
DEVELOPMENT OFTEAMWORK IN

PHYSICAL AGENTS

Yakir Ari

yakirari@cs.biu.ac.il

September 2007

Bar-Ilan University

Department of Computer Science

DEVELOPMENT OFTEAMWORK IN

PHYSICAL AGENTS

by

Yakir Ari

Advisor: Dr. Gal Kaminka

Submitted in partial fulfillment of the requirements for the Master’s degree

in the department of Computer Science

Ramat-Gan, Israel

September 2007

Copyright 2007

This work was carried out under the supervision of

Dr. Gal A. Kaminka

Department of Computer Science, Bar-Ilan University.

Acknowledgments

I would like to thank my advisor Dr. Gal A. Kaminka that followed me every

step of the way and pushed me on when I needed. Supported my research with

his vast knowledge and helped me formulate my ideas into coherent research. Gal

is a great research partner, an amazing friend, a superb mentor and was always a

pleasure to work with.

I feel deep gratitude to my MAVERICK colleagues for their contribution in ex-

cellent advices, insightful ideas and unfailing enthusiasm. Among them, I would

like to thank Dan Erusalimchick for his contribution to the BITE’M experiments,

building the first running version of BITE with Maintenance, and Nirom Choen

Nov, for being my co-author on the Maintenance paper.

We thank our Elbit Systems partners for many useful discussions and feed-

back: Ora Arbel, Itay Guy, Ilana Segall, Myriam Flohr, and Erez Nachmani. The

work was supported in part by a generous gift by MAK International Confer-

Technologies, and by BSF grant#2002401.

I want to thank my parents Yochi and Doron Yakir for listeningto my lectures,

presentations and practice talks all along the way. I think their knowledge in the

field is by now substantial.

Last but not least Meytal my love and wife, who was always beside me and

not only tolerated the long hours at the lab but even providedsnacks.

2

Contents

1 Introduction to the thesis 8

2 Towards Collaborative Task and Team Maintenance 10

2.1 Chapter Abstract . 10

2.2 Introduction . 11

2.3 Related Work . 12

2.4 Maintenance In Teamwork . 14

2.4.1 Existing Situated Agent Teamwork Architectures 15

2.4.2 Collaborative Maintenance Behaviors 20

2.5 Two Implementations . 25

2.5.1 DIESEL . 26

2.5.2 BITE’M . 27

2.6 Evaluation . 31

2.6.1 Individual Achievement vs. Maintenance 31

2.6.2 Collaborative vs. Individual Maintenance 34

2.6.3 Teamwork Maintenance 38

2.7 Conclusions and Future Work . 42

3 An Integrated Development Environment and Architecture for Soar-

Based Agents 43

3.1 Summary . 43

3.2 Introduction . 44

3.3 Background . 45

3.4 Soaring Higher . 48

3.5 Evaluation . 55

3.6 Conclusion . 58

3

List of Figures

2.1 An example recipe. 16

2.2 Soar agents in the GameBots environment, runningDIESEL .

Each agent has limited field of view and range, and may move

about, turn, grab objects, etc. 27

2.3 Sony AIBO robots moving in formation, controlled by BITE .

Taken from [14, 15] . 28

2.4 Robots running BITE’M in the player-stage API. The robots

form a diamond. The lines mark visual field of view. Boxes

with filled blocks show the colors perceived by each robot. . . 29

2.5 Collaborative and individual maintenance behaviors inBITE . 30

2.6 see-leader event logged by the follower agent. No maintenance

conditions. 34

2.7 Maintenance of thesee-leader event by the follower. 35

2.8 Results from theBITE experiments: Maximum time in courses

A and B indicates that the experiment had to be stopped for

lack of progress. 36

2.9 Results from theBITE experiments: Position Error. 37

2.10 Distance between leader and follower, in cases of individual

and team goal maintenance. 38

2.11 Maintenance of team hierarchy: Distance between bot4 and

bot3, bot1. 39

2.12 Maintenance of team hierarchy: Response to events. 40

3.1 Urban terrain . 45

3.2 Soar integrated templates. 51

3.3 Soar Datamap view . 52

4

3.4 Auto complete with deep inspection 53

3.5 Soar Java Debugger, with additional Tree View and Recipe

Visualization . 54

5

List of Tables

2.1 Individual achievement (reactive maintenance) compared to indi-

vidual proactive maintenance. 33

2.2 Maintenance of team hierarchy: Response to threat, avrg and

stdv over 10 runs with 6 agent teams. 40

2.3 Maintenance of team hierarchy: Response to Team loss, avrg

and stdv over 10 runs with 6 agent teams.. 41

3.1 Architectural Complexity Evaluation 56

3.2 Runtime Evaluation . 58

6

List of Algorithms

1 Control . 19

2 Control with Maintenance . 24

7

Chapter 1

Introduction to the thesis

This thesis explores novel challenges in development execution of team oriented

programs in dynamic, complex domains. Examples of such domains include:

MAK Virtual Forces, a platform used in Simulation and Training applications;

USARSim, Gamebots and SoarBots in Unreal Tournament used for the simula-

tion of various types of agents, and for the simulation of physical Robots in the

rescue domain; and Player/Stage environment for the simulation of various robots

including pioneer and rv400 autonomous vacuum cleaners.

The first part if this thesis introduces collaborative maintenance goals to team-

work architectures. We propose collaborative task and teammaintenance as an

innovative mechanism, alternative to sequences of goals achievement and indi-

vidual maintenance. We show its benefits in comparison to several alternative

methods, and provide results from the various domains.

The second part of the thesis describes the pre-deployment tools of develop-

ment for multi-agent teams. We dive into our development environment (IDE),

showing state-of-the-art facilities such as refactoring and testing for agent appli-

cations. Our IDE is object-oriented, facilitating coding by the use of pre-made

templates, re-usability of components such as plans and behaviors, instead of wiz-

zards and graphical means of programming.

Both parts of this thesis where published, the first "Towards Collaborative Task

and Team Maintenance" was presented in AAMAS07 [20] , and thesecond "An

Integrated Development Environment and Architecture for Soar-Based Agents"

was presented in IAAI07 [38].

8

Several additionl papers which use the recipe mechanism presented in this

thesis for the DIESEL Architecture were published: "Social comparison for mod-

eling crowd behavior" by Fridman & Kaminka AAMAS 2007 [16] and "Compu-

tational Load and Performance in Integrated Multi-Agent Intention recognition"

by Nirom Cohen-Nov & Gal A. Kaminka presented at BISFAI07.

9

Chapter 2

Towards Collaborative Task and

Team Maintenance

2.1 Chapter Abstract

There is significant interest in modeling teamwork in agents. In recent years, it has

become widely accepted that it is possible to separate teamwork from taskwork,

providing support for domain-independent teamwork at an architectural level, us-

ing teamwork models. However, existing teamwork models (both in theory and

practice) focus almost exclusively on achievement goals, and ignoremaintenance

goals, where the value of a proposition is to be maintained over time. Such main-

tenance goals exist both in taskwork (i.e., agents take actions to maintain a condi-

tion while a task is executing), as well as in teamwork (i.e.,agents take actions to

maintain the team). This chapter presents a mechanisms for collaborative mainte-

nance in both taskwork and teamwork, allowing for flexible selection of the main-

tenance protocol. The mechanism is integrated and evaluated in two teamwork

architectures for situated agent teams: DIESEL , an implemented teamwork and

taskwork architecture, built on top of Soar, andBITE’M , an architecture for phys-

ical behavior-based robots. We provide details of these implementations, and the

results from experiments demonstrating the benefits of support for collaborative

maintenance processes, in several dynamic rich domains. Weshow that the use of

collaborative maintenance leads to significant improvement in task performance

in all domains.

10

2.2 Introduction

In recent years, it has become widely accepted that it is possible to use machine-

executable teamwork models to automate collaboration at anarchitectural level.

Such models separate teamwork from taskwork, allowing the deployer of a team

of agents to focus her efforts on programming the skills and knowledge necessary

for the specific task. Executable teamwork models have been utilized successfully

in synthetic agents for training and simulation [32], robotics [29, 14], industrial

distributed systems [12], and collaborative user interface [25].

However, existing models only account for a subset of phenomena associated

with teamwork. Specifically, existing teamwork models focus almost exclusive

on achievement goals, where the value of a proposition is to be changed from

its current settings to another. Agents form a team and agreeon a task to be

executed (goal to be reached, i.e., proposition to hold in some future state), and

then dissolve the team once the task is completed. Sequencesof tasks are carried

out by constant dissolving and re-formation of the team in question, per task [36].

Human and synthetic teams, however, must also tacklemaintenance goals,

where the value of a proposition is to be maintained over time. Such maintenance

goals exist both in taskwork (i.e., agents take collaborative actions to maintain a

condition while a task is executing), as well as in teamwork (i.e., agents take ac-

tions to maintain the team). Examples of maintenance goals in teamwork include

robust service maintenance [22, 21] and continual task allocation [29]. Exam-

ples of maintenance goals in taskwork includes continual information sharing and

monitoring for robotic formations [1]. Architectures thatonly address achieve-

ment goals are not sufficient for handling maintenance goals.

We use an example of taskwork maintenance to illustrate. Here, a team of

agents consists of multiple agents that follows a leader at adistance. This is a

simplified version of familiar robotic formation-maintenance tasks (e.g., [1]), or

the convoy task, often used in theoretical studies of teamwork (e.g., [4]). Existing

teamwork architectures, based on teamwork theory [4]), would have the followers

communicate with the leader (or otherwise monitor it) to establish mutual belief

that the distance is correct or incorrect (goal achieved or unachieved). Based on

failures, corrective actions could be taken, which in essence react to the failures

of the robots. Similar cases occur in maintenance of teamwork.

11

But a different—and more efficient—approach would have the followers and

leader takeproactiveactions to maintain the distance, before it becomes too great.

For example, the leader may communicate its position to its followers, to help

them speed-up or slow-down incrementally, such that the distance never goes out

of bounds. The point is that here communications occur whilemaintaining a con-

dition, rather than when it unmaintained. With very few exceptions (see Section

2.3), existing teamwork theory and teamwork architecturesdo not account for

such communications.

We addresses maintenance goals in situated agent teams, from an architec-

tural perspective. First, we show how to integrate maintenance conditions into a

behavior-hierarchy, used for controlling each individualagents. Building on this

infrastructure, we present several contributions: (i) a mechanism forcollaborative

maintenance of taskwork conditions by team-members, allowing them to flexibly

select different maintenance protocols; (ii) the re-use ofthis mechanism to main-

tain teamwork-structure conditions; and (iii) the integration of this mechanism in

two teamwork architectures, for different tasks.

We evaluate these contributions in two different teamwork architectures, and

in different environments: DIESEL , implemented on top of Soar [28] and used

in virtual worlds, andBITE’M , an extended version ofBITE [14, 15], used for

controlling teams of physical robots. We report on experiments evaluating the

use of collaboratively-maintained maintenance conditions in contrast to existing

approaches, using either achievement goals, or individualmaintenance processes.

We show that the collaborative maintenance mechanism leadsto significantly im-

proved performance in different tasks and domains.

2.3 Related Work

Duff et al. [5] have recently proposed a model of proactive goal maintenance

for BDI agents, similar to the one we present in this work. Their work focuses

on extending the BDI architecture for a single agent. In contrast, the model we

propose allows modeling ofcollaborative goals, modeling the joint responsibility

of teammates to proactively or reactively maintaining a condition; Thus our work

is a more general case. Moreover, we show how to utilize such collaborative

12

maintenance to also address maintenance of team organization, rather than only

task-related conditions.

Focusing on teamwork architectures, we note that most have only allowed for

achievement goals. We therefore focus here only on those that have addressed

maintenance goals to some extent.

Kumar and Cohen [22, 21] extended the theory of Joint Intentions to include

maintenance. They define the goal of maintainingp as follows: if the agent does

not believep, it will adopt the goal thatp be eventually true. The maintenance

goal is persistent (PMtG) if p is believed false at least until the agent either believes

that it is impossible to maintainp or that the maintenance goal is irrelevant.

While we build on the theoretical developments of [22, 21], our work dif-

fers significantly. First, we extend maintenance of team structure to hierarchical

teams, including team-subteam relations. We also address goal maintenance in

hierarchical task decomposition. Second, our implementations in DIESEL and

BITE’M allow for arbitrary, context-dependent protocols (some byusing commu-

nications, some not) for collaborative goal maintenance, where Kumar et al. have

used a fixed protocol. Finally, while Kumar and Cohen’s work has been applied

to teams of web services, our focus is on modeling synthetic humans in virtual

environments, and in robotic tasks.

STEAM [32], implemented in Soar [28], focuses for the most part on achieve-

ment goals. However, a first step towards extending STEAM towards maintenance

goals was introduced in [36]. Here, maintenance is addressed through persistence

in the commitment of agents to the team, while executing a task. Four categories

of teams are introduced: PTPM, a persistent team consistingof persistent mem-

bers; PTNM, a persistent team consisting of non-persistentmembers; NTPM, a

temporary form of a team consisting of persistent members; and NTNM, a tem-

porary form of a team consisting of non-persistent members.This work was the

first to discuss reorganization (team hierarchy maintenance) in a team, i.e., PTNM.

To enable persistent teams in STEAM, agents individually reason about ex-

pected team utilities of future team states, to decide on howto best maintain the

team in face of intermittent failures in teamwork. DIESEL , described in this the-

sis, deals with PTPM teams, i.e., persistence of team structure. We refer to this as

teamwork maintenance. However, in contrast to [36], DIESEL andBITE’M also

address collaborative maintenance in tasks (taskwork maintenance). Moreover,

13

we propose a single mechanisms for both, and offer flexibility to the designer and

agents in deciding on protocols and behaviors to be used proactively and reac-

tively.

CAST [39] addressed the issue of proactive information exchange among

teammates, using an algorithm called DIARG, based on Petri net structures.

CAST shows the importance of team communication regarding information that

might assist task achievement for individual members in a proactive manner, and

aim to reduce communication. This approach, based on the theory of Joint In-

tentions, does not include maintenance of goals. In particular, CAST’s communi-

cations focus on informing other teammates of discovered facts that may trigger

preconditions. The use of communications (or other actions) to maintain currently

existing tasks is not addressed.

ALLIANCE [29] is a behavior-based control architecture focused on robust-

ness, in which robots dynamically allocate and re-allocatethemselves to tasks,

based on their failures and those of their teammates. ALLIANCE offers continual

dynamic task allocation facilities, which allocate and re-allocate tasks to agents

while they are collaborating. It uses fixed teams, in the sense that addition and

removal of robots from the team is handled by human intervention and it assumes

that robots can monitor their own actions, and those of others. Our work differs in

that we focus on maintenance not only of assignment of agentsto tasks, but also

of the joint execution itself.

2.4 Maintenance In Teamwork

We propose a new architectural mechanism that allows the automation of main-

tenance both of the team structure and of the behavioral structure. The architec-

ture extends structures common to situated agent architectures, and the algorithms

used with these structures.

We begin by taking a brief look at the structures and algorithms of existing

teamwork architectures, that do not support maintenance (Section 2.4.1). We then

show how these are extended to support maintenance (Section2.4.2). These ex-

tensions require significant changes to the underlying control loop of the agents,

and to the parallelism it must support.

14

2.4.1 Existing Situated Agent Teamwork Architectures

We begin by a brief overview of situated agent control, upon which the mainte-

nance mechanism is based. Modern Belief-Desire-Intention (BDI) and behavior-

based control architectures utilize a connected, directedgraph, that defines a li-

brary of behaviors or actions by which agents achieve their goals. Nodes in the

graph denote atomic or complete actions (behaviors), and edges signify decompo-

sition or temporal relations between them. A control algorithm selects actions for

execution, based on the currently executing behaviors, andthe world state.

Structures

We follow [14, 15] in formally defining atask behavior graph, as an augmented

connected graph〈B,S, V, b0〉, where:

• B is a set of vertices. Each vertex inB is a goal-achieving controller, called

a behavior(in Soar,operator). Each behavior has preconditions which en-

able its selection (the agent can select between enabled behaviors), and ter-

mination conditions that determine when its execution mustbe stopped (if

previously selected).

• S andV are sets of directed edges between behaviors (S ∩ V = ∅).

• S is a set ofsequentialedges, which specify temporal order of execution of

behaviors. A sequential edge fromb1 to b2 specifies thatb1 must be executed

before executingb2. A path along sequential edges, i.e., a valid sequence of

behaviors, is called anexecution chain.

• V is a set of verticaltask-decompositionedges, which specify how a con-

troller can be decomposed into execution chains containingmultiple lower-

level behaviors. Sequential edges may form circles, but vertical edges can-

not. Thus behaviors can be repeated by choice, but cannot be their own

ancestors.

• b0 ∈ B is a behavior in which execution begins.

15

We allow for reactivity: A behavior is not always selected when its predecessor

terminates. Instead, the agent’s control process may choose to select a different

behavior that is selectable (as long as it is a first child of anactive parent).

This type of structure, possibly with some minor variations, appears as the

basis for many situated agent architectures (e.g., [24, 11,28]). It is referred to as

a recipe[9], a plan hierarchy[32], or behavior graph[14, 15]. We will use these

terms interchangeably.

An example recipe is shown in Figure 2.1. Vertical edges signify decomposi-

tion (i.e., from a behavior to sub-behaviors needed to execute it); horizontal edges

signify temporal ordering, from a behavior to those that should ideally imme-

diately follow it. Here, the recipe has two nodes calledexplore-decision and

explore-movement. As a rule, we read recipes left to right: Thusexplore-

decision is considered the first child. Only once it terminates, canexplore-

movement be selected.explore-decision has two first children, i.e., two al-

ternative decompositions. Only one of them is to be selectedfor execution at a

given time.

explore-decision explore-movement

elaborate-target elaborate-no-target

Figure 2.1:An example recipe.

To maintain knowledge of the organizational structure of the team, a second

structure—team hierarchy—is often used in architectures that support situated

teamwork, such as TEAMCORE [35], MONAD [6] andBITE [14, 15]. This

structure is a tree, in which internal nodes represent subteams, and leaves denote

individual agents. Edges represent team-subteam relations. Although teamwork

architectures differ in how they achieve this, they utilizethis structure to automat-

ically determine which agents are parts of which subteam, sothat when a behavior

16

is selected by an agent, this selection is automatically coordinated with the other

members of the team. This is done by maintaining a pointer from each behavior,

to the team-hierarchy node that is associated with it. Mechanisms for such auto-

mated coordination are described elsewhere ([12, 32]). We focus here on a brief

description of the team hierarchy structure itself.

A team hierarchyis a DAG (Directed Acyclic Graph) whose vertices are asso-

ciated with sub-teams of agents, and whose edges signify sub-team-membership

relationships [35, 6]. Several vertices appear in any organization hierarchy:

Given the complete set of robot team-membersR, a vertex corresponding toR

(and representing the entire organization) is a part of the hierarchy, as are all

the singleton sets{ri}, whereri ∈ R. Other vertices correspond to multi-robot

sub-teams of robots inR and are connected such that if there exists an edge

〈R1, R2〉, thenR2 ⊂ R1. The team hierarchy thus forms a partial lattice, from

the root teamR which includes all team-members, to sub-teams corresponding to

each of the members by itself (i.e., to the individuals in theorganization). To allow

behaviors to reason about the organizational unit responsible for their execution

(and vice-versa), BITE uses bi-directional links between the behavior graph and

the team hierarchy. A link from a behaviorBj points to a sub-teamRi (and back)

if Bj is to be jointly executed byRi.

We note in passing thatBITE maintains a third structure, holding a set of

social interaction behaviorswhich control inter-agent interactions. Interaction

behaviors typically control communications and execute protocols (e.g., voting)

that govern coordinated activity. For instance, asynchronized selectionalgorithm

is triggered when new team behaviors are selected for execution, in particular

when a decision is to be made between several sequential transitions. See [14, 15]

for additional details.

Control Algorithm for Goal-Achieving Agents

In [14, 15], each of the robots executes Algorithm 1, using its own copy of three

structures, a behavior graph〈B,S, V, b0〉, a team hierarchyT and an interaction

behaviors setO1. The control loop executesa behavior stack—root behavior to

1The key novelty inBITE is its micro-kernel design, in which all protocols for coordinating
multiple robots are taken out of the system, and are made intoa library from which the user (the
deployer of a robot team) can choose protocols, mixing them within the same task (but not within

17

leaf—where top behaviors on the stack are executed simultaneously with their

currently selected children.

Execution begins by pushing the initial behavior of the graph on the execution

stack (lines 1–2). Then the algorithm loops over four phasesin order:

1. It recursively expands the children of the behavior, allocating them to sub-

teams if necessary (lines 3a–3c).

2. It then executes the behavior stack in parallel, waiting for the first behavior

to announce termination (lines 4a–4c). All descendants of aterminating

behavior are popped off the stack (i.e., their execution is also terminated—

line 4b).

3. A synchronized termination takes place (line 6). This canresult in a newly-

allocated behavior within the current parent context, in which case, it will

be put on the stack for expansion (line 7).

4. Otherwise, this indicates that the robot should select between any enabled

sequential transitions from the terminated behavior (lines 8a–8e). This pro-

cess normally results in new behaviors put on the stack, and then a final goto

(line 9) back to line 3 begins again.

The recursive allocation of children behaviors to sub-teams in lines 3a–3c re-

lies on the call to theAllocate() procedure. It takes the current execution context

(i.e., current stack, available children), and then calls the appropriate social in-

teraction behavior inO (linked from the current parent) to make the allocation

decision. The current execution stack is used to help guide allocations, e.g., by

conveying information about where in the behavior graph theallocation is tak-

ing place. In addition, the interaction behavior is given access to any links from

the parent behavior to the team hierarchy, e.g., to determine whether any children

task-behaviors are already pre-allocated. Once a final allocation is determined,

Allocate() is responsible for updating the links from the behavior graph to the

team hierarchy (and vice versa) to reflect the allocation. Itthen returns, for each

the same behavior) as she sees fit. Thus inBITE , unlike previous architectures, the designer can
tell a team of robots to use a bidding protocol to decide on their assignments to roles in a forma-
tion, and a different protocol to assign themselves other tasks. These protocols and coordination
procedures are grouped together asinteraction behaviors.

18

Algorithm 1 Control
Input: behavior graph〈B, S, V, b0〉, team hierarchyT , interaction behaviors setO

1. s0 ← b0 // initial behavior for execution

2. pushs0 onto a new behavior stackG.

3. whiles0 is non-atomic // has children

(a) A ← {bi}, s.t.,〈s0, bi〉 is a decomposition edge

(b) if A has only one behaviorb, push(G, b).

(c) elseb ←Allocate(G, s0, A, T, O), push(G, b).

(d) s0 ← b.

4. execute in parallel for all behaviorsbi onG: // Execution

(a) executebi until it terminates

(b) while bi 6= top(G), pop(G)

(c) break parallel execution, goto 5.

5. b ← pop(G) // Terminate joint execution

6. c ←Terminate(G, b, T, O)

7. if c 6= NIL, push(G, c)

8. else: // Select next behavior in execution chain

(a) LetQ ← {si}, s.t.〈b0, si〉 is a sequential edge

(b) if Q is empty, goto 5 // terminate parent

(c) if Q has one elements, push(G, s)

(d) elses ←Decide(G, b0, Q, T, O)

(e) s0 ← s

9. If G not empty, goto 3.

19

robot, the child behavior for which it is responsible as partof the split sub-team

(or individually, if the sub-team is composed only of the individual robot).

Synchronized termination (line 5–7) and selection (lines 8a–8e) similarly rely

on calls to the proceduresTerminate() andDecide(), respectively.Terminate()

is responsible for evoking the execution termination interaction behavior, which

can return a new child behavior for execution under the current parent. If

it doesn’t, then the next behavior in the execution chain must be selected by

Decide(), which calls a synchronization interaction behavior. Since synchronized

selection involves all members of the current sub-teams selecting together, this be-

havior would normally communicate with the members of the sub-team assigned

to the terminated behavior. Note that in step 8b we also handle the case where no

more behaviors are available in the execution chain. This case signals a termina-

tion of an execution chain, which in turn signals termination of the parent, thus

the branching back to line 5.

2.4.2 Collaborative Maintenance Behaviors

To allow situated agent architectures to work with maintenance goals, rather than

only achievement goals, several extensions are required totheir structures and

algorithms. These are described below.

Extending the Behavior Graph

To represent conditions to be maintained during execution,we add a third type

of condition to the preconditions and termination conditions already associated

with each behavior.Maintenance conditionsare propositions whose value is to

be maintained throughout the lifetime of the behavior. Suchconditions can be a

conjunction or disjunction of predicates (referred to as events).

Maintenance conditions can typically be maintained in one or two ways: By

taking proactive actions to maintain the condition true; and by taking reactive ac-

tions when the condition becomes false. The latter option (reactive maintenance)

is similar in spirit to the use of a sequence of achievement actions in order to

maintain a condition. However, the former type has no such translation. Thus the

two types are different, and indeed, must be distinguished in the definition of the

behavior.

20

To maintain the condition, we allow the definition of maintenance behaviors,

which are to be associated with specific maintenance conditions, and with specific

types of maintenance (reactive or proactive). If a reactivemaintenance behavior

is defined, then the architecture will trigger it once the maintenance condition

breaks. If a proactive maintenance behavior is defined, the architecture will trigger

it once the behavior is selected, so that it execute while theoriginal behavior is

running.

Maintenance Behaviors in a Behavior Graph. This association of mainte-

nance behaviors to maintenance conditions on goal-achieving behaviors essen-

tially adds a third type of edges to the behavior graph. In addition to the sequen-

tial and decomposition edges previously discussed, a behavior graph now includes

maintenance edges, which connect maintenance behaviors to goal-achieving be-

haviors.

Formally, theextendedtask behavior graph is an augmented connected graph

tuple〈B,M, S, V,MV, b0〉, where:

• B is a set of vertices representing goal-achieving behaviors(as before).

• M is a set of vertices representing maintenance behaviors, whereB ∩M =

∅.

• S, V andMV are non-intersecting sets of directed edges between behav-

iors. S, V have been previously discussed. Edges inMV always take

the form 〈b,m〉, whereb ∈ B, andm ∈ M . The existence of an edge

〈b,m〉 ∈ MV , from a behaviorb to a maintenance behaviorm implies that

m may be selected to maintain a maintenance condition onb.

• b0 ∈ B is a behavior in which execution begins.

The existence of several edges〈b,mi〉, wheremi ∈ M and i > 1 implies

that all of the maintenance behaviorsmi may be executed. To force selection

between alternatives, a single maintenance behaviorm1 can be decomposed into

sub-behaviors, as is done with the goal-achieving behaviors previously discussed.

Indeed, all the usual semantics of the different edge types,and the constraints on

their use within the graph, remain in effect. Notice that we explicitly prohibit

21

maintenance behaviors from having maintenance behaviors linked to them, as in

practice we found this to be of little use.

Though the use of maintenance conditions in integrated architectures is rare,

the key novelty described in this thesis is the ability to tiespecificteam behaviors

to these conditions. The behaviors will be triggered automatically by DIESEL or

BITE’M , to be executed jointly, in a coordinated manner, by the teamor subteam

associated with the behavior. It thus becomes possible to collaboratively maintain

a condition, rather than individually.

For example, suppose a behaviorB that moves the agents around has a main-

tenance condition on it to maintain visual tracking of the leader. BecauseB is

a team behavior, it will be executed by the leader and the follower jointly. As

a result, both leader and follower are mutually responsiblefor maintaining the

condition. The maintenance behaviorM then becomes itself a team-behavior, to

be executed jointly by the leader and follower even as they are executingB (i.e.,

move around). An example of such a maintenance behavior may have the leader

continually communicate its current position, and the follower orienting itself to-

wards this position.

Maintenance of the Team Hierarchy. Just as task-execution behaviors can

have associated maintenance conditions, so can the team hierarchy be maintained

by the use of team-maintenance conditions. As in the behavior hierarchy, these

conditions are a set of conjunctions and disjunctions of predicates (referred to as

events), needed to be maintained or denied throughout the execution of a task.

Since maintenance operators act in order to maintain a possible team state, they

are suited to allow team reconfiguration, all under the same teamwork mechanism.

For example, if during the execution of a recipe sub-tree it is critical to maintain

the number of teammates in the group fixed, such a team-maintenance condition

could be easily defined, and the teamwork mechanism, can act in turn if such a

condition fails, by joining a new team, recruiting new agents or even merging two

teams. All whilst continuing execution of the mission.

22

Control Algorithm with Maintenance

The control algorithm using the extended task behavior graph needs to be ex-

tended as well, to execute the maintenance behaviorsin parallel to any goal-

achieving behaviors2. As with BITE , each of the agents in the team executes

its own copy of the control algorithm, and its own copy of the extended task be-

havior graph.

Algorithm 2 accepts an extended task behavior graph〈B,M, S, V,MV, b0〉, a

team hierarchyT , an interaction behaviors setO, and an execution stackG. As

with Algorithm 1, the control loop executesa behavior stack—root behavior to

leaf—where top behaviors on the stack are executed simultaneously with their

currently selected children.

However, unlike Algorithm 1, Algorithm 2 recursively creates new execution

stacks for maintenance behaviors, and thus runs multiple stacks of executing be-

haviors in parallel. One way to think about the difference between the two al-

gorithms is this: While Algorithm 1 maintains a stack of running threads, Algo-

rithm 2 maintains a thread tree, where threads can spawn (or fork) several children

threads in parallel; each path of decomposition edges acts as a stack.

Execution begins by pushing the initial behavior of the graph on the execution

stack (lines 1–2). Then the algorithm loops over four phasesin order:

1. It recursively expands and allocates the children of a behavior. While doing

so, parallel control loops are being initiated for all maintenance behaviors

(lines 3a–3f).

2. It then executes the behavior stack in parallel, waiting for the first behavior

to announce termination (lines 4a–4c). All descendants of aterminating

behavior are popped off the stack (i.e., their execution, and the maintenance

control loop, is also terminated—line 4b).

3. A synchronized termination takes place (line 6). This canresult in a newly-

allocated behavior within the current parent context, in which case, it will

be put on the stack for expansion (line 7).

2We thank Dan Erusalimchik for making this observation, and for implementing theBITE’M
version of this algorithm

23

Algorithm 2 Control with Maintenance
Input: behavior graph〈B, M, S, V, MV, b0〉, team hierarchyT , interaction behaviors set
O and execution stackG

1. s0 ← b0 // initial behavior for execution

2. pushs0 onto stackG.

3. whiles0 is non-atomic // has children or maintenance behaviors

(a) A ← {bi}, s.t.,〈s0, bi〉 is a decomposition edge∈ V

(b) G′ ← ∅

(c) forall {mi|〈s0, mi〉 ∈ MV }

i. create new execution stackg′

ii. G′ ← G′ ∪ g′

iii. Recursively callControl with Maintenance with the inputs:

• behavior graph〈B, M, S, V, MV, mi〉

• team hierarchyT

• interaction behaviors setO

• execution stackg′

(d) if A has only one behaviorb, push(G, 〈b, G′〉).

(e) elseb ←Allocate(G, s0, A, T, O), push(G, 〈b, G′〉).

(f) s0 ← b.

4. execute in parallel for all〈bi, G
′〉) onG: // Execution

(a) executebi until it terminates

(b) while bi 6= top(G), pop(G)

(c) break parallel execution, goto 5.

5. b ← pop(G) // Terminate joint execution

6. c ←Terminate(G, b, T, O)

7. if c 6= NIL, push(G, c)

8. else: // Select next behavior in execution chain

(a) LetQ ← {si}, s.t.〈b0, si〉 is a sequential edge

(b) if Q is empty, goto 5 // terminate parent

(c) if Q has one elements, push(G, s)

(d) elses ←Decide(G, b0, Q, T, O)

(e) s0 ← s

9. If G not empty, goto 3. 24

4. Otherwise, this indicates that the robot should select between any enabled

sequential transitions from the terminated behavior (lines 8a–8e). This pro-

cess normally results in new behaviors put on the stack, and then a final goto

(line 9) back to line 3 begins again.

The recursive allocation of children behaviors to sub-teams in lines 3a–3f re-

lies on the call to theAllocate() procedure. As with Algorithm 1, it takes the

current execution context (i.e., current stack, availablechildren), and then calls

the appropriate social interaction behavior inO (linked from the current parent)

to make the allocation decision. The current execution stack is used to help guide

allocations, e.g., by conveying information about where inthe behavior graph the

allocation is taking place.

However, in step 3c, a significant departure from Algorithm 1occurs, as new

execution stacks are created—and execution thereof is initiated—for maintenance

behaviors. This effectively triggers independent, parallel, execution of these main-

tenance behaviors on theg′ stack. In order to associate these stacks with the goal-

achievement behavior that triggered them, they are collected together in the set

G′, and are associated with the behavior as it is pushed on the stackG.

2.5 Two Implementations

We have implemented the maintenance mechanism described above in two dif-

ferent architectures. DIESEL , built on top of the Soar integrated cognitive ar-

chitecture [28], was built from the ground up with collaborative maintenance in

mind. The other implementation revisited theBITE behavior-based multi-robot

architecture [14, 15], and extended it to support maintenance behaviors, creating a

new architecture calledBITE’M (BITE with Maintenance). The two architectures

were used in very different settings, and this serves as evidence of the general-

ity of the mechanism: It was successfully integrated in both. We describe the

implementations below.

25

2.5.1 DIESEL

We use Soar for the implementation of our architecture. Whilea comprehensive

description of Soar is beyond the scope of this section, we provide a brief overview

here. Soar is a general cognitive architecture for developing systems that exhibit

intelligent behavior [28, 31]. It is a rule-based (production rules) language. Soar

uses parallel, associative memory (the rules), along side agraph-structured global

working memory, which all rules can access and modify. All knowledge relevant

to the current problem is identified and brought to bear via the rules. These trigger

the proposal, selection, execution, and termination of operators, which are also

implemented using rules. Soar has belief maintenance through a computation-

ally inexpensive truth maintenance algorithm. Deliberation in Soar is mediated

by preferences, which allow agents to bring knowledge to bear in order to make

decisions. Soar recognizes conflicts (impasses) in selection knowledge and auto-

matically creates subgoals (new state spaces) to resolve the impasses. Once an

agent comes to a decision that resolves an impasse, it summarizes and general-

izes the reasoning during the impasse. This summary information can be used by

an integrated explanation-based learning mechanism, to automatically create new

rules that chunk problem-solving results for future use.

The DIESEL teamwork architecture is implemented as a set of Soar rules,run-

ning as a separate mechanism on top of the underlying Soar architecture. The

complete DIESEL engine is composed of approximately 100 Soar productions (IF-

THEN rules), of which 23 implement the recipe structure and associated mecha-

nisms, and 25 implement the basic teamwork capabilities (including team hierar-

chy, collaborative maintenance mechanisms, and basic communications).

In DIESEL , maintenance behaviors (whether collaborative or individual) are

triggered based on events (termination conditions), with no regard to the behav-

ior (in Soar, operator) currently executing. Thus once the programmer writes a

maintenance operator for a predicatep, the operator will be triggered to maintain

p regardless of which operator hasp as a maintenance condition. This design

choice has the advantage that operators for maintaining predicates of interest can

be easily re-used within the agent code. However, the disadvantage is that this

leaves no room for flexible selection of maintenance operators: The same main-

tenance operators would be proposed, regardless of the execution context (current

26

running operators).BITE’M takes the inverse approach, as described below.

DIESEL has been applied in two separate virtual environments, and for differ-

ent tasks. It has been used in Soar agents for the GameBots environment [18],

an adversarial game environment that enables qualitative comparison of different

control techniques. Figure 2.2 shows a screen-shot of Soar agents in the Game-

Bots domain, running DIESEL .

Figure 2.2:Soar agents in the GameBots environment, runningDIESEL . Each
agent has limited field of view and range, and may move about, turn, grab
objects, etc.

2.5.2 BITE’M

BITE (Bar Ilan Teamwork Engine) is a behavior-based teamwork architectures

for robots. Previous versions of it (without the maintenance mechanisms) were

used in controlling Sony AIBO robots moving in formation [14](Figure 2.3). The

version we use here, calledBITE’M (BITE with Maintenance), was extended with

maintenance capabilities as described above. It is implemented for the player-

stage system, a de-facto standard API for controlling different types of physical

and simulated robots [8], rather than only AIBOs; code running in the simulation

27

Figure 2.3: Sony AIBO robots moving in formation, controlled by BITE .
Taken from [14, 15]

can be used with few modifications on the physical robots. Figure 2.4 shows

a view of BITE’M -controlled robots moving in formation, in the player-stage

simulator.

The use ofBITE (as opposed to the newerBITE’M) in formation-maintenance

tasks has brought up the need for the integration of a maintenance mechanism

within the architecture. Most formation-maintenance algorithms rely on visual

tracking of a leading robot, by its followers, to maintain a fixed distance and angle

to the leader (see, for instance [1]). InBITE , which only allowed for collabo-

rative achievement goals, such maintenance was always donead-hoc, within the

controlling behaviors. As a result, formation-maintenance inBITE did not exploit

the automated teamwork mechanisms in the architecture: Theleading robot took

no part in maintaining its distance from its followers.

However, once the maintenance mechanism is introduced intoBITE’M , then

all of a sudden a range of novel possibilities emerge. For instance, it is now

possible to write the formation maintenance task in terms ofreusable angle, and

distance maintenance behaviors. Moreover, it is now possible to haveBITE’M

28

Figure 2.4:Robots running BITE’M in the player-stage API. The robots form
a diamond. The lines mark visual field of view. Boxes with filled blocks show
the colors perceived by each robot.

automatically have the leader communicate its position or take other actions, such

that its followers can track it more easily. Moreover, the implementation inBITE

allows to easily see the difference between individual and collaborative mainte-

nance.

Figure 2.5 shows the behavior graph, social behaviors, and maintenance be-

haviors inBITE’M , for the formation-maintenance task. Figure 2.5(a) shows the

behavior structures when using the collaborative maintenance mechanism. Fig-

ure 2.5(b) shows the same task, but with individual maintenance. The upper-left

corner of Figure 2.5(a) explains the notation: Solid lines indicate structural links

(decomposition and sequence constraints); dashed lines indicate pointers to social

behaviors, to be triggered wheneverBITE’M triggers automated coordination (see

[14] for details, which are outside the scope of this thesis).

The behavior-graph for the task is in fact quite small. Thereare three top-level

teambehaviors:Select-leader, Walk and Search. Select-leader is the first

29

(a) BITE’M with collaborative maintenance behaviors.

(b) BITE’M with individual maintenance behaviors.

Figure 2.5:Collaborative and individual maintenance behaviors inBITE .

behavior, where a leader for the formation is selected by application-specific code.

Then, the team of robots jointly selectsWalk to begin the movement. The joint

selection ofWalk is carried out automatically by an appropriate social behavior

(separated by a dashed box, in the figures). If one of the robots fails to monitor

the leader, then the team will jointly terminate this behavior and selectSearch

to re-organize. As possible decompositions of each of theseteam behaviors, the

robots may individually select behaviors based on their role.

In Figure 2.5(b), maintenance of the leader in sight, and maintenance of dis-

tance and angle to the leader, are all done through individual maintenance behav-

iors (sf Watch Leader, Keep Angle, Keep Distance in the figure). The fact that

these are individual maintenance behaviors is establishedstructurally: They are

30

tied to theSlave behavior, which is executed individually, as a decomposition

of Walk. Here, it is strictly up to the followers, executing these behaviors, to

maintain the conditions of the formation.

In Figure 2.5(a) these maintenance behaviors are tied not tothe individual fol-

lower behaviors, but to the team behaviorWalk. Automatically, the maintenance

behaviors are treated as team behaviors, and their execution is thus synchronized

(by the same mechanisms that synchronize execution of the regular behaviors).

Their elevation to the status of collaborative maintenancebehaviors offers new

possibilities for maintenance, e.g., the use of communication by the leader. These

increased options are the reason for the many additional behaviors in Figure 2.5(a)

as compared to 2.5(b).

2.6 Evaluation

To evaluate the contribution offered by the introduction ofcollaborative main-

tenance in DIESEL andBITE’M , we conducted a number of experiments with

both architectures, each in its respective application environment. Together, the

application of the mechanisms to a variety of domains provide evidence for its

usefulness as a general architectural component.

The experiments were designed to answer a number of hypotheses. A first

set of experiments (Section 2.6.1) provides evidence that aproactive maintenance

mechanism (which acts to preserve the value of the maintenance condition be-

fore it is falsified) is preferable to the use of reactive responses to the breaking

of the maintenance condition. A second set of experiments (Section 2.6.2) then

considers the hypotheses that collaborative maintenance is preferable, and leads

to improved results, compared to individual maintenance (even using the same

mechanism). A final set of experiments (Section 2.6.3) demonstrates how team

reconfiguration occurs using the maintenance mechanism with the team hierarchy,

rather than the behavior graph.

2.6.1 Individual Achievement vs. Maintenance

The first set of experiments focused on establishing the importance of a proactive

maintenance mechanism (even for individual execution), compared to the reactive

31

use of a sequence of achievement actions to correct the valueof maintenance

condition. These experiments were carried out with DIESEL .

We built a small two-agent team in the GameBots domain [18]. Inall experi-

ments, we used the same recipe (Figure 2.1), with minor changes needed for each

scenario discussed. The recipe consists of exploration andmovement. During the

exploration phase (behaviorexplore-decision), one of the two child behaviors can

be proposed:elaborate-no-targetin case there is no available target present, and

elaborate-targetin case there are one or more. In the first case, the agent will

tilt its pan-zoom camera, scan or rotate, and in the second case, a behavior will

summarize target data, and propose all available options.explore-decision’s ter-

mination condition is that a target has been selected. Respectively, this isexplore-

movement’s precondition. In this case, a child behavior will be in charge of all

movement actions taken by the agent in order to reallocate itself to a given target

location.

Our first experiment examines DIESEL ’s explicit support for maintenance

goals, using the idea of task-maintenance behaviors that execute in parallel to

the task-achievement behaviors. In this experiment, two agents are placed side by

side on one end of a long corridor, closed off by walls at both ends. One agent is a

leader, the other a follower. The leader runs until reachingthe wall and then runs

back. The follower’s task is to run after the leader. In the individual achievement

case, the follower will look for the leader whenever it losessight of it. In the

individual maintenance case, the follower will continuously orient itself such that

the leader is centered in its field of view (regardless of the direction in which the

follower is running).

We are prohibiting any communications at this stage, since the task is purely

individual for now. The follower will scan until it sees the leader, and run to-

wards it. During each time tick, if the follower agent sees the leading agent, an

internal event (see-leader) is fired and logged. Each configuration was run 10

times. In each run, the simulation’s duration was about two minutes in real-time,

approximately 9000 decision-sense-act Soar cycles and fifty seconds in Unreal

Tournament clock-time.

The results from this experiment are summarized in Table 2.1. We use two

measures: The first column measures the percentage of time (averaged across the

ten trials) in which the leader was seen, i.e., the maintenance conditions was in-

32

% Time leader in sight # Behavior switches
Achievement 50% 6
Maintenance 66% 4.1
one-tailed t-test 0.01 0.001

Table 2.1: Individual achievement (reactive maintenance)compared to individual
proactive maintenance.

deed maintained. The second column measures the number of behavior switches

taking place on average, in each run. A reduced number of behavior switches is

one desired outcome of using maintenance behaviors in parallel to task execution.

This reduces thrashing and allows for greater use of contextin Soar and similar

architectures. The three rows correspond to the results forthe achievement con-

figuration, the proactive maintenance configuration, and a one-tailed t-test of the

statistical significance of the results.

The results clearly demonstrate the need for a proactive maintenance mecha-

nism. In both measures, the agents using maintenance (even individually) have

come up significantly on top, compared to the achievement-only configuration.

Figure 2.6 shows the same results, from a different perspective. It shows the

event’s occurrence during the ten simulation runs. In the figure, The X-axis shows

the time. The Y-axis separates the ten trials: Each dot showsthe presence of the

see-leader event in memory, at the give time, for the given trial. The figure shows

that in all the experiments conducted without maintenance,after a short period of

time, the follower lost the leader. This is due to the change in direction of the

leading agent (back to the start location after reaching thewall) which occurred

during the follower’s movement. In addition, sometimes when the follower agent

locates the leader right away, it is only for a short period oftime. This is due to

the fact that the leader agent chose its target and began moving towards it, exiting

from the follower’s line of sight before the follower had a chance to react. This

forced the follower agent to switch behavior, and re-locateits target.

Figure 2.7 shows 10 additional trials, this time when an explicit maintenance

condition was put in place. Here, we added an individual task-maintenance con-

dition to the recipe of the follower, instructing it to keep the leader in focus while

moving. The figure shows that now, the follower agent no longer loses track of

33

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50

Time

E
xp

er
im

en
t

N
o

.

event active

Figure 2.6: see-leader event logged by the follower agent. No maintenance
conditions.

the leader, since it actively pans to track the leader. This is an example of how

task related goals can be set apart from maintenance relatedgoals, adding new

flexibility to behavior-based architecture and clarity to the code: It was achieved

without changing theexplore-movementor move-to-targetbehaviors, allowing to

keep them simple and compact.

2.6.2 Collaborative vs. Individual Maintenance

The results in the previous section show the importance of maintenance during

behavior execution. However, one could point out that no teamwork is really be-

ing tested in these scenarios since no communication or coordination takes place.

Thus perhaps the improvements we are seeing in transition from only carrying out

achievement actions, to using the maintenance mechanism, are limited to the in-

dividual. In other words, is there really any benefit to collaborative maintenance,

compared to individual maintenance?

This time, we useBITE’M to answer this question. We have created two ver-

sions of aBITE’M behavior graph, implementing a diamond-shaped formation for

four simulated robots. In the collaborative maintenance version (Figure 2.5(a)) the

simulated robots use collaborative maintenance, whereby the leader takes respon-

34

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50

Time

E
xp

er
im

en
t

N
o

.

event active

Figure 2.7:Maintenance of thesee-leader event by the follower.

sibility for maintaining the distance and angle to its followers, and communicates

its movements so that they can calculate their own new positions. In the individual

maintenance version (Figure 2.5(b)), the followers use maintenance behaviors to

visually keep track of the leader’s position, but the leaderis not responsible for

this distance.

We conducted multiple trials usingBITE’M in both individual and collabo-

rative maintenance configurations. We set up five obstacle courses, marked A

through E. In course A the simulated robots moved straight, but a long fence, par-

allel to the movement direction, separated the right-most robot from the leader. In

course B, the leader took a sharp turn that caused it to be blocked from the view of

the rear follower (it was occluded by the leftmost robot). Course C was a repeat

of course A, but here the fence was missing portions in regular intervals (forming

a kind of dashed fence). These caused the rightmost robot to repeatedly lose sight

of the leader, and then catch up with it again. Course D consisted of simple move-

ment forward with no obstacles. Course E consisted of a short segment forward,

then a 90-degree turn to the left, another short segment, andthen a 90-degree turn

to the right (all of this with no obstacles).

Each course was repeated 5–10 times in each configuration (collaborative, in-

dividual). We measured the time to complete the course, and the average error in

maintaining the formation. This error was calculated by examining the distance

35

Figure 2.8:Results from theBITE experiments: Maximum time in courses A
and B indicates that the experiment had to be stopped for lackof progress.

between the actual position of each simulated robot, and theposition it should

have ideally maintained given the position of the leader.

Figures 2.8 and 2.9 show the results from these experiments.In both figures,

the dark column shows the results of using collaborative maintenance, and the

light column shows the results of using individual maintenance. The vertical lines

on the bars mark standard deviations. The figures show that inall courses, the use

of collaborative maintenance leads to significantly improved results (see below for

a discussion of courses A and B). All results were found to be significant using a

one-tailed t-test, except for the difference in time in course E, where no significant

difference was found.

In courses A and B, the individual maintenance versions of thetask could

not complete the course, and so these runs had to be stopped. Nevertheless, we

measured the positional error until the point in which the simulated robots were

stopped. This lead to the seemingly contradictory result that in course B, the

positional error was lower with individual maintenance than with collaborative

maintenance. This was because course B consisted of a very sharp turn in which

necessarily positional errors increase. Since the individual maintenance version

were stuck before the sharp turn, their position error appeared smaller.

We stress the difference between individual and collaborative maintenance

36

Figure 2.9:Results from theBITE experiments: Position Error.

goals using another experiment with DIESEL . Here, we chose a square-shaped

corridor, in which the leader could run indefinitely. With every turn, the leader

could potentially be blocked from the view of the follower, and thus the agents

had many opportunities to lose each other. Using individualmaintenance, the

leader would not be responsible for maintenance of the distance to the follower,

and it would be up to the follower to carry out all actions necessary to maintain the

distance. In collaborative maintenance, both leader and follower share the burden

for maintaining the goals of the team.

To see this, we manually introduced a failure into the scenario above, where

the follower was physically blocked from moving forward. While the follower

agent proactively seeks to maintain the presence of see-leader events, the leading

agent uses reactive maintenance, meaning it acts only when such an event drops.

In this failure case, once the follower stopped tracking theleader, the leader’s

positive-maintenance is proposed (even while it was heading to its designated

target), and the leader waits.

Figure 2.10 shows the results of such a case. The figure shows on the X-

axis the passage of time (in Unreal Tournament seconds). TheY-axis shows the

distance between the follower and leader. With individual maintenance, the dis-

tance between leader and follower continue to grow after thefailure occurs. How-

ever, with team maintenance, distance between both agents is kept throughout the

37

0

500

1000

1500

2000

2500

time

d
is

ta
n

ce

individual maint.

team maint.

Figure 2.10:Distance between leader and follower, in cases of individual and
team goal maintenance.

artificially-introduced failure.

2.6.3 Teamwork Maintenance

The previous sections have evaluated the use of maintenancein the context of task

behaviors. One novelty in the mechanism we introduced is that it can be re-used

for maintaining the team hierarchy in face of catastrophic failures to individual

agents. We call this teamwork-maintenance, to contrast with task-maintenance

described in the previous sections.

In the Unreal Tournament domain, To demonstrate team-maintenance in

DIESEL , we divided four agents into two groups, each consisting of aleader and

a follower. We defined a single team-maintenance condition in each team, stating

that each agent should have a coordinator at any given moment. In each team,

the coordinator was initially set to be the leading agent. Inteam A, consisting

of bot1 and bot2, it was bot1, and in team B, consisting of bot3 and bot4, it was

bot3. This was part of the team-hierarchy for each agent. Bothteams followed

the same recipe previously described, with the two leaders independently leading

their respective followers in constant movement along the corridor.

To show teamwork maintenance in action, we deliberately blocked any con-

38

0

1000

2000

3000

4000

5000

6000

7000

0 50 100 150 200 250

time

d
is

ta
n

ce bot4-1

bot4-3

Figure 2.11:Maintenance of team hierarchy: Distance between bot4 and bot3,
bot1.

tact with bot3 and hid it during the first half of the experiment. As a result, bot4,

changed its coordinator, and began following bot1, by joining team A. After run-

ning half of the experiment in such a manner, we removed the blocking on the

original coordinator, bot3, thus allowing bot4 to fall backto its original team,

team B. Figure 2.11 shows the distance between bot4 and bot1, and between bot4

and bot3. The figure shows how in the distance between bot4 andbot3 (the hidden

leader) was greater than the distance between bot4 and bot1 (the alternate leader).

The situation is reversed once bot3 is seen again, and bot4 switches back to its

original leader.

Switching teams in this example is achieved by a team-maintenance behavior

(operator, in Soar), which manipulates bot4’s team-hierarchy. The behavior works

by checking whether at any given time a coordinator is unreachable. If so, then

the behavior finds a new team in which there is a team coordinator and change the

organizational membership of the agent to be a part of the other team. Since this

is only a maintenance behavior, as opposed to a regular one, if the exception is

resolved, the maintenance behavior is terminated, and regular order is restored.

Another evaluation of Teamwork Maintenance, was achieved by the collabo-

ration with Elbit Systems, Ltd. on the Smart Entities project. Elbit built several

enhancements based on the MAK simulation, called VRF(Virtual Forces), aiming

for better Simulation and Training applications. DIESEL was adopted as a mech-

anism for simulating synthetic teams executing elaboratedplans, while reacting

39

Figure 2.12:Maintenance of team hierarchy: Response to events.

Stop − execution Elaborate − Next No − Threat Back − to − mission
avrg 2.0055 (sec.) 4.018833333 (sec.) 12.06416667 (sec.) 2.014 (sec.)
stdv 0.021473239 0.000408248 0.002136976 0

Table 2.2:Maintenance of team hierarchy: Response to threat, avrg and stdv
over 10 runs with 6 agent teams.

to changes in the environment. Figure 2.12 shows an Helicopter patrolling over

such a generated team. The team responds to the event by splitting up and fleeting

towards closely found hiding places. After the danger is removed, the team can

regroup, however, this is not mandatory. Individual agentscan decide to abort

the mission. In such cases, Teamwork maintenance is used in order to update the

Team hierarchy and continue executing the mission. Only theagents included

in the new formed group will be updated from then on in regard to inner team

communication, allocation and synchronization. The otheragents, will continue

executing the mission individually.

Table 2.2, summarizes the results gathered from 10 scenarioruns during which

an helicopter intercepted the team planned route, and later, moved on. The first

40

Teammate − loss Team − hierarchy − update
avrg 2.03 (sec.) 4.0202 (sec.)
stdv 0.032449961 0.043014

Table 2.3:Maintenance of team hierarchy: Response to Team loss, avrg and
stdv over 10 runs with 6 agent teams.

column shows the time passing from the moment the helicopterwas initially up-

dated on any agent input-link to the time the last agent stopped executing the

mission. The second column shows the time passing from the initial brake in the

mission execution to the moment the whole team splits and moves to response.

The third column shows the time passing from the moment the threat is removed

and until the whole team regroups. The fourth column shows the time passing

from the team regrouping to the moment the whole team resumesthe mission

execution. The time frames shown in Table 2.2 have been collected before sev-

eral communication optimizations where implemented, today time can be sub-

stantially reduced. In this scenario team maintenance is used twice, once in order

to decompose the team and once to regroup it. However, there is a significant

difference. Without team maintenance, Leaving the team would require a time

consuming process of agreements between team members, however, with an un-

derlying team maintenance mechanism, this is already takencare of. However,

While leaving the team requires no agreement, joining still does, since it uses the

regular team-protocol and thus takes longer. From these results, we can conclude

than, that straight forward team maintenance, can be used sometimes instead of a

heavy resource team protocol. This is shown in Table 2.3.

Table 2.3, summarizes the results gathered from 10 scenarioruns during which

a teammate was shot down. The first column refers to the time passing from the

moment the teammate death was initially updated on any agentinput-link to the

time the last agent stopped executing the mission. The second column refers to

the time passing from the initial brake in the mission execution to the moment

the whole team updated the team hierarchy. As expected, since leaving the team

requires no agreement, the results are similar to those found in Table 2.2, on the

corresponding event.

41

2.7 Conclusions and Future Work

This section argued for the introduction of a general mechanism for collaborative

goal maintenance in teamwork architectures. We presented such a mechanism,

and described its integration within two implemented architectures for teamwork:

DIESEL , an architecture built on top of the Soar cognitive architecture [28]; and

BITE’M , an architecture for controlling teams of behavior-based robots. We em-

pirically demonstrated that the use of proactive maintenance leads to improved

performance compared to reliance on achievement actions (also used as a reactive

form of goal maintenance). We also showed that the use of collaborative main-

tenance, in which all team-members take responsibility formaintaining the team

goals, leads to improved results compared to individual maintenance. Finally,

we showed how the maintenance mechanism can be used to maintain the team

structure. This allows the programmer to focus more clearlyon achievement and

maintenance aspects of the task, and to separate completelythe issue of how to

maintain the team-structure in face of catastrophic failures. Future work includes

exploring a diverse set of maintenance protocols for taskwork and teamwork.

42

Chapter 3

An Integrated Development

Environment and Architecture for

Soar-Based Agents

3.1 Summary

It is well known how challenging is the task of coding complexagents for virtual

environments. This difficulty in developing and maintaining complex agents has

been plaguing commercial applications of advanced agent technology in virtual

environments. In this chapter, we discuss development of a commercial-grade

integrated development environment (IDE) and agent architecture for simulation

and training in a high-fidelity virtual environment. Specifically, we focus on two

key areas of contribution. First, we discuss the addition ofan explicit recipe mech-

anism to Soar, allowing reflection. Second, we discuss the development and usage

of an IDE for building agents using our architecture; the approach we take is to

tightly-couple the IDE to the architecture. The result is acompletedevelopment

and deployment environment for agents situated in a complexdynamic virtual

world.

43

3.2 Introduction

It is well known how challenging is the task of coding complexagents for vir-

tual environments. This has been a topic for research in manypapers including

[2, 33, 13, 6]. This difficulty in developing and maintainingcomplex agents has

made adoption of cognitive architectures difficult in commercial applications of

virtual environments. Thus many companies work with different variations of

state machines to generate behaviors [3].

In this chapteer, we discuss development of a commercial-grade development

environment and agent architecture for simulation and training in a high-fidelity

virtual environment. We discuss architectural support forcoding of a complex

plan execution by a team of agents, in Soar, and discuss the differences in our

approach from previous approaches to using Soar in such tasks.

Specifically, we focus on two key areas of contribution. First, we discuss the

addition of an explicit recipe mechanism to Soar, allowing reflection. This allows

a programmer to build Soar operators (units of behavior) that are highly reusable,

and can reason about their selection and de-selection. We show how this mecha-

nism acts as a decision-kernel allowing multiple selectionmechanisms (simulat-

ing human social choices, domain knowledge, etc.) to all co-exist on top of it. The

recipe mechanism generates possible alternatives: The choice mechanisms assign

preferences to these. Soar then decides.

Second, we discuss the development and usage of an integrated development

environment (IDE) to build agents using our architecture. The approach we take is

to tightly-couple the architecture to the development environment, so that bugs—

which in Soar can be notoriously difficult to find [30]—can be ironed out as they

are written.

We demonstrate these efforts in acompletedevelopment environment for Soar

agents, situated in a complex dynamic virtual world, used for realistic simulation

and training. We attempt to draw lessons learned, and highlight design choices

which we feel were important from the perspective of an industrial project.

44

3.3 Background

Our work was done as part of Bar Ilan University’s collaboration with Elbit Sys-

tems, Ltd. The goal is to create asmartsynthetic entity—an agent—which per-

forms in a variety of simulated scenarios. Agents should operate autonomously,

behaving as realistically as possible. The agents will enhance Elbit’s training and

simulation products.

The environments in which the agents are to function are usually complex

environments, containing up to entire cities, and including accurate placement of

objects. The initial focus of the project is towards the development of individual

entities, possibly working in small groups. Figure 3.1 shows an example screen-

shot from an application use-case.

Figure 3.1:Urban terrain
Both the architecture and IDE for the agents must be oriented towards the

development of configurable entities, driven by capabilities, personality and com-

plex plans. Such a view reinforces the need for a flexible architecture, able to cope

45

with many parameters and configurations of large plans (composed of recipes with

100 up to 1000 inner behavior nodes). The architecture must support several dis-

tinct cognitive mechanisms (emotions, focus of attention,memory, etc.) running

in parallel and interacting, in each and every virtual modeled cognitive entity.

We briefly introduce here the various components of our architecture, and the

rationale behind its design. The next sections will discussthe foci of the chapter

in depth.

One main difference between commercial and academic frameworks for multi-

agent systems, is in the use of hybrid architectures. While inmost academic work

it is sometimes possible—indeed, desired—to include all levels of control using

a unified representation or mechanism, this is clearly not the case when it comes

to large scale industrial applications. No single architecture or technology in this

case is sufficient. Moreover, it is often critical to be able to interact with existing

underlying components. This might come as a demand from the customer who

ordered the project, or (sometimes) as a way to promote othertechnology available

within the company.

With respect to academic work, this view goes back to past research on agent

architectures, such as the ATLANTIS [7] architecture, which is based on the ob-

servation that there are different rates of activity in the environment, requiring

different technologies. In our work, we were inspired as well by the vast research

and conclusions drawn from the RoboCup simulation league [27]and from past

simulation projects conducted in Soar such as the IFOR project [33, 13].

Indeed, our industrial partners have developed a hybrid architecture in which

many components that have to do with cognitive or mental attitudes are actually

outside of the main reasoning engine, built in Soar. The guiding philosophy in

deciding whether something should be done in the Soar component has been to

leave (as much as possible) any and all mathematical computations outside of

Soar, including all path planning and motion control. For example, we rely on a

controller in charge of moving an agent on a specified path. Such controller can

be assigned the movement of teams of agents, and can use different movement

configurations while trying to keep relations and angles fixed between it’s mem-

bers. In making this choice, the project is setting itself apart from other similar

projects, in which Soar was used to control entities at a muchmore detailed level

of control [33, 13, 27].

46

We focus in this chapter on the Soar decision-making component, and its as-

sociated IDE. Both of these, with the other components of the system, are hooked

up to a VR-Forces [26] simulation environment, a high-fidelity simulator utilizing

DIS. It is used for large scale projects ranging air, ground and naval training such

as TACOP [37].

Given the task of providing an agent development framework,several archi-

tectures for this type of application might come to mind: JACK[10], SOAR [28],

UMPRS [23], JAM [11], etc. Soar [28] is among the few that has commercial sup-

port, and yet is open-source, making it a clear favorable candidate for our project.

Soar uses globally-accessible working memory, and production rules to test

and modify it. Efficient algorithms maintain the working memory in face of

changes to specific propositions. Soar operates in several phases, one of which

is a decision phase in which all relevant knowledge is brought to bear, through an

XML layer, to make a selection of an operator (behavior) thatwill then carry out

deliberate mental (and sometimes physical) actions.

A key novelty in Soar is that it automatically recognizes situations in which

this decision-phases is stumped, either because no operator is available for selec-

tion (state no-change impasse), or because conflicting alternatives are proposed

(operator tie impasse). When impasses are detected, a subgoal is automatically

created to resolve it. Results of this decision process can bechunked for fu-

ture reference, through Soar’s integrated learning capabilities. Over the years, the

impasse-mechanism was shown to be very general, in that domain-independent

problem-solving strategies could be brought to bear for resolving impasses [28].

Being a mixture between a reactive and a deliberative system,it is usually

very easy to program rules (productions) in Soar, so that a short sequence will be

triggered upon certain conditions. However, building a complex scenario involv-

ing multiple agents becomes somewhat of an overwhelming task. Debugging just

seems to never end1.

Soar uses globally-accessible working memory. Each rule iscomposed by

a left and right sides. Simplified, the left side of the rule isin charge of testing

whether specific conditions hold in this working memory, while the right side is in

charge making changes to the working memory. Thus each rule in the system can

1We note that similar motivations have lead in the past to contributions in other directions, e.g.,
teamwork [32].

47

read, write, and modify the working memory, triggering or disabling the proposal

of other rules, including itself. This means that each Soar programmer must have

complete knowledge of all the rules, taking all previous written code into account

each time a new rule is added.

Another facet is that Soar does not differentiate between the change an op-

erator makes, and the actual state of the agent, and ties themas one by coding

conventions. Since Soar operates through states, this means that each operator by

definition is tied to the state the agent is in. In other words,naive Soar program-

ming requires all agent behaviors to be re-programmed each time a behavior is to

be applied in a slightly different state than initially anticipated by the programmer.

One of the first architectural changes we aimed for was to overcome this re-

lation between states and operators. By doing so, we could make use of generic

types, templates, and other byproducts such as the utilization of reflection. These

proved to be valuable programming tools.

3.4 Soaring Higher

The approach we take is to provide a higher level of programming, built on Soar

foundations and taking advantage of the underlying framework. The most impor-

tant component of this layer isrecipes—behavior graphs—representing a template

(skeletal) plan of execution of hierarchical behaviors [14, 32]. The behavior graph

is an augmented connected graph tuple(B,S, V, b0) , whereB is a set of task-

achieving behaviors (as vertices),S, V sets of directed edges between behaviors

(S ∩ V = ∅), andb0 ∈ B a behavior in which execution begins.

Behaviors is defined asbi ∈ B :

1. Constant parameters, with respect to the program execution scope (such as

bi timeout , probability etc..).

2. Dynamic parameters, with respect tobi execution scope (such as the event

that triggeredbi preconditions).

3. Maintenance conditions [19], with respect tobi execution scope.

4. Teamwork conditions [19], with respect tobi execution scope.

48

5. Preconditions which enable its selection (the robot can select between en-

abled behaviors).

6. Endconditions that determine when its execution must be stopped.

7. Application rules that determine whatbi should do upon execution.

In [14] S sequential edges specify temporal order of execution of behaviors.

A sequential edge fromb1 to b2 specifies thatb1 must executed before executing

b2. A path along sequential edges, i.e., a valid sequence of behaviors, is called an

execution chain. V is a set of verticaltask-decompositionedges, which allow a

single higher-level behavior to be broken down into execution chains containing

multiple lower-level behaviors. At any given moment, the agent executes a com-

plete path root-to-leaf through the behavior graph. Sequential edges may form

circles, but vertical edges cannot. Thus behaviors can be repeated by choice, but

cannot be their own ancestors.

Even using this representation, we faced several abnormal situations. For ex-

ample, if a leaf behavior has precondition equal to its ancestors endcondition it

might never be proposed, or worst, constantly be terminatedprematurely. Solving

such a problem at an IDE level, contradicts the need for behavior encapsulation.

Another problematic aspect of such an architecture is that during an execution

chain no alternatives are being considered. Switching fromone execution chain

to the other (given that they both derive from the same parentbehavior), needs

ending the whole execution chain, a process which is both time consuming, and

sometimes harms the overall reactiveness of the system. This problem emerges

even when using the Soar architecture as provided. We will not deal with pro-

posed solutions since they are out of this thesis’s scope. However, one specific

proposal involving a reactive recipe mechanism running on top of the regular one,

can be viewed as a higher level selection mechanism, and thusis similar to other

selection mechanism discussed later in detail.

The recipe mechanism is responsible for proposing operators for selection.

Through reflection, it examines the current recipe data structure (graph), and pro-

poses all operators that are currently selectable, based ontheir precondition and

position within the recipe graph. It efficiently schedule the proposal and retrac-

tion of generic behaviors given certain conditions. These behaviors, are specified

49

inside generic subtrees of plans, which in turn are gatheredin large abstract sets

of plans. When a Soar agent is loaded, it assembles its recipe structure at run-time

by recursively deepening, arranging and optimizing it.

Additional mechanisms are added to guide selection betweenthe proposed op-

erators. Examples to such mechanisms include probabilistic behavior selection,

teamwork, social comparison theory [17], individual and collaborative condition

maintenance [19], etc. For example, since the recipe enables reflection, one of

the mechanisms monitors other agents’ actions by the mirroring of the recipe onto

another inner Soar state and using translation of sensory data. This allows mod-

eling of another agent’s decision processes based on observation—a form of plan

recognition. Another mechanism is in charge of teamwork andkeeps the team

synchronized and roles allocated, by the use of communication [19].

With respect to the IDE, we made use of a new state-of-the-artfacilities such

as refactoring and testing of agent applications. Instead of building the IDE from

scratch, as is commonly done, we chose to utilize an existingIDE, thus taking

advantage of well-tested available technology. Our IDE is object-oriented, facili-

tating coding by the use of pre-made templates, re-usability of components such

as plans and behaviors, instead of wizards and graphical means of programming.

In Soar, productions are proposed due to changes in WMEs (Soarworking

memory). In a behavioral context, this means that each behavior can be triggered

by a change, both internal (inner state change) or external (sensory data), and

that each behavior can affect the overall conduction of the system. During early

phases of development we chose an approach similar to that found in [32], by pro-

viding a middle layer between Soar inputs and operators. However, as mentioned,

Soar’s productions can be triggered by internal events as well. Thus, we chose

to broaden the common ground between behaviors by substituting the transla-

tion layer with an event-based mechanism. All our behaviors’ preconditions and

endconditions are triggered by explicit predicates, whichsignal events that are

true. These events correspond to percepts, deduced or processed facts, and in-

ternal changes. They constitute explicit facts, internally classified by subject and

category (e.g., all audio-related events groups together).

Adding events to Soar allows our agent means of reflection. A regular Soar

agent is unaware of the actual change in the environment thatlead to a specific

operator instantiation, thus could not refer to the cause ofit following a specific

50

Figure 3.2:Soar integrated templates
sequence of actions. At most, it can reflect on the actions themselves. Using the

event mechanism, however, allows the agent to consider exactly what changes

lead to each operator/behavior proposal or termination, asthe preconditions and

endconditions are defined explicitly.

We found this approach critical when in need of communications between

agents. The language by which our agents communicate is an event language:

Entire subtrees of Soar working memory are being passed on and forth between

agents. The agents thus pass between them sets of events relevant to the proposal

or retraction of behaviors. This allows allocation of roles, and synchronization of

the execution of behaviors. and

In our target environment, both recipe operators (task and maintenance) and

events can be programmed with the help of code templates. During the coding

phase we discovered that most bugs result from WME misspelling or errors in

structure reference. Figure 3.2 shows the interface by which a user can automat-

ically generate the appropriate operator or event code. Events are generated and

categorized in different folders, classified by the inputs that trigger them or by

the events that they relay on. Operators (behaviors) are generated with parame-

ters, preconditions and endconditions, fully documented.This feature results in a

clean uniform code, and thus simplifies debugging a great deal. Additional sup-

51

Figure 3.3:Soar Datamap view

port for communication protocols and probability tables for operator proposals is

also provided.

The use of templates in Soar, goes back to the early IDE development tools for

Soar agents. Our tool differs from those earlier works in that it provides not only

basic support for Soar operator application and proposal rules templates, but an

extensive elaborated behavior structure supported by the recipe mechanism, spe-

cialized for the architecture we use. The use of the templates saves much coding

for the programmer, since they already encapsulate much of what the programmer

needs to consider.

The Soar datamap is a representation of the Soar memory structure generated

through the execution of a Soar program, and can be inferred by the left side and

right side of Soar production rules. Several tools are available in order to gener-

ate a Soar datamaps through static analysis of Soar productions. We significantly

extended the initial Eclipse extension for datamap support, provided by the Uni-

versity of Michigan and SoarTech, adding additional services and tools. Most of

our coding tools now rely on the datamap, enabling us to generate specific insight-

52

Figure 3.4:Auto complete with deep inspection

ful warnings, provide smart assistance, and auto completion of code that takes the

structure of the memory in our architecture into account.

Aside from warnings and code assistance, Soar benefits from the many Eclipse

plug-ins that are already present and developed within the IDE environment.

Among those are integrated documentation support, execution of Soar agents, and

integrated debugger. Support for both VSS and CVS code-versioning systems can

be found as well, for large team projects.

We have also extended and enhanced the SoarJavaDebugger which is dis-

tributed with the current version of Soar, by the Universityof Michigan. The

first customization, seen in Figure 3.5, utilizes a UML type of visualization, in or-

der to display the recipe at run time. At any point the active path to the currently

executed behavior is presented along with optional behaviors not chosen (colored

red). These red behaviors have matching preconditions, butwere not activated due

to hierarchical or situational constraints. This recipe visualization is updated as

well at runtime, enabling the programmer to focus only on therelevant executed

53

Figure 3.5:Soar Java Debugger, with additional Tree View and Recipe Visu-
alization

54

subset of the recipe.

In addition, on the left-hand side of the debugger window, isa tree-folder

view of the working memory. The root of the tree can be set to point any subset

of the agent knowledge (any Working Memory Element, WMEs) andis updated

at runtime. Since Soar already arranges WMEs in a tree like format, it greatly

speeds up debugging to be able to inspect the agent knowledgeby simply clicking

such folders.

3.5 Evaluation

Evaluation of the contributions described above is challenging. The first contri-

bution involves the use of reflection in the recipe, which allows clean separation

of the process by which the knowledge of the agent proposes alternatives, and the

mechanisms that facilitate a decision among them. During the evaluation of our

system, we made use of a scenario in which a team of agents usescommunications

to agree upon several mission points. They calculate routesconsidering possible

threats along the way and travel from one location to the other. While doing so

they collaboratively maintain several movement protocolsand react to changes in

the environment such as the appearance of new threats, the loss of team members,

etc.. During the execution of the scenario, the agents move from one waypoint to

another, maintaining specified formations, and reorganizethese formations given

changes in the team hierarchy.

To provide some insight as to the performance of the design, we compare

our system to previous systems that have utilized Soar as their basis. The most

well-known similar system is TacAir-Soar, a highly successful project using Soar

as the basis for synthetic pilots, capable of running a wide variety of missions

[33, 13]. Less complex—yet still successful—applicationsof Soar included the

ISIS-97 and ISIS-98 RoboCup teams [34].

Table 3.1 provides a comparison of key features, allowing a qualitative insight

into the complexity of these systems, compared to the systemdiscussed in this

chapter. The columns report (left-to-right) on the overallnumber of Soar rules

used in the system, the number of unique actions (outputs), the amount of unique

percepts (inputs), and the number of actual domain/task behaviors/operators.

Our system, at its current state of development, is of moderate complexity

55

architecture rules actions inputs operators
TacAir-Soar 5200 30 200 450
ISIS-97/98 1000 7 50 40

Ours 650 25 200 100

Table 3.1:Architectural Complexity Evaluation

compared to efforts that have been reported in the literature. Taking the combined

inputs and outputs as the a basic measure of the complexity ofthe task, would put

our system’s task on par with that of the TacAir-Soar system,and far ahead of the

challenge faced by RoboCup teams. However, looking at the number of operators,

we see that the knowledge of our agents, while still significantly more complex

than that of the RoboCup agents, is still very much behind that of the advanced

TacAir Soar.

Based on this qualitative assessment, which puts our system somewhere in the

middle between the TacAir-Soar and the ISIS systems, it is interesting to note

that our system uses significantly less rules thanbothother systems, to encode the

knowledge of the agents. While we use about 6.5 rules, on average, for supporting

each operator, TacAir-Soar uses 11.5 and RoboCup about 25. We believe that this

is due, at least in part, to the use of the recipe mechanism. Inboth previous

systems, the preconditions of operators tested not only theappropriateness of an

operator given the mental attitude of the agents with respect to its environment and

goals, but also with respect to the position of the operator compared to other task

operators. For instance, commonly operators would have to test for the activation

of their parents, before being proposed. The recipe mechanism cleanly separates

the two.

On our system, operator rules only determine whether the task-related precon-

ditions of an operator have been satisfied. The rules proposing the operator if its

preconditions are true,and given its position within the behavior graph, are all

part of the recipe mechanism. We believe that this saves a significant number of

rules.

It also saves significant programming effort: Since our operators do not re-

fer at any point to their execution point, changing the occurrence of a generic

action (or a generic subtree of hierarchical actions withina recipe) requires only

updating the configuration of the Soar coded recipe. In comparison, moving op-

erators around in previous systems, from one specific execution point to another

56

(one point in the recipe to the other) would require changes to be made in all

branching children (all rules testing the occurrence of such an operator), since the

hierarchy is part of each sub-operator’s preconditions. Additionally, by previous

Soar conventions, operator source files were written in hierarchical file system,

which reflected the intended hierarchical decompositions.Moving operators in

the recipe either caused files to move around, or worse yet, created a discrepancy

between the convention of the file-system and the position ofthe operator in mem-

ory. Freeing Soar operators from their execution point alsoallowed us to place all

operator files in a single directory, making finding and maintaining them much

easier.

Previous Soar architectures, have utilized a specific styleof writing in Soar,

in which hierarchical decompositions are created in memoryby relying on Soar’s

operator no-changeimpasse to keep track of the active hierarchical decomposi-

tion. But the creation and maintenance of impasses can be expensive. The recipe

mechanism allows us efficient book-keeping of the current decomposition, with-

out using impasses (unless needed for other reasons).

To demonstrate the savings offered by using the recipe mechanism, Table

3.2 provides data gathered from the execution of several standard Soar bench-

marks (bundled with the Soar architecture distribution), on the same hardware

and software configuration (Soar 8.6.2 kernel on the same Pentium 4 CPU 3.2

GHz 512MB ram). These standard problems consisted of the Missionaries and

Cannibals (MaC) problem, and the performance of 1000 random arithmetic calcu-

lations. We compare Soar’s performance in both, with the test scenario, described

above.

Table 3.2 consists of four columns: The number of decision-cycles in Soar (in-

put to output phase) using an average run, the average time for each decision-cycle

in milliseconds, the average size of Soar working memory at any time, and the

number of changes to this memory. As shown, our architectureis much faster than

the benchmarks—despite their simplicity relative to the task our system faces.

Our decision-cycles are substantially faster mainly due tothe recipe mechanism

(which avoids impasses) and the utilization of controllers. Though new input is

constantly delivered to our agents, most of the time our agent is idle, waiting for

the current operator/behavior execution, the proposal of new behaviors or the ar-

rival of critical data. Such results are crucial for demonstrating the scalability of

57

benchmark dc msec/dc WM(mean, changes)
MaC 200 0.155 (49.896,13651)

Arithmetic 41487 0.320 (983.589,879076)
Ours 31363 0.078 (3266.797,196263)

Table 3.2:Runtime Evaluation

the system, for future scenarios (e.g., those simulating crowds).

We now turn to evaluation of the integrated development environments. As

one could expect, quantitative evaluation is difficult here. Not only is the im-

pact of the changes difficult to measure directly, but the target audience—Soar

programmers—is very small. Nevertheless, we asked our current users to pro-

vide qualitative feedback on the tool, and compare it to previously-published de-

velopment tools for Soar (such as Visual Soar, which is packaged with the Soar

distribution).

Our users varied in experience, and in responses. One veteran Soar program-

mer has previously developed in Soar using emacs text-editor (without any GUI

support for debugging), and later in Visual Soar. His assessment was that the use

of the Eclipse environment was a marked improvement over Visual Soar (which,

not surprisingly, was believed to be a significant improvement over emacs). He

reported that the use of templates was not a speed-saver: As aveteran Soar pro-

grammer, he was used to writing code directly, without templates. On the other

hand, two relatively novice programmers now swear by the Eclipse environment,

and show strong preference to it over existing tools. They report that the tem-

plates are very useful, though they lose some of the usefulness over time. Based

on these qualitative reports, it is clear that in an industrial project, a strong IDE

such as Eclipse, is a valuable tool which provides many benefits in comparison to

the alternatives.

3.6 Conclusion

In this chapter we discussed both the architecture and development environment

for computed generated forces, based on an extended versionof Soar. On an ar-

chitectural level we proposed the addition of an explicit recipe mechanism to Soar,

allowing reflection. This allows a programmer to build Soar operators (units of

behavior) that are highly reusable and effective. We proposed how such a mech-

58

anism could act as a decision-making kernel. Second, we discussed the develop-

ment and usage of an integrated development environment (IDE) to build agents

using our architecture. We attempted to draw lessons learned, and highlight de-

sign choices which we felt were important from the perspective of an industrial

project. We believe those insights can contribute towards the future development

of computer-generated forces, in complex dynamic virtual worlds.

59

Bibliography

[1] T. Balch and R. C. Arkin. Behavior-based formation control for multi-robot

teams.IEEE Transactions on Robotics and Automation, 12 1998.

[2] R. Bordini, L. Braubach, M. Dastani, A. E. F. Seghrouchni, J.Gomez-Sanz,

J. Leite, G. O’Hare, A. Pokahr, and A. Ricci. A survey of programming

languages and platforms for multi-agent systems. InInformatica 30, pages

33–44, 2006.

[3] R. B. Calder, J. E. Smith, A. J. Courtemanche, J. M. F. Mar, and A. Z. Cer-

anowicz. Modsaf behavior simulation and control. InProceedings of the

Third Conference on Computer Generated Forces and BehavioralReresen-

tation, Orlando, Florida, March 1993. Institute for Simulation and Training,

University of Central Florida.

[4] P. R. Cohen and H. J. Levesque. Teamwork.Nous, 35, 1991.

[5] S. Duff, J. Harland, and J. Thangarajah. On proactivity and maintenance

goals. InAAMAS ’06: Proceedings of the Fifth international joint confer-

ence on Autonomous agents and multiagent systems, pages 1033–1040, New

York, NY, USA, 2006. ACM.

[6] T. D.Vu, J. Go, G. A. Kaminka, M. M. Veloso, and B. Browning. MONAD:

A flexible architecture for multi-agent control. InProceedings of the Sec-

ond International Joint Conference on Autonomous Agents andMulti-Agent

Systems (AAMAS-03), 2003.

[7] E. Gat. Integrating planning and reacting in a heterogeneous asynchronous

architecture for controlling real-world mobile robots. InProceedings of the

60

Tenth National Conference on Artificial Intelligence (AAAI-92). Menlo Park,

Calif.: AAAI press, 1992.

[8] B. P. Gerkey, R. T. Vaughan, and A. Howard. The player/stageproject:

Tools for multi-robot and distributed sensor systems. InProceedings of the

International Conference on Advanced Robotics, pages 317–323, 2003.

[9] B. J. Grosz and S. Kraus. Collaborative plans for complex group actions.

Artificial Intelligence, 86:269–358, 1996.

[10] N. Howden, R. Rönnquist, A. Hodgson, and A. Lucas. JACK: Summary

of an agent infrastructure. InProceedings of the Agents-2001 workshop on

Infrastructure for Scalable Multi-Agent Systems, 2001.

[11] M. J. Huber. JAM: A BDI–theoretic mobile agent architecture. InProceed-

ings of the Third International Conference on Autonomous Agents (Agents-

99), pages 236–243, 1999.

[12] N. R. Jennings. Controlling cooperative problem solvingin industrial multi-

agent systems using joint intentions.Artificial Intelligence, 75(2):195–240,

1995.

[13] R. M. Jones, J. E. Laird, N. P. E., K. Coulter, P. Kenny, and F. Koss. Auto-

mated intelligent pilots for combat flight simulation.AI Magazine, 20(1):27–

42, 1999.

[14] G. A. Kaminka and I. Frenkel. Flexible teamwork in behavior-based robots.

In Proceedings of the Twentieth National Conference on ArtificialIntelli-

gence (AAAI-05), 2005.

[15] G. A. Kaminka and I. Frenkel. Integration of coordination mechanisms in

the BITE multi-robot architecture. InProceedings of IEEE International

Conference on Robotics and Automation (ICRA-07), 2007.

[16] G. A. Kaminka and N. Fridman. Social comparison in crowds: A short

report. InProceedings of the Sixth International Joint Conferance on Au-

tonomous Agents and Multi-Agent System (AAMAS-07), 2007.

61

[17] G. A. Kaminka and N. Fridman. Social comparison in crowds: A short

report. InProceedings of the Sixth International Joint Conference on Au-

tonomous Agents and Multi-Agent Systems (AAMAS-07), 2007.

[18] G. A. Kaminka, M. M. Veloso, S. Schaffer, C. Sollitto, R. Adobbati, A. N.

Marshall, A. Scholer, and S. Tejada. GameBots: A flexible testbed for mul-

tiagent team research.Communications of the ACM, 45(1):43–45, January

2002.

[19] G. A. Kaminka, A. Yakir, D. Erusalimchik, and N. Cohen-Nov. Towards

collaborative task and team maintenance. InProceedings of the Sixth Inter-

national Joint Conference on Autonomous Agents and Multi-Agent Systems

(AAMAS-07), 2007.

[20] G. A. Kaminka, A. Yakir, D. Erusalimchik, and N. C. Nov. Towards collab-

orative task and team maintenance. InProceedings of the Sixth International

Joint Conferance on Autonomous Agent and Multi-Agent System(AAMAS-

07), 2007.

[21] S. Kumar and P. R. Cohen. Towards a fault-tolerant multi-agent system

architecture. InProceedings of the Fourth International Conference on

Autonomous Agents (Agents-00), pages 459–466, Barcelona, Spain, 2000.

ACM Press.

[22] S. Kumar, P. R. Cohen, and H. J. Levesque. The adaptive agent architec-

ture: Achieving fault-tolerance using persistent broker teams. InProceed-

ings of the Fourth International Conference on Multiagent Systems (ICMAS-

00), pages 159–166, Boston, MA, 2000. IEEE Computer Society.

[23] J. Lee, M. J. Huber, E. H. Durfee, and P. G. Kenny. UM-PRS: An imple-

mentation of the procedural reasoning system for multirobot applications. In

Proceedings of the AIAA/NASA Conference on Intelligent Robotics in Field,

Factory, Service, and Space, pages 842–849, 1994.

[24] J. Lee, M. J. Huber, P. G. Kenny, and E. H. Durfee. UM-PRS: An imple-

mentation of the procedural reasoning system for multirobot applications.

62

In Proceedings of the Conference on Intelligent Robotics in Field, Factory,

Service, and Space (CIRFFSS-94), pages 842–849, 1994.

[25] N. Lesh, C. Rich, and C. L. Sidner. Using plan recognition inhuman-

computer collaboration. InProceedings of the Seventh International Con-

ference on User Modelling (UM-99), Banff, Canada, 1999.

[26] MÄK Technologies. VR-Forces. http://www.mak.com/vrforces.htm, 2006.

[27] S. C. Marsella, J. Adibi, Y. Al-Onaizan, G. A. Kaminka, I.Muslea, M. Tallis,

and M. Tambe. On being a teammate: Experiences acquired in the design

of robocup teams. InProceedings of the Third International Conference on

Autonomous Agents (Agents-99), pages 221–227, Seattle, WA, 1999. ACM

Press.

[28] A. Newell. Unified Theories of Cognition. Harvard University Press, Cam-

bridge, Massachusetts, 1990.

[29] L. E. Parker. ALLIANCE: An architecture for fault tolerant multirobot co-

operation.IEEE Transactions on Robotics and Automation, 14(2):220–240,

April 1998.

[30] Ritter, F. E., G. P. Morgan, Stevenson, W. E., and M. A. Cohen. A tutorial

on Herbal: A high-level language and development environment based on

protï¿1

2
ï¿1

2
for developing cognitive models in soar. InProceedings of the

14th Conference on Behavior Representation in Modeling and Simulation.

2005.

[31] Soar homepage. http://sitemaker.umich.edu/soar/home/, 2006.

[32] M. Tambe. Towards flexible teamwork.Journal of Artificial Intelligence

Research, 7:83–124, 1997.

[33] M. Tambe, W. L. Johnson, R. Jones, F. Koss, J. E. Laird, P. S. Rosenbloom,

and K. Schwamb. Intelligent agents for interactive simulation environments.

AI Magazine, 16(1), Spring 1995.

63

[34] M. Tambe, G. A. Kaminka, S. C. Marsella, I. Muslea, and T. Raines. Two

fielded teams and two experts: A robocup challenge response from the

trenches. InProceedings of the International Joint Conference on Artificial

Intelligence (IJCAI-99), volume 1, pages 276–281, August 1999.

[35] M. Tambe, D. V. Pynadath, N. Chauvat, A. Das, and G. A. Kaminka. Adap-

tive agent integration architectures for heterogeneous team members. In

Proceedings of the Fourth International Conference on Multiagent Systems

(ICMAS-00), pages 301–308, Boston, MA, 2000.

[36] M. Tambe and W. Zhang. Towards flexible teamwork in peristent teams. In

Proceedings of the Third International Conference on Multiagent Systems

(ICMAS-98), 1998.

[37] W. A. van Doesburg, A. Heuvelink, and E. L. van den Broek. Tacop: a cog-

nitive agent for a naval training simulation environment. In Proceedings of

the Fourth International Joint Conference on Autonomous Agents and Multi-

Agent Systems (AAMAS-05), pages 34–41, New York, NY, USA, 2005. ACM

Press.

[38] A. Yakir, G. A. Kaminka, D. Erusalimchik, and N. C. Nov. Anintegrated de-

velopment environment and architecture for soar-based agents. InInnovative

Applications of Artificial Intelligence (IAAI-07), 2007.

[39] J. Yen, J. Yin, T. R. Ioerger, M. S. Miller, D. Xu, and R. A. Volz. CAST:

Collaborative agents for simulating teamwork. InProceedings of the Inter-

national Joint Conference on Artificial Intelligence (IJCAI-01), pages 1135–

1144, 2001.

64

