b, the search nodes will not be
created. Thus we have a finite number of times that each search node will
be added to the queue thus the algorithm is halting.

5.5 Merging paths

In successful visited we tried to prevent making checks if there is already a
proof of success. The problem was that we needed to succeed first. Until
we succeeded for the first time we continued to expand search nodes that
produced the same results. We need to prevent this.

We observe that the role of the path p in each search node is to maintain
information about the xpath. However, if a path leads to the same behavior
with the same knowledgebase and same type of expand, then the checks
from there on will be the same (we so that in the proof of successful visited
in Section 5.3) So a new search node duplicating this check need not be added
to the queue.

Remember that our problem with NAIV E2 was not that it was not halt-
ing but rather that it was not complete, since we lost execution paths. For
that reason we want to save execution paths and still not make the same

5.5 Merging paths 41

checks more then once. To do this we use a map allowing us to record search
nodes which are already on the queue with different execution path. The keys
of the map are tuples 〈b, kb, c〉 where b is a behavior, kb is a knowledgebase
when we reached b, and c is the expand type. We need the expand type so
that different expanded nodes will not eliminate the next expand of differ-
ent type. For example for each search node 〈b, w, p, PreCheck〉 we create
a search node 〈b, w, p, InCheck〉 at line 5 of Alg. 3. If we will not expand
the latter node, we will not consider the effect of running b and we will lose
some paths. The value of each key is a set that holds all the paths that
leads to the key tuple. For each search node s we check if its tuple 〈b, w, c〉
exist in the keys (line 1). If it exist then we add the path to the set of paths
corresponding to this key and do not add the search node to the queue(lines
2–3). If not then we add that tuple to the map and also the path to that
keys corresponding set of paths and say the node has not been visited (lines
5–6). In the end of Algorithm 2, for all 〈b, w〉 in any of the successful paths
we add all the paths in the map under the entry 〈b, w, PreCheck〉. Then we
use Alg. 9 to derive all the full paths.

This map saves us doing the same checks again for different prefix of paths
and eliminates the multiplication by number of paths in the complexity of the
problem, since we are merging paths. This saves not only doing successful
checks again, has with the successful visited, but we also only go through a
suffix of a path that fails or succeed only once.

Algorithm 11 Merge paths.

Require: Map of expanded nodes M
Require: Search node e = 〈b, w, p, c〉

1: if 〈b, w, c〉 ∈M then
2: add(p,M [〈b, w, c〉])
3: return True
4: else
5: add(〈e.b, e.w, e.c〉, e.p,M)
6: return False

Theorem 5.6. Lookahead with merge paths and optimistic testing is reduc-
tion complete.

Proof. Let us assume there is a path p that is feasible and not in successful
paths. This means there is a tuple 〈b, w〉 in the path that was the last node

5.5 Merging paths 42

tuple we reached and then its search node was deemed visited. This means
that there is a search node s = 〈b, w, px, c〉, where px = p\〈b, w〉, meaning
the prefix of p until 〈b, w〉. Let us denote the suffix of p as sx = p − px
and the first node in sx as 〈bk, wk〉. We will prove by induction that sx is in
successful paths.

Base case length sx is 1: This means that bk is a leaf. Let us assume w.l.o.g
that bk is a sequential follower of b. Since s was pruned, there is a different
search node s2 = 〈b, w, px2, c〉 that was added to the queue previously. When
s2 was popped out of the queue then since s2 has the same behavior, same
knowledgebase and same check type as s it will expand the same search
nodes, with one difference which is the path in them. Thus one of the nodes
that will be expanded will include the path px → bk. When this node will
be expanded then it will be added to successful paths, since it reached a leaf.
Thus the suffix is in successful paths. This also means that px will be in
successful paths since there is a path in successful paths that contains 〈b, w〉
and so all the paths that where added to that enter in the map, including
px, will be added to successful paths.

Case length sx is k: Let us assume that all suffixes of length ≤ k− 1 of p
are in successful paths. We will prove for sx of length k. w.l.o.g we assume
that bk is a sequential follower. Since s was pruned, there is a different search
node s2 = 〈b, w, px2, c〉 that was added to the queue previously, and it is the
first time the tuple 〈b, w, c〉 where encountered. When s2 was popped out
of the queue since s2 has the same behavior, same knowledgebase and same
check type as s it will expand the same search nodes, with one difference
which is the path. Notice that this includes the search node 〈bk, bk, px2〉 →
〈bk, wk〉, ck. This node will either be pruned or it will be added to the queue.
If it is added to the queue then when it will be popped out we will have a
search node with the next node in p since this node contains a suffix of p
of length k − 1 we know that either it will be pruned but eventually added
to successful paths or it will continue, either way it will be in the successful
path in the end, thus sx will be there too. If it is pruned then form our
induction assumption we know that this suffix will be in the successful paths
and so when we add this suffix to the successful paths at the end we will
have the edge that include bk in the successful paths and thus this prefix will
be added too. Thus we get all the suffix in the successful list.

5.6 Relations between the visited methods 43

5.6 Relations between the visited methods

Let us compare the visited methods.

Theorem 5.7. Every search node that will be marked as visited by cycle
avoidance will also be marked as visited by merge paths.

Proof. Let s = (b, w, p, c) be a search node that is pruned by cycle avoidance.
This means that 〈b, w〉 exist in p\LAST (p). Let us notice that there are 2
possible places in the algorithm that a behavior is added to the execution
path: In line 4 of algorithm Expand PreCheck (Alg. 3) and lines 11-13
of algorithm Expand TermCheck (Alg. 5). In both cases the search node
created has the check type of Precheck. Let us notice that if we have the
search node s′ = 〈b, w, p′, P recheck〉 we will also produce the node s′′ =
〈b, w, p′, InCheck〉 since this is produced in line 5 in Alg. 3 which is the
procedure that will be called when s′ will be taken from the queue. Notice
that s 6= s′ ∧ s 6= s′′ since cycle avoidanceremoves the last execution element
before checking if 〈b, w〉 exist in the path. This means that s′, s′′ where
created by the previous iteration where 〈b, w〉 where met. Thus we know
that prior to s we had s′, s′′ so if c = Precheck ∨ c = InCheck we have
〈b, w, c〉 in the merge map and thus this node will also be pruned by merge
paths. We are left with the case of c = Termcheck. If this is the case then
this means that the node was considered visited by line 1 of cycle avoidance,
this means that there was a previous search node ŝ = (b, w, p, c) = s this
means that the map will already have (b, w, c) in it thus this node will be
marked as visited by merge pathshas well.

Theorem 5.8. Every search node that will be marked as visited by successful
visited will also be marked as visited by merge paths.

Proof. Let s = (b, w, p, c) be a search node that is pruned by successful
visited. This means that 〈b, w〉 exist in a an execution path ps ∈ Successful−
paths. Let us notice that there are 2 possible places in the algorithm that
a behavior is added to the execution path: In line 4 of algorithm Expand
PreCheck (Alg. 3) and lines 11-13 of algorithm Expand TermCheck (Alg.
5). In both cases the search node created has the check type of Precheck.
Let us notice that if we have the search node s′ = 〈b, w, p′, P recheck〉 we will
also produce the node s′′ = 〈b, w, p′, InCheck〉 since this is produced in line
5 in Alg. 3 which is the procedure that will be called when s′ will be taken
from the queue. Let p′ be the prefix of ps until 〈b, w〉, we know such search

5.6 Relations between the visited methods 44

node existed since ps is in the successful path list. This means this node was
already put on the queue to latter expand and add ps to the successful path
list. This means that when this node was created 〈b, w, PreCheck〈 was put
in the map. The same goes for s′′. Thus this search node will be deemed as
visited by merge paths. If c = TermCheck then this means the node was
considered visited by line 1 of successful visited, this means that there was a
previous search node ŝ = (b, w, p, c) = s this means that the map will already
have (b, w, c) in it thus this node will be marked as visited by merge paths
has well.

The opposite of theorem 5.7 and 5.8 is not true. For example if we have
the following recipe:

Figure 3: BIS recipe example 2

Where behaviors B needs resource b and behavior c needs resource c
to achieve the same knowledgebase (B and C are different behaviors that
achieve the same goal). If we have only resource b then both algorithms will
return only the xpath A→ B → D → ...→ finish without eliminating any
search node. However, if the agent has both resources we will have a different
outcome. Table 1 shows the state of the queue for each iteration of the Alg.
2.

After the fifth iteration is where merge paths will differ from both cycle
avoidance and successful visited. Notice that in cycle avoidance and suc-
cessful visited the node (D;have − b = true;have − c = true, have − d =
true;A → C → D;PreCheck) will be added to the queue. On the other

5.6 Relations between the visited methods 45

hand, in merge paths this node will be pruned since we will have the key
(D;have − b = true, have − c = true, have − d = true;PreCheck) in the
merge map. Thus if the suffix D finish with the starting knowledgebase
have−b = true, have−c = true, have−d = true will exist both A→ B → D
and A → C → D will be in successful path without needing to do it twice
for each prefix.

Iteration Queue
number node knowledgebase path check type

0 A have-b=true;have-c=true;have-d=false A PreCheck
1 A have-b=true;have-c=true;have-d=false A InCheck
2 A have-b=true;have-c=true;have-d=false A TermCheck

3
B have-b=true;have-c=true;have-d=false A→ B PreCheck
C have-b=true;have-c=true;have-d=false A→ C PreCheck

4
C have-b=true;have-c=true;have-d=false A→ C PreCheck
B have-b=true;have-c=true;have-d=false A→ B InCheck

5
B have-b=true;have-c=true;have-d=false A→ B InCheck
C have-b=true;have-c=true;have-d=false A→ C InCheck

4
C have-b=true;have-c=true;have-d=false A→ C InCheck
B have-b=true;have-c=true;have-d=false A→ B term-check

5
B have-b=true;have-c=true;have-d=false A→ B TermCheck
C have-b=true;have-c=true;have-d=false A→ C term-check

5
C have-b=true;have-c=true;have-d=false A→ C TermCheck
D have-b=true;have-c=true;have-d=true A→ B → D PreCheck

Table 1: Example run of lookahead on BIS RECIPE example 2.

46

6 Improving the Run-Time of Repeated Calls

In the first run of the algorithm we collect a lot of information. Specifically
we get all feasible xpaths from the initial executing behavior. These paths
include the knowledgebase we need to have in order to choose each node in
this path. When we later run the algorithm on the terminated behavior in
the stack, we will reproduce some if not all those execution paths again, since
our algorithm is complete there can not be an execution path that is feasible
that was not returned. In addition our checks might also include checks that
we already did in the previous runs that led to a dead end.

This means that we can reuse the data we already collected. In this
section we present an algorithm that does just that; it uses the data from
previous runs, instead of doing the same checks again. We can go over all the
paths given by the previous run and see if any of them is no longer feasible.

Alg. 12 is the process with which we go over all the previously produced
successful xpaths. We start with the current knowledgebase W and the last
terminated behavior bc. We go over all the successful xpaths. Each time we
check first if the path includes bc (line 3), any path that does not include
the current terminated behavior is no longer a possibility since we know our
execution went through that behavior. We then find the first place that bc
appears in the path, and we consider only the suffix of this path from bc (line
4).

6.1 Extrapolating the changes in the path

Each xpath element represent the stack at a certain time. It also include the
knowledgebase that we started each node in the stack with. Thus an execu-
tion path encodes in itself the changes to both the stack and the knowledge-
base within the ”run” of the execution path. We can derive this changes by
going over the execution path and extrapolate the differences between each
consecutive execution element. Let us look at two consecutive execution
elements e, e′ of an xpath p.

First we can extrapolate the behaviors chosen from the sequential and
hierarchical edges after each execution element. This can be done by taking
all the behaviors that exist in e′ but not in e. Notice that if a behavior exist
in both e and e′ then this is a parent behavior that was not terminated in the
next execution element. Thus the group of behaviors {b|b ∈ e′∧b /∈ e} are the
behaviors chosen in the next execution element, this behaviors represent a

6.2 The checks in repeated calls 47

parent behavior and all its children chosen in the hierarchical decomposition
stage right after the parent was chosen (thus their all direct hierarchical
children with a direct hierarchical edge from the parent to them) with the
first behavior being the parent behavior. All of whom where chosen together
with the same knowledgebase (notice that when adding hierarchical edges in
the PreCheck stage we do not change the knowledgebase for the children).
Thus we get all the behaviors added to the stack in lines 4–8,24 of Alg. 1.

As stated above all these new behaviors added to the stack had the same
knowledgebase when they where added. Thus we can take the knowledgebase
of the last behavior in each execution element. Let us now look at this
knowledgebases, denoted by e.w, e′.w for e, e′ respectively. We look at the
keys that there value changed between e.w and e′.w. Since there value has
changed then something has changed that value, this can only occur in the
InCheck phase or the TermCheck phase. This changes where made by all
the behaviors in e, meaning the previous sequential behavior but also there
hierarchical children. We know that all the support keys of the previous
execution element will be represented in this changes, but they will also
reflect all the termination conditions that where chosen in this execution
path. Notice that the difference between e.w, e′.w gives us the changes that
where done by e and not the changes that where done by e′, since it is the
difference between when e started and e′ started, which is when e ended. If
we want the changes that e′ caused we need the difference between e′ and its
next consecutive execution element.

Alg. 13 uses that above extrapolation of the changes between execution
elements to create an element that represents the new selected behaviors
and the changes affected by these behaviors . Line 1 extrapolate the new
behaviors added to the stack, while line 6–4 extrapolate the changes in the
knowledgebase. In this algorithms we wanted the returned tuple to include
the added behaviors and the changes they caused, thus we used the next
consecutive behavior to extrapolate the knowledgebase.

6.2 The checks in repeated calls

First we need to decide what are the checks made against. In our path the
knowledgebase of the next behavior after bc is what was needed for these
behaviors to be selected. This means that if the current knowledgebase
and the expected knowledgebase (the one in the path) are the same, then
lookahead will do the same checks as in the previous call, thus this path was

6.2 The checks in repeated calls 48

already deemed feasible. On the other hand, if we have differences between
the current knowledgebase and the expected one, then new checks need to
be made. However, the if there are keys with the same value in the two
knowledgebases then since the plan is static, the changes on this values will
be the same, again they where checked in the previous call. Thus the only
keys that interest us are the keys whose values are different between the
current knowledgebase and the expected one.

Thus in line 6 of Alg. 12 we extract only the changes between the current
knowledgebase and the knowledgebase we expected to start this suffix path.
This is done by taking the difference between the current knowledgebase and
the knowledgebase saved in the next execution element after bc.

The next step is to check if the difference between the expected knowl-
edgebase and the given knowledgebase can eliminate the path. Remember
while our original algorithm was complete it was not sound, some paths might
not be feasible but we do not know that because we don’t have the full effects
of the behaviors.

For this reason we go over the execution elements of the path (line 7) and
extract the selected behavior of that element and the changes this execution
element did (line 11). Remember that in the original lookahead algorithm
(Alg. 2) we had three types of checks for the three phases of a behavior,
PreCheck to check for preconditions and select hierarchical children, InCheck
to address the support keys of the behavior and the changes they make
and TermCheck to change the knowledgebase according to the termination
conditions and choose the followers that are selectable. In repeated calls this
phases needed to be treated differently, since this time instead of creating
new knowledgebases we are checking if the changes in the real world do or
do not have effect over the choices made in the xpath.

PreCheck We first need to check if the behaviors we previously thought
can be selected can still be selected, i.e if there preconditions are still met in
the current knowledgebase (line 12). Notice that for this check we only need
to check the keys which values are different between the current knowledge-
base and the expected one, since we know that any value in the expected
knowledgebase did not violate the preconditions (because then this path will
not be part of successful paths) thus keys whose values are the same in the
two knowledgebases correspond with the preconditions. This PreCheck is
made in line 8 where the TEST only returns False if the key of one of

6.2 The checks in repeated calls 49

the behaviors precondition exist in ∆k but the value does not match the
precondition.

If a key does not exist in ∆k then we ignore this precondition, since if
the key is not in ∆k then its value was either the same both in the ex-
pected starting knowledgebase (of the execution element right after bc) and
the real current knowledgebase or this value was changed during the Term-
Check phase or InCheck phase.

InCheck In the original algorithm InCheck changed the keys in support
to unknown, this means that any key in support of any of the new nodes
that where selected will be changed to unknown. Thus the values of these
keys in expected knowledgebase will be changed to unknown, and in this case
ignored by the TEST function in the original algorithm. In addition, these
keys being in the support means they are going to be changed by this selected
behavior and thus the values they hold in the current real knowledgebase are
not valid for further checks of this path. For that reason in line 14 we remove
the support keys from δk since there real value is not meaningful, its going
to change, and there expected value in the next knowledgebases is going to
be unknown and thus ignored.

TermCheck This phase in the original algorithm changed the knowledge-
base to actual values, not unknown, according to the termination condition.
To find out which termination condition where used to create the next knowl-
edgebase we use the changes we found between the current execution element
and the next execution element. Any key in this difference that its value is
not unknown was changed by the termination condition. The xpath we are
currently checking is built on this changes, thus we are checking this xpath
has if this is the changes made to the knowledgebase, meaning this termina-
tion condition ”happened”. This means that the values of the keys in the
current real knowledgebase will change to the values that correspond to the
selected termination conditions. Thus the values of these keys in the cur-
rent real knowledgebase no longer effect this path, we already checked in the
previous call if this changes eliminate the path, and they did not. For that
reason we can remove this keys from δk (line 15) since they are no longer
effecting the path.

We do this for each element of the path until we either: eliminate the
path when preconditions are discovered to no longer be true (lines 12–13),

6.2 The checks in repeated calls 50

we reached the end of the path and not eliminated it yet (line 16) or the
differences between the current knowledgebase are mitigated by the changes
made by the behaviors and are no longer a concern (line 8). If one of the
latter reason accrued then we can concur that this path is still feasible.

Algorithm 12 Repeated Calls

Require: The Recipe P = 〈B,H,N, b0〉
Require: Current behavior bc
Require: Knowledgebase W
Require: Successful paths list paths

1: successful← ∅
2: for all p ∈ Paths do
3: if bc ∈ p then
4: p′ ← suffix(p′, bc)
5: Ws ← second(p′)
6: ∆k ← {(k, v)|(k, v) ∈Ws ∧ (k, v′) ∈W ∧ v 6= v′}
7: for all (prev → curr → next) ∈ p′ do
8: if ∆k = ∅ then
9: successful← successful ∪ p′

10: Goto 2
11: bselcted,Wdiff ← pathDiff(prev, curr, next)
12: if ∃b ∈ bselctedTEST(preconds(b),∆k) = False then
13: Goto 2
14: ∆k ← ∆k\{support(b)|∀b ∈ bselcted} . correspond to inCheck
15: ∆k ← ∆k\Wdiff . correspond to termCheck

16: successful← successful ∪ p′

17: return successful

If in the previous calls all xpath were feasible and the only things changed
in this knowledgebase from the last call are keys that do not appear in the
recipe then we will go over all xpath again, thus the worst case run-time is
the same has the regular lookahead. However, if we eliminated a path in
previous calls that had one of the precondition of a behavior violated at least
this path is not checked again until the point of elimination, thus saving some
checks. In addition, if δk consists of keys that are all latter changed in the
path, we might not have to get to the end of it to decide it is still feasible,
saving us further checks. Moreover, if the changes in the knowledgebase and
the expected knowledgebase do not exist we will save the check of the path

6.2 The checks in repeated calls 51

Algorithm 13 Get Changes

Require: The previous execution element prev
Require: The current execution element cur
Require: The next execution element next

1: nodes← {n|n ∈ cur ∧ n /∈ prev}
2: Wcur ← last(cur).w
3: Wnext ← last(next).w
4: Wdif ← {(k, v)|(k, v) ∈Wcur ∧ (k, v′) ∈Wnext ∧ v 6= v′}
5: return nodes,Wdif

entirely since we know it is already feasible. For that reason the run-time of
repeated calls can reduce significantly the run-time it takes to monitor the
execution.

In section 4 we distinguished between internal and external conditions.
We relay on this distinctions and our ability to determine what are the in-
ternal condition and external condition for repeated calls as well. If what
was an internal condition was changed by an external force, repeated calls
might not return all feasible paths. An example for this can be seen in our
experiment with the Nao robot in section 8.3.

52

7 Experiments with random plans

We seek to empirically evaluate two independent issues. First, the influence
of the graph structure and the influence of the knowledge state space size (as
reflected by the number of termination conditions used in behaviors), on the
actual complexity of the execution algorithm. Second, we seek to evaluate
the efficacy of the different pruning methods we introduced.

7.1 Experiment Environment

We ran our experiments on randomly generated recipes. The recipes where
generated with 3 parameters. The first is the depth of the recipe graph,
that is the height of the tree from the initial node to the lowest leaf. We
will denote depth with d. The depth we choose are d = 1, 3, 5. The second
parameter is the breadth of the tree, that is how many children are in each
level of the tree. We will denote breadth with b. The breadth we choose
are b = 1, 3, 5. For example a recipe graph with depth 1 and bread 2 is a
recipe graph that has the initial node and this node either have 2 hierarchical
children or 1 hierarchical child, and the child has one sequential follower that
is not itself. Table 2 shows the number of behaviors that each such recipe
graph has. Note that BDI recipes from significant research efforts appearing
in the literature report on having a behavior count somewhere in the range
of a few dozen [34] to well over a hundred [45, 51], i.e., similar numbers to
d = 3, b = 3, 5 in the experiments.

b=1 b=3 b=5
d=1 2 4 6
d=3 4 40 156
d=5 6 364 3906

Table 2: Number behaviors in a recipe graph

The last parameter is the max number of termination conditions each
node can have, we will denote it with t. The max termination conditions
we choose are 1, 3, 9. For each combination of d, b, t we generated 5 different
recipe graphs. The knowledgebase we decided to go with has 10 keys with
Boolean values (True or False). Thus we have 210 possible knowledgebases to
start with. We choose randomly 5 of this knowledgebases to start five differ-
ent runs on the same recipe graph. This means that for every combination
of d, b, t we have 25 runs. In total we ran the algorithm 25 ∗ 3 ∗ 3 ∗ 3 = 675

7.2 Recipe Graph Structure 53

times for each visited method. The runs were carried out in parallel, on a 24-
core XEON server with 76G RAM. Each run was a single process, utilizing
a single core. Overall, we used more than 4000 hours of CPU time for the
experiments.

Since we know the time to run the algorithm for each problem can be
very long we decided to restrict the time for each run with different knowl-
edgebases to one hour of CPU time. We first ran the base algorithm with
NAIV E1 as the visited method. However, even smaller recipes timed out,
even with 3 hours of CPU time given to them to run. We thus focused on
the visited method. We ran the 5 chosen knowledgebases on each of the
examples with the visited methods and their combinations, that is: merge
paths (M), cycle avoidance (C), cycle avoidance and successful visited (C+S),
merge paths and successful visited (M+S), merge paths and cycle avoidance
(M+C) and all 3 pruning methods together (ALL). successful visited without
some sort of cycle avoidance or merge paths proved to be as bad as the base
algorithm and thus we decided to run it as part of a combination of visited
methods.

7.2 Recipe Graph Structure

Let us first discuss the recipe graph’s structure influence on the run time
complexity. For this purpose we set t to be 1 and looked at the changes in
run time when changing the depth and breadth. The result are in Figure
4 and Figure 5. Both figures has 9 graphs. Each graph corresponds to a
different d and b combination. In the first figure, each bar represent the total
runtime of all 25 runs of the algorithm with a given pruning method. In the
second we have the number of recipe graphs (out of the 25), for which the
algorithm finished within the 1 hour cutoff time. Note that the Y axis in the
run-time figures changes scale between subfigures, sometimes dramatically.

We can see in these figures that if the breadth and depth are small, the
run time is fast and all the runs reach the end, since we have less behaviors
and less paths to go through. On the other end if we have a lot of behaviors
(in this case 3906) then the time complexity is very high and very few recipe
graphs actually finish before the 1 hour cutoff. One important conclusion
from these figures is that breadth has more influence on the time complexity
then depth. The jump in time from d = 1, b = 1 to d = 5, b = 1 is small,
on the other hand the jump from d = 1, b = 1 to d = 1, b = 5 is tenfold. In
addition we can see in Figure 5 that even though the jump in the number of

7.3 Knowledge State Space Size 54

behaviors from d = 3, b = 3 to d = 5, b = 3 is significantly bigger then the
jump to d = 3, b = 5, the number of recipes that finished is not. Thus we can
say that the breadth of the recipe graph is more influential than the depth
of the recipe graph.

In addition we can see in Figure 5 that cycle avoidance does worse then
the rest. It is the only one that did not menage to finish runs on all the
recipe graphs in d = 3, b = 3, and when others start to fail, it fails more
times. Thus, cycle avoidance total runtime jumps significantly more then the
others in the corresponding graph in Figure 4. successful visited with cycle
avoidance does slightly better then cycle avoidance alone, but not by much.
On the other end merge paths and all its combinations, finish faster and thus
also finish more recipe graphs in the hour given. We can see that merge
paths by itself never has longer runtime then any combination with it. This
is because it already incorporates the two methods in it. We can see that any
combination of merge paths and a different method finish exactly the same
number of recipe graphs. The longer running time of its combination can
thus only be explained by the fact that we do more operation per iteration,
since we are doing one or two more methods.

7.3 Knowledge State Space Size

To understand the influence of the knowledge state space size we look at the
total running time when b and d are fixed and instead vary the number of
termination condition per behavior. This result can be seen in Figures 7,
8 and 9. In each, we see the results of all tested combinations of pruning
methods, for a given breadth (b) and depth (d) but varying t (1, 3, 9). Figure
7 is the total run time on plans with d = 1 and b = 5. Figure 8 is the total
run time on plans with d = 3 and b = 3. Figure 9 is the total run time on
plans with d = 3 and b = 5.

Notice that the scale of the graphs increases when t increases. This is
in agreement with the complexity we found in Section 4, where we saw that
the number of termination conditions for a behavior, increases the number of
possible exploration options. Thus we can conclude that the more active keys
we have, the time complexity increases. This means that the complexity of
the problem is not only dependent on the number of behaviors in the recipe.
Even small recipes with large number of termination conditions can take a
very long time to solve.

Another conclusion we can see from this graphs is that merge paths is

7.3 Knowledge State Space Size 55

b=1 b=3 b=5

d=1 C C+S M M+S M+C ALL
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

C C+S M M+S M+C ALL
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

C C+S M M+S M+C ALL
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

d=3 C C+S M M+S M+C ALL
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

C C+S M M+S M+C ALL
0

2000

4000

6000

8000

10000

12000

14000

16000

d=5 C C+S M M+S M+C ALL
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

C C+S M M+S M+C ALL
0

5000

10000

15000

20000

25000

30000

35000

C C+S M M+S M+C ALL
0

10000

20000

30000

40000

50000

60000

Figure 4: Total runtime for (t=1) (Lower is better)

7.3 Knowledge State Space Size 56

b=1 b=3 b=5

d=1 ALL C C+S M M+C M+S
0

5

10

15

20

25

30

ALL C C+S M M+C M+S
0

5

10

15

20

25

30

ALL C C+S M M+C M+S
0

5

10

15

20

25

30

d=3 ALL C C+S M M+C M+S
0

5

10

15

20

25

30

ALL C C+S M M+C M+S
0

5

10

15

20

25

30

ALL C C+S M M+C M+S
0

5

10

15

20

25

30

d=5 ALL C C+S M M+C M+S
0

5

10

15

20

25

30

ALL C C+S M M+C M+S
0

5

10

15

20

25

30

ALL C C+S M M+C M+S
0

5

10

15

20

25

30

Figure 5: Number of finished runs when (t=1) (higher is better). Note the
scale on the Y axis changes dramatically between subfigures.

7.3 Knowledge State Space Size 57

better then cycle avoidance and successful visited. Even more surprising, the
combination of all pruning methods together does not improve the running
time, and sometimes even increases the runtime. The same can be said for
merge paths with successful visited. Notice that merge paths is an improve-
ment on successful visited, since it does not wait for a path to reach the end,
rather prevent the double checks from happening even before that. Thus the
runtime of merge paths with successful visited can only increase because of
the overhead of running the pruning method itself. merge paths with cycle
avoidance does slightly better then merge paths alone, but not by much. This
means that the best method to use is merge paths with cycle avoidance.

In general over all 675 runs for each pruning method we had:

Pruning method Finished runs Timeout Runs
C 552 123

C+S 562 113
M+S 576 99
M+C 576 99

M 576 99
M+S+C 576 99

Figure 6: Number timeout and finished recipes for each prunning method

C C+S M M+S M+C ALL
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) Total runtime for (t=1)

C C+S M M+S M+C ALL
0.0

0.5

1.0

1.5

2.0

2.5

3.0

(b) Total runtime for (t=3) (c) Total runtime for (t=9)

Figure 7: Total runtime for (d=1,b=5) (Lower is better)

58

(a) Total runtime for (t=1)

C C+S M M+S M+C ALL
0

5000

10000

15000

20000

25000

30000

35000

(b) Total runtime for (t=3)

C C+S M M+S M+C ALL
0

5000

10000

15000

20000

25000

30000

35000

(c) Total runtime for (t=9)

Figure 8: Total runtime for (d=3,b=3) (Lower is better)

C C+S M M+S M+C ALL
0

2000

4000

6000

8000

10000

12000

14000

16000

(a) Total runtime for (t=1)

C C+S M M+S M+C ALL
0

5000

10000

15000

20000

25000

(b) Total runtime for (t=3)

C C+S M M+S M+C ALL
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

(c) Total runtime for (t=9)

Figure 9: Total runtime for (d=3,b=5) (Lower is better)

8 Experiments With a Nao Robot

8.1 Experiment Environment

In order to further evaluate the capabilities of the algorithms’ we ran it on
a real scenario with a robot. We used a Nao robot, a humanoid robot with
25 degrees of freedom. The scenario was has follows: The Nao robot needed
to get to a toolbox and retrieve a screwdriver, from there it proceeded to
a drawer standing in the opposite side and screw a screw to the drawer.
Since the Nao’s motors can get hot and it can stop functioning we set a
resting point between the toolbox and the drawer, where it sits ad pauses
before continuing. This is the same scenario we used to demonstrate BIS
algorithm, thus we used the recipe presented in Figure 1. Notice that in this
recipe if the robot drops the screwdriver (or the screwdriver is taken from it)
after visiting the tool shed, then it will go to the drawer and will have nothing
to do. This can be fixed by adding edges from the following behaviors after
tool shed to tool shed, as in the recipe in Fig. 10

However, this does not solve the problem completely. If the robot ac-

8.1 Experiment Environment 59

Figure 10: A recipe for a Nao robot to fix the drawer. Dashed lines are
hierarchical edges (H) while solid lines are sequential edges (N). Nodes are
behaviors (B).

cidental drops the screwdriver while resting and it has a preference to go
forward unless it cannot. Without the monitoring algorithm it will still go to
the drawer and will not be able to preform screw, it will then go back to take
the screw. Of course we can make having the screwdriver a precondition of
going to the resting point, but as discussed in Section 4 this solution is not
scalable.

We ran this scenario in the lab. The robot goes to fix the drawer and we
take the screwdriver from its hand while it is resting. Fig. 3 shows one such
experiment. The top row shows from left to right: The initial position of Nao
(bottom left of picture), the robot getting the screwdriver in the tool shed,
the robot turning towards the resting point and the drawer. The second
row (left to right): The screwdriver is taken from the robot, the robot turns
to return to the tool shed to get the screwdriver again, the robot receives
the screwdriver again. The last row (left to right): the robot goes to the
resting point, the robot rests, the robot reached the drawer and is screwing
the screw.

8.1 Experiment Environment 60

8.1 Experiment Environment 61

Table 3: Experiment with a Nao Robot

We ran the scenario above with BIS and our execution monitoring algo-
rithm (Alg. 2) called each time a follower needed to be chosen. This was
done on both the recipe in Figure 1 and Figure 10. Each time, we took the
screwdriver from the robot while it was resting in the resting point. For the
acyclic plan (Figure 1 this meant that after resting it had nothing to do,
since none of the paths to the end was possible without the screwdriver. For
that reason once no successful path was returned we terminated all behaviors
in the stack and called BIS again from the start with the same knowledge-
base that the robot already had. Notice this was possible in this recipe since
restarting it will always take it to the tool shed. This is not a general solution:
the problem of no possible paths is discussed further in Section 10.

We ran both recipes with the three visited methods and their combina-
tions, that is: merge paths (M), cycle avoidance (C), successful visited (S),
cycle avoidance and successful visited (C+S), merge paths and successful
visited (M+S), merge paths and cycle avoidance (M+C) and all 3 pruning
methods together (ALL).

We ran this experiment 50 times for each prune method on both the
acyclic plan and the cyclic plan. In total we ran the experiment 7× 50× 2 =
700. Each run was until the robot fixed the drawer, lookahead was run before
we selected a behavior in line 24 of Alg 1.

Since we saw that even for a simple plan the complexity of the monitoring
algorithm can be high, we also did time limit on the run of each call to
lookahead (as we did in the experiments), no call could run more then 60
seconds of CPU time. If the time was finished for the call it simply returned
all the possible paths it found so far.

8.2 Acyclic recipe 62

8.2 Acyclic recipe

Let us first discuss the experiments done on the acyclic recipe (Figure 1). In
these experiments we wanted to both compare the different pruning methods,
but also to see how much time the lookahead adds to our run-time Notice
that cycle avoidance will prune no search node since there are no cycles in
this recipe, thus there will be no previous instances of a behavior we arrived
at in the execution path. This means that we can look at cycle avoidance as
a base line in this case, as if using only NAIV E1.

First we wanted to see the impact on the run-time, for that reason we
calculated the mean total time spent in lookahead for all the duration of one
run of the scenario, that is the the sum of all calls of lookahead from the
initial position to fixing the drawer divided by the number of runs of the
scenario (in this case 50 runs).

Figure 11a shows the mean total time spent in lookahead when Nao went
from the initial position to fixing the drawer without issue. Figure 11b shows
the mean total time spent in lookahead when the screwdriver was taken at
the rest point in the first arrival, and no issue in the second arrival to the
rest point.

We can see in these figures that cycle avoidance and the combination of
all together did the worst, cycle avoidance is after all the base line where
we compare search nodes base on all there components and do not take a
better look at the path, this result is as expected. The combination merge
paths and cycle avoidance is one more call to a function which increases the
run-time, however it will cut as much as merge paths so it surprising it did
as worst. Merge paths and successful visited did the best in terms of run-
time, and where there was no issue successful visited did slightly better then
merge paths. This is surprising considering we showed that merge paths will
eliminate at list the same search nodes as successful paths.

We can see that for all methods the time spent in lookahead is pretty
small on this simple recipe when there was no issue. The time spent in
lookahead when the screwdriver was taken away is of course longer, we had
more calls to lookahead after all. But it is still way under a second.

To understand better the result of the run-time we take a look at the
number of iteration each method has done. First lets take a look at the
sum number of iteration all calls to lookahead in one scenario has done.
Figure 12 shows us the sum of iteration over all calls of lookahead from the
initial position to fixing the drawer (i.e the sum of iteration over all calls to

8.2 Acyclic recipe 63

ALL C C+S M M+C M+S S
0.00

0.05

0.10

0.15

0.20

(a) Mean time spent in lookahead no issue.

ALL C C+S M M+C M+S S
0.0

0.1

0.2

0.3

0.4

0.5

(b) Mean time spent in lookahead screwdriver taken.

Figure 11: Mean time spent in lookahead (acyclic)

8.2 Acyclic recipe 64

lookahead in one run of the scenario). Figure 12a shows the sum number
of iteration when there was no issue and Figure 12b shows us the number
of iteration when the screwdriver was taken. We do not need to do mean
over all 50 runs of the scenario since the number of iteration never changed
for each visited test method (what change is the time it took to do each
iteration).

We can see in Figure 12a that the number of iteration when there was
no issue is the same for all the visited test methods. On the other hand,
Figure 12b does show difference in the number of iterations with the number
of iteration for runs that included merge paths being lower then runs that
did not include it, showing that merge paths indeed does less iterations.

Given the difference in run-time in Figure 11a over the same number of
iterations we can conclude that the run-time for each iteration is the lowest
for successful visited and the highest for cycle avoidance. This is further
shown by the fact that indeed merge paths with cycle avoidance is slower
then merge paths with successful visited. Furthermore since all the method
gave the same number of iteration, running all of them together means more
calls which explains why combining them all was the slowest method. In
addition, the fact that successful visited had the same mean time as merge
paths in Figure 11b but slightly more iteration in Figure 12b we can see that if
the difference between the number of iteration is insignificant between merge
paths and successful visited, using successful visited can be more beneficial.

In the experiments running with the acyclic graph once lookahead found
no paths that are possible we ran BIS again with the same graph. Thus we
can look at the whole run of the scenario, when the screwdriver wast taken,
in terms of the two runs of BIS, the first until the resting point where the
screwdriver was taken, the second once we rerun BIS and Nao returned to
get the screwdriver and then eventually fixed the drawer.

Figure 13 shows us the number of iteration for the first run of BIS and
the second run of BIS for each visited method (splits the number from Figure
12a) over the two BIS runs). The left bar shows the first run and the right
bar shows the second run. We can see in this graph that the number of
iteration in the first run is identical for visited check methods. However the
number of iteration for the second run is different and merge paths has the
lowest number of iteration. What happen in this second run that made the
difference?

For that reason we compared the number of iteration for each decision
point, that is each call to lookahead. First lets look at the number of iteration

8.2 Acyclic recipe 65

ALL C C+S M M+C M+S S
0

50

100

150

200

250

(a) Sum number of iteration no issue.

ALL C C+S M M+C M+S S
0

100

200

300

400

500

600

700

(b) Sum number of iteration screwdriver taken.

Figure 12: Sum number of iteration (acyclic)

8.2 Acyclic recipe 66

ALL C C+S M M+C M+S S
0

50

100

150

200

250

300

350

400

450

Figure 13: Total number of iteration for all calls in one scenario (acyclic).

8.3 Cyclic Recipe 67

when there was no issue. Figure 14 shows us the number of iteration for each
call to lookahead ordered from the first call (when tool shed ended) to the
last one (when mission completed ended) with only one run of BIS, since
there is no issue. We can see that indeed the further we go in the recipe the
less gpaths we have and thus less xpaths, the less iteration lookahead does.

On the other hand, Figure 15 shows us the number of iteration for each
call to lookahead ordered from the first call (when tool shed ended) to the last
one (when mission completed ended) when we took the screwdriver away,
where face west is the first call to lookahead in the second run of BIS.

The number of iteration is only different between the methods
in face west. Notice that since the first BIS run starts from
the initial position face west is never chosen in that first run
(face west is a direct child of tool shed and has preconds(face west) =
{(facing west, False), (at init, False)}). For that reason in the first run
from init is chosen and since when from init finishes then tool shed also
end, then we have less behavior in the paths in the start of the first run
then are in the start of the second run that can create the factors for the
visited check method to work on. Thus we can see that indeed the number
of behavior in the path effects the runtime. This still follows the conclusion
from Figure 15, the further in the recipe we are the less iteration lookahead
does.

8.3 Cyclic Recipe

We now consider the effects of the algorithm on a recipe that has cycles in
it. This recipe solves the problem of the flat recipe, there will always be a
feasible path to the end, no need to restart BIS. However, we found that
just monitoring is not enough, there is a need to look in the results of the
monitoring to make conclusion on what to do next. For example in this
scenario if we are to do a further look in to all the possible paths gathered by
lookahead we will see that all paths included the node tools shed, thus we
can conclude we need to go back to the tool shed to complete the mission.
In a sense, this now allows full planning using the recipe, which is outside
the scope of this work. We did not implement this, and further discuss this
in Section 9.

We then look further on the effect of the visited methods on the algorithm.
cycle avoidance is no longer a none factor, this time actually removing more
nodes then just NAIV E1.

8.3 Cyclic Recipe 68

to
ol
s_
sh
ed

pi
ck
_s
cr
ew
dr
iv
er

fa
ce
_e
as
t_
re
st

m
ov
e_
fo
rw
ar
d_
re
st

re
st
in
g_
po
in
t

dr
aw
er
_p
oi
nt

In
iti
at
e

m
iss
io
n_
co
m
pl
et
ed

0

20

40

60

80

100

ALL
C
C+S
M
M+C
M+S
S

Figure 14: Iteration per decision point, flat recipe no issue.

8.3 Cyclic Recipe 69

to
ol
s_
sh
ed

pi
ck
_s
cr
ew
dr
iv
er

fa
ce
_e
as
t_
re
st

m
ov
e_
fo
rw
ar
d_
re
st

re
st
in
g_
po
in
t

fa
ce
_w
es
t

to
ol
s_
sh
ed

pi
ck
_s
cr
ew
dr
iv
er

fa
ce
_e
as
t_
re
st

m
ov
e_
fo
rw
ar
d_
re
st

re
st
in
g_
po
in
t

dr
aw
er
_p
oi
nt

In
iti
at
e

m
iss
io
n_
co
m
pl
et
ed

0

20

40

60

80

100

120

140

160

180

ALL
C
C+S
M
M+C
M+S
S

Figure 15: Iteration per decision point, flat recipe screwdrive taken.

8.3 Cyclic Recipe 70

We start again with looking at the total time spent in lookahead. Figure
16 shows the total time spent in lookahead using the cyclic recipe and having
no issue. Figure 17 show the total time spent in lookahead using the cyclic
recipe and taking the screwdriver at the resting point. They are both divided
in to three graphs:

Figure 16a and Figure 17a show the run time for all the methods without
and with issue respectively. We can see that cycle avoidance did the worst
by a lot. Its important to note that cycle avoidance is the only method that
reached the time limit, did not finish in under 60 seconds of CPU time. This
is a specially significant in the case where there is no issue, where this is a
big overhead on the decision process that does not effect it at the end. In
the case where there is an issue, if the issue is not a no return situation, this
overhead, in the case of cycle avoidance, can be the same as not detecting
and going back from a dead end.

Figure 16b and Figure 17b removes cycle avoidance from the graphs with-
out and with issues respectively, and focus on the other methods. We can
see that this time successful visited did a lot worst then merge paths or any
combination with merge pathsboth when there was no issue and when there
was an issue. This is in contrast to the acyclic graph, where successful visited
had the same runtime when needing to go back and slightly faster when there
was no problem. This means that this time the difference in the number of
iteration was not insignificant. In addition, we can see that while successful
visited is significantly better then cycle avoidance it can still give more then
10 seconds of overhead, that may or may not save time latter.

Figure 16c and Figure 17c focuses only on merge paths and the combina-
tion with it, without and with issues respectively. We can see that has before
merge paths has the best runtime, followed by merge paths with successful
visited (which we showed previously has the best runtime per iteration) and
then merge paths with cycle avoidanceand all together. This concurs with
our previous findings. We can also see that in both cases when using merge
paths the runtime is still very low, and when there is no issue it is just a
little over a second. When there is an issue it a almost 4 seconds, this is
more significant increase but one that can save us more latter.

Remember that in Section 7 we did not include successful visited by itself
since it did as bad as NAIV E1. Contrary to section 7 in this experiment
cycle avoidance did the worst, where successful visited did worse than merge
paths but not close to cycle avoidance.

Next we look at the number of iterations each visited check method did.

8.3 Cyclic Recipe 71

(a) Mean time spent in lookahead all methods.

ALL C C+S M M+C M+S S
0

50

100

150

200

250

300

350

ALL C+S M M+C M+S S
0

5

10

15

20

(b) Mean time spent in lookahead
without cycle avoidance.

ALL M M+C M+S
0.0

0.5

1.0

1.5

2.0

2.5

(c) Mean time spent in lookahead only
method with merge paths.

Figure 16: Mean time spent in lookahead (cyclic, no issue)

8.3 Cyclic Recipe 72

(a) Mean time spent in lookahead all methods.

ALL C C+S M M+C M+S S
0

100

200

300

400

500

600

700

800

ALL C+S M M+C M+S S
0

10

20

30

40

50

60

70

80

(b) Mean time spent in lookahead
without cycle avoidance.

ALL M M+C M+S
0

1

2

3

4

5

6

7

(c) Mean time spent in lookahead only
method with merge paths.

Figure 17: Mean time spent in lookahead (cyclic, screwdriver
taken)

8.3 Cyclic Recipe 73

Figure 18 shows the total number of iteration done in each run of the scenario
with the different visited check methods. At the top, Figure 18a we have the
number of iteration all calls to lookahead done when there was no issue for all
methods. Figure 18b shows a closer look at the methods without cycle avoid-
ance since cycle avoidance did a lot more iterations (after all some of it runs
where stopped at the time limit) and the scale makes it difficult to see the
differences between the other methods. The bottom part of Figure 18 shows
the number of iteration for of all the calls to lookahead when the screwdriver
was taken. Again we separate in to two graphs, Figure 18c show the number
of iteration for all methods, while Figure 18d show the number of iteration
where cycle avoidance was removed. This time the number of iteration and
the run-time are more correlated, merge paths and all the combinations in-
cluding it are the best both in the lower run-time and in the lower number of
iteration, successful visitedis next and cycle avoidancedoes the worst. Notice
that in contrast to the acyclic recipe, the number of iteration in successful
visitedis much higher then merge paths. We can conclude then that while
the run-time of each iteration of successful visitedmight be a little faster in
our implementation, in more complex recipes where the number of iteration
can vary significantly between the two visited check methods merge paths is
the better.

Figure 19 shows the number of iteration per at each decision point from
the first decision to the last, when there was no problem. Each decision point
is represented by the top terminated behavior, the behavior e at the end of the
loop in lines 16-20 in Alg. 1. The top graph, Figure 19a shows us the number
of iteration per decision point for all visited methods. Remember that cycle
avoidance did not finish most its runs under 60 seconds. This is reflected in
the graph both by the significant difference between cycle avoidance and the
rest of the methods, and by the fact that cycle avoidance does not follow the
same trends as the other methods, this is since it stopped before finishing thus
the number of iteration is not represented of the number iteration it took to
finish the lookahead like the rest of the methods, but rather the number of it-
eration it manged to do under 60 seconds, with the exception of three decision
points (move forward rest, initiate,mission completed) which correlate to
the three decision points with the lowest number of iteration in the rest of
the methods as well.

Thus we compare the rest of the methods in Figure 19b where cycle
avoidance is removed and we see the number of iteration per decision point
when there was no issue for the rest of the methods. In contrast to the

8.3 Cyclic Recipe 74

ALL C C+S M M+C M+S S
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

(a) Sum number of iteration all
methods (no issue).

ALL C+S M M+C M+S S
0

1000

2000

3000

4000

5000

6000

(b) Sum number of iteration without
cycle avoidance (no issue).

ALL C C+S M M+C M+S S
0

20000

40000

60000

80000

100000

(c) Sum number of iteration all methods
(screwdriver taken)

ALL C+S M M+C M+S S
0

2000

4000

6000

8000

10000

12000

14000

16000

(d) Sum number of iteration without
cycle avoidance (screwdriver taken)

Figure 18: Sum number of iteration (cyclic)

8.3 Cyclic Recipe 75

number of iteration per decision point in the acyclic recipe (Figure 14) where
the number of iteration was reduced the closer we got to the end, in the case
of the cyclic recipe the number of iteration does not depend on how close to
achieving the goal we are. This is because even thou we still have a clear end
there are a lot of cycles in the graph so reaching the end is not a straight line
and thus we have more possibilities.

First thing we can see in this graph is that when a behavior has more
sequential edges (but outgoing and in going) lookahead does more iterations.
tool shed and resting point has more sequential edges then drawer point,
and indeed lookahead when tool shed and resting point terminate does
more iterations then when drawer point terminates. The same goes for
drawer point and pick screwdriver, where drawer point has more sequen-
tial edges and lookahead does more iteration when drawer point terminates
then when pick screwdriver terminates.

Second we can see that there is an importance on how many times a key
is present in the recipe. Lookahead does more iteration when tool shed ter-
minates then when resting point terminates even thou they have the same
number of sequential edges. However, pick screwdrive is the only behav-
ior that changes a key in the database, has screwdriver and nothing else
can change that but external forces. When tool shed terminates Nao still
does not have the screwdriver thus lookahead has more possibilities of when
pick screwdriver will be in the xpath. However when resting point termi-
nates Nao has the screwdriver and since the precondition of pick screwdriver
is has screwdriver = False and no other behavior touches has screwdriver
pick screwdriver will never be picked, thus there are less possible xpath and
less iterations.

This is also an example of when repeated calls assumption are broken.
has screwdriver is an internal condition, pick screwdriver changes it. How-
ever, when we took the screwdriver has screwdriver was changed to be
an external condition. In this calls for lookahead we will never return to
pick screwdriver since its precondition is always false. If we after taking the
screwdriver we were to preform the repeated calls algorithm (Alg 12) it would
have returned no path, since there was no remedy for the taken screwdriver
in the paths returned from the previous call.

Lets then take a look at what happens when we take the screwdriver.
Figure 20 shows the number of iteration at each decision point when we take
the screwdriver while Nao is at relax a. Figure 20a shows the number of
iteration at each decision point, again each decision point is represented by

8.3 Cyclic Recipe 76

the last terminated behavior from Alg 1, for all the methods. Again cycle
avoidance did not finish most its runs and thus does not give us insight over
lookahead algorithm behavior.

Figure 20b shows the number of iteration for each decision point for all
methods except cycle avoidance. We can see that the start is the same
as Figure 19b until move forward rest, the next behavior is resting point
but this time Nao does not have the screwdriver when it finishes. We can
see that the first call when resting call terminated and Nao does not have
the screwdriver does more iterations then all the rest of the calls. This time
lookahead can enter pick screwdriver after finishing resting point, and even
the shortest path to reach success is longer then what it was when Nao was
without the screwdriver in tool shed which is way we have more iteration
then when tool shed terminated.

However, in this case there is one trend that is different between merge
paths and successful visited. In merge paths the number of iteration when
drawer point is terminated without having the screwdriver (the first instance
of drawer point in the graph), and the number of iteration when tool shed
is terminated (also without having the screwdriver) is lower with the termi-
nation of drawer point. On the other hand, in successful visitedthis is the
opposite. We saw two factors that can effect the number of iteration: 1.
the number of sequential edges (both in and out going) 2.the length of the
shortest path to success. Notice that the second factor, the shortest path
to success effect more strongly the behavior of successful visited then merge
paths. Successful visited needs at least one successful path before it starts
eliminating search nodes that are not identical, merge paths on the other
hand just need the knowledgebase, behavior and check type to be identical in
order to eliminate search nodes. Thus successful visited is more effected from
the length of the shortest path to success then merge paths. drawer point
indeed have less sequential edges but a longer shortest path to success then
tool shed thus it takes more iteration from the end of drawer point rather
from the end of tool shed for successful visited to finish, but this does not
effect merge paths as much and thus the number of iteration form the ter-
mination of tool shed and drawer point is not significant, since the this two
factors are effecting in different directions.

8.3 Cyclic Recipe 77

to
ol
s_
sh
ed

pi
ck
_s
cr
ew
dr
iv
er

fa
ce
_e
as
t_
re
st

m
ov
e_
fo
rw
ar
d_
re
st

re
st
in
g_
po
in
t

dr
aw
er
_p
oi
nt

In
iti
at
e

m
iss
io
n_
co
m
pl
et
ed

0

1000

2000

3000

4000

5000

6000

7000

8000

ALL
C
C+S
M
M+C
M+S
S

(a) Iteration per decision point (no issue).

to
ol
s_
sh
ed

pi
ck
_s
cr
ew
dr
iv
er

fa
ce
_e
as
t_
re
st

m
ov
e_
fo
rw
ar
d_
re
st

re
st
in
g_
po
in
t

dr
aw
er
_p
oi
nt

In
iti
at
e

m
iss
io
n_
co
m
pl
et
ed

0

200

400

600

800

1000

1200

1400

1600

ALL
C+S
M
M+C
M+S
S

(b) Iteration per decision point without cycle
avoidance (no issue).

Figure 19: Iteration per decision point (cyclic, no issue)

8.3 Cyclic Recipe 78

to
ol
s_
sh
ed

pi
ck
_s
cr
ew
dr
iv
er

fa
ce
_e
as
t_
re
st

m
ov
e_
fo
rw
ar
d_
re
st

re
st
in
g_
po
in
t

dr
aw
er
_p
oi
nt

fa
ce
_w
es
t

to
ol
s_
sh
ed

pi
ck
_s
cr
ew
dr
iv
er

fa
ce
_e
as
t_
re
st

m
ov
e_
fo
rw
ar
d_
re
st

re
st
in
g_
po
in
t

dr
aw
er
_p
oi
nt

In
iti
at
e

m
iss
io
n_
co
m
pl
et
ed

0

1000

2000

3000

4000

5000

6000

7000

8000

ALL
C
C+S
M
M+C
M+S
S

(a) Iteration per decision point (screwdriver taken)

to
ol
s_
sh
ed

pi
ck
_s
cr
ew
dr
iv
er

fa
ce
_e
as
t_
re
st

m
ov
e_
fo
rw
ar
d_
re
st

re
st
in
g_
po
in
t

dr
aw
er
_p
oi
nt

fa
ce
_w
es
t

to
ol
s_
sh
ed

pi
ck
_s
cr
ew
dr
iv
er

fa
ce
_e
as
t_
re
st

m
ov
e_
fo
rw
ar
d_
re
st

re
st
in
g_
po
in
t

dr
aw
er
_p
oi
nt

In
iti
at
e

m
iss
io
n_
co
m
pl
et
ed

0

500

1000

1500

2000

2500

3000

ALL
C+S
M
M+C
M+S
S

(b) Iteration per decision point without cycle avoidance
(screwdriver taken)

Figure 20: Iteration per decision point (cyclic, screwdriver taken)

79

9 Discussion

9.1 Revise Function

The algorithm presented so far has used a function REV ISE to change the
knowlegebase in the expansion function. This function was not discussed,
as it stands for a general belief revision procedure, by which a new belief is
incorporated into a knowledgebase. However, there are two issues that merit
further note.

First, the REV ISE function received by the lookahead algorithm does
not have to be the same function received by BIS. This is due to the different
values of different keys. Some of this values cannot be fully deduced by
the precondition and termination condition. For example, let say a robot
represents the value of its location by a structure that holds the x and y
value. Then if the termination condition of a behavior only refers to the y
value of the location, we cannot deduce the x value of the location, in this
case REV ISE should decide whether x stays the same or become unknown.
Another example for this is in numerical values and conditions with operation
different then equal (greater then, lesser then etc.). The REV ISE function
of the agent might know how to change this value to the exact number while
the agent is running; however, the REV ISE function of lookahead will not.
Thus will need to treat this revision differently then when the agent is actually
running.

The second thing to note is that the algorithm assumes that REV ISE
keeps the knowlegebase consistent, that is there are no contradictions be-
tween different key values that are connected. For example in the recipe
in Fig. 1 notice that we have several keys that represent the location of
the robot: at init, at toolshed, at rest, at drawer. We assume that the re-
vise function will not set two of this keys to be true at the same time. In
addition, REV ISE needs to know that if one of them is true then the rest
cannot be unknown (have the value unknown) but has to be false.

9.2 No feasible paths

Another thing that should be addressed is what happens when there are no
feasible paths in the recipe. In this case, there is no course of action the
agent can take. For our experiment with the robot we addressed this simply
by re-executing the same recipe, since we knew that it has a solution. This

9.3 Choosing between feasible paths 80

is not the case for all BIS recipes.
There are two solutions for this case that need to be further explored in

the future. One is the solution presented in classic BDI, having a plan (or
recipe) library. If the recipe that was used failed, and there are no possible
paths found, choose a different recipe from the library. Anther solution is to
use a planner using the knowledge we have and the behaviors of the library,
rearranging the behaviors from the recipe in a way that will yield feasible
paths.

9.3 Choosing between feasible paths

Another problem that arose from the experiment on the NAO is the following.
When we do have feasible paths as in Section 8.3 but some are better then
others. As we saw in those experiments, if we explore the feasible paths
returned we can learn that we always have to go to the tool shed in order
to complete the mission. If we can pass this information to the behavior
selection methods, it can make a more informed decision, preferring to go
to the tool shed at the earliest possible time. Of course a simple solution
to this is make the behavior selection method consider whether it has the
screwdriver or not in its decision when the robot has the possibility to to
go to the tool shed. However, this is equivalent to back-propagating all the
precondition of following behavior to each behavior in the design of the recipe
in the first place. In small recipes this is easy to do, but the more complex
recipe the more this can be problematic and not at all effective.

We can see then our algorithm can be a first step not only in refining a
recipe, but also in refining a plan of action for the agent that is more com-
patible with the world that it encounters (represented by its knowledgebase),
using the same recipe for a different scenario. We can use the knowledge col-
lected by the algorithm with further processing to deduce more information
for the choose method to consider when choosing the next behavior.

81

10 Conclusion

In this paper we presented the problem of predictive execution monitoring
of in layered hierarchal recipes; the ability to project forward the current
knowledge of the agent to prevent future failures that can already be pre-
dicted. We then analyzed the complexity of the problem and showed that
even on simple acyclic flat recipe graphs it is a super-exponential problem.
We presented an algorithm that goes over the branches of the recipe graph
to try and find the branches that are predicted to fail. We then presented
different search node visited checks methods to make the algorithm more
efficient and reduce the running time. We proved that this visited method
are complete.

Next we explored how to use the data already obtained by previous runs of
the monitoring to reduce the running time and traverse less xpaths, including
ones that were eliminated in the past runs.

We then showed experimental results, run over multiple recipes for more
then 4000 CPU hours. These experiments showed that the runtime complex-
ity is not directly effected by the number of behaviors in the recipe graph,
rather by the structure of the behaviors in the recipe graph and the edges
that connects them. In addition, the problem is effected by the size of the
knowledgebase and the number of beliefs the recipe changes from this knowl-
edgebase. We also saw that all the visited method improve the running time,
but that there is one better then the others, that is merge paths. We saw
that combining merge paths with the other two visited method is not always
beneficial, and in most cases using all the visited methods together is even
detrimental.

Finally we showed how monitoring can effect real robot problems by run-
ning a simple scenario on a NAO robot. We showed that without execution
monitoring the robot can fail its mission. In addition we ran the scenario
multiple times to measure the real life effect of the time it takes the robot
to execute the monitoring algorithm, with the different visited methods. We
saw that merge paths can significantly reduce the runtime, from more then a
minute with only cycle avoidance in the cyclic path to a little less then a 1.5
seconds. We saw that successful visited can sometimes preform better then
merge paths, but only if there is an insignificant amount of iteration differ-
ence between them. Once the number of iteration became large, specifically
when cycles where involved, then merge paths is better by far then the rest.

82

11 Bibliography

[1] J. A. Ambros-Ingerson and S. Steel. Intergrating planning, execution
and monitoring. In Proceedings of the Seventh National Conference
on Artificial Intelligence (AAAI-88), Minneapolis/St. Paul, MN, 1988.
AAAI Press.

[2] T. Belker, M. Hammel, and J. Hertzberg. Learning to optimize mobile
robot navigation based on HTN plans. In IEEE International Confer-
ence on Robotics and Automation, volume 3, pages 4136–4141. IEEE,
2003.

[3] A. Bouguerra, L. Karlsson, and A. Saffiotti. Monitoring the execution of
robot plans using semantic knowledge. Robotics and Autonomous Sys-
tems, 56(11):942–954, 2008. Online at http://www.aass.oru.se/˜asaffio/.

[4] P. R. Cohen, M. S. Atkin, and E. A. Hansen. The interval reduction
strategy for monitoring cupcake problems. In D. Cliff, P. Husbands, J.-
A. Meyer, and S. W. Wilson, editors, From Animals to Animats 3: Pro-
ceedings of the Third International Conference on Simulation of Adap-
tive Behavior, 1994.

[5] P. R. Cohen, R. St. Amant, and D. M. Hart. Early warnings of plan fail-
ure, false positives, and envelopes: Experiments and a model. Technical
Report CMPSCI Technical Report 92-20, University of Massachusetts,
1992.

[6] L. de Silva and L. Padgham. A comparison of BDI based real-time
reasoning and htn based planning. In Australasian Joint Conference on
Artificial Intelligence, pages 1167–1173. Springer, 2004.

[7] L. de Silva and L. Padgham. Planning on demand in BDI systems. In
International Conference on Automated Planning and Scheduling. Uni-
versity of Southern California, 2005.

[8] L. de Silva, S. Sardina, and L. Padgham. First principles planning in
BDI systems. In Proceedings of the International Joint Conference on
Autonomous Agents and Multi-Agent Systems, volume 2, pages 1105–
1112. IFAAMAS, 2009.

83

[9] R. J. Doyle, S. A. Chien, U. M. Fayyad, and E. J. Wyatt. Focused
real-time systems monitoring based on multiple anomaly models. In In-
ternational Qualitative Reasoning Conference (QR’93), Eastsound, WA,
1993.

[10] C. Earl and R. J. Firby. Combined execution and monitoring for control
of autonomous agents. In W. L. Johnson, editor, Proceedings of the First
International Conference on Autonomous Agents (Agents-97), pages 88–
95, Marina del Rey, CA, 1997. ACM Press.

[11] K. Erol, J. Handler, and D. S. Nau. Complexity results for HTN plan-
ning. Annals of Math and Artificial Intelligence, 18(1):69–93, 1996.

[12] K. Erol, J. A. Hendler, and D. S. Nau. UMCP: A sound and com-
plete procedure for hierarchical task-network planning. In International
conference on AI Planning and Scheduling (AIPS), volume 94, pages
249–254, 1994.

[13] G. P. Farias, R. F. Pereira, L. Hilgert, F. Meneguzzi, R. Vieira, and R. H.
Bordini. Predicting plan failure by monitoring action sequences and
duration. Advances in Distributed Computing and Artificial Intelligence,
6(4):55–69, 2017.

[14] R. E. Fikes. Monitored execution of robot plans produced by strips. In
Proceedings of the IFIP Congress, pages 189–194, 1971.

[15] C. Fritz. Execution monitoring – a survey. Avail-
able at: https://pdfs.semanticscholar.org/199b/

08d06dda4f0665d472b81f418080c0facdac.pdf, 2005.

[16] M. Georgeff, B. Pell, M. Pollack, M. Tambe, and M. Wooldridge. The
belief-desire-intention model of agency. In International Workshop on
Agent Theories, Architectures, and Languages, pages 1–10. Springer,
1998.

[17] M. P. Georgeff and A. L. Lansky. Reactive reasoning and planning. In
AAAI, volume 87, pages 677–682, 1987.

[18] I. Georgievski and M. Aiello. HTN planning: Overview, comparison,
and beyond. Artificial Intelligence, 222:124–156, May 2015.

https://pdfs.semanticscholar.org/199b/08d06dda4f0665d472b81f418080c0facdac.pdf
https://pdfs.semanticscholar.org/199b/08d06dda4f0665d472b81f418080c0facdac.pdf

84

[19] M. Ghallab, D. Nau, and P. Traverso. Automated planning and acting.
Cambridge University Press, 2016.

[20] Giuseppe De Giacomo, Fabio Patrizi, and Sebastian Sardina. Automatic
Behavior Composition Synthesis. Artificial Intelligence, 196:106–142,
2013.

[21] J. Harland, D. N. Morley, J. Thangarajah, and N. Yorke-Smith. An
operational semantics for the goal life-cycle in BDI agents. Autonomous
Agents and Multi-Agent Systems, 28(4):682–719, July 2014.

[22] A. E. Howe and P. R. Cohen. Understanding planner behavior. Artificial
Intelligence, 76(1–2):125–166, 1995.

[23] F. Ingrand and M. Ghallab. Deliberation for autonomous robots: A
survey. Artificial Intelligence, 247:10–44, June 2017.

[24] M. Kalech. Diagnosis of coordination failures: a matrix-based approach.
Autonomous Agents and Multi-Agent Systems, 24(1):69–103, 2012.

[25] G. A. Kaminka and I. Frenkel. Flexible teamwork in behavior-based
robots. In Proceedings of the Twentieth National Conference on Artifi-
cial Intelligence (AAAI-05), 2005.

[26] G. A. Kaminka, D. V. Pynadath, and M. Tambe. Monitoring teams
by overhearing: A multi-agent plan recognition approach. Journal of
Artificial Intelligence Research, 17:83–135, 2002.

[27] G. A. Kaminka and M. Tambe. What’s wrong with us? Improving
robustness through social diagnosis. In Proceedings of the Fifteenth Na-
tional Conference on Artificial Intelligence (AAAI-98), pages 97–104,
Madison, WI, 1998. AAAI Press.

[28] G. A. Kaminka and M. Tambe. I’m OK, You’re OK, We’re OK: Exper-
iments in distributed and centralized social monitoring and diagnosis.
In Proceedings of the Third International Conference on Autonomous
Agents (Agents-99), pages 213–220, Seattle, WA, 1999. ACM Press.

[29] G. A. Kaminka and M. Tambe. Robust multi-agent teams via socially-
attentive monitoring. Journal of Artificial Intelligence Research, 12:105–
147, 2000.

85

[30] E. Khalastchi and M. Kalech. On fault detection and diagnosis in robotic
systems. ACM Computing Surveys, 51:1–24, 2018.

[31] E. Khalastchi, M. Kalech, G. A. Kaminka, and R. Lin. Online data
driven anomaly detection in autonomous robots. Knowledge and Infor-
mation Systems, 43(3):657–688, 2015.

[32] R. Lallement, L. de Silva, and R. Alami. HATP: An HTN planner for
robotics. 2nd ICAPS Workshop on Planning and Robotics, 2014.

[33] R. Lin, E. Khalastchi, and G. A. Kaminka. Detecting anomalies in
unmanned vehicles using the Mahalanobis distance. In Proceedings of
IEEE International Conference on Robotics and Automation (ICRA-
10), 2010.

[34] S. C. Marsella, J. Adibi, Y. Al-Onaizan, G. A. Kaminka, I. Muslea,
M. Tallis, and M. Tambe. On being a teammate: Experiences acquired
in the design of robocup teams. Journal of Autonomous Agents and
Multi-Agent Systems, 4(1–2), 2001.

[35] C. E. McCarthy and M. E. Pollack. Towards Focused Plan Monitoring:
A Technique and an Application to Mobile Robots. Autonomous Robots,
9(1):71–81, 2000.

[36] J. P. Mendoza, M. Veloso, and R. Simmons. Plan execution monitoring
through detection of unmet expectations about action outcomes. In
IEEE International Conference on Robotics and Automation (ICRA),
pages 3247–3252. IEEE, 2015.

[37] C. Muise, S. A. McIlraith, and J. C. Beck. Monitoring the Execution of
Partial-Order Plans via Regression. In Proceedings of the International
Joint Conference on Articial Intelligence, page 8, 2011.

[38] A. Newell. Unified Theories of Cognition. Harvard University Press,
Cambridge, Massachusetts, 1990.

[39] O. Pettersson. Execution monitoring in robotics: A survey. Robotics
and Autonomous Systems, 53(2):73–88, 2005.

86

[40] O. Pettersson, L. Karlsson, and A. Saffiotti. Model-free execu-
tion monitoring in behavior-based robotics. IEEE Trans. on Sys-
tems, Man and Cybernetics, Part B, 37(4):890–901, 2007. Online at
http://www.aass.oru.se/˜asaffio/.

[41] M. E. Pollack. Plans as complex mental attitudes. In Intentions in
Communication, pages 77–103. MIT Press, 1990.

[42] M. Ramirez, N. Yadav, and S. Sardina. Behavior Composition as Fully
Observable Non-Deterministic Planning. In ICAPS, 2013.

[43] A. S. Rao and M. P. Georgeff. BDI Agents: From Theory to Practice.
Technical Note 56, Australian Artificial Intelligence Institute, Apr. 1995.

[44] S. Sardina, L. de Silva, and L. Padgham. Hierarchical planning in BDI
agent programming languages: A formal approach. In Proceedings of the
International Joint Conference on Autonomous Agents and Multi-Agent
Systems, pages 1001–1008. ACM, 2006.

[45] M. Tambe, W. L. Johnson, R. Jones, F. Koss, J. E. Laird, P. S. Rosen-
bloom, and K. Schwamb. Intelligent agents for interactive simulation
environments. AI Magazine, 16(1), 1995.

[46] M. Tambe and W. Zhang. Towards flexible teamwork in persistent
teams. In Proceedings. International Conference on Multi Agent Sys-
tems, pages 277–284. IEEE, 1998.

[47] M. M. Veloso, M. E. Pollack, and M. T. Cox. Rationale-Based Monitor-
ing for Planning in Dynamic Environments. In Proceedings of the Inter-
national Conference on Artificial Intelligence Planning Systems, pages
171–179, Pittsburgh, PA, 1998.

[48] A. Walczak, L. Braubach, A. Pokahr, and W. Lamersdorf. Augment-
ing BDI agents with deliberative planning techniques. In Interna-
tional Workshop on Programming Multi-Agent Systems, pages 113–127.
Springer, 2006.

[49] D. S. Weld. Planning-Based Control of Software Agents. In Proceed-
ings of the International Conference on Artificial Intelligence Planning
Systems, pages 268–274, 1996.

87

[50] D. E. Wilkins, T. Lee, and P. Berry. Interactive execution monitoring
of agent teams. Journal of Artificial Intelligence Research, 18:217–261,
2003.

[51] A. Yakir and G. A. Kaminka. An integrated development environment
and architecture for Soar-based agents. In Innovative Applications of
Artificial Intelligence (IAAI-07), 2007.

88

12 Hebrew Abstract

	English Abstract
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Background and Related Work
	Recipes
	Beliefs, Recipes, and Plans
	BIS algorithm: Executing layered recipes

	Predictive Monitoring of Recipes
	Predicting Execution Possibilities
	Searching Possible Future Executions
	Execution Paths
	Simulating Future Decision: Expanding an Execution Path
	Starting Node
	Testing Unknown Values
	Optimistic Testing is Complete
	Pessimistic Testing is Sound
	Sound and complete testing is generally impossible

	Complexity of the Base Algorithm

	Improving Efficiency by Pruning the Search
	Naive approaches for visited check methods
	Completeness
	Halting

	How to address cycles in the graph
	Successful Visited
	Cycle Avoidance
	Merging paths
	Relations between the visited methods

	Improving the Run-Time of Repeated Calls
	Extrapolating the changes in the path
	The checks in repeated calls

	Experiments with random plans
	Experiment Environment
	Recipe Graph Structure
	Knowledge State Space Size

	Experiments With a Nao Robot
	Experiment Environment
	Acyclic recipe
	Cyclic Recipe

	Discussion
	Revise Function
	No feasible paths
	Choosing between feasible paths

	Conclusion
	Bibliography
	Hebrew Abstract

