
Bar-Ilan University
Department of Computer Science

OF ROBOT ANTS AND ELEPHANTS

by

Asaf Shiloni

Advisor: Prof. Gal Kaminka

Submitted in partial fulfillment of the requirements for the Master’s degree

in the department of Computer Science

Ramat-Gan, Israel

June 2010

Copyright 2010

This work was carried out under the supervision of

Prof. Gal A. Kaminka

Department of Computer Science, Bar-Ilan University.

Abstract

Investigations of multi-robot systems often make implicit assumptions con-
cerning the computational capabilities of the robots. Despite the lack of explicit
attention to the computational capabilities of robots, two computational classes of
robots emerge as focal points of recent research: Robot Ants and robot Elephants.
Ants have poor memory and communication capabilities, but are able to commu-
nicate using pheromones, in effect turning their work area into a shared memory.
By comparison, elephants are computationally stronger, have large memory, and
are equipped with strong sensing and communication capabilities. Unfortunately,
not much is known about the relation between the capabilities of these models in
terms of the tasks they can address. In the first part of this thesis, we present formal
models of both ants and elephants, and investigate if one dominates the other. We
present two algorithms: AntEater, which allows elephant robots to execute ant
algorithms; and ElephantGun, which converts elephant algorithms—specified as
Turing machines—into ant algorithms. By exploring the computational capabili-
ties of these algorithms, we reach interesting conclusions regarding the computa-
tional power of both models.

In the second part of this thesis, we investigate a specific problem involving
two ants. In order to create a cooperative intelligent behavior, ants may need to
get together; however, they may not know the locations of other ants. Hence, we
focus on an ant variant of the rendezvous problem, in which two ants are to be
brought to the same location in finite time. We introduce three algorithms that
solve this problem for two ants by simulating a bidirectional search in different
environment settings. Two algorithms for an environment with no obstacles and a
general algorithm that handles all types of obstacles. We provide detailed discus-
sion on the different attributes, size of pheromone required, and the performance
of these algorithms.

Acknowledgments

To Prof. Gal Kaminka, for giving me the opportunity, for believing in me, for
arguing with me, for guiding me, for being a role model, for arguing again until
the point is made, for trusting me, for being a good friend.
To Alon Levy, for working with me around the clock and for his insightful ideas -
the ultimate study buddy and co-writer.
To Noa Agmon, Yehuda Elmaliach, Ariel Felner, and Meir Kalech, for being won-
derful research partners and for imporving my research abilities, each in their own
way.
To the MAVERICK lab, for being my friends and making me feel like home.
To Prof. Manuela Veloso, Prof. Milind Tamnbe, and Prof. Yonatan Aumann, for
their feedback and good advice.
To my family, for supporting me through this journey in any way possible.
To Ella, my one and only, for being my constant source of energy.

1

Contents

1 Introduction 7
1.1 Ants and Elephants . 8
1.2 Ants Rendezvous Problem . 9
1.3 List of Publications . 11

2 Background and Related Work 12

3 Elephants Imitating Ants 15
3.1 Definitions . 15
3.2 The Anteater . 19
3.3 LF-Ants and NF-Ants . 22

4 Ants Simulating Elephants 24
4.1 A Single Ant . 24
4.2 Environments with Obstacles . 34
4.3 Multiple ants . 41

4.3.1 Tragedy of the Common Ant 43
4.3.2 Duplicate Agent Patrol Problem 46

5 Ants Meeting Algorithms 49
5.1 No Obstacles Algorithm . 50

5.1.1 Limitations of NOA . 55
5.1.2 Theoretical Analysis of NOA 55

5.2 Rectangular Obstacles Algorithm 56
5.2.1 Limitations of ROA . 61
5.2.2 Theoretical Analysis of ROA 61

5.3 General Obstacles Algorithm . 62
5.3.1 Theoretical analysis of GOA 66

6 Extending Meeting Algorithms 69
6.1 Sensory Radius of Zero . 69

2

6.2 Alignment . 71
6.2.1 GOA Alignment . 72
6.2.2 ROA Alignment . 72

7 Discussion & Conclusions 74

3

List of Figures

4.1 An example of ElephantGun. The shaded region is the simulated
Turing machine. P symbols are the physical position pointers.
M symbols are the memory position pointers. The bold cell is
the ant’s starting location. 31

4.2 An illustration of LimitedKServer with four robots. 45

5.1 NOA: step by step ant’s traveling. Gray cells are pheromones.
The framed cell is the ant’s starting location. 50

5.2 NOA finite state machine representation. 51
5.3 Two meeting examples with NOA. At (a), starting locations are

(4,5) and (8,9). 52
5.4 All cases of NOA. 53
5.5 All cases of NOA (cont.). 54
5.6 ROA examples: Successful (a) and unsuccessful (b,c,d). 60
5.7 GOA demonstration on a ClearGrid. the framed cell is the NA-

Ant’s starting location. 64
5.8 GOA examples. 67

6.1 Simulation of a 1-radius sensing with no sensing. 70
6.2 Two non aligned examples. 71

4

List of Tables

7.1 Models Summary . 75
7.2 Models Dominance Relationship 76
7.3 Ant Meeting Algorithms . 76

5

List of Algorithms

1 AntEater (Ant algorithm A, list of robots R, map M) 19
2 Mark-Ant-Walk (current location p) 21
3 NFantSpiral (Ant algorithm A, list of robots R, map M) 23
4 ElephantGunExample () . 30
5 RightMovement (symbol b, state p) 36
6 LeftMovement (symbol b, state p) 37
7 Manhattan (robot r) . 41
8 ElephantStretcher (robot r, subspace S) 42
9 AntStretcher (subspace S) . 43
10 Fisherman (list of robots R, call limit y) 44
11 DuplicateFinder (list of robots R, patrol algorithm PA) 47
12 ROA (Ant_ID id) . 58
13 GOA (Ant_ID id) . 65
14 GOA_align (Ant_ID id, pheromone) 72
15 ROA_align (Ant_ID id, p) . 73

6

Chapter 1

Introduction

Investigations of multi-robot systems, from a computational perspective, often fo-
cus on algorithms for specific tasks and applications [15, 11]. Such algorithms
make explicit their assumptions concerning the sensing and actuation morpholo-
gies of the robots. However, more often than not, assumptions as to the compu-
tational capabilities of the robots are left implicit. They can be determined by
examining the requirements of the algorithms, and the basic set of atomic actions
they utilize.

The first part of this thesis defines two important computational classes of
robots: robot ants and robot elephants. We examine the computability of these
classes (see Section 1.1). We find that on one hand, one robot ant is computation-
ally equivalent to one robot elephant. On the other hand, multiple robot elephants
strictly dominate multiple robot ants. These are the first computability results in
this area.

In the second part of the thesis (described briefly in Section 1.2), we present
a family of algorithms for robot ants, all focus on a single canonical problem
(rendezvous). Solving this problem is key to enabling ants to carry out complex
multi-robot tasks, and also stands as the basis for transforming algorithms for
more computationally-capable robots, into algorithms for robot ants.

7

1.1 Ants and Elephants

Despite the lack of explicit attention to the formal computational capabilities of
robots, two computational classes of realistic robots emerge as marking extreme
points in recent research: Robot ants, which have restricted computational and
communication capabilities, but can utilize pheromones to read/write messages
in their environment, and robot elephants, which have strong computation and
communication capabilities, but no pheromones. Other computational classes lie
somewhere in between these extremes, e.g., many types of swarm robotics models
[9, 36] which often share some computation restrictions with ants, but similarly to
elephants, do not have pheromones. We focus here on ants and elephants.

Robot ants [33, 47, 45, 48] are usually memory-less (or have severe memory
limitations) and have relatively weak sensing abilities, if any [19, 46]. However,
they can communicate through the environment, by leaving behind pheromones
which essentially turn the environment into a shared memory. Robot ants have
been shown to be able to carry out impressive robotic tasks, such as terrain cover-
age [19, 46, 35] and foraging [33, 23].

Robot elephants seem—by comparison—significantly stronger from a com-
putational perspective. These have a large amount of memory (as large as needed,
for instance, to hold a full map of the work area), and are equipped with strong
sensing, computation, and communication machinery. Robot elephants have sim-
ilarly been shown to work in the same tasks as above (e.g., [15, 11]).

However, while researchers of ant-robotics and elephant-robotics have tack-
led similar tasks, the actual computational capabilities and limitations of the two
models remain open questions. Empirical comparisons between solutions are dif-
ficult and rare, in part due to the different metrics and experiment designs in each
community. Moreover, most robots in practice are more limited than the pro-
totypical elephants described above, but less restricted than the robot ants; this
makes distinguishing the underlying computational advantages and disadvantages
of different robot models even more challenging.

In this thesis, we seek to theoretically distinguish the two extreme models
and their basic computability capabilities. We present formal models of both ants
and elephants in a grid environment, and investigate if one dominates the other,

8

they are equivalent, or rather each has its own advantage over the other and thus,
they are incomparable. We present two algorithms: AntEater, which allows ele-
phant robots to execute ant algorithms; and ElephantGun, which converts ele-
phant algorithms—specified as Turing machines—into ant algorithms.

By exploring the computational capabilities of these algorithms, we reach in-
teresting conclusions regarding the computational power of both models. We find
that a group of elephant robots can easily simulate every ant algorithm run by a
group of ant robots. Moreover, we find that a single ant robot can fully simulate
a single elephant robot, given infinite space. However, we show that there exist
problems, which multiple elephants can solve and ants cannot. This is the first
general computability result in this area.

1.2 Ants Rendezvous Problem

As mentioned before, many canonical problems in robotics, such as terrain cover-
age and foraging, were shown to be successfully solved with ants. Furthermore,
ants are believed to be practical in future real-world applications. For example,
the advantage of ants over conventional robots may be found in the micron-scale
environments such as the blood stream and other parts of the human body. The
robots acting in these environments cannot be equipped with abundant memory
or high-end sensors, nor with high computational performance capabilities. Thus,
only robots with light hardware capabilities must be used [17, 16].

Algorithms for ant robots often require cooperation between multiple ants.
These algorithms usually assume that the ants start executing the algorithm while
they are located at the same location, or in a close proximity, and would not work
otherwise. For example, in the row straightening technique [44] the assumption
is that the ants are close enough to each other in order to align themselves using
local interactions. Similarly, in self-assembly problems [5, 42] the assumption is
that the ants are close enough to cooperate and even physically attach themselves
to each other in order to create a tree structure of ants.

If the ants are scattered in the environment, they first need to meet in order to
execute these algorithms. Furthermore, ant algorithms with multiple ants usually
terminate when the mission is accomplished. In many cases, after termination the

9

ants are scattered around the environment. For example, in the cleaning protocol
[46] the algorithm halts when the entire environment is clean, but each ant ends
up in a different location. Similarly, this happens in the coverage algorithm [28]:
the ants end up in different locations. In many cases, the ants should be gathered
for future tasks.

Therefore, in the second part of this thesis, we address the ant rendezvous

problem which is the problem of bringing two ants from arbitrary positions to a
common position in finite time1.

A naive protocol for solving the rendezvous problem will instruct one ant to
cover the whole area (using any of the existing coverage algorithms [28, 15, 46])
and the other ant to wait, thus alleviating the need for coordinating the meeting.
However, this algorithm has three drawbacks. First, it requires the ants to decide
in advance, which ant searches and which stays. Unfortunately, the ants do not
have any direct communication nor do they know the other ant’s unique id in
advance. Second, in this protocol only one ant makes the search. If this ants fails
the entire process will fail because the search is not distributed among the ants.
Third, in this protocol one of the ants does all the work while the other remains
idle. Clearly, if the search is distributed, time can be reduced too.

In this thesis, we address the rendezvous problem of two ants and present three
algorithms for various environment settings:

• An algorithm for an environment with no obstacles, the No-Obstacles Algo-

rithm (NOA).

• An attempt at an algorithm for an environment with rectangular obstacles
of finite size, the Rectangular-Obstacles Algorithm (ROA).

• A general algorithm that handles all types of obstacles, the General-

Obstacles Algorithm (GOA).

In these algorithms, ants communicate by leaving pheromone tracks in the
environment. To solve the rendezvous problem, each ant runs the same algorithm
separately and tries to find the other ant by the pheromone tracks it leaves. The

1Generalizing this to more than two ants is not always trivial and is left for future work

10

main idea of these algorithms is to simulate a breadth-first search from their initial
position. Thus, the algorithms guarantee convergence and thus, the meeting of the
ants.

In the first algorithm (NOA), the ants move in a spiral until sensing each other
pheromones. In the second algorithm (ROA), the ants also move in spiral, but are
also bypassing rectangular obstacles of finite size. As we later show, this attempt
to extend NOA for a relatively simple environment fails, and this algorithm is
left as an alternative for NOA in an environment with no obstacles. Nevertheless,
the development of the ROA leads to important insights. These, in turn, lead to
the development of the last algorithm (GOA), where the ants move in an iterative
deepening manner. This guarantees that the area surrounding them will be covered
until they finally meet.

1.3 List of Publications

The work reported in this thesis has been published in the following conferences:

• A. Shiloni, N. Agmon, and G. A. Kaminka. On ants and elephants. In
Proceedings of the AAMAS-08 Workshop on Formal Models and Methods
for Multi-Robot Systems, 2008.

• A. Shiloni, N. Agmon, and G. A. Kaminka. Of robot ants and elephants. In
AAMAS, 2009 (Full paper).

• A. Shiloni, A. Levy, A. Felner, and M. Kalech. Ants meeting in an unknown
environment. In MABS ’09: The 10th International Workshop on Multi-
Agent-Based Simulation, 2009.

• A. Shiloni, A. Levy, A. Felner, and M. Kalech. Ants meeting algorithms. In
AAMAS, 2010, In press.

11

Chapter 2

Background and Related Work

Ant robots are usually described as memoryless or more formally as finite state
machines [46, 45] i.e., having only a constant amount of internal memory, the size
of which is independent of the problem size. Furthermore, they typically have lim-
ited sensing capabilities [19, 47]. Common to all previous work is the assumption
that the ants are not able to use conventional planning methods [47]. What distin-
guishes the ants from other simple mobile robots is the usage of pheromones to
communicate with each other. These pheromones are basically pieces of informa-
tion that can take any physical form such as chemicals [33], heat [32], markings
[19], RFID [24], etc., and are sometimes evaporative [45, 32].

This usage of pheromones as an indirect communication through the modi-
fication of the environment is the very basis of stigmergy [41]. This concept of
using stigmergic behavior repeatedly in order to evolve self-organization is one of
the strengths of the ant model, as it enables a group of ants to create probabilistic
algorithms that solve problems in dynamic environments [18, 41]. Nevertheless,
in this thesis we only use basic active stigmergic concepts, since we are interested
in non-probabilistic solutions.

Bruckstein and Wagner have shown algorithms for area coverage by a team of
ants, using evaporative [45] and non-evaporative [28] markings. While some of
these pheromones are laid by the robots themselves [28], others are a part of the
given workspace [46]. They considered simple robots with a bounded amount of
memory [46, 48] for their model of ant robots. Their works and additional works

12

by Koenig et al. [20] produced upper bounds for the time it takes to complete a
single or a repeated coverage by a swarm of ants. However, none of the works
above prove any concrete boundaries on the ant model abilities in general.

It is important to differentiate between ants and other types of swarms robots.
All swarm robot models are decentralized and have very limited sensorial and
computational abilities [9, 36]. However, ants have the usage of pheromones that
can be placed and sensed, and by that transform their environment into a shared
memory. Other swarm robot models exist which do not use pheromones, and yet
do not have the unbounded communications of robot elephants [9, 36]. We do not
investigate these in this thesis.

Unfortunately, model comparisons of robots had not been often discussed.
There is, indeed, an extensive theory of computation, which includes a hierarchy
of calculating machines from finite state machines to Turing machines [37]. How-
ever, to the best of our knowledge, we are the first to utilize these computability
results to analyze the computational power of robots. O’Kane and LaValle [27]
produced a model for comparing the power of robots based on sensory abilities,
but did not address computational and memory differences.

Several papers investigated classes of semi-synchronous [40] and asyn-
chronous [29, 30] mobile robots that have all powerful sensing abilities, such as
taking a snapshot of the world, in contrast to their weak memory functionality,
no localization, and no sense of direction. Some interesting boundaries to these
robots’ abilities were found, yet we do not know if those limits stand when these
robots are equipped with pheromones.

The rendezvous problem was first described in [34] and has countless varia-
tions, such as: heterogeneous or homogeneous agents, known or unknown envi-
ronments, networks or planes, the agents can communicate freely, only in close
proximity, or not at all, agents are synchronized or move asynchronously, known
point of meeting or any location, and so on [10, 4, 3, 31, 22, 49, 8]. This thesis fo-
cuses on two homogeneous ants, both run a protocol to ensure meeting in a finite
time within infinite grids.

Previous work in ant robotics (e.g., [20, 28]) address two problems close to
the rendezvous problem: (1) the area coverage problem where the entire area
should be visited by the ants and (2) the search problem where a certain unknown

13

location (e.g., a location that contains a treasure) should be found. They allow a
non-evaporative, unbounded integer pheromone in any one unit of space and focus
on the continuous domain coverage problem. By contrast, our problem does not
assume a stationary target and we bound the size of the pheromone.

Spiral searches were also used to allow a robot finding a target object in an
unknown environment with obstacles [6]. But, common robots with large memory
were assumed and the algorithm presented is not applicable given the memory
constraints of ants. Moreover, a stationary target was assumed while in the variant
of the rendezvous problem presented in this thesis any location can serve as a
meeting place.

The gathering problem is another similar multi-agent problem, in which mul-
tiple agents gather into a point or a small region, within finite or expected time
[26]. As in the rendezvous problem, the gathering problem has many variations
such as: unlimited or limited visibility, shared or no directionality (common com-
pass), synchronous or asynchronous agents, etc. [14, 7, 39, 2, 38]. However, all
of these works assume the agents are stationed initially in close proximity.

14

Chapter 3

Elephants Imitating Ants

In this section, we provide formal definitions of the ant and elephant models used
throughout our work (Section 3.1). We then begin to compare between the com-
putational power of the models, using a first algorithm (Section 3.2) that allows
multiple elephants to execute an algorithm for multiple ants. Lastly, we show an
algorithm for a group of a more restricted variant of elephants, which achieves the
same property (Section 3.3).

3.1 Definitions

For simplicity, we will use a grid as the environment in which the ants and ele-
phants interact. Nonetheless, we note that some of the proofs ahead are valid even
on continuous domains.

Definition 1. World

The world is an infinite two dimensional regular square grid. Each cell can be

either blocked (with an obstacle, even if only partly) or free. Pheromones may

only be placed in free cells. In this thesis, we handle three types of grids: (1)

ClearGrid - An infinite grid with no obstacles. (2) RectangleGrid - An infinite

grid with bounded sized rectangular obstacles. (3) ObstacleGrid - An infinite

grid with unbounded-sized any-shape obstacles.

Grid decomposition of the environment is a well known approximation for

15

problems solving of this kind [46, 11]. The cell unit should be at least as large as
the smallest square that can surround the ant.

We define the ant model as having a representative subset of properties from
the models discussed above:

Definition 2. Ant

An ant is a robot that has the following attributes and abilities:

Attributes:

• Homogeneity: Ants are homogenous; they all have the same capabilities,

and run the same algorithm.

• Localization: The ants share the same grid alignment but cannot recog-

nize their location (in Section 6 we show how to eliminate the shared grid

alignment requirement).

• Directionality: Ants do not have a notion of a global "north", but can be

aware of their directionality relative to the direction they started at. We

also explore (in Section 5.1) a variant of ants that have a global sense of

directionality, called D-Ants.

• Communication: No direct communication is allowed between ants. They

communicate only using pheromones (Definition 3).

• Computational power: From a computational point of view, ants are finite

state machines. They cannot manipulate variables and cannot use recur-

sions.

• Anonymity: Ants are anonymous and cannot identify each other. We also

explore a variant of ants that have a unique id, called NA-Ants (Section

5.2).

Actions:

• Move: in four directions, north, south, east, west, all relative to their initial

pose (can be arbitrarily chosen to be "north".

16

• Sense: Ants can sense the content of cells which are distanced up to a given

radius. The outcome of a sense reveals the content of that cell which is

either blocked, free, contains a pheromone, or contains another ant. In this

thesis, we assume that the sense radius of the ant is one unit. That is, it can

sense the content of its current cell and any of its eight neighboring cells.1

• Write: (or change) pheromones in its current cell. There is no limit on the

number of cells that an ant can write a pheromone in (if it is located there),

i.e., they have unlimited "ink".

Communication in ants is done using pheromones as defined below:

Definition 3. Pheromone

A pheromone is a symbol that can be read/writen by ants in cells. Each cell can

contain at most one pheromone. When a pheromone is encoded, it is divided

into a finite number of fields. Each field can have a finite set of different values.

Therefore a pheromone has a finite set of symbols. Pheromones do not evaporate

by themselves but can be erased and rewritten by ants.

To focus the comparison between the ant and the elephant models on issues
rather than sensing (already handled by [27]), we assume that the elephants have
the same sensing capabilities as the ants.

Definition 4. Elephant

An elephant is a robot that has the following attributes and abilities. We use

emphasized text to denote differences with ants:

Attributes:

• Homogeneity: Elephants are homogenous in the sense that they all have the

same capabilities and run the same algorithm.

• Localization: Elephants can typically perfectly localize themselves on a
shared coordinate system. We call these LF-Ants (the L stands for local-

ized). We also explore a variant of elephants that cannot localize within a

global grid, called NF-Ants (Section 3.3).
1In section 6.1 we show how to modify our algorithms to a sense radius of zero, where an ant

must physically move to a cell in order to learn about its content.

17

• Directionality: Elephants have a notion of a global "north".

• Communication: Elephants have reliable, instantaneous communications
among each other.

• Computational power: Elephants have unbounded memory. From a compu-

tational point of view, elephants are Turing machines.

• Anonymity: Elephants have distinct identities and all know of each other.

Actions:

• move: in four directions, north, south, east, west, all relative to their initial

pose (can be arbitrarily chosen to be "north").

• sense: Elephants can sense the content of cells which are distanced up to a

given radius.

The difference in computational ability between models is measured by the
ability to solve different classes of problems. We define computational dominance

similarly to the definition in [27]. Dominance is defined as follows:

Definition 5. let AN and BM be models of N and M mobile robots, respectively.

Then:

• We say that AN dominates BM and notate it AN �BM if the computational

ability of AN is at least as powerful as those of BM , i.e., if every problem

solvable by BM is also solvable by AN .

• We say that AN strictly dominates BM and notate it AN �BM if AN �BM

is true, and in addition there exists at least one problem solvable by AN , but

unsolvable by BM .

• We say that AN is equivalent to BM and notate it AN ≡ BM if AN � BM

and BM � AN .

• We say that AN is incomparable to BM and notate it AN ./ BM if there

exists at least one problem solvable by AN , but unsolvable by BM and at

least one problem solvable by BN , but unsolvable by AM .

18

3.2 The Anteater

In this section, we show that N LF-Ants (elephants with localization) computa-
tionally dominate N ants in the sense that N LF-Ants can simulate N ants, where
N ≥ 1. To do this, we use an algorithm AntEater, that is executed by the LF-Ants
and simulates the behavior of the ants. We prove that this algorithm transforms
the ants’ algorithm, while keeping the characteristics of the original algorithm.

Algorithm 1 AntEater (Ant algorithm A, list of robots R, map M)
1: Initialize pointer p to point to first instruction in A
2: while A has not stopped do
3: if step in p is to write pheromone l in location (x, y) then
4: write l in M(x, y)
5: else if step in p is read pheromone l from location (x, y) then
6: read value l from M(x, y)
7: else if step in p is sense location (x, y) then
8: Sense location (x, y) in space
9: else if step in p is calculate values (z0, ..., zn) then

10: Simulate calculation of (z0, ..., zn)
11: Broadcast M to all r ∈ R
12: if step in p is move to (x, y) then
13: Move to location (x, y) in space
14: Set p to point to the next instruction in A

The underlying idea in AntEater is to execute exactly the same movements
as the ant algorithm A, but distribute the shared memory created by the use
of pheromones. The elephant receives a map M , large enough to contain the
work area, with current position from localization device. Whenever A writes
a pheromone value in the environment, AntEater writes it in the internal map
kept by each LF-Ant robot. And whenever A reads a pheromone value, the map
is accessed in memory to retrieve the value stored. The LF-Ant robots contin-
uously communicate their map information to each other, thus making sure that
their maps are identical—therefore simulated pheromones written in one LF-Ant
robot’s memory are readily available to all others for reading. We formally show
this in Theorem 1.

Theorem 1. Let B be a problem that can be solved by a group of N ants running

19

algorithm A on an ObstacleGrid. Then, B can be solved by a group of N LF-

Ants running procedure AntEater on an ObstacleGrid in polynomial time while

preserving A’s robustness.

Proof. Task completion: Assume that the solution for problem B is a collection
of paths and that this collection is achieved by the ant algorithmA at a certain time
t. Therefore, since AntEater performs the same movements as the original ant
algorithm A and simulates its calculations and pheromones in space, the LF-Ants
will perform the same collection of paths and thus, will solve the given problem.

Time complexity: Let O(n) be the time complexity of the original ant algo-
rithm A, such that n is the number of steps taken by the ant. Since in every step
AntEater is going over exactly the step that would have been taken byA, its time
complexity will be nc = O(n), where c is the cost of broadcasting the robot’s map
and thus, is still a function of the number of robots. This can be achieved because
AntEater does not perform any extra actions per step.

Robustness: AntEater preserves A’s original robustness, for they eventually
behave exactly the same. Lastly, as it emerges from line 2, AntEater assures
termination in case the original ant algorithm itself terminates.

We will use a coverage algorithm for ant robots called Mark-Ant-Walk, pro-
posed by Osherovich et. al. [28], in order to exemplify the above theorem. The
Mark-Ant-Walk algorithm is intended for one or more memoryless robots who use
pheromones as indirect communication to perform a coverage task of an area. As
advertised, Mark-Ant-Walk guaranties full coverage of a continuous area within
n
⌈
d
r

⌉
+ 1 steps, where n is the number of cells in the domain, d is the diameter of

the domain, and r is the radius of the robot effector (although, the above algorithm
does not know when to stop). Also, it promises immunity to noise and robustness
to robot death: As long as at least one robot is alive, the complete area will be
covered.

The Mark-Ant-Walk algorithm is given below (Algorithm 2). This algorithm
is called continuously by each of the ant robots, with p given as the current loca-
tion (whose coordinates are unknown to the robot). R(r, 2r, p) denotes the robot’s
ability to sense pheromone level at its current position p and in a closed ring of
radii r and 2r around p. D(r, p) denotes the open disk radius r around the robot

20

in which it can set the pheromone level, and σ(a) denotes the pheromone level at
point a:

Algorithm 2 Mark-Ant-Walk (current location p)
1: Let x← argminq∈R(r,2r,p) σ(q)
2: if σ(p) ≤ σ(x) then
3: for all u ∈ D(r, p) do
4: σ(u)← σ(x) + 1 {We mark open disk of radius r around p}
5: Move to x

Therefore, if we run AntEater with Mark-Ant-Walk as an input on LF-Ants
with the same sensing capability yet with direct communication instead of the
ability to read and write pheromones, it will behave as follows: First, the LF-Ant
will initialize a map with its own location on it and keep updating that map all
along its run time with information it receives from other robots. This can be
done since LF-Ants have enough memory to create such a map. Then, in each
step the LF-Ant will move exactly as the ant would have, use its effector just as
the ant would have, but instead of placing pheromones, it will update their value in
its own map. Also, instead of sensing for pheromones it will fetch the pheromone
level from its own map. Eventually, after completing a step, it will broadcast all
other robots the changes it made to the map, in case there are any. Based on
Theorem 1, we maintain the original upper bound of Mark-An-Walk.

Moreover, we claim that not only does the AntEater preserve the original
ant algorithm, but with some additions which are built specifically for a certain
ant algorithm, we can improve its run time, efficiency, and/or robustness. As an
example, the above Mark-Ant-Walk algorithm does not know when to stop. This
is due to its bounded memory, which is not a function of the problem size and thus,
cannot count steps to know to stop after n

⌈
d
r

⌉
+1 steps, when it is assured that the

area is covered. However, our LF-Ant’s memory is not bounded and therefore, an
addition to the algorithm of counting steps and a condition to stop after n

⌈
d
r

⌉
+ 1

improves the original algorithm.
Indeed, we show (Theorem 2) that a group of N LF-Ants computationally

dominates a group of N ants:

Theorem 2. Let ANTN and LF-ANTN be the models presented in Subsection 3.1,

21

where N is the number of robots, then LF-ANTN � ANTN for N ≥ 1.

Proof. Following Theorem 1, every algorithm executed by ants can be executed
by LF-Ants, while completing the same goal in at most the same computational
complexity and while maintaining the same characteristics. Therefore the compu-
tational ability of N LF-Ants is at least as strong as the computational ability of
N ants.

3.3 LF-Ants and NF-Ants

The LF-Ants above use a shared coordinated system thanks to their localization
devices. This localization within a shared coordinate system is a key component
in their dominance over ants. However, localization is not a trivial capability.

We therefore introduce the NF-Ant, which is a weaker version of the LF-Ant
model. The NF-Ant model is identical to the LF-Ant model except it does not
have localization and thus, two or more NF-Ants do not necessarily share the
same coordinate system.

Hence, we provide a way for NF-Ants to simulate ants, of course, without lo-
calizing themselves on a shared coordinated system. This is done by an algorithm
called NFantSpiral.

The main idea in the above NFantSpiral algorithm is for one robot to search
for all other robots, update the new origin of their coordinate systems as its own
origin, and then return to its own starting point to run the previous AntEater
algorithm.

To do so, all robots will receive a map large enough to contain the work area
and then will elect the robot with the lowest id as the leader (id = 0 w.l.o.g). The
leader will then start moving in a spiral around its original position until it finds
another robot. It will then send the difference between its own origin and the robot
position as the robot’s new origin. The leader will continue searching for other
robots and will stop only if the group size equals the size of the list of robots given
as input, when it will then return to its own origin. Lastly, all of the NF-Ants run
AntEater.

Therefore, we can show that a group of N NF-Ants computationally dominate

22

Algorithm 3 NFantSpiral (Ant algorithm A, list of robots R, map M)
1: if ID == 0 then
2: Set current location as M(0, 0)
3: r ← 1 { The number of robots traveling in the group }
4: while r < |R| do
5: Move within a clockwise spiral { recording movements }
6: if ∃ robot ri in current location (x, y) then
7: Send (−x,−y) to robot ri
8: r ← r + 1
9: Return to M(0, 0)

10: Send all robots ’RUN’
11: else
12: while Not received ’RUN’ do
13: if Received position (x, y) then
14: Set M(x, y) as point of origin on M
15: Run AntEater on (A, R,M)

a group of N ants:

Theorem 3. Let ANTN and NF-ANTN be the models discussed above, where N

is the number of robots, then NF-ANTN � ANTN for N ≥ 1.

Proof. By applying NFantSpiral, a group of N NF-Ants first agree upon the ori-
gin of their map. From that moment on, they are equivalent to a group of N
LF-Ants, which we have shown in theorem 2 to simulate any ant algorithm they
are given. Thus, by running AntEater the group of N NF-Ants simulates the
group of N ants, and therefore NF-ANTN � ANTN .

23

Chapter 4

Ants Simulating Elephants

So, we know that a group of N NF-Ants that are communicating explicitly among
themselves dominate a group of N ants. That raises the question, whether a group
of ants dominates a group of NF-Ants. We start by showing that one ant dominates
one NF-Ant on a ClearGrid (Section 4.1) and on an ObstacleGrid (Section 4.2).
Then, we discuss two examples of problems that can be solved by both ants and
elephants (Section 4.3) followed by two problems that can be solved by elephants,
yet not by ants (Sections 4.3.1 and 4.3.2).

4.1 A Single Ant

We have established the fact that a group of N LF-Ants dominates a group of N
ants for N ≥ 1. This is strongly based on the communication between the LF-
Ants. Therefore the question that arises is whether a single LF-Ant still dominates
a single ant. In other words, after neutralizing the communication factor, is an LF-
Ant computationally stronger than an ant.

We consider the subset of the general LF-Ant model - the NF-Ant model, in
which the robots have no localization abilities. In the following, we prove that,
surprisingly, for NF-Ants the answer is that one ant is equivalent to one NF-Ant.

The intuition is that while an ant has constant limited memory (making it
equivalent to a finite state machine), it can use its own pheromones in space to
give the ant the external storage needed to have the strength of a Turing machine,

24

given it has an infinite space to work in. Hence, in the proof we use a finite state
machine and a Turing machine as the ant’s and NF-Ant’s computational mecha-
nisms respectively.

However, the ant robot will need to move in space for two independent pur-
poses: First, to simulate the NF-Ant’s movements in space. And second, to utilize
pheromones for storage. Thus, it will need to remember if it is simulating move-
ments or conducting a calculation.

To solve that, we will keep track of the following two positions:

• Memory position: This position marks the location of the Turing machine
head that is physically simulated by the ant. The memory position moves
only during a calculation performed by the ant.

• Physical position: This position marks the actual position of the ant in
space. The physical position moves only when the elephant simulated by
the ant moves.

Also, we will add information to the pheromones, which will point to the
directions of each position: east, west, south, north, and here. So, the pheromones
will be divided into three fields: the original alphabet, a pointer with the direction
to thememory position, and a pointer with the direction to the physical position.
Each of the last two fields can take the form of all four basic directions as well
as a symbol for pointing out that the ant is located exactly where the position is.
Note that we restrict ourselves here to movements on a grid, and thus all directions
include the four basic movements on a grid: east, west, south, and north1.

Thus, when the ant simulates a calculation done by the NF-Ant, it will move in
space, acting as a physical Turing machine. But, if interrupted by a movement of
the NF-Ant it will first follow its own trail to find the physical position and once
reaching that position, it will move the physical position to the target location,
which the NF-Ant was supposed to move to. Similarly, when needed to continue a
calculation, the ant will follow the trail to thememory position and once reaching
that position, it will continue the calculation, changing the trail to point to the new
memory position.

1all four directions are relative to the robot’s initial orientation, which is arbitrarily chosen to
be "north"

25

However, in order to accomplish the above routine, the ant will need to be
careful not to create loops of pointers or rather not to follow old trails that lead
nowhere. Therefore, when the ant moves thememory position, it will both create
a pointer to the memory position in every step, even if there is already a pointer
there, and create a pointer to the physical position opposite of its own movement,
except when there is already a pointer there. On the other hand, when the ant
moves towards the memory position it will not change any pointers, but follow
the pointers that already exist.

More formally, an NF-Ant algorithm is a Turing machine ElephantAlgorithm
such that:

ElephantAlgorithm = (Q,Σ, b,Γ, δ, s, F)

where Q is the set of states, Σ is the input’s alphabet, b is the blank symbol, Γ is
the tape’s alphabet, δ is the transition function, s is the starting state, and F is the
set of accepting states. We will define the finite state machine ElephantGun as a
Turing machine without a tape (since both models are equivalent [37]), such that:

ElephantGun = (Q′,Σ′, b,Γ′, δ′, s′, F ′)

ElephantGun will have the states Q′ = Q ∪ Q”,s′ = s,F ′ = F where Q” is
a set of additional states that are specified below, and transitions δ′ that are also
specified below. In addition it will be equipped with an infinite amount of each of
the possible pheromones to be used. These pheromones will be constructed from
a finite number of types, such that each of the symbols in Γ′ is divided into three
fields: The first field represents a symbol of the original alphabet Γ, the second
points to the memory position, i.e. east, west, south, north, or here, and the third
points to the physical position with the same five options. Let us also define
the operator x such that ∀x ∈ {E,W, S,N,H}, E = W,W = E, S = N,N =

S,H = H where E = east, W = west, S = south, N = north, and H = here.
Lastly, the input alphabet stays the same and hence, Σ′ = Σ. The new states Q”,
will be composed as follows for each q ∈ Q and Z ∈ {E,W, S,N,H}:

• qsetmem(E)- an intermediate state to update the current slot as the
memory position

26

• qsetmem(W)- an intermediate state to update the current slot as the
memory position

• qsetloc(Z)- an intermediate state to update the current slot as the robot’s loca-
tion

• qfindloc- an intermediate state to find the robot’s location

• qfindloc(Z)- an intermediate state to find the robot’s location and move one
slot to Z ∈ {E,W, S,N,H}

Also, for each q ∈ Q, p ∈ Q, a ∈ Γ, b ∈ Γ:

• qa,b,p,E- an intermediate state to find the memory position and perform the
(q, a)→ (p, b, E) transition

• qa,b,p,W - an intermediate state to find the memory position and perform the
(q, a)→ (p, b,W) transition

In addition, we will replace the transitions δ by the new set of transitions δ′

such that every transition in the form of (q, a)→ (p, b, E) will be replaced by the
following transitions, where y ∈ {E,W, S,N}, z ∈ {E,W, S,N,H}, and t is
the empty pheromone:

• (q, (a, y, z)) → (qa,b,p,E, (a, y, z), y) - for the case that the ant is not on the
memory position

• (q, (a,H, z))→ (psetmem(E), (b, E, z), E) - for the case that the ant is on the
memory position

Also, we will add the following transitions, where S stands for no movement:

• (qa,b,p,E, (a, y, z)) → (qa,b,p,E, (a, y, z), y) - continue searching the
memory position in the pointed direction

• (qa,b,p,E, (a,H, z)) → (psetmem(E), (b, E, z), E) - found memory position,
process transition, and move to the east

27

• (qsetmem(E), (a,t,t)) → (q, (a,H,W), S) - update memory position

pointer to “here” and pointer to physical position

• (qsetmem(E), (a, y, z)) → (q, (a,H, z), S) - update memory position

pointer to “here”

Likewise, every transition in the form (q, a) → (p, b,W) will be replaced by
the following transitions:

• (q, (a, y, z))→ (qa,b,p,W , (a, y, z), y) - for the case that the ant is not on the
memory position

• (q, (a,H, z)) → (psetmem(W), (b,W, z),W) - for the case that the ant is on
the memory position

Also, we will add the following transitions:

• (qa,b,p,W , (a, y, z)) → (qa,b,p,W , (a, y, z), y) - continue searching the
memory position in the pointed direction

• (qa,b,p,W , (a,H, z)) → (psetmem(W), (b,W,E), E) - found
memory position, process transition, and move to the east

• (qsetmem(W), (a,t,t)) → (q, (a,H,E), S) - update memory position

pointer to “here” and pointer to physical position

• (qsetmem(W), (a, y, z)) → (q, (a,H, z), S) - update memory position

pointer to “here”

However, for every movement z′ ∈ {E,W, S,N} and for every z ∈
{E,W, S,N},y ∈ {E,W, S,N,H} of the elephant, the ant will have the fol-
lowing new transitions:

• (q, (a, y, z)) → (qfindloc(z′), (a, y, z), z) - for the case that the ant is not on
the physical position

• (q, (a, y,H)) → (qsetloc(z′), (a, y, z
′), z′) - for the case that the ant is on the

physical position

28

Together with the following new transitions:

• (qfindloc(z′), (a, y, z)) → (qfindloc(z′), (a, y, z), z) - continue searching the
physical position in the pointed direction

• (qfindloc(z′), (a, y,H)) → (qsetloc(z′), (a, y, z
′), z′) - found

physical position, update pointer, and move to the desired direction
z′ ∈ {E,W, S,N}

• (qsetloc(z′), (a,t,t)) → (q, (a, z′, H), S) - update physical position

pointer to “here” and memory position pointer to where you came from

• (qsetloc(z′), (a, y, z)) → (q, (a, y,H), S) - update physical position pointer
to “here”

And lastly, for any action or sensing need to be done:

• (q, (a, y, z)) → (qfindloc, (a, y, z), z) - for the case that the ant is not on the
physical position

• (q, (a, y,H)) → (q, (a, y,H), S) - for the case that the ant is on the
physical position

Together with the following new transitions:

• (qfindloc, (a, y, z)) → (qfindloc, (a, y, z), z) - continue searching the
physical position in the pointed direction

• (qfindloc, (a, y,H)) → (q, (a, y,H), S) - found physical position, the ant
can sense or act

Let us observe an example of an ElephantGun execution. Assume we are
given the following simple NF-Ant algorithm ElephantGunExample (Algo-
rithm 4).

An ant running ElephantGun is given the Turing machine representation of
ElephantGunExample as an input. Figure 4.1 shows the a snapshot of the world
four steps after the last line of the algorithm was executed (before the ant has

29

Algorithm 4 ElephantGunExample ()
1: x← 150
2: move(north, 2)
3: move(east, 2)
4: move(north, 4)
5: move(east, 2)
6: move(south, 2)
7: move(west, 4)
8: x← x+ 1

finished simulating it). The ant starts at the bold frame at the southwest part of the
figure. It first saves the number 150 on the physical Turing machine it creates from
west to east (shaded in the figure). It will do so using pheromones such that their
symbol field will mark the original actions by the original Turing machine (here,
the numbers 1,0,0,1,0,1,1,0) and their physical field will mark the direction in
which the physical position is (here, the directions are all "west"). Once finished
simulating the first line, it will need to return to the physical position in order
to simulate movements along the grid. But, it will need to remember where the
memory position is, i.e., the physical Turing machine’s head. So, it will mark the
memory field in its pheromone as "here" and will place "east" pointers all along
the way to the physical position. Then, it will start simulating lines (2–7) and
move along the grid, while placing pointers to the memory position. Notice that
once it crosses its own line of pheromones it does not change the memory pointer.
Thus, when returning back to the memory position for simulating the last line it
will not make the same steps it has done before and go along the loop, but will
shortcut using the old marks. Of course, it will do so while leaving pointers to the
physical position.

In order to be sure that the procedure of moving between the
memory position and the physical position does not include any loops or dead
ends, we prove the following two lemmas.

Lemma 4. At every instance in ElephantGun there is no infinite loop of pointers.

Proof. Assume, towards contradiction, that there is a set of physical position
pointers P = (p1, p2, ..., pn) (w.l.o.g, since both the memory and the physical

30

 0 1 1 0 1 0 0 1

 M

 M M M

 M

 M

 M

 M M M

 M

 M M M

m

 M

 P P

P

 P

 P

 P P P

 P

 P

 M M M M M M M

 M

 P P P P P P P

Figure 4.1: An example of ElephantGun. The shaded region is the simulated
Turing machine. P symbols are the physical position pointers. M symbols are
the memory position pointers. The bold cell is the ant’s starting location.

31

pointers behave the same) such that ∀i, i = 1..n, pi → pi+1 mod n (w.l.o.g), form-
ing a loop. Thus, there exists no pointer pi which points to the inside nor the out-
side of the loop. Now, if the loop was created by moving the physical position,
then the last pointer in the loop will replace the first one and will point towards
the physical position (outside or inside the loop) and thus, will break the loop.
Otherwise, if the loop was created by moving away from the physical position,
the first pointer in the loop will not be replaced and will still point towards the
physical position. Thus, the physical position must be a part of the loop and
since it does not point at anywhere, this is not a loop, leading to a contradic-
tion.

Lemma 5. At every instance in ElephantGun there is a path of pointers between

the physical position and the memory position in each direction (not necessar-

ily the same path).

Proof. Assume, towards contradiction, that there is no path of pointers from
physical position to memory position (w.l.o.g). Thus, there exist at least one
pointer p in the path of pointers from physical position to memory position that
does not lead to memory position. Since the two positions start at the same place
and since there is no action of erasing, we can deduce that there was a path until
p was replaced, and not by moving the memory position. Therefore, p could
only been replaced moving away from memory position, but such action does
not replace existing pointers, leading to a contradiction.

The former two lemmas therefore assure us that such consistent movement
between the memory head and physical head can be achieved and thus, we can
proceed towards constructing such simulation of the NF-Ant by the ant. Thus,
we reach the following important conclusions: The first is that the ant’s finite
state machine with the assistance of the workspace is equivalent to the NF-Ant’s
Turing machine. This implies that the ant model is as least as strong as the NF-Ant
when involving only one robot (lemma 6).

Lemma 6. The finite state machine ElephantGun, when equipped with infinite

amount of pheromones and being run on a ClearGrid, is equivalent to the Tur-

ing machine ElephantAlgorithm, as it preserves the original task completion in

polynomial time using a polynomial number of constant-sized pheromones.

32

Proof. Task completion: It is easy to see that one can construct such a finite state
machine. The new transitions, states, and alphabet, though each is larger then
the original, are still finite and thus, can be constructed to simulate the Turing
machine. Furthermore, once created, ElephantGun uses its infinite amount of
pheromones as the Turing machine’s alphabet and the grid it is located in as the
Turing machine’s tape to write in and read from. Lastly, the extra transitions added
allow ElephantGun to simulate both the ElephantAlgorithm’s movements and
calculations independently.

Time complexity: There are four couples of actions that can be taken by the
ant: move → move, write → write, move → write, and write → move. The
cost of the first two actions is 1, since the ant does not need to switch between
memory and physical positions. Thus, in the worst case scenario there is a set
|A| = n of actions A = move, write,move, ..., write such that the movements
and writing actions are towards opposite directions. Suppose that the ant’s simu-
lated tape is written from west to east and all moves in A are moves in the west
direction, then for each action the distance between thememory and physical po-
sitions grows by one. Therefore, the number of steps for action i is exactly i and

altogether, for n actions the ant makes
n∑

i=1

i = n(n + 1)/2 steps which is O(n2)

as opposed to the n steps performed by the elephant running the same algorithm.
Memory complexity: Recall that ElephantGun is a Turing machine without

a tape and has also a finite number of states. Therefore, its internal memory is
constant.

Size of pheromone: Let g = |Γ| be the size of the original NF-Ant alphabet.
Then, we can construct a pheromone, which will have the following three fields:
(1) A log g size field to represent the original symbol. (2) A 3-bit field to represent
the five directions to the memory head (east, west, south, north, and here). (3)
Another 3-bit field to represent the same five directions to the physical robot head.
Altogether, the size of the pheromone is log g + 6 bits2.

Total number of pheromones used: In the worst case, the ant places at most
one pheromone in every step and thus, it will use no more thanO(n2) pheromones

2We are aware that the size of the pheromone can be reduced to log g + 5. There are 5 ×
5 = 25 < 32 combinations of the two pointers and therefore, they can be represented in 5 bits
altogether.

33

for a task that requires n steps for the original NF-Ant (that is, n2 steps for the
simulating ant).

Theorem 7. Let ANT1 and NF-ANT1 be the models portrayed above correspond-

ingly. Then, ANT1 � NF-ANT1 on a ClearGrid.

Proof. Following Lemma 6, we can construct an ant that simulates the NF-Ant
model which has no localization. Therefore, each problem that can be solved
by the model NF-ANT1 can be solved by ANT1. Thus, ANT1 � NF-ANT1 on a
ClearGrid.

When combining Theorem 2 and Theorem 7, we get the following conclusion
for a single ant and a single NF-Ant.

Corollary 1. ANT1 ≡ NF-ANT1 on a ClearGrid.

Proof. Since we have shown in Theorem 2 that NF-ANTN � ANTN for N ≥ 1,
then NF-ANT1�ANT1. Also, we have shown in Theorem 7 that ANT1�NF-ANT1.
Therefore, ANT1 ≡ NF-ANT1 on a ClearGrid.

Hence, we are left with two open questions: First, what happens if there are
obstacles in the environment? Secondly, what happens to the dominance relation-
ship when we need to simulate N elephants? In the following sections we will try
to extend the ant-elephant dominance problem to these two scenarios.

4.2 Environments with Obstacles

We have indeed created a mechanism for the ant to simulate any algorithm it is
given by using the space around it for memory purposes. However, in reality,
most robotic environments have a certain amount of obstacles and therefore, the
ant cannot assume a clear working area in a predefined shape. Thus, assuming an
infinite grid with an unknown number of obstacles which still maintain connec-
tivity within the area (ObstacleGrid), we would like to have an algorithm that
would iterate the grid such that it would produce an empty cell for each step.

34

Fortunately, the General Obstacle Algorithm (GOA) described in Section 5.3
achieves that property, since it performs a memoryless Depth First Iterative Deep-
ening (DFID), which enables the ant to cover the whole area uniformly while
ignoring obstacles and of course, while using only constant memory per move.
While we wait for Section 5.3 to present the full details of GOA, we describe here
certain properties and portions of DFID, which can be used to overcome obstacles
in ElephantGun.

We introduce the RightMovement algorithm, which produces a right move-
ment on a Turing machine within an obstacle prone environment (ObstacleGrid).
In order to move one cell to the right in our Turing machine the ant will run the
RightMovement algorithm until it has reached the next cell to work on. Just the
same, in order to move one cell to the left within the Turing machine the ant can
invoke the LeftMovement algorithm, which works similarly to RightMovement,
in addition to the ability to identify when the ant reaches the Turing machine’s
leftmost cell.

In DFID, a variable dmust be maintained in order to decide when to backtrack.
The number of bits for this variable depends on the maximal value of d and is not
constant. The ant can either store it in its internal memory, or alternatively, place
it as a pheromone in a cell. However, with a constant amount of memory or with
limited size of pheromone the depth of the search will be bounded. To overcome
this, on each cell the ant visits, it stores the last direction it has taken from that cell
(using a constant memory per cell). After visiting all directions, the ant returns to
the previous depth without actually knowing what depth it is in.

So, in order to use these two new algorithms, we need to add two new fields
to the pheromone used by the ant:

• parent: This field of the pheromone will point to the direction of the cell
from which the ant (who placed the pheromone) arrived. There are four
possible directions, a fifth symbol for the end of the Turing machine, and a
null value for an empty cell. Thus, 3 bits are sufficient for this field. This
field changes only when visiting a cell for the first time or when moving
"left" in the Turing machine.

• direction: While the parent field at cell c points to the cell that the ant

35

first came from to c, the direction field points to the cell that the ant moved
to after leaving c. Based on this field the ant determines where to go next
and whether to continue the deepening or to backtrack. The direction field
stores only four different values (2 bits only), one for each possible direc-
tion. This field changes at every visit to a cell.

Algorithm 5 RightMovement (symbol b, state p)
1: write(b)
2: state← p
3: while true do
4: if current.direction = NULL then
5: current.direction = EAST
6: last_direction← current.direction
7: nbr = sense(current.direction)
8: if nbr.parent = NULL then
9: move(current.direction)

10: current.parent, current.direction← last_direction+ 180 ◦

11: break
12: else if nbr.parent = current.direction+ 180 ◦

∨ current.direction = current.parent then
13: move(current.direction)
14: current.direction← current.direction+ 90 ◦

15: else
16: current.direction← current.direction+ 90 ◦

The idea behind this algorithm (Algorithm 5) is to produce right movements in
a sequence determined by the DFID. Of course, due to the algorithm’s nonlinear
behavior (the number of steps per right movement changes dramatically when
moving from one depth to another), while advancing to next cell the ant moves
through old cells. This can be hazardous when implementing a Turing machine
because the ant can write and read from the wrong cells. However, the ant can
overcome that problem by marking every cell it passes by and by stopping its
movement only when reaching an unmarked cell (the parent field is NULL). The
marking is done of course independently from the other ElephantGun marking
discussed above since it is done only in the two new fields in the pheromone.

Let (q, a) → (p, b, R) be the next transition the ant should take such that q
and p are the old and new states respectively, a and b are the old and new symbols

36

respectively and the ant should move right at the end of the transition (a right
movement on the physical Turing machine). The ant first writes symbol b in its
current cell and changes its internal state to p (lines 1–2). Then, the ant enters
a while loop for searching the next cell in the Turing machine (lines 3–16). In
each iteration within the loop, the ant senses the content of the neighbor pointed
by the direction field of the current cell and decides its next action accordingly.
If the parent field in that neighbor is empty then the ant has found the next cell
in the Turing machine. The ant then moves to this new cell, sets the parent and
direction fields to point at the last cell, and then the algorithm terminates (lines
8–11). Otherwise, if the neighbor is in the same branch in the tree as the ant
(remember that DFID treats the grid as a tree), the ant moves to this cell and
toggles the direction field clockwise (lines 12–14). Lastly, if the neighbor is
blocked by an obstacle or belongs to another branch in the tree, the ant ignores it
and just toggles the direction field of the current cell clockwise (line 15).

Algorithm 6 LeftMovement (symbol b, state p)
1: write(b)
2: state← p
3: if current.parent 6= TM_END then
4: last_direction← current.direction
5: current.parent← NULL
6: move(last_direction)
7: first_direction← current.direction
8: while true do
9: current.direction← current.direction− 90 ◦

10: if current.direction = first_direction then
11: break
12: nbr = sense(current.direction)
13: else if nbr.direction = current.direction+ 180 ◦ then
14: move(current.direction)
15: first_direction← current.direction

Algorithm LeftMovement works similarly to RightMovement with a few
changes. Assuming transition (q, a) → (p, b, L), the ant first writes symbol b to
the appropriate field in the pheromone and changes its internal state to p (lines
1–2). Then, if the parent field in the current pheromone marks the end of the

37

Turing machine the algorithm will terminate (line 3). Else, the ant leaves the
current cell towards its neighbor pointed by the direction field while nullifying
both direction and parent fields in the current cell (lines 4–6). Then, the ant saves
the current direction as the first direction taken (line 7) and enters a while loop in
order to find the next cell (lines 8–15). In each iteration within the loop, the ant
first toggles the direction field counterclockwise and terminates the algorithm if
the ant already explored this direction (lines 10). Otherwise, it senses the neighbor
pointed by the direction field and if the neighbor’s direction field points at the
current cell the ant moves towards that neighbor (lines 13–6).

Therefore, we introduce the ObstacleGun algorithm (equivalent to an FSM),
which is identical to the ElephantGun FSM except when moving the Turing ma-
chine head the ant executes the RightMovement and LeftMovement algorithms
(also equivalent to FSMs) instead of just moving right and left on the Turing ma-
chine respectively.

Theorem 8. The finite state machine ObstacleGun, when equipped with infinite

amount of pheromones and being run on an ObstacleGrid, is equivalent to the

Turing machine ElephantAlgorithm, as it preserves the original task completion

in polynomial time using a polynomial number of constant-sized pheromones.

Proof. Task completion: Since ObstacleGun and ElephantGun are identi-
cal except movements with the Turing machine head, we need to show that
RightMovement and LeftMovement are traversing the Turing machine correctly
on an ObstacleGrid. Specifically, we need to prove the following:

• Claim 1: Procedure RightMovement finds the next cell of the Turing ma-
chine

• Claim 2: Procedure LeftMovement finds the previous cell of the Turing
machine

• Claim 3: If the ant is at the end of the Turing machine procedure
LeftMovement does not instruct a movement

Procedure RightMovement simulates a depth first iterative deepening search
until it finds a next cell in the Turing machine. At the beginning of execution the

38

Turing machine is empty and the ant places a pheromone with a TM_END parent

field and arbitrarily a "north" direction field. From that point on, each cell that is
being sensed fits in one of these four cases:

(1) The parent field is NULL, which means that the cell is empty and that the
ant has found the next cell in the Turing machine3. In this case, the ant moves
to that cell, initializes its parent and direction fields for a future use, and the
algorithm terminates.

(2) The parent field is pointing to the current cell, which means that the sensed
cell is on the same branch in the tree as the current cell. In this case, the ant moves
to that cell and shifts the direction field clockwise for future usage.

(3) The parent and direction fields are equivalent, which means that the ant
has pruned the current subtree and should backtrack to explore a different subtree.
In this case the ant acts similarly as in (2).

(4) The cell is blocked by an obstacle or its parent field does not point at the
current cell, which means that the sensed cell belongs to another branch in the
tree. In this case, the ant just shifts the direction field clockwise so it can sense a
different cell in the next iteration. Therefore, as long as there is a connected space
around the ant, RightMovement will find an empty cell in a depth first iterative
deepening fashion. And we are done with Claim 1.

Procedure LeftMovement finds the previous cell by retracing the steps in
RightMovement. When invoked, the ant is at the end of the tree. Thus, it first
nullify the parent field for a future use and leaves the current cell to its parent in
the tree. Then, it systematically scans each cell’s neighbors in a counterclockwise
manner while following the direction fields in each cell. Each such direction
field is initially pointed towards the current cell, since it was the last direction the
ant have taken. Therefore, the ant consistently follows the neighbor, which points
at the ant and then start shifting its direction field until it points at the next cell.
Once the direction field returns to point at the first direction the algorithm termi-
nates, since the previous cell had been found. This is because the previous cell is
always a leaf in the tree. This proves Claim 2.

3Note that the cell could have been already visited and can contain a pheromone with infor-
mation, but its parent field will be empty. We are not looking for the first unexplored cell in the
Turing machine, but the next cell on the right.

39

Lastly, if the ant is at the end of the Turing machine procedure LeftMovement
does not instruct a movement as shown in line 3 in algorithm 6. This proves Claim
3.

Time complexity: The costliest action in a DFID search is when finishing
depth d and moving towards depth d + 1. At that point, one needs to backtrack
d steps towards the root of the tree and then d + 1 steps towards the first node in
depth d + 1, altogether 2d + 1 steps. Therefore, if the ant is in a maze and can
move in one direction only, then it performs a depth change in every iteration and

altogether
n−1∑
i=0

2i+ 1 = n2 = O(n2) steps for nmovements on the original Turing

machine. Moreover, the cost of the four available couples of actions is at the worst
case as follows: cost(move → move) = 1, cost(write → write) = 2w + 1,
cost(move → write) = m + 3w + 1, and cost(write → move) = w + m + 1,
where w and m are the number of write and move actions respectively such that
w + m = n. Therefore, move → write is the costliest action. Assume an ant
located at a maze and starts at a dead end, where the only direction it can take is
always east. Also, assume that a sequence of n move→ write actions is possible
and that the ant start checking if it is on the memory or physical positions only
after it reached the root. In this impossible scenario, the ant produces 3w+1 steps

per write action and altogether
n−1∑
i=0

3i+ 1 = n2 + n(n − 1)/2 = O(n2) steps

for n actions and therefore, the time complexity of ObstacleGun is still O(n2)

(the same as ElephantGun) as opposed to the n steps performed by the elephant
running the same algorithm.

Size of pheromone: ObstacleGun uses the the same pheromone as
ElephantGun with additional 3 bits for the parent field and 2 bits for the
direction field. Altogether, assuming the original NF-Ant algorithm had g sym-
bols, then the ObstacleGun’s pheromone needs log g + 6 + 5 = log g + 11 bits.

Number of pheromones used: In the worst case the ant places at most one
pheromone in every step and thus, it will use no more thanO(n2) pheromones for
a task that requires n steps for the original NF-Ant.

40

4.3 Multiple ants

When investigating the problems involving N robots it seems like we could easily
find ones, which are solvable by a group of N LF-Ants, yet are unsolvable by
a group of N ants. However, looking more closely, we find that many of these
problems are indeed solvable by a group of N ants, usually at the price of addi-
tional time complexity. For instance, let the rendezvous problem Rendezvous be
defined as follows.

Definition 6. Rendezvous
Given two mobile robots r1 and r2, which are positioned on a 2-dimensional grid

in positions (x1, y1) and (x2, y2) respectively, we say that an algorithmA running

on both robots succeeds ⇐⇒ for every pair of points (x1, y1) and (x2, y2), r1
and r2 meet within a finite time.

It is easy to construct an algorithm for two LF-Ants that can solve
Rendezvous on a ClearGrid like the following Manhattan algorithm.

Algorithm 7 Manhattan (robot r)
1: broadcast initial position (xi, yi)
2: receive other robot’s position (x1−i, y1−i)
3: calculate mid point p of the manhattan distance between (xi, yi) and

(x1−i, y1−i)
4: move towards p

Since LF-Ants can communicate directly, the first two steps are possible and
so is the rest of the algorithm. The time complexity for Manhattan is exactly the
midpoint of the manhattan distance m =

⌈
|y1−i−yi|+|x1−i−xi|

2

⌉
, which is optimal in

a grid. We will denote this time complexity as O(m). Moreover, we have shown
(Algorithm 3) that an NF-Ant can also solve Rendezvous.

Nevertheless, there is also an ant algorithm which solves Rendezvous on a
ClearGrid, called the No-Obstacle Algorithm, using a state machine to create a
spiral and to meet the other ant (see Figure 5.2 in Section 5.1).

In this finite state machine, the ant decides upon the next step according to
the pheromone’s locations within the eight squares surrounding it. In each step,
the ant places a pheromone in its own location and then moves according to the

41

FSM. Whenever it senses another ant within its sensory radius, it moves towards
the other ant.

As we can see in section 5.1, in the worst case both ants will meet after cre-
ating a spiral with a

⌈
|y1−i−yi|+|x1−i−xi|

2

⌉
radius. This spiral has a total distance of⌈

(|y1−i−yi|+|x1−i−xi|)2
4

⌉
and thus, O(m2) is its time complexity. Note that this time

complexity is only quadratic relative to the time complexity of Manhattan.
Let us look at another problem we call Stretcher, which is a variant of the

foraging problem [13].

Definition 7. Stretcher
Given a group of N robots, all of which start from some initial point pstart on a

grid, the goal of the robots is to find an injured person that is positioned in an

unknown point pgoal on the grid, and then bring him back to pstart. However, in

order to carry the injured, the effort of all N robots is needed.

First, we present the following NF-Ant algorithm ElephantStretcher for
solving Stretcher.

Algorithm 8 ElephantStretcher (robot r, subspace S)
1: while (not found injured person) ∧ (not received ’FOUND’) do
2: Search along S
3: if received ’FOUND’ message then
4: Go to position pgoal given in ’FOUND’ message
5: else
6: Broadcast ’FOUND’ with own position pgoal to all robots
7: Wait for all robots to arrive
8: Carry injured person to pstart

Now, we notice here that when we try to construct an ant algorithm for this
problem, an ant could not inform all other ants once it finds the injured per-
son. Nevertheless, we find an ant algorithm AntStretcher that indeed solves
Stretcher, yet with a greater time complexity.

Here, we see that all N ants ignore the searching subspace given, and instead
spiral together until they find the injured person, at the cost of searching the whole
space and not splitting the searching task among the ants.

42

Algorithm 9 AntStretcher (subspace S)
1: while not found injured person do
2: Run Spiral
3: Carry injured person to pstart

So, are there any problems which cannot be solved by a group of N ants?
Unfortunately, the answer is yes. Two examples are shown in Sections 4.3.1–
4.3.2.

4.3.1 Tragedy of the Common Ant

In this section we will prove by a counter example that a group of N ants cannot
fully simulate a group of N NF-Ants. As a result, since N LF-Ants dominate N
NF-Ants, then N LF-Ants dominate N ants. In order to do this, we will define the
following problem we call LimitedKServer.

Definition 8. LimitedKServer
Let R = r1, ..., rN be a set of mobile robots with sensing radiuses of M

2N
each, all

are positioned on a finite M ×M grid such that all sensing radiuses are disjoint

and their union covers the whole grid. Let C = c1, ..., cx be a set of calls and y

be a positive integer such that y ≤ x where y is known, but neither C nor x is

known. Assume that within a finite period of time t, x calls are made such that no

two calls are made in parallel. Assume that every robot ri ∈ R can answer a call

immediately only within its sensing radius and that each call lasts for one time

cycle only. We say that an algorithm A succeeds ⇐⇒ for every sequence of x

calls, A answers exactly y. Otherwise, A fails.

Note that the above problem is a variant of a physical k-server problem [25]
where there are a finite number of calls and the servers need to collectively answer
only a certain number of these calls (see Fig. 4.2). This problem represents an
abstraction of problems related to the tragedy of the commons such as overfish-
ing [43]. For our purpose of showing that NF-Ants dominate ants we will first
show that there exist an algorithm called Fisherman for NF-Ants which solves
LimitedKServer. Following that, we will prove that there exist no algorithm for
ants which solves that same problem.

43

Algorithm 10 Fisherman (list of robots R, call limit y)
1: calls← 0
2: while calls < y do
3: if a message ’CALL’ has been received then
4: calls← calls+ 1
5: if calls = y then
6: break
7: else if ∃ call c within sensing radius then
8: broadcast ’CALL’ to all r ∈ R
9: calls← calls+ 1

10: answer call

Theorem 9. Algorithm Fisherman solves LimitedKServer when runningN NF-

Ants on an ObstacleGrid.

Proof. Let X be the finite set of calls. Since the N NF-Ants cover the M ×M
entirely, there exist no call that is overlooked by all of the NF-Ants. Also, since
each NF-Ant reigns over a disjoint territory, no call is being answered by two
NF-Ants. In addition, since an NF-Ant is only occupied for one cycle per call
and no two calls are made in parallel, there is no situation in which an NF-Ant
is occupied and cannot answer a new call. Thus, after y calls the herd of NF-
Ants have answered exactly y calls and therefore, all NF-Ants break from the
while loop upon receiving the y-th ’CALL’ message. Lastly, there is no usage of
localization along the messages transferred by the NF-Ants and thus, the NF-Ants
will have no problem processing the algorithm.

Now, if we inspect the ant behavior within LimitedKServer we can conclude
the following lemmas:

Lemma 10. There is no ant algorithm which solves LimitedKServer when run-

ning N ants and at least one ant moves from its initial position.

Proof. Assume y = x. Therefore, if an ant algorithm involves an ant moving
from its initial position p at time t, there can always exist a sequence with a call
at time t at position p which will be missed and thus, the algorithm will fail.

Lemma 11. Every ant algorithmA solving LimitedKServer requires at least one

ant to move from its position during its execution.

44

Figure 4.2: An illustration of LimitedKServer with four robots.

Proof. Since ants do not have any direct communication, the only way they can
propagate information among themselves is by leaving pheromones over the grid
or moving towards each other, both involve at least one ant moving. Now, suppose
that there is an ant algorithmA, which attempts to solve LimitedKServer without
any movement by any of the ants. Then, there is no way an ant could know
whether or not to answer the (y + 1)-th call for it cannot know that there were y
calls before.

Based on Lemmas 10 and 11 we can now conclude:

Theorem 12. There is no ant algorithm which solves LimitedKServer when run-

ning N ants on ObstacleGrid.

Proof. Recall that we assume that the ant’s sensing radius is identical to the LF-
Ant’s sensing radius. Since ants do not have explicit communication beyond their
sensing radius, we can extract from the above lemma that no information can be
transferred from one ant to another when trying to solve LimitedKServer. So,
in order to solve LimitedKServer, any ant algorithm would need to know which
calls to answer in advance, and since this information is not available we conclude
that there is no ant algorithm which solves LimitedKServer when running N

ants.

Notice that the infinite space in ObstacleGrid does not assist in order to create
an ant algorithm for solving LimitedKServer. This is because every ant algorithm

45

A solving LimitedKServer requires at least one ant to move from its position
during its execution, as we have seen in Lemma 11. Therefore, NF-ANTN�ANTN ,
regardless of the size of the working space.

In other words, we reach the conclusion that it is not the memory deficiency,
but the lack of instant communication that is what ultimately distinguishes com-
putationally the ants from the NF-Ants. Thus, even an infinite workspace is not
sufficient for ants to simulate NF-Ants in certain problems.

4.3.2 Duplicate Agent Patrol Problem

The LimitedKServer problem might strike the reader as just a latency problem,
i.e, if the calls were to hold a bit longer then the ants might have been able to
both answer them all and move around the area in order to propagate the total
number of calls. Therefore, we would like to introduce another counterexample,
which will emphasize the computational inferiority of robot ants relative to robot
elephants, due to the lack of instant communication.

One of the canonical problems in multi-robot research which was mentioned
earlier is the patrol problem [11, 12, 1], where a group of robots perform con-
tinuous coverage around an open or closed polygon (also known as fence patrol)
or within an area (also known as area patrol). Many variants exist for this patrol
problem, each changes the assumptions regarding the domain of the patrolled area
or fence (friendly versus adversarial), the given task (cleaning, surveillance, etc.)
and the topology of the map (graphs, continuous domains, etc.).

We would like to focus on the following variant. Assume that a top secret area
is to be guarded by a group of robots patrolling the perimeter around it. This area
is to be continuously visited by agents, each having a unique id. Therefore, we
assume that if an agent enters the area and there is another agent already in the
area with the same id, then the entering agent is a duplicate agent and therefore,
should be held by the patrolling robots. Thus, we seek to find an algorithm that
will be run by all robots and will assure that no duplicate agent crosses the area’s
perimeter.

We define the Duplicate problem formally as follows:

Definition 9. Duplicate

46

Let R = r1, ..., rn be a set of mobile robots which are positioned on a perimeter

fence p and let G = g1, ..., gm be a set of agents, each having a not necessarily

unique id marked gi.id. Let gi and gj be two agents such that gi.id = gj.id and

assume gi crossed p at time ti. Then, agent gj is called a duplicate if it crosses p

at time tj such that ti < tj . We say that an algorithmA succeeds ⇐⇒ each time

a duplicate agent gdup advances towards p there exists a robot r ∈ R such that r

stops gdup. Otherwise, A fails.

It is easy to see that a group of N NF-Ants can solve Duplicate using any of
the perimeter patrol algorithms in [1, 12] as a baseline. We propose the following
DuplicateFinder algorithm (Algorithm 11).

Algorithm 11 DuplicateFinder (list of robots R, patrol algorithm PA)
1: agent_list← NULL
2: run PA
3: while no duplicate found do
4: if received ’DUPLICATE’ message then
5: break
6: if received agent.ID message then
7: add agent.ID to agent_list
8: if encountered agent then
9: if agent.ID ∈ agent_list then

10: broadcast ’DUPLICATE’ to all r ∈ R
11: break
12: else
13: add agent.ID to agent_list
14: broadcast agent.ID to all r ∈ R

Theorem 13. Algorithm DuplicateFinder solves Duplicate when runningN NF-

Ants on an ObstacleGrid.

Proof. Each NF-Ant initializes a list of agents and runs a given patrol algorithm.
Each time an NF-Ant encounters an agent (lines 8–14) it adds its id to the list and
update all other NF-Ants, creating a global list. Since NF-Ants have instantaneous
communication, this list is updated immediately upon sensing an agent (line 6).
Therefore, suppose there exist an agent g1 that approaches NF-Ant r1 at time t and
a corresponding duplicate agent that approaches NF-Ant r2 at time t + 1, r2 will

47

already have g1.id at time t (since communication is instantaneous) and therefore,
will spot g2 as a duplicate (lines 9–11).

However, this problem cannot be solved by ants.

Theorem 14. There is no ant algorithm which solves Duplicate when running N

ants on ObstacleGrid.

Proof. Assume |p| = P such that r1 and r2 are two ants that are positioned on
perimeter p at points p1 and p2 respectively and that d(p1, p2) = P/2. Now,
assuming g1 approaches r1 at time t and r1 is trying to propagate g1.id to all other
ants. Then, in the best case g1.id is carried a distance of P/2 and assuming the
ants can move one cell per time step the time it takes for a message to travel P/2
cells is P/2. Thus, if a duplicate agent gdup approaches r2 at time t′ < t + P/2

then it cannot be spotted as a duplicate and the algorithm will fail.

48

Chapter 5

Ants Meeting Algorithms

Until now, we have focused on the problems which ants cannot solve. We now
turn to deepen into a problem that can be solved by ants – the rendezvous prob-
lem – as mentioned in section 4.3 (Definition 6). We start by presenting the No-
Obstacles Algorithm (NOA), an algorithm for an environment with no obstacles,
i.e., ClearGrid (section 5.1). Them, in section 5.2 we present an attempt to extend
NOA to an environment with finite rectangular obstacles (RectangleGrid) called
the Rectangular Obstacles Algorithm (ROA). And lastly, we present the General
Obstacles Algorithm (GOA), an algorithm that can solve the rendezvous problem
in an obstacle prone environment, i.e., ObstacleGrid (section 5.3).

Suzuki and Yamashita [39] have shown that there is no algorithm that can
assure two simple robots to converge to a single point. The problem is that in
order to achieve a meeting each robot needs to make a different decision for the
same situation. In order to break this symmetry, we will need to introduce different
variants of the original ant defined in section 3.1 (Definition 2).

For the first algorithm NOA, we introduce a variant of the ant model (D-Ant)
which is identical to the ant in Definition 2, except the ant has the ability to know
"north". For ROA and GOA, we introduce another variant of the ant model (NA-
Ant) which differ from the original ant by having a unique id.

49

Figure 5.1: NOA: step by step ant’s traveling. Gray cells are pheromones. The
framed cell is the ant’s starting location.

5.1 No Obstacles Algorithm

A first attempt to solve the rendezvous problem in an infinite grid with no ob-
stacles (ClearGrid) is called the No-Obstacles Algorithm (NOA) and is indented
to be used by ants which have the ability to know "north". We call this variant
D-Ants (the D stands for directional). NOA also makes the additional assumption
that both D-Ants execute the algorithm at the same time.

In NOA, each D-Ant spirals around its starting location by leaving a
pheromone in each new cell it visits. Figure 5.1 demonstrates a step by step trav-
eling. The bold {3 × 3} square box indicates the current position (center of box)
and its 8 neighbors which are the sensory radius of the D-Ant. The grey cells rep-
resent pheromones left by the D-Ants. The bold cell represents the start location
of the D-Ant. For example, when moving from frame 1 to frame 2, the D-Ant
placed a pheromone in its own cell and moved one cell north. Then it placed a
pheromone in that cell and moved east (frame 3) etc.

The D-Ant follows the FSM presented in Figure 5.2 at all times. Each state
of the FSM represents the previous action of the D-Ant. Each edge corresponds
to different possible sensing scenarios. The numbers above some of the scenarios
that match to the frames of Figure 5.1 are labeled with the corresponding frame
numbers above them.

In each state of the FSM the D-Ant activates its sensory radius (a {3×3} box)
and moves according to the edge that corresponds to the content of that box. The

50

D-Ant starts in Start and moves north to state North. The D-Ant will stop in any
case that another D-Ant is in its sensory radius (this is not shown in the FSM of
figure 5.2). Each {3 × 3} box in the figure is interpreted as follows. The current
position of the D-Ant is in the middle square. Grey cells represent pheromones,
and white cells are free. X cells denote a don’t care cell. For example, scenario
5 corresponds to the case that the D-Ant just moved South and that the two cells,
north and north west contain pheromones.

North East

South

Stop

West

Start

Figure 5.2: NOA finite state machine representation.

The FSM can implicitly determine from the sensory radius, based on a case
by case analysis, whether a pheromone was placed by itself (its own spiral) or by
the other D-Ant (it has just encountered the spiral of the other D-Ant). In this case
it will either stop (move to the Stop state) and wait for the other D-Ant to reach it
or it will continue spiraling until it finds the other D-Ant while assuming that the
other D-Ant stopped. The decision is made again according to the exact content

51

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

6

7

8

9

10

11

12

13

1

1

2

2

19

(a)
1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

6

7

8

9

10

11

12

13

1

1

2
2

23

(b)

Figure 5.3: Two meeting examples with NOA. At (a), starting locations are (4,5)
and (8,9).

of sensory radius. The FSM covers all possible cases (of a ClearGrid) and can be
proved to be complete and correct. The main idea is that since NOA works in a
ClearGrid we know exactly where each D-Ant is located with respect to its start
position and a unary pheromone is sufficient.

For example, in Fig. 5.3(a), a1 and a2 start at the framed cells (4,5) and (8,9)
respectively. Then, they start spiraling until a1 reaches position (6,7) which has
the sensory radius (a) of Fig. 5.2. It is easy to see that the pheromone in the north
east could have only been placed by the other D-Ant and that this is the fringe of
the spiral of the other D-Ant. Therefore, the the FSM tells that D-Ant to stop. At
the same time a2 continues its spiral and after seven steps, while located at (7,7) it
senses a1 in (6,7) and therefore the D-Ants meet and the algorithm halts. Another
example is presented in Fig. 5.3(b). a1 and a2 start at (4,7) and (8,7) respectively.
While a1 stops due to sensory radius (b) in Fig. 5.2, a2 continues through sensory
radius (c) and (d) that directs it to move north until it finds a1 after eleven steps.

52

Case: Ant1 Ant 2

Radius Action Radius Action Radius Action Radius Action Radius Action

 meet stop

1 2 2

 stop meet

1 1 2

stop meet

1 1 2

 meet stop

1 2 2

 meet stop

1 2

2

stop 1 stop

1 2

 meet north north stop

1 2 2 2

2

 stop north north 1 meet

2 1

2 1

1) 2

 2 1, 0

x x k

y y k k

= +

= + + >

2 1

2 1

2) 2 1

 2 2, 0

x x k

y y k k

= + +

= + + >

2 1

2 1

3) 2

 2 , 0

x x k

y y k k

= +

= + >

2 1

2 1

4) 2 1,

 2 1, 0

x x k

y y k k

= + +

= + + >

2 1

2 1

5) 2 1,

 2 , 0

x x k

y y k k

= + +

= + >

2 1

2 1

6) 2 2

 2 1, 0

x x k

y y k k

= + +

= + + >

2 1

2 1

2 2 1 1

7) 2 3

 1, 0

 1

x x k

y y k

x y x y

= + +

> + >

− > − +

2 1

2 1

2 2 1 1

8) 2 2

 1, 0

 1

x x k

y y k

x y x y

= + +

> + >

− > − +

2 1

2 1

9) 2 2

 1, 0

x x k

y y k

= + +

= + >

2 1

2 1

10) 2 1

 1, 0

x x k

y y k

= + +

= + >

2 1

2 1

11) 2 1

 , 0

x x k

y y k

= + +

= >

2 1

2 1

12) 2

 , 0

x x k

y y k

= +

= >

2 1

2 1

13) 2

 1, 0

x x k

y y k

= +

= − >

2 1

2 1

14) 2 1

 1, 0

x x k

y y k

= + +

= − >

2 1

2 1

2 2 1 1

15) 2 3

 1, 0

 1

x x k

y y k

x y x y

= + +

< − >

+ > + +

2 1

2 1

2 2 1 1

16) 2 2

 1, 0

 1

x x k

y y k

x y x y

= + +

< − >

+ > + +

 stop north north 1 meet

1 2 2 2

stop north north 1 meet 1 meet

1 2 2 2 2

 meet north north stop

1 2 2 2

2

 meet north north stop

1 2 2 2

2

stop north north 1 meet

1 2 2 2

stop north north 1 meet

1 2 2 2

meet north north stop

1 2 2 2

2

 meet north north stop

1 2 2 2

2

2 1

2 1

1) 2

 2 1, 0

x x k

y y k k

= +

= + + >

2 1

2 1

2) 2 1

 2 2, 0

x x k

y y k k

= + +

= + + >

2 1

2 1

3) 2

 2 , 0

x x k

y y k k

= +

= + >

2 1

2 1

4) 2 1,

 2 1, 0

x x k

y y k k

= + +

= + + >

2 1

2 1

5) 2 1,

 2 , 0

x x k

y y k k

= + +

= + >

2 1

2 1

6) 2 2

 2 1, 0

x x k

y y k k

= + +

= + + >

2 1

2 1

2 2 1 1

7) 2 3

 1, 0

 1

x x k

y y k

x y x y

= + +

> + >

− > − +

2 1

2 1

2 2 1 1

8) 2 2

 1, 0

 1

x x k

y y k

x y x y

= + +

> + >

− > − +

2 1

2 1

9) 2 2

 1, 0

x x k

y y k

= + +

= + >

2 1

2 1

10) 2 1

 1, 0

x x k

y y k

= + +

= + >

2 1

2 1

11) 2 1

 , 0

x x k

y y k

= + +

= >

2 1

2 1

12) 2

 , 0

x x k

y y k

= +

= >

2 1

2 1

13) 2

 1, 0

x x k

y y k

= +

= − >

2 1

2 1

14) 2 1

 1, 0

x x k

y y k

= + +

= − >

2 1

2 1

2 2 1 1

15) 2 3

 1, 0

 1

x x k

y y k

x y x y

= + +

< − >

+ > + +

2 1

2 1

2 2 1 1

16) 2 2

 1, 0

 1

x x k

y y k

x y x y

= + +

< − >

+ > + +

 stop north north 1 meet

1 2 2 2

2 1

2 1

1) 2

 2 1, 0

x x k

y y k k

= +

= + + >

2 1

2 1

2) 2 1

 2 2, 0

x x k

y y k k

= + +

= + + >

2 1

2 1

3) 2

 2 , 0

x x k

y y k k

= +

= + >

2 1

2 1

4) 2 1,

 2 1, 0

x x k

y y k k

= + +

= + + >

2 1

2 1

5) 2 1,

 2 , 0

x x k

y y k k

= + +

= + >

2 1

2 1

6) 2 2

 2 1, 0

x x k

y y k k

= + +

= + + >

2 1

2 1

2 2 1 1

7) 2 3

 1, 0

 1

x x k

y y k

x y x y

= + +

> + >

− > − +

2 1

2 1

2 2 1 1

8) 2 2

 1, 0

 1

x x k

y y k

x y x y

= + +

> + >

− > − +

2 1

2 1

9) 2 2

 1, 0

x x k

y y k

= + +

= + >

2 1

2 1

10) 2 1

 1, 0

x x k

y y k

= + +

= + >

2 1

2 1

11) 2 1

 , 0

x x k

y y k

= + +

= >

2 1

2 1

12) 2

 , 0

x x k

y y k

= +

= >

2 1

2 1

13) 2

 1, 0

x x k

y y k

= +

= − >

2 1

2 1

14) 2 1

 1, 0

x x k

y y k

= + +

= − >

2 1

2 1

2 2 1 1

15) 2 3

 1, 0

 1

x x k

y y k

x y x y

= + +

< − >

+ > + +

2 1

2 1

2 2 1 1

16) 2 2

 1, 0

 1

x x k

y y k

x y x y

= + +

< − >

+ > + +

Figure 5.4: All cases of NOA.

53

Case: Ant1 Ant 2

Radius Action Radius Action Radius Action Radius Action Radius Action

meet north stop

1 2 2

2

stop north 1 meet

1 2 2

stop 1 meet

1 2

meet stop

1 2

2

stop 1 meet

 1 2

stop stop

1 2

 2

meet east east stop

 1 2 2 2

2

stop east east meet 1 meet

2 1

2 1

17) 2 1

 2 , 0

x x k

y y k k

= + +

= − >

2 1

2 1

18) 2 2

 2 1, 0

x x k

y y k k

= + +

= − − >

2 1

2 1

19) 2

 2 , 0

x x k

y y k k

= +

= − >

2 1

2 1

20) 2 1

 2 1, 0

x x k

y y k k

= + +

= − − >

2 1

2 1

21) 2

 2 1, 0

x x k

y y k k

= +

= − − >

2 1

2 1

22) 2 1

 2 2, 0

x x k

y y k k

= + +

= − − >

2 1

2 1

2 2 1 1

23) 1

 2 2, 0

 1

x x

y y k k

x y x y

> +

= − − >

+ < + −

2 1

2 1

2 2 1 1

24) 1

 2 3, 0

 1

x x

y y k k

x y x y

> +

= − − >

+ < + −

2 1

2 1

25) 1

 2 1, 0

x x

y y k k

= +

= − − >

2 1

2 1

26) 1

 2 2, 0

x x

y y k k

= +

= − − >

2 1

2 1

27)

 2 , 0

x x

y y k k

=

= − >

2 1

2 1

28)

 2 1, 0

x x

y y k k

=

= − − >

2 1

2 1

29) 1

 2 2, 0

x x

y y k k

= −

= − − >

2 1

2 1

30) 1

 2 1, 0

x x

y y k k

= −

= − − >

2 1

2 1

2 2 1 1

31) 1

 2 2, 0

 1

x x

y y k k

x y x y

< −

= − − >

− > − +

2 1

2 1

2 2 1 1

32) 1

 2 3, 0

 1

x x

y y k k

x y x y

< −

= − − >

− > − +

stop east east meet 1 meet

 1 2 2 2 1 2

stop east east meet 1 meet

1 2 2 2 1 2

meet east east stop stop

1 2 2 2 2

2

 meet east east stop

1 2 2 2

2

stop east east meet meet

1 2 2 2 1 2 1

meet east east stop stop

2 1 2 2 2 2

stop east east meet

1 2 2 2 1

meet east east stop

2 1 2 2 2

2 1

2 1

17) 2 1

 2 , 0

x x k

y y k k

= + +

= − >

2 1

2 1

18) 2 2

 2 1, 0

x x k

y y k k

= + +

= − − >

2 1

2 1

19) 2

 2 , 0

x x k

y y k k

= +

= − >

2 1

2 1

20) 2 1

 2 1, 0

x x k

y y k k

= + +

= − − >

2 1

2 1

21) 2

 2 1, 0

x x k

y y k k

= +

= − − >

2 1

2 1

22) 2 1

 2 2, 0

x x k

y y k k

= + +

= − − >

2 1

2 1

2 2 1 1

23) 1

 2 2, 0

 1

x x

y y k k

x y x y

> +

= − − >

+ < + −

2 1

2 1

2 2 1 1

24) 1

 2 3, 0

 1

x x

y y k k

x y x y

> +

= − − >

+ < + −

2 1

2 1

25) 1

 2 1, 0

x x

y y k k

= +

= − − >

2 1

2 1

26) 1

 2 2, 0

x x

y y k k

= +

= − − >

2 1

2 1

27)

 2 , 0

x x

y y k k

=

= − >

2 1

2 1

28)

 2 1, 0

x x

y y k k

=

= − − >

2 1

2 1

29) 1

 2 2, 0

x x

y y k k

= −

= − − >

2 1

2 1

30) 1

 2 1, 0

x x

y y k k

= −

= − − >

2 1

2 1

2 2 1 1

31) 1

 2 2, 0

 1

x x

y y k k

x y x y

< −

= − − >

− > − +

2 1

2 1

2 2 1 1

32) 1

 2 3, 0

 1

x x

y y k k

x y x y

< −

= − − >

− > − +

stop east east meet

 1 2 2 2 1

2 1

2 1

17) 2 1

 2 , 0

x x k

y y k k

= + +

= − >

2 1

2 1

18) 2 2

 2 1, 0

x x k

y y k k

= + +

= − − >

2 1

2 1

19) 2

 2 , 0

x x k

y y k k

= +

= − >

2 1

2 1

20) 2 1

 2 1, 0

x x k

y y k k

= + +

= − − >

2 1

2 1

21) 2

 2 1, 0

x x k

y y k k

= +

= − − >

2 1

2 1

22) 2 1

 2 2, 0

x x k

y y k k

= + +

= − − >

2 1

2 1

2 2 1 1

23) 1

 2 2, 0

 1

x x

y y k k

x y x y

> +

= − − >

+ < + −

2 1

2 1

2 2 1 1

24) 1

 2 3, 0

 1

x x

y y k k

x y x y

> +

= − − >

+ < + −

2 1

2 1

25) 1

 2 1, 0

x x

y y k k

= +

= − − >

2 1

2 1

26) 1

 2 2, 0

x x

y y k k

= +

= − − >

2 1

2 1

27)

 2 , 0

x x

y y k k

=

= − >

2 1

2 1

28)

 2 1, 0

x x

y y k k

=

= − − >

2 1

2 1

29) 1

 2 2, 0

x x

y y k k

= −

= − − >

2 1

2 1

30) 1

 2 1, 0

x x

y y k k

= −

= − − >

2 1

2 1

2 2 1 1

31) 1

 2 2, 0

 1

x x

y y k k

x y x y

< −

= − − >

− > − +

2 1

2 1

2 2 1 1

32) 1

 2 3, 0

 1

x x

y y k k

x y x y

< −

= − − >

− > − +

Figure 5.5: All cases of NOA (cont.).

54

5.1.1 Limitations of NOA

As explained above, NOA is a first step for solving the ant rendezvous problem. Its
main advantage is that it can use a unary pheromone, but its limitations are that it
makes a number of strict assumptions which may prevent its applicability in many
scenarios. It requires both ants to start the algorithm at the same time and it can
work only with D-Ants that can agree where "north" is and most importantly, it
assumes the grid has no obstacles. We now turn to present ant meeting algorithms
for environments with obstacles, which relief the above assumptions and instead
use a different variant of ants.

5.1.2 Theoretical Analysis of NOA

NOA guarantees a meeting:

Theorem 15. Let a1 and a2 be two D-Ants running NOA in a ClearGrid. Then,

a1 and a2 meet within finite time.

Proof. Task completion: Since a1 and a2 start the algorithm at the same time and
since they start facing the same direction, then given the two initial positions of the
two D-Ants, the point in which one D-Ant senses the other D-Ant’s pheromones
is known in advance. Also, all possible pairs of initial positions can be divided
into a finite set of cases (as shown in Fig. 5.4 and 5.5). Going over all pairs of
cases, in each pair only one D-Ant stops and the other continues. Therefore, a1
and a2 meet within finite time.

Time complexity: Let a1 and a2 be two D-Ants and d the initial distance
between them. Then, in the worst case scenario the D-Ants start at the same
longitude (or latitude w.l.o.g) an therefore, each create a square of pheromones
with radius of d/2, until one of the D-Ants encounters the pheromones of the
other. Thus, a1 and a2 meet after at most O(d2) steps.

Memory complexity: NOA is suitable for D-Ants with very limited memory
as only one variables is needed (state), with a small constant number of possible
values. Thus, constant amount of memory is needed.

Size of Pheromone: The algorithm uses unary pheromones.

55

Total number of pheromones used: In the worst case scenario, the total
number of pheromones used is equal to the time complexity, which is O(d2).

5.2 Rectangular Obstacles Algorithm

Extending NOA to work in an obstacle prone environment is not trivial. Recall
that upon encountering the other ant’s pheromones, the FSM in NOA directs the
ant whether to stop or continue spiraling. It can do so only because it knows the
exact position of the other ant, since they start at the same time, facing the same
direction. However, any obstacle can break this symmetry. In NOA, the agreement
on a common north have enabled the two robots to react differently to the same
situation and thus, to ensure meeting. However, in an obstacle prone environment
we will need to use a stronger mechanism. Therefore, let us remove the usage of
the D-Ant and the assumptions of a coordinated start and instead introduce a new
variant of ant. This variant is identical to the original ant defined in Definition 2
except each ant has a unique id. We call this variant NA-Ants (the NA stands for
not anonymous). NA-Ants may leave their id as a field in pheromone. We assume
that the different id is an ordered set (e.g. integers). Therefore, an NA-Ant can
compare its own id to the id in a cell. throughout this thesis we denote the NA-
Ant with the lower id by al and the NA-Ant with the higher id as ah. Thus, if two
NA-Ants are drawn out of k NA-Ants in order to meet in the environment, then
each pheromone produced by an NA-Ant will posess a log k field for its unique
id.

However, even with the addition of the unique ids, constructing an algorithm
for obstacle prone environments is problematic. To illustrate this, let us start with
a less complex environment and introduce the Rectangular Obstacles Algorithm
(ROA), which should solve the rendezvous problem in environments with rectan-
gular obstacles of finite size (RectangleGrid).

As in NOA, in ROA each NA-Ant creates a spiral around its starting location
by leaving a pheromone in each new cell it visits. In fact, until the first obstacle
is sensed, ROA behaves identically to NOA and the 12 steps shown in Figure 5.1
demonstrate the behavior of ROA too in such cases (although the pheromones
will be different as will be detailed below). The main idea behind ROA is that

56

when an obstacle is encountered the NA-Ants should encircle the obstacles and
continue spiraling.

Each pheromone in ROA includes the following fields:

• id: This will enable an NA-Ant to determine who placed the sensed
pheromone. The number of bits for this field is log k where k is the number
of NA-Ants in the system from which two NA-Ants are drawn. This field
does not change.

• parent: This field of the pheromone will point to the direction of the cell
which the NA-Ant (who placed the pheromone) arrived from. There are
four possible directions plus a fifth symbol for the starting location (Null
direction). Thus, 3 bits are sufficient for this field. This field does not
change.

In general, the NA-Ants start spiraling and at each cell they place a pheromone
with their id and with their parent field. In ROA, once an NA-Ant senses an
obstacle, the NA-Ant will encircle the obstacle tightly, clockwise, such that the
obstacle is always on the right side of the NA-Ant. Again, similar pheromones
with both fields are placed in each cell.

This process continues until an NA-Ant senses a pheromone of the other NA-
Ant (by reading the id field). In this case, the protocol should make sure that the
NA-Ants meet. ROA ensures this by using the following rule based on the id
field.

When an NA-Ant senses the pheromone of the other NA-Ant it compares
the two ids. al (the ant with the lower id) goes back to its own starting loca-
tion while backtracking its own parent field. ah will follow the parent tracks
of al towards its starting location. Thus, they will finally meet at (or near)
the staring location of al. The reader is encouraged to watch the video at
http://vimeo.com/6930898 which demonstrates how ROA works. Although the
NA-Ants move synchronously in the video, it is not a requirement for the algo-
rithm to work.

Note that we assume a shared grid for this protocol. We show how to overcome
alignment issues and therefore work without this assumption in Section 6.2.

57

Algorithm 12 ROA (Ant_ID id)
1: if ∃ ant in radius1 then
2: state← ANT_FOUND
3: else if state = ANT_SENSED then
4: move(current.parent)
5: else if ∃ pheromone in radius1 ∧ pheromone.id 6= id then
6: state← ANT_SENSED
7: if id > pheromone.id then
8: move(pheromone)
9: else if state = ANT_NOT_SENSED then

10: nbr = sense(orientation)
11: if nbr.parent = orientation+ 180 ◦ then
12: move(current.parent)
13: orientation← current.parent− 90 ◦

14: else if nbr = NULL then
15: move(orientation)
16: current.parent← orientation+ 180 ◦

17: orientation← orientation+ 90 ◦

18: else {change direction counterclockwise}
19: orientation← orientation− 90 ◦

Algorithm 12 presents the moving strategy of ROA for each NA-Ant for a
given step. There are three possible states in the algorithm.
(1) ANT_NOT_SENSED: the NA-Ant did not sense a pheromone of the other NA-
Ant yet and should continue spiraling.
(2) ANT_SENSED: The NA-Ant sensed the pheromone of the other NA-Ant and
should follow the parent field of itself or of the other NA-Ant.
(3) ANT_FOUND: the NA-Ant sensed the other NA-Ant.

The NA-Ant keeps track of its current orientation (i.e, north, east, south, or
west) and changes it accordingly (e.g., if the orientation is "north" and the NA-
Ant turns left then the orientation is now "west"). In ROA, the NA-Ant’s initial
orientation is chosen to be arbitrarily "east". Note again, that the NA-Ants do not
agree about the directions and each of them has its own "north". The NA-Ant’s
current cell in each iteration is labeled as current while a pheromone field in that
cell is labeled as current.field.

The NA-Ant starts at an “ANT_NOT_SENSED” state and keeps running the

58

algorithm until it reaches the “ANT_FOUND” state. First, the NA-Ant senses the
8-neighbor radius. If the other NA-Ant was sensed the algorithm halts (line 1).
If a pheromone of the other NA-Ant was sensed (line 5) then the state changes
into “ANT_SENSED”. The NA-Ant compares the ids and if its own id is larger it
moves to that cell (Line 8) and it is now in a cell that was visited by the other NA-
Ant. From that point on the NA-Ant just follows the parent field of its current
cell (line 3) until it reaches the starting location.

Lines (9–19) show the actions that are taken if the “ANT_NOT_SENSED”
state is still valid and the NA-Ant needs to continue its spiral. A neighbor nbr is
determined based on the orientation variable. There are three possible scenarios
now and for each of them a different action is taken to guarantee that the spiral
will continue. (1) lines (14–17): If nbr is free the NA-Ant moves to neighbor
and the orientation rotates clockwise in 90 ◦. (2) line (19): If nbr is blocked by
an obstacle or contains a pheromone with a parent field that does not point to
the current cell, the orientation rotates counterclockwise in order to encircle the
obstacle or the pheromone in the next step. (3) lines (11–13): the parent field of
nbr is pointing to the current cell. In this case, the NA-Ant reached a dead end
and should backtrack.

Figure 5.6 shows different scenarios of ROA. The arrows in the figure are the
parent field of the pheromones and point to the previous location of the NA-Ant.
The ant symbol shows the positions of the NA-Ant. Black boxes are obstacles.
The framed cells are the starting locations of the NA-Ants. In Figure 5.6(a) The
starting location of NA-Ant a1 is (7,9), and that of NA-Ant a2 is (9,4).

a1 starts spiraling and when it reaches (9,8) it senses the obstacle in (9,7). It
encircles the obstacle from left, and then after three steps it senses a pheromone of
a2 while located at (10,6). Since a1 has a lower id, it follows its own parent field
towards its starting location. a2 performs its spiral. When it reaches (9,6) (after
22 steps) it senses a1’s pheromone at (10,6). Since a2 has a higher id, it follows
a1’s pheromones. Finally, they meet in (6,8) and (6,9).

59

Figure 5.6: ROA examples: Successful (a) and unsuccessful (b,c,d).

60

5.2.1 Limitations of ROA

Unfortunately, ROA does not solve the rendezvous problem with obstacles. In
order to assure a meeting, an algorithm must ensure a full coverage of the envi-
ronment given enough time. Otherwise, if some area is not covered and the ant
with the lower id is in this area, the following scenario can occur: the ant with the
lower id will encounter the pheromones of the other ant and will backtrack to its
own starting point. The ant with the higher id will continue spiraling while never
returning to this area. Figure 5.6(d) shows such a pathological scenario. a2 starts
at (3,17) and starts spiraling around the three obstacles (west, north, south). a1
starts at (12,10), spirals around itself, and once encountering a2’s pheromones it
heads back to its own starting location. By that time, a2 is outside the obstacle
area and will keep spiraling eternally.

Also, even if ROA worked in a finite rectangular obstacle environment,
it could not handle either concave or infinite obstacles. For example, Figure
5.6(b) presents the behavior of ROA in an environment with a concave obsta-
cle. a1’s starting point is inside the concave obstacle. Once it finds the other ant’s
pheromone at cell (8,4) it backtracks to its starting point, since its id is lower
than a2’s id. At the same time a2 circles the obstacle, while not entering inside
the "cave", since it has already blocked the entrance of the cave with its own
pheromones. Thus, it continues to spiral endlessly. Another example of ROA’s
failure is in Figure 5.6(c) where a2 tries to encircle the infinite wall and will never
return, avoiding any possible meeting, while a1 senses a2’s pheromone at (11,6)
and returns to its own starting location, waiting forever.

Therefore, we conclude that ROA is ultimately an alternative meeting algo-
rithm for an area with no obstacles (ClearGrid). However, as opposed to NOA,
it uses NA-Ants instead of D-Ants and does not require the robots to start at the
same time.

5.2.2 Theoretical Analysis of ROA

ROA guarantees a meeting in ClearGrid:

Theorem 16. Let a1 and a2 be two NA-Ants running ROA in a ClearGrid. Then,

61

a1 and a2 meet within finite time.

Proof. Task completion: Since there are no obstacles, each spiral covers the
environment systematically until both NA-Ants eventually encounter each other’s
pheromones. At that point, both NA-Ants know each other’s ids and travel to
the starting location of the NA-Ant with the lower id using the parent fields of
the pheromones. Therefore, both NA-Ants meet at that location (or on the way)
within finite time, since the initial distance between them is finite.

Time complexity: Let d be the initial manhattan distance between a1 and a2.
Assume a1 completed the search before a2 started to act. ROA performs the same
spiral path as NOA (O(4d2) = O(d2)) with the addition of a trip to the center of
one of the spirals. This last movement is in the worst case from the corner of the
spiral to its center and therefore costs d steps. Altogether, ROA’s time complexity
is O(4d2 + d) = O(d2).

Memory complexity: ROA is suitable for NA-Ants with very limited mem-
ory as only two variables are needed (orientation and state), each with a small
constant number of possible values. Thus, constant amount of memory is needed.

Size of Pheromone: The algorithm uses log k + 3 bits of pheromones: three
bits for marking the parent field of the pheromones (four directions and one start-
ing location), and log k bits for the id, assuming that the two NA-Ants are drawn
from a population of up to k NA-Ants.

Total number of pheromones used: The total number of pheromones used
is asymptotically equal to the time complexity of the spiral itself, which is O(d2).

5.3 General Obstacles Algorithm

In this section we present the General Obstacles Algorithm (GOA), which
solves the rendezvous problem for NA-Ants in an environment which contains
unbounded-sized any-shape obstacles (ObstacleGrid).

The main idea behind GOA is that it guarantees the coverage of the entire
environment in a breadth-first manner by visiting the cells in radius r only after
visiting all cells in radius r−1. Therefore, it can handle concave or infinite obsta-

62

cles, since it does not try to encircle them. Because the NA-Ant’s memory is very
limited, an NA-Ant cannot implement ordinary breadth-first search (BFS) because
(1) the memory grows quadratically with the depth of the search (in a grid) (2) the
NA-Ant physically visits the cells and cannot instantly jump from a node to its
successor in the open-list. To overcome this we use a Depth-First Iterative Deep-
ening (DFID) search which simulates BFS without the memory limitation [21].
DFID searches a graph by performing a series of depth-first searches up to a given
depth d. In each DFS call we increment d by one. However, as mentioned in
Section 4.2, the number of bits for this variable depends on the maximal value
of d and is not constant. The NA-Ant can either store it in its internal memory,
or alternatively, place it as a pheromone in a cell. Thus, with a constant amount
of memory or with limited size of pheromone the depth of the search will be
bounded. To overcome this, on each cell the NA-Ant visits, it stores the last direc-
tion it has taken from that cell (using a constant memory per cell). After visiting
all directions, the NA-Ant returns to the previous depth without actually knowing
what depth it is in.

In GOA we use a pheromone which includes the following fields (the parent
and direction field were already presented in section 4.2):

• id. Identical to the id field in ROA. This field does not change.

• parent. Identical to the parent field in ROA. The parent field actually
spans the DFS tree and this field does not change.

• direction. While the parent field at cell c points to the cell that the NA-
Ant came from to c, the direction field points to the cell that the NA-Ant
moved to after leaving c. Based on this field the NA-Ant determines where
to go next and whether to continue the deepening or to backtrack. The
direction field stores only 4 different values (2 bits only), one for each
possible direction. This field changes at every visit to a cell.

GOA (Algorithm 13) presents the moving strategy of each NA-Ant. The initial
state of the NA-Ant is “ANT_NOT_SENSED”. GOA is identical to ROA in the
steps that are taken if the other NA-Ant or the pheromone of the other NA-Ant is
sensed. The main change in GOA is that the NA-Ant moves in a DFID manner

63

Figure 5.7: GOA demonstration on a ClearGrid. the framed cell is the NA-Ant’s
starting location.

64

Algorithm 13 GOA (Ant_ID id)
1: if ∃ ant in radius1 then
2: state← ANT_FOUND
3: else if state = ANT_SENSED then
4: move(current.parent)
5: else if ∃ pheromone in radius1 ∧ pheromone.id 6= id then
6: state← ANT_SENSED
7: if id > pheromone.id then
8: move(pheromone)
9: else if state = ANT_NOT_SENSED then

10: par ← current.parent, direct← current.direction
11: direct← direct+ 90 ◦

12: nbr = sense(current.direction)
13: if celldirect = NULL then
14: move(direct)
15: par, direct← direct+ 180 ◦

16: move(par)
17: else if nbr.parent = direct+ 180 ◦ then
18: move(direct)

instead of a spiral (as in ROA). In particular, assume the NA-Ant is located in
cell c. The next cell to visit is determined according to the direction field in c
as follows. The NA-Ant reads that field, which points to the last direction the
NA-Ant have taken from c in its last visit, rotates it by 90 ◦ clockwise and moves
accordingly (Line 11). The meaning is that if the direction field points north, then
the subtree of the DFS tree rooted at the north neighbor was searched already and
we should now visit the subtree in the east.

If all three subtrees were searched the direction field will be now changed to
be equal to the parent field and the search will backtrack up in the tree. The ini-
tialization of the direction field at the starting location is chosen to be arbitrarily
"north".

Similarly, if an empty cell is reached (Line 13) the NA-Ant will initialize the
direction field to point to the parent and the search will backtrack. This ensures
that only one new depth is reached in every iteration. There are two cases that
we do not open a new branch from a cell c. If the direction field points to a
cell with (1) an obstacle (2) a parent field which does not point to c. In this

65

case we are seeing the same node in another branch of the DFS tree and there
is no point to enter this node again in the same iteration. This is referred to as
duplicate pruning in the literature. The reader is encouraged to watch the video at
http://vimeo.com/6962290 which demonstrates how ROA works.

In Figure 5.7 we show how GOA proceeds from the starting location (0) to
systematically cover the area around the NA-Ant. In Figure 5.7(1) the NA-Ant
moves east, returns back west in (2), then moves south and returns north (3–4),
west and returns (5–6), north and returns (7–8). The first iteration to depth 1 is
completed. Now an iteration to depth 2 starts. The NA-Ant moves east again in
(9). At this time it moves east another time (10) and again back at (11) etc. It will
then continue to all possible locations in depth 2. A result of running more steps
can be seen in Figure 5.8 (a): there are no obstacles, the arrows show the parent
fields in the pheromones for each cell.

To illustrate more how GOA proceeds, Figure 5.8(b) shows a successful meet-
ing when one NA-Ant starts in a cave. A more complex example is presented in
Figure 5.8(c). a1 and a2 start at (5,5) and (10,8) respectively. Then, they start ex-
ploring all nodes of distance 1 from their starting locations, in a clockwise order
while skipping any direction leading to an obstacle (e.g., (9,8) for a2 and (5,6) for
a1). They continue this process for larger radiuses until they sense each other’s
pheromones at (9,3) and (10,3). Then, a1 returns to its staring location, and a2
follows the same path to a1’s starting location as well.

5.3.1 Theoretical analysis of GOA

GOA can be seen as a memoryless simulation of Breadth-First Search where the
open list is physically distributed in the environment in the form of pheromones.
We now prove that GOA guarantees a meeting:

Theorem 17. Let a1 and a2 be two NA-Ants running GOA in an ObstacleGrid.

Then, a1 and a2 meet within finite time.

Proof. Task completion: DFID simulates BFS and thus, each cell at distance d
will be finally reached at iteration d. The same reasoning that was presented for
ROA is valid here too. The NA-Ants will either meet or will sense each other

66

Figure 5.8: GOA examples.

67

stationary pheromones at some point of time and will therefore backtrack using
the parent field and meet in the same way as in ROA.

Time complexity: Let d be the length of shortest path between a1 and a2.
Assume a1 completed the search before a2 started to act. If obstacles exists, this
only reduces the number of visited cells since it is pruning the branches of the
tree. Thus, assume that there are no obstacles in the grid. In this case, a1 runs
the algorithm for every depth up to depth d. The constructed tree can be seen as
4 subtrees rooted at the origin, one for each direction. Each depth in each subtree
has one more node and thus, the NA-Ant iterates 1 node, then 1 + 2 = 3 nodes,
then 1+2+3 = 6 nodes, and according to the DFID time complexity [21], GOA’s
time complexity in the worst case is 4[2d(d+ 1)(d+ 2)/6] = O(d3).

Memory complexity: Similar to NOA and ROA, GOA is suitable for NA-
Ants with very limited memory as only one state variable with a small constant
number of possible values is needed. Thus, its memory needs is constant at all
times.

Size of Pheromone: The algorithm uses log k+ 5 bit pheromones. Three bits
for marking the parent field of the pheromones (four directions and one starting
location), two bits for the direction field and log k bits for the id, assuming that
the two NA-Ants are drawn from a population of up to k NA-Ants.

Total number of pheromones used: Similarly to the time complexity, assume
there are no obstacles in the world and only a1 searches. Thus, by the time the NA-
Ants meet at depth d, a1 had produced a square of pheromones with a radius of d.
thus, the total amount of pheromones placed by a1 is 1+4

∑
i = 1+4d(d+1)/2 =

O(d2)

68

Chapter 6

Extending Meeting Algorithms

All three algorithms (NOA, GOA, and ROA) assume that the sensing radius is
one and that the ants share the grid alignments. To extend the applicability and
to further restrict the capabilities of the ants, we now generalize the algorithm to
handle a sensing radius of zero (Section 6.1) and to the case where the grids are
not aligned (Section 6.2).

6.1 Sensory Radius of Zero

So far we have assumed a sensory radius of one cell. However, in reality the
simplest robots might not by able to sense in each direction, but can only sense
the content of the current cell. Therefore, we show a simple routine that simulates
a sensory radius of one by using a sensory radius of zero. To do this we add eight
internal memory registers, each is capable of storing one pheromone.

In the algorithm with a sensing radius of one, we performed a sensing action
to all eight neighbors. To simulate this with a sensing radius of zero we do the
following. Each time a picture of the eight neighboring cells is needed by the
algorithm then the ant will physically move to these eight cells and store their
content in the corresponding eight registers.

The idea is to perform the following variant of DFS to all four directions.
Assume that the ant is in cell c. The ant will move one step north (to the adjacent
cell). It will then move to the east (north east corner) and backtrack and then to the

69

 ?

Cell AntID parent direction

1 000000 110 00

2 100011 011 11

3 000000 111 00

4 000000 111 00

5 000000 111 00

6 010110 011 11

7 010110 010 00

8 010110 001 01

4 3

1 0

ID22PSDN ID22PwDw ID22PeDe

ID35PwDw

6 7

2

8

5

(a) (b)

Figure 6.1: Simulation of a 1-radius sensing with no sensing.

left (north west corner) and backtrack. Finally, it will then move back to c. Each
corner will be visited twice but this is needed in case there is an obstacle in one
of the cells adjacent to c. For example, cell 2 in Figure 6.1 can only be visited via
cell 1 but not via cell 3. Cell 4 may not be sensed this way. But, even assuming
a sensing radius of one the exact status of that cell is of no importance and can
be treated as a "don’t care" as it cannot affect the decision of the ant. Eventually,
after at most 24 steps the ant will be back at c with a complete vision of the eight
cells around it.

Figure 6.1(a) shows the status of each cell while Figure 6.1(b) shows how
this picture is encoded into the eight registers. Circles are pheromones and boxes
are obstacles. Cell 4 is blocked and cannot be sensed. Thus, it is marked as an
obstacle in the corresponding register.

Also, we note that the unit cell of the grid represented by the ant should be

70

P1ID1

P3ID1

P1ID1 P4ID1

P1ID1

P3ID1

P1ID1 P4ID

1

P2ID2

P1ID2

P3ID2

P2ID2

P4ID2

P4ID2

P1ID2

P2ID2

P1ID2

P
1 ID

2
P

2 ID
2

P
2 ID

2

P
2 ID

2
P

4 ID
2

P
1 ID

2

P
1 ID

2
P

4 ID
2

P
3 ID

2

(a) (b)

Figure 6.2: Two non aligned examples.

the smallest unit, in which the ant can fit and consequently, the sensory radius
should be chosen to be the length of the maximum number of cells, such that the
ant sensors are still reliable. Thus, the ant can minimize odometry mistakes by
always aligning to the grid of pheromones it creates, i.e., according to the local
environment.

6.2 Alignment

So far we assumed a shared grid for both ants. However, when two ants start run-
ning any of the algorithms above, the grids that each of them uses to represent the
world may be non aligned in angle as shown in Figure 6.2(a). This is because the
ants do not have a global sense of direction and therefore, each can call the angle it
starts at as "north" (with the exception of NOA). Furthermore, even when the two
grids look aligned (as in Figure 6.2(b)), their directionality could be orthogonal.
In this case, assume ant a1 encounters a2’s pheromone and recognizes the parent
field of "north". But, that north is relative to a2’s starting angle and therefore, a1
cannot interpret the direction p is pointing at.

To solve this problem, we propose extensions to ROA and to GOA. Since
solving this with GOA is simpler we present it first. Of course, since NOA re-
quires aligned ants, it is not discussed in this section.

71

6.2.1 GOA Alignment

In fact, in order to meet (using GOA) with non aligned grids the ants do not
need to align themselves to each other’s grid. In addition, the resulting algorithm,
GOA_align, produces a different behavior than in the original GOA. Here, in-
stead of meeting in the starting location of al (the ant with the lower id), the ants
meet at cell c where ah (the ant with the higher id) first senses al’s pheromone.
When ah first senses the pheromone of al it moves to the location with that
pheromone and stays idle. Note that this location does not necessarily fit one
cell within the ant’s grid. al continues its DFID search until it reaches the location
of ah. Furthermore, if it finds a pheromone of ah, it can treat it as an obstacle
because we know that the other ant is in the frontier of its DFID.

Both algorithms, GOA and GOA_align, share the same asymptotic time com-
plexity. However, GOA_align is slower than GOA because the entire DFS tree
needs to be spanned up to the depth of the other ant. By contrast in GOA they
both follow a simple track to the start location. Algorithm 14 presents the lines
for GOA_align which should replace lines (3–8) in GOA.

Algorithm 14 GOA_align (Ant_ID id, pheromone)
1: if id > pheromone.id then
2: move(pheromone)
3: break
4: else
5: pheromone.parent← obstacle

6.2.2 ROA Alignment

Recall that ROA solves the rendezvous problem on ClearGrid. In ROA, once an
ant visits a cell it might not return to this cell ever again. Therefore, unlike GOA,
for ROA we do need to realign the ant’s grid. Algorithm ROA_align is invoked
upon discovering the other ant’s pheromone p at some location and replaces lines
(3–8) in the original ROA. al does not need to align and behaves exactly like in
ROA. However, ah first moves over to p, aligns itself to a neighboring pheromone
p1, and then finds a free neighboring cell c, which does not contain a pheromone

72

of al and faces towards it (lines 1–5). Of course, one such pheromone must exist
because p points at one of the four directions (it has a parent). Also, the cell c
must exist since the ant has just encountered the first pheromone and therefore, it
must be on the fringe. Now, the ant can interpret its own orientation from the con-
figuration of the surrounding pheromones, since they were all placed according to
the same algorithm. One of the following two cases occur:

1. There is no pheromone to the ant’s left (line 6): then the ant must have
reached the current cell from the cell behind the ant and thus, the ant’s
orientation is opposite to the pheromone in the current cell.

2. There is a pheromone to the ant’s left (line 8): then the ant must have
reached the current cell from the cell to its left and so, the ant’s orienta-
tion is off by 90 ◦ counterclockwise.

Once the ant is aligned it can follow the pheromones to the other ant’s starting
location. Notice that this amendment does not change the time complexity of
ROA nor the amount of pheromones needed.

Algorithm 15 ROA_align (Ant_ID id, p)
1: if id > p.id then
2: move(p)
3: face p1 such that d(p, p1) = min (d(p, p′)),∀p′ ∈ radius1
4: face c ∈ radius1 such that c = NULL ∨ ∀p ∈ c, pid = id
5: nbr_left← sense(left)
6: if nbr_left = NULL then
7: orientation← current.parent+ 180 ◦

8: else
9: orientation← current.parent+ 90 ◦

73

Chapter 7

Discussion & Conclusions

It was proposed that ant robots can perform difficult computational tasks despite
their weak computational abilities [46]. However, the computational limits of this
model were not known. We defined elephant, as the most used model of robots
with strong computational, sensing, and communication abilities and investigated
the computational relationship between the two models (see Table 7.1 for a com-
parison of the models’ capabilities).

We have shown that assuming reliable, instantaneous communication, ele-
phant robots can simulate any task done by ant robots and therefore, are at least as
computationally strong as ants. This result is not surprising, as elephants are by
definition stronger. However, more surprisingly, we have also shown that given a
large enough space and infinite amount of pheromones, a single ant can simulate
any task done by a single elephant that has no localization abilities. Lastly, we
have shown that this simulation still holds even when there are obstacles in the
environment. Unfortunately, we have found a boundary for ants computational
strength, as we have shown that there exist some problems that can be solved by
N elephants, but not with N ants. The results can be summarized in Table 7.2.

We have also presented three algorithms that solve the rendezvous problem
for two ants (see Table 7.3). NOA, a simple spiraling algorithm for a grid with no
obstacles. This algorithm’s running time is quadratic in the distance between the
two ants and consequently, uses a quadratic amount of unary pheromones. ROA,
a similar version of NOA, which solves the problem for the same environment,

74

but with different assumptions. And GOA, an algorithm that handles all types of
obstacles, in which ants move in iterative deepening approach, while distributing
the memory used for this search to the pheromones placed in the environment.
Here, the running time is cubic in the distance between the two ants, but uses only
a quadratic amount of pheromones, all are also of constant size. We now have
a set of algorithms, each is designed to work for a different grid setting and for
different variants of ants.

Now that the basic computability differences between these models are known,
we hope to extend the analysis to more realistic robots, which for the most part
are in-between the two computational extremes discussed above. Moreover, we
wish to explore dynamic environments, in which stigmergy can be a strong factor.
We also seek to combine the analysis with sensing models (e.g., as in [27]), deter-
mining complexity tradeoffs for the subset of problems that are solvable by both
models, or finding out exactly how many ants are needed to simulate an elephant
in minimal time and space overhead.

We also plan to extend our meeting algorithms to address the rendezvous prob-
lem for more than two ants. In addition, in this thesis we represented the world by
a discrete grid, we would like to extend it to continuous environments or to other
types of maps such as roadmaps.

Table 7.1: Models Summary
Robot Localization Directionality Communication Computational Power Anonimity

LF-Ant Yes Yes Instantaneous Turing Machine No
NF-Ant No Yes Instantaneous Turing Machine No
D-Ant No Yes Pheromones Finite State Machine Yes

NA-Ant No No Pheromones Finite State Machine No

75

Table 7.2: Models Dominance Relationship
Model Dominance Algorithm Time Complexity
(1) LF-ANTN � ANTN , N ≥ 1 AntEater O(n)
(2) NF-ANTN � ANTN , N ≥ 1 NFantSpiral O(n)
(3) ANT1 � NF-ANT1 ObstacleGun O(n2)
(4) ANT1 ≡ NF-ANT1 (2) and (3)
(5) ANTN 4 NF-ANTN , N > 1 LimitedKServer Counter Example
(6) NF-ANTN � ANTN , N > 1 (2) and (5)

Table 7.3: Ant Meeting Algorithms
Meeting Algorithm Environment Ant Model Time Complexity Pheromone Size

NOA Clear grid D-Ant O(d2) 1
ROA Clear grid NA-Ant O(d2) log k + 3
GOA Obstacle grid NA-Ant O(d3) log k + 5

76

Bibliography

[1] N. Agmon, S. Kraus, and G. A. Kaminka. Multi-robot perimeter patrol in
adversarial settings. In Proceedings of IEEE International Conference on

Robotics and Automation (ICRA-08), 2008.

[2] N. Agmon and D. Peleg. Fault-tolerant gathering algorithms for autonomous
mobile robots. In SODA ’04: Proceedings of the fifteenth annual ACM-

SIAM symposium on Discrete algorithms, pages 1070–1078, Philadelphia,
PA, USA, 2004. Society for Industrial and Applied Mathematics.

[3] S. Alpern. The rendezvous search problem. SIAM Journal on Control and

Optimization, 33(3):673–683, 1995.

[4] S. Alpern and S. Gal. Searching for an agent who may or may not want to
be found. Operations Research, 50(2):311–323, 2002.

[5] H. Azzag, N. Monmarché, M. Slimane, C. Guinot, and G. Venturini. A clus-
tering algorithm based on the ants self-assembly behavior. In W. Banzhaf,
T. Christaller, P. Dittrich, J. T. Kim, and J. Ziegler, editors, European Confer-

ence on Artificial Life (ECAL), volume 2801 of Lecture Notes in Computer

Science, pages 564–571. Springer, 2003.

[6] S. Burlington and G. Dudek. Spiral search as an efficient mobile robotic
search technique. Technical report, Center for Intelligent Machines, McGill
University, January 1999.

[7] M. Cieliebak and G. Prencipe. Gathering autonomous mobile robots. In
Proc. of 9th International Colloquium On Structural Information And Com-

munication Complexity (SIROCCO 9), pages 57–72, 2002.

77

[8] Y. Crispin and M.-E. Ricour. Interception and cooperative rendezvous be-
tween autonomous vehicles. In Proceedings of the Fourth International Con-

ference on Informatics in Control, Automation and Robotics, Robotics and

Automation (ICINCO-RA 2), pages 149–154, 2007.

[9] E. Şahin. Swarm robotics: From sources of inspiration to domains of ap-
plication. In Swarm Robotics, volume 3342 of Lecture Notes in Computer

Science, pages 10–20. Springer, 2005.

[10] G. De Marco, L. Gargano, E. Kranakis, D. Krizanc, A. Pelc, and U. Vaccaro.
Asynchronous deterministic rendezvous in graphs. Theoretical Computer

Science, 355(3):315–326, 2006.

[11] Y. Elmaliach, N. Agmon, and G. A. Kaminka. Multi-robot area patrol under
frequency constraints. In Proceedings of IEEE International Conference on

Robotics and Automation (ICRA-07), 2007.

[12] Y. Elmaliach, A. Shiloni, and G. A. Kaminka. A realistic model of
frequency-based multi-robot fence patrolling. In Proceedings of the Sev-

enth International Joint Conference on Autonomous Agents and Multi-Agent

Systems (AAMAS-08), volume 1, pages 63–70, 2008.

[13] A. S. Fukunaga and A. B. Kahng. Cooperative mobile robotics: Antecedents
and directions. Autonomous Robots, 4:226–234, 1997.

[14] N. Gordon, Y. Elor, and A. M. Bruckstein. Gathering multiple robotic agents
with crude distance sensing capabilities. In ANTS ’08: Proceedings of the

6th international conference on Ant Colony Optimization and Swarm Intel-

ligence, pages 72–83, Berlin, Heidelberg, 2008. Springer-Verlag.

[15] N. Hazon, F. Mieli, and G. A. Kaminka. Towards robust on-line multi-robot
coverage. In Proceedings of IEEE International Conference on Robotics and

Automation (ICRA-06), 2006.

[16] T. Hogg. Coordinating microscopic robots in viscous fluids. Autonomous

Agents and Multi-Agent Systems, 14(3):271–305, 2007.

78

[17] T. Hogg. Modeling microscopic chemical sensors in capillaries. Computing

Research Repository (CoRR), abs/0811.1520, 2008.

[18] O. Holland and C. Melhuish. Stigmergy, self-organization, and sorting in
collective robotics. Artificial Life, 5(2):173–202, 1999.

[19] S. Koenig and Y. Liu. Terrain coverage with ant robots: a simulation study.
In Autonomous Agents, pages 600–607. ACM, 2001.

[20] S. Koenig, B. Szymanski, and Y. Liu. Efficient and inefficient ant coverage
methods. Annals of Mathematics and Artificial Intelligence, 31(1-4):41–76,
2001.

[21] R. E. Korf. Depth-first iterative-deepening: an optimal admissible tree
search. Artificial Intelligence, 27(1):97–109, 1985.

[22] E. Kranakis, D. Krizanc, and S. Rajsbaum. Mobile agent rendezvous: A
survey. In Proc. of 13th International Colloquium On Structural Information

And Communication Complexity (SIROCCO 13), pages 1–9, 2006.

[23] T. H. Labella, M. Dorigo, and J.-L. Deneubourg. Division of labor in a
group of robots inspired by ants’ foraging behavior. ACM Transactions on

Autonomous Adaptive Systems, 1(1):4–25, 2006.

[24] M. Mamei and F. Zambonelli. Physical deployment of digital pheromones
through rfid technology. In AAMAS ’05: Proceedings of the fourth interna-

tional joint conference on Autonomous agents and multiagent systems, pages
1353–1354. ACM, 2005.

[25] M. S. Manasse, L. A. McGeoch, and D. D. Sleator. Competitive algorithms
for server problems. Journal of Algorithms, 11(2):208–230, 1990.

[26] M. J. Mataric. Designing emergent behaviors: from local interactions to
collective intelligence. In Proceedings of the second international confer-

ence on From animals to animats 2 : simulation of adaptive behavior, pages
432–441, Cambridge, MA, USA, 1993. MIT Press.

79

[27] J. M. O’Kane and S. M. LaValle. On comparing the power of robots. Inter-

national Journal of Robotics Research, 27(1):5–23, January 2008.

[28] E. Osherovich, A. M. Bruckstein, and V. Yanovski. Covering a continuous
domain by distributed, limited robots. In ANTS Workshop, pages 144–155,
2006.

[29] G. Prencipe. CORDA: Distributed coordination of a set of autonomous mo-
bile robots. In Proc. 4th European Research Seminar on Advances in Dis-

tributed Systems, pages 185–190, May 2001.

[30] G. Prencipe. Instantaneous actions vs. full asynchronicity: Controlling and
coordinating a set of autonomous mobile robots. In Proceedings of the 7th

Italian Conference on Theoretical Computer Science, pages 185–190, Octo-
ber 2001.

[31] N. Roy and G. Dudek. Collaborative robot exploration and rendezvous:
Algorithms, performance bounds and observations. Autonomous Robots,
11(2):117–136, 2001.

[32] R. Russell. Heat trails as short-lived navigational markers for mobile robots.
In Proceedings of IEEE International Conference on Robotics and Automa-

tion (ICRA-97), volume 4, pages 3534–3539, 1997.

[33] R. Russell. Ant trails: An example for robots to follow? In Proceedings

of IEEE International Conference on Robotics and Automation (ICRA-99),
volume 4, pages 2698–2703, 1999.

[34] T. C. Schelling. The strategy of conflict. Oxford University Press, 1960.

[35] A. Sempe, F.; Drogoul. Adaptive patrol for a group of robots. In Inter-

national Conference on Intelligent Robots and Systems (IROS), volume 3,
pages 2865–2869, 2003.

[36] A. J. Sharkey. Robots, insects and swarm intelligence. Artificial Intelligence

Review, 26(4):255–268, 2006.

80

[37] M. Sipser. Introduction to the Theory of Computation. International Thom-
son Publishing, 1996.

[38] S. Souissi, X. Défago, and M. Yamashita. Using eventually consistent
compasses to gather memory-less mobile robots with limited visibility.
ACM Transactions on Autonomous and Adaptive Systems (TAAS), 4(1):1–
27, 2009.

[39] I. Suzuki and M. Yamashita. Agreement on a common x-y coordinate sys-
tem by a group of mobile robots. In In proceedings of the 1996 Dagstuhl

Workshop on Intelligent Robots: Sensing, Modeling and Planning, pages
305–321. World Scientific Press, 1997.

[40] I. Suzuki and M. Yamashita. Distributed anonymous mobile robots: For-
mation of geometric patterns. SIAM Journal on Computing, 28:1347–1363,
1999.

[41] G. Theraulaz and E. Bonbeau. A brief history of stigmergy. Artificial Life,
5(2):97–116, 1999.

[42] V. Trianni, E. Tuci, and M. Dorigo. Evolving functional self assembling in
a swarm of autonomous robots. In S. Schaal, A. Ijspeert, A. Billard, S. Vi-
jayakamur, J. Hallam, and J. Meyer, editors, From Animals to Animats 8.

Proceedings of the Eighth International Conference on Simulation of Adap-

tive Behavior (SAB 04), pages 405–414. MIT Press, Cambridge, MA, 2004.

[43] R. M. Turner. The tragedy of the commons and distributed AI systems. In
in Proceedings of the 12th International Workshop on Distributed Artificial

Intelligence, pages 379–390, 1993.

[44] I. Wagner and A. Bruckstein. Row straightening via local interactions. Tech-
nical report, Center for Intelligent Systems, Technion, Haifa, 1994.

[45] I. Wagner, M. Lindenbaum, and A. Bruckstein. Distributed covering by
ant-robots using evaporating traces. IEEE Transactions on Robotics and

Automation,, 15(5):918–933, 1999.

81

[46] I. A. Wagner, Y. Altshuler, V. Yanovski, and A. M. Bruckstein. Cooper-
ative cleaners: A study in ant robotics. International Journal of Robotics

Research, 27(1):127–151, 2008.

[47] I. A. Wagner and A. M. Bruckstein. From ants to a(ge)nts: A special issue
on ant-robotics (editorial). Annals of Mathematics and Artificial Intelligence,
31(1–4):1–5, 2001.

[48] V. Yanovski, I. A. Wagner, and A. M. Bruckstein. Vertex-ant-walk: A robust
method for efficient exploration of faulty graphs. Annals of Mathematics

and Artificial Intelligence, 31(1–4):99–112, 2001.

[49] P. Zebrowski, Y. Litus, and R. T. Vaughan. Energy efficient robot ren-
dezvous. In CRV ’07: Proceedings of the Fourth Canadian Conference on

Computer and Robot Vision, pages 139–148, Washington, DC, USA, 2007.
IEEE Computer Society.

82

