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Chapter 1

Introduction to the thesis

This thesis explores novel challenges in development ¢xecaf team oriented
programs in dynamic, complex domains. Examples of such @@raclude:
MAK Virtual Forces, a platform used in Simulation and Traigiapplications;
USARSIm, Gamebots and SoarBots in Unreal Tournament usetdasimula-
tion of various types of agents, and for the simulation ofgitgl Robots in the
rescue domain; and Player/Stage environment for the stionlaf various robots
including pioneer and rv400 autonomous vacuum cleaners.

The first part if this thesis introduces collaborative mamance goals to team-
work architectures. We propose collaborative task and temimtenance as an
innovative mechanism, alternative to sequences of godliewment and indi-
vidual maintenance. We show its benefits in comparison teraéwalternative
methods, and provide results from the various domains.

The second part of the thesis describes the pre-deploymeistaf develop-
ment for multi-agent teams. We dive into our developmenirenment (IDE),
showing state-of-the-art facilities such as refactoring testing for agent appli-
cations. Our IDE is object-oriented, facilitating coding the use of pre-made
templates, re-usability of components such as plans aral/lel, instead of wiz-
zards and graphical means of programming.

Both parts of this thesis where published, the first "Toward$aBolative Task
and Team Maintenance" was presented in AAMASO7 [20] , ancg#oend "An
Integrated Development Environment and Architecture foarBased Agents”
was presented in IAAIO7 [38].



Several additionl papers which use the recipe mechanissepted in this
thesis for the DIESEL Architecture were published: "Soc@hparison for mod-
eling crowd behavior" by Fridman & Kaminka AAMAS 2007 [16]&hCompu-
tational Load and Performance in Integrated Multi-Agerieittion recognition”
by Nirom Cohen-Nov & Gal A. Kaminka presented at BISFAIO7.



Chapter 2

Towards Collaborative Task and
Team Maintenance

2.1 Chapter Abstract

There is significant interest in modeling teamwork in agelmsecent years, it has
become widely accepted that it is possible to separate teakfnom taskwork,
providing support for domain-independent teamwork at ahitectural level, us-
ing teamwork models. However, existing teamwork modelsh(ta theory and
practice) focus almost exclusively on achievement goald ignoremaintenance
goals where the value of a proposition is to be maintained ovee tiBuch main-
tenance goals exist both in taskwork (i.e., agents takeracto maintain a condi-
tion while a task is executing), as well as in teamwork (agents take actions to
maintain the team). This chapter presents a mechanismelfaborative mainte-
nance in both taskwork and teamwork, allowing for flexibleston of the main-
tenance protocol. The mechanism is integrated and evdluatevo teamwork
architectures for situated agent teamsegEL , an implemented teamwork and
taskwork architecture, built on top of Soar, &BIdE’'M , an architecture for phys-
ical behavior-based robots. We provide details of theséamentations, and the
results from experiments demonstrating the benefits of atifipr collaborative
maintenance processes, in several dynamic rich domainshdve that the use of
collaborative maintenance leads to significant improvameitask performance
in all domains.
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2.2 Introduction

In recent years, it has become widely accepted that it isiiples® use machine-
executable teamwork models to automate collaboration atreimtectural level.
Such models separate teamwork from taskwork, allowing gpayer of a team
of agents to focus her efforts on programming the skills amu\tedge necessary
for the specific task. Executable teamwork models have bidered successfully
in synthetic agents for training and simulation [32], rab®{29, 14], industrial
distributed systems [12], and collaborative user interf@5].

However, existing models only account for a subset of phemamassociated
with teamwork. Specifically, existing teamwork models fe@almost exclusive
on achievement goalsvhere the value of a proposition is to be changed from
its current settings to another. Agents form a team and agmea task to be
executed (goal to be reached, i.e., proposition to hold mestuture state), and
then dissolve the team once the task is completed. Sequehtzesks are carried
out by constant dissolving and re-formation of the team iestjon, per task [36].

Human and synthetic teams, however, must also tacidetenance goals
where the value of a proposition is to be maintained over.ti&weh maintenance
goals exist both in taskwork (i.e., agents take collabeeatictions to maintain a
condition while a task is executing), as well as in teamwakk ,(agents take ac-
tions to maintain the team). Examples of maintenance godtaimwork include
robust service maintenance [22, 21] and continual taslcaiion [29]. Exam-
ples of maintenance goals in taskwork includes contindatimation sharing and
monitoring for robotic formations [1]. Architectures thamly address achieve-
ment goals are not sufficient for handling maintenance goals

We use an example of taskwork maintenance to illustrate.e Heteam of
agents consists of multiple agents that follows a leaderdistance. This is a
simplified version of familiar robotic formation-mainteree tasks (e.g., [1]), or
the convoy task, often used in theoretical studies of teatkyeg., [4]). Existing
teamwork architectures, based on teamwork theory [4]) Javbave the followers
communicate with the leader (or otherwise monitor it) tabksh mutual belief
that the distance is correct or incorrect (goal achievednacchieved). Based on
failures, corrective actions could be taken, which in essegactto the failures
of the robots. Similar cases occur in maintenance of teakwor
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But a different—and more efficient—approach would have thieviers and
leader takgroactiveactions to maintain the distance, before it becomes tod.grea
For example, the leader may communicate its position tooitswers, to help
them speed-up or slow-down incrementally, such that thawit® never goes out
of bounds. The point is that here communications occur whaetaining a con-
dition, rather than when it unmaintained. With very few epto@ns (see Section
2.3), existing teamwork theory and teamwork architectweshot account for
such communications.

We addresses maintenance goals in situated agent teammsafra@rchitec-
tural perspective. First, we show how to integrate mainteaaonditions into a
behavior-hierarchy, used for controlling each individagéents. Building on this
infrastructure, we present several contributions: (i) @ima@ism forcollaborative
maintenance of taskwork conditions by team-members, ailpthem to flexibly
select different maintenance protocols; (ii) the re-usthisf mechanism to main-
tain teamwork-structure conditions; and (iii) the integya of this mechanism in
two teamwork architectures, for different tasks.

We evaluate these contributions in two different teamwathigectures, and
in different environments: [ESEL , implemented on top of Soar [28] and used
in virtual worlds, andBITE'M , an extended version &ITE [14, 15], used for
controlling teams of physical robots. We report on expentaesvaluating the
use of collaboratively-maintained maintenance cond#ioncontrast to existing
approaches, using either achievement goals, or indivithaa&htenance processes.
We show that the collaborative maintenance mechanism teaignificantly im-
proved performance in different tasks and domains.

2.3 Related Work

Duff et al. [5] have recently proposed a model of proactivalgoaintenance
for BDI agents, similar to the one we present in this work. Theark focuses
on extending the BDI architecture for a single agent. In @stirthe model we
propose allows modeling @ollaborative goalsmodeling the joint responsibility
of teammates to proactively or reactively maintaining aditbon; Thus our work
is @ more general case. Moreover, we show how to utilize sedaborative
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maintenance to also address maintenance of team organizedther than only
task-related conditions.

Focusing on teamwork architectures, we note that most halyeatiowed for
achievement goals. We therefore focus here only on thosenthve addressed
maintenance goals to some extent.

Kumar and Cohen [22, 21] extended the theory of Joint Intestio include
maintenance. They define the goal of maintainires follows:if the agent does
not believep, it will adopt the goal thaty be eventually true The maintenance
goal is persisten®P{itG) if p is believed false at least until the agent either believes
that it is impossible to maintain or that the maintenance goal is irrelevant.

While we build on the theoretical developments of [22, 21]r work dif-
fers significantly. First, we extend maintenance of teamcstire to hierarchical
teams, including team-subteam relations. We also add@ssngaintenance in
hierarchical task decomposition. Second, our implememtstin DIESEL and
BITE'M allow for arbitrary, context-dependent protocols (somesyng commu-
nications, some not) for collaborative goal maintenandeere Kumar et al. have
used a fixed protocol. Finally, while Kumar and Cohen’s work haen applied
to teams of web services, our focus is on modeling synthetindns in virtual
environments, and in robotic tasks.

STEAM [32], implemented in Soar [28], focuses for the most pa achieve-
ment goals. However, a first step towards extending STEAMitd&maintenance
goals was introduced in [36]. Here, maintenance is adddesseugh persistence
in the commitment of agents to the team, while executingla tesur categories
of teams are introduced: PTPM, a persistent team consistipgrsistent mem-
bers; PTNM, a persistent team consisting of non-persistarhbers; NTPM, a
temporary form of a team consisting of persistent memberd;NirNM, a tem-
porary form of a team consisting of non-persistent membgnss work was the
first to discuss reorganization (team hierarchy mainte@gin@a team, i.e., PTNM.

To enable persistent teams in STEAM, agents individualsoa about ex-
pected team utilities of future team states, to decide ontiodwest maintain the
team in face of intermittent failures in teamworkIH3EL , described in this the-
sis, deals with PTPM teams, i.e., persistence of team steictVe refer to this as
teamwork maintenance. However, in contrast to [36E$¥L andBITE'M also
address collaborative maintenance in tagkskivork maintenange Moreover,
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we propose a single mechanisms for both, and offer flextiithe designer and
agents in deciding on protocols and behaviors to be usectfprely and reac-
tively.

CAST [39] addressed the issue of proactive information exghaamong
teammates, using an algorithm called DIARG, based on Petrsinectures.
CAST shows the importance of team communication regardifoyrimation that
might assist task achievement for individual members inoagiive manner, and
aim to reduce communication. This approach, based on tleetieé Joint In-
tentions, does not include maintenance of goals. In pdaticGAST’s communi-
cations focus on informing other teammates of discoverets fdnat may trigger
preconditions. The use of communications (or other aclitmsiaintain currently
existing tasks is not addressed.

ALLIANCE [29] is a behavior-based control architecture feed on robust-
ness, in which robots dynamically allocate and re-allothénselves to tasks,
based on their failures and those of their teammates. ALIGENffers continual
dynamic task allocation facilities, which allocate andaitcate tasks to agents
while they are collaborating. It uses fixed teams, in the se¢hat addition and
removal of robots from the team is handled by human interearand it assumes
that robots can monitor their own actions, and those of sti@ur work differs in
that we focus on maintenance not only of assignment of ageniésks, but also
of the joint execution itself.

2.4 Maintenance In Teamwork

We propose a new architectural mechanism that allows thareatton of main-
tenance both of the team structure and of the behavioraitster The architec-
ture extends structures common to situated agent aralnésctand the algorithms
used with these structures.

We begin by taking a brief look at the structures and algor#thof existing
teamwork architectures, that do not support maintenarei(® 2.4.1). We then
show how these are extended to support maintenance (Se@cti®). These ex-
tensions require significant changes to the underlyingrobldop of the agents,
and to the parallelism it must support.
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2.4.1 Existing Situated Agent Teamwork Architectures

We begin by a brief overview of situated agent control, updmclv the mainte-
nance mechanism is based. Modern Belief-Desire-IntenB@i)(and behavior-
based control architectures utilize a connected, diregtagh, that defines a li-
brary of behaviors or actions by which agents achieve theatsgy Nodes in the
graph denote atomic or complete actions (behaviors), agelsesignify decompo-
sition or temporal relations between them. A control aldponi selects actions for
execution, based on the currently executing behaviorstledorld state.

Structures

We follow [14, 15] in formally defining dask behavior graphas an augmented
connected graphB, S, V, by), where:

e Bis aset of vertices. Each vertexihis a goal-achieving controller, called
abehavior(in Soar,operator. Each behavior has preconditions which en-
able its selection (the agent can select between enabledibes), and ter-
mination conditions that determine when its execution nbasstopped (if
previously selected).

e S andV are sets of directed edges between behavi®rs { = 0).

e Sis a set osequentiakdges, which specify temporal order of execution of
behaviors. A sequential edge frdmto b, specifies thak; must be executed
before executing,. A path along sequential edges, i.e., a valid sequence of
behaviors, is called aexecution chain

e V is a set of verticatask-decompositioedges, which specify how a con-
troller can be decomposed into execution chains contaminigple lower-
level behaviors. Sequential edges may form circles, butcatiedges can-
not. Thus behaviors can be repeated by choice, but canndtelirecivn
ancestors.

e by € Bis abehavior in which execution begins.
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We allow for reactivity: A behavior is not always selectedantts predecessor
terminates. Instead, the agent’s control process may ehtooselect a different
behavior that is selectable (as long as it is a first child chetive parent).

This type of structure, possibly with some minor variatioappears as the
basis for many situated agent architectures (e.g., [2428]).,, It is referred to as
arecipe[9], a plan hierarchy[32], or behavior grapH14, 15]. We will use these
terms interchangeably.

An example recipe is shown in Figure 2.1. Vertical edgesiSigtecomposi-
tion (i.e., from a behavior to sub-behaviors needed to erdtyihorizontal edges
signify temporal ordering, from a behavior to those thatutiadeally imme-
diately follow it. Here, the recipe has two nodes calegblore-decision and
explore-movement. As a rule, we read recipes left to right: Thagplore-
decision is considered the first child. Only once it terminates, eaplore-
movement be selected.explore-decision has two first children, i.e., two al-
ternative decompositions. Only one of them is to be seleftiedxecution at a
given time.

< expl or e- deci si on >——}< expl or e- novenent >
< el abor at e-t ar get >< el abor at e- no-t ar get >

Figure 2.1:An example recipe.

To maintain knowledge of the organizational structure ef tdam, a second
structure—team hierarchy—is often used in architectures that support situated
teamwork, such as TEAMCORE [35], MONAD [6] arBITE [14, 15]. This
structure is a tree, in which internal nodes represent anfgeand leaves denote
individual agents. Edges represent team-subteam redatidithough teamwork
architectures differ in how they achieve this, they utilizes structure to automat-
ically determine which agents are parts of which subtearthaovhen a behavior
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is selected by an agent, this selection is automaticallydinated with the other
members of the team. This is done by maintaining a pointen fach behavior,
to the team-hierarchy node that is associated with it. Meishas for such auto-
mated coordination are described elsewhere ([12, 32]). dbesf here on a brief
description of the team hierarchy structure itself.

A team hierarchys a DAG (Directed Acyclic Graph) whose vertices are asso-
ciated with sub-teams of agents, and whose edges signifyesu-membership
relationships [35, 6]. Several vertices appear in any argdion hierarchy:
Given the complete set of robot team-membRrsa vertex corresponding t8
(and representing the entire organization) is a part of ibealchy, as are all
the singleton set$r; }, wherer; € R. Other vertices correspond to multi-robot
sub-teams of robots i and are connected such that if there exists an edge
(R1, Ry), thenR, C R;. The team hierarchy thus forms a partial lattice, from
the root teank which includes all team-members, to sub-teams correspgndi
each of the members by itself (i.e., to the individuals indhganization). To allow
behaviors to reason about the organizational unit respEn®r their execution
(and vice-versa), BITE uses bi-directional links betweentiehavior graph and
the team hierarchy. A link from a behavif¥; points to a sub-tearm?; (and back)
if B; is to be jointly executed byg;.

We note in passing thaITE maintains a third structure, holding a set of
social interaction behaviorsvhich control inter-agent interactions. Interaction
behaviors typically control communications and executeqmols (e.g., voting)
that govern coordinated activity. For instanceyachronized selectioralgorithm
is triggered when new team behaviors are selected for eracuh particular
when a decision is to be made between several sequentisitivas. See [14, 15]
for additional details.

Control Algorithm for Goal-Achieving Agents

In [14, 15], each of the robots executes Algorithm 1, usisgin copy of three
structures, a behavior grapts, S, V, by), a team hierarchy’ and an interaction
behaviors se©?!. The control loop executes behavior stack-root behavior to

The key novelty inBITE is its micro-kernel design, in which all protocols for coirating
multiple robots are taken out of the system, and are madeaifibyary from which the user (the
deployer of a robot team) can choose protocols, mixing thémmthe same task (but not within
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leaf—where top behaviors on the stack are executed sinadtesty with their
currently selected children.

Execution begins by pushing the initial behavior of the grap the execution
stack (lines 1-2). Then the algorithm loops over four phasesder:

1. It recursively expands the children of the behavior,cting them to sub-
teams if necessary (lines 3a—3c).

2. It then executes the behavior stack in parallel, waitorglie first behavior
to announce termination (lines 4a—4c). All descendants tefrminating
behavior are popped off the stack (i.e., their executionss terminated—
line 4b).

3. A synchronized termination takes place (line 6). Thismesult in a newly-
allocated behavior within the current parent context, inclvitase, it will
be put on the stack for expansion (line 7).

4. Otherwise, this indicates that the robot should selentd®n any enabled
sequential transitions from the terminated behavior ¢lid@-8e). This pro-
cess normally results in new behaviors put on the stack,teerda final goto
(line 9) back to line 3 begins again.

The recursive allocation of children behaviors to sub-teamines 3a—3c re-
lies on the call to thedllocate() procedure. It takes the current execution context
(i.e., current stack, available children), and then cdiks appropriate social in-
teraction behavior irD (linked from the current parent) to make the allocation
decision. The current execution stack is used to help guldeations, e.g., by
conveying information about where in the behavior graphathecation is tak-
ing place. In addition, the interaction behavior is giveness to any links from
the parent behavior to the team hierarchy, e.g., to determbrether any children
task-behaviors are already pre-allocated. Once a finatatltin is determined,
Allocate() is responsible for updating the links from the behavior brépthe
team hierarchy (and vice versa) to reflect the allocatiothdh returns, for each

the same behavior) as she sees fit. ThUBIFE , unlike previous architectures, the designer can
tell a team of robots to use a bidding protocol to decide oir Hesignments to roles in a forma-
tion, and a different protocol to assign themselves ottekstaThese protocols and coordination
procedures are grouped togetheirdasraction behaviors
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Algorithm 1 Control

Input: behavior graplB, S, V, by), team hierarchy/’, interaction behaviors sél

1. sg < bo /l initial behavior for execution
2. pushsy onto a new behavior stack.
3. while sg is non-atomic // has children
(@ A «— {b;}, s.t.,(so, ;) is a decomposition edge
(b) if A has only one behavidr, push(G,b).
(c) elseb —AllocatdG, sg, A, T, O), push(G,b).
(d) sg < D.
4. execute in parallel for all behaviobson G: // Execution

() executs; until it terminates
(b) whileb; # top(G), pop(G)
(c) break parallel execution, goto 5.

b < pop(G) Il Terminate joint execution
c —TerminatéG, b, T, O)
if c# NIL, push(G,c)

© N o O

else: // Select next behavior in execution chain
(@) Let@ « {s;}, s.t.{(by, s;) is a sequential edge
(b) if @ is empty, goto 5 // terminate parent
(c) if @ has one element push(G, s)
(d) elses «—DeciddG, by, Q, T, O)

(e) sp — s

9. If G not empty, goto 3.
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robot, the child behavior for which it is responsible as dirthe split sub-team
(or individually, if the sub-team is composed only of theividual robot).
Synchronized termination (line 5-7) and selection (lines&) similarly rely
on calls to the procedur@&rminate() andDecide(), respectivelyT erminate()
is responsible for evoking the execution termination ia¢&on behavior, which
can return a new child behavior for execution under the ctarparent. |If
it doesn’t, then the next behavior in the execution chaintnimesselected by
Decide(), which calls a synchronization interaction behavior. 8isgnchronized
selection involves all members of the current sub-teanessal together, this be-
havior would normally communicate with the members of the-sam assigned
to the terminated behavior. Note that in step 8b we also leathél case where no
more behaviors are available in the execution chain. Thie s@gnals a termina-
tion of an execution chain, which in turn signals terminataf the parent, thus
the branching back to line 5.

2.4.2 Collaborative Maintenance Behaviors

To allow situated agent architectures to work with mainteegoals, rather than
only achievement goals, several extensions are requirdideio structures and
algorithms. These are described below.

Extending the Behavior Graph

To represent conditions to be maintained during executianadd a third type

of condition to the preconditions and termination condisialready associated
with each behaviorMaintenance conditionare propositions whose value is to
be maintained throughout the lifetime of the behavior. Scmditions can be a
conjunction or disjunction of predicates (referred to asngs).

Maintenance conditions can typically be maintained in onevo ways: By
taking proactive actions to maintain the condition truej by taking reactive ac-
tions when the condition becomes false. The latter optieadtive maintenance)
is similar in spirit to the use of a sequence of achievemetb@E in order to
maintain a condition. However, the former type has no suwatstation. Thus the
two types are different, and indeed, must be distinguishede definition of the
behavior.
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To maintain the condition, we allow the definition of mairaece behaviors,
which are to be associated with specific maintenance conditand with specific
types of maintenance (reactive or proactive). If a reaatia@ntenance behavior
is defined, then the architecture will trigger it once the memance condition
breaks. If a proactive maintenance behavior is defined rtdtgtacture will trigger
it once the behavior is selected, so that it execute whileotigénal behavior is
running.

Maintenance Behaviors in a Behavior Graph. This association of mainte-
nance behaviors to maintenance conditions on goal-aclydwehaviors essen-
tially adds a third type of edges to the behavior graph. Intemidto the sequen-
tial and decomposition edges previously discussed, a b@tgraph now includes
maintenance edgeshich connect maintenance behaviors to goal-achieving be
haviors.

Formally, theextendedask behavior graph is an augmented connected graph
tuple (B, M, S, V, MV, by), where:

e B is a set of vertices representing goal-achieving behayasbefore).

e M is a set of vertices representing maintenance behavioeseshn M =

0.

e S,V and MV are non-intersecting sets of directed edges between behav-
iors. S,V have been previously discussed. EdgesVifv always take
the form (b, m), whereb € B, andm € M. The existence of an edge
(b,m) € MV, from a behaviob to a maintenance behavior implies that
m may be selected to maintain a maintenance conditioin on

e by € B is abehavior in which execution begins.

The existence of several edgésm;), wherem; € M andi > 1 implies
thatall of the maintenance behaviors; may be executed. To force selection
between alternatives, a single maintenance behavijoran be decomposed into
sub-behaviors, as is done with the goal-achieving behayi@viously discussed.
Indeed, all the usual semantics of the different edge tygres the constraints on
their use within the graph, remain in effect. Notice that welieitly prohibit

21



maintenance behaviors from having maintenance behawinied to them, as in
practice we found this to be of little use.

Though the use of maintenance conditions in integratedtanthres is rare,
the key novelty described in this thesis is the ability tospecificteam behaviors
to these conditions. The behaviors will be triggered autarably by DIESEL or
BITE'M , to be executed jointly, in a coordinated manner, by the teasubteam
associated with the behavior. It thus becomes possibldiabopatively maintain
a condition, rather than individually.

For example, suppose a behavi®that moves the agents around has a main-
tenance condition on it to maintain visual tracking of thader. Becausés is
a team behavior, it will be executed by the leader and thevidt jointly. As
a result, both leader and follower are mutually responditstenaintaining the
condition. The maintenance behaviaf then becomes itself a team-behavior, to
be executed jointly by the leader and follower even as theyeaecutingB (i.e.,
move around). An example of such a maintenance behavior magy the leader
continually communicate its current position, and thedwkr orienting itself to-
wards this position.

Maintenance of the Team Hierarchy. Just as task-execution behaviors can
have associated maintenance conditions, so can the teeandhig be maintained
by the use of team-maintenance conditions. As in the beh&iwgoarchy, these
conditions are a set of conjunctions and disjunctions ofligeges (referred to as
events), needed to be maintained or denied throughout #heutan of a task.
Since maintenance operators act in order to maintain algjedsiam state, they
are suited to allow team reconfiguration, all under the saatvork mechanism.
For example, if during the execution of a recipe sub-tree dritical to maintain
the number of teammates in the group fixed, such a team-maimte condition
could be easily defined, and the teamwork mechanism, cam aatn if such a
condition fails, by joining a new team, recruiting new agemt even merging two
teams. All whilst continuing execution of the mission.
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Control Algorithm with Maintenance

The control algorithm using the extended task behavior lgrageds to be ex-
tended as well, to execute the maintenance behauoparallel to any goal-
achieving behaviofs As with BITE , each of the agents in the team executes
its own copy of the control algorithm, and its own copy of tix¢eded task be-
havior graph.

Algorithm 2 accepts an extended task behavior grdph\/, S, V, MV, by), a
team hierarchyl’, an interaction behaviors sét and an execution stack. As
with Algorithm 1, the control loop executesbehavior stack-root behavior to
leaf—where top behaviors on the stack are executed sinadtesty with their
currently selected children.

However, unlike Algorithm 1, Algorithm 2 recursively crestnew execution
stacks for maintenance behaviors, and thus runs multiptkstof executing be-
haviors in parallel. One way to think about the differencénaen the two al-
gorithms is this: While Algorithm 1 maintains a stack of rumgpithreads, Algo-
rithm 2 maintains a thread tree, where threads can spawar{grdeveral children
threads in parallel; each path of decomposition edges a@stack.

Execution begins by pushing the initial behavior of the grap the execution
stack (lines 1-2). Then the algorithm loops over four phasesder:

1. Itrecursively expands and allocates the children of abeh While doing
so, parallel control loops are being initiated for all maimince behaviors
(lines 3a—3f).

2. It then executes the behavior stack in parallel, waitorglie first behavior
to announce termination (lines 4a—4c). All descendants tefrminating
behavior are popped off the stack (i.e., their executiod,tha maintenance
control loop, is also terminated—Iline 4b).

3. A synchronized termination takes place (line 6). Thismemult in a newly-
allocated behavior within the current parent context, inchittase, it will
be put on the stack for expansion (line 7).

2We thank Dan Erusalimchik for making this observation, amdihplementing thé8ITE'M
version of this algorithm
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Algorithm 2 Control with Maintenance

Input: behavior graphiB, M, S, V, MV, by), team hierarchy’, interaction behaviors set
O and execution stadi

1. sg < bg /l initial behavior for execution
2. pushsg onto stackG.

3. while sg is non-atomic // has children or maintenance behaviors

(@) A < {b;}, s.t.,(s0, ;) is a decomposition edge V/
(b) G0
(c) forall {m;|(so,m;) € MV}
i. create new execution stagk

i. G —G U{¢

iii. Recursively callControl with Maintenance with the inputs:
behavior grapi B, M, S, V, MV, m;)
team hierarchyf”
interaction behaviors séx
execution stack’
(d) if A has only one behavidr, push(G, (b, G")).
(e) elseb —AllocatgG, sg, A, T, O), push(G, (b, G")).
(f) sp < .

4. execute in parallel for alb;, G')) on G: // Execution

(a) execute; until it terminates

(b) whileb; # top(G), pop(G)

(c) break parallel execution, goto 5.
b < pop(G) Il Terminate joint execution
c «—TerminatéG, b, T, O)
if c # NIL, push(G,c)

© N o O

else: // Select next behavior in execution chain
(@) Let@ « {s;}, s.t.{(by, s;) is a sequential edge
(b) if @ is empty, goto 5 // terminate parent
(c) if @ has one element push(G, s)
(d) elses «DeciddG, by, Q, T, O)

(e) sp — s

9. If G not empty, goto 3. 24




4. Otherwise, this indicates that the robot should selentd®n any enabled
sequential transitions from the terminated behavior ¢lid@-8e). This pro-
cess normally results in new behaviors put on the stack,teerdd final goto
(line 9) back to line 3 begins again.

The recursive allocation of children behaviors to sub-teamnlines 3a—3f re-
lies on the call to thedllocate() procedure. As with Algorithm 1, it takes the
current execution context (i.e., current stack, availablgdren), and then calls
the appropriate social interaction behaviorin(linked from the current parent)
to make the allocation decision. The current executiorkstaased to help guide
allocations, e.g., by conveying information about wherthmbehavior graph the
allocation is taking place.

However, in step 3c, a significant departure from Algorithiocturs, as new
execution stacks are created—and execution thereofigtedt—for maintenance
behaviors. This effectively triggers independent, patadixecution of these main-
tenance behaviors on tlgéstack. In order to associate these stacks with the goal-
achievement behavior that triggered them, they are celietrigether in the set
G', and are associated with the behavior as it is pushed onable(t

2.5 Two Implementations

We have implemented the maintenance mechanism descriloed abtwo dif-
ferent architectures. IBSEL , built on top of the Soar integrated cognitive ar-
chitecture [28], was built from the ground up with collabira maintenance in
mind. The other implementation revisited tBETE behavior-based multi-robot
architecture [14, 15], and extended it to support maintea&ehaviors, creating a
new architecture calleBITE'M (BITE with Maintenance). The two architectures
were used in very different settings, and this serves asreil of the general-
ity of the mechanism: It was successfully integrated in boilee describe the
implementations below.
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2.5.1 DIESEL

We use Soar for the implementation of our architecture. Waid®@mprehensive
description of Soar is beyond the scope of this section, weige a brief overview
here. Soar is a general cognitive architecture for devetppystems that exhibit
intelligent behavior [28, 31]. It is a rule-based (prodantrules) language. Soar
uses parallel, associative memory (the rules), along sgtah-structured global
working memory, which all rules can access and modify. Abbkiedge relevant
to the current problem is identified and brought to bear \eerthes. These trigger
the proposal, selection, execution, and termination ofaipes, which are also
implemented using rules. Soar has belief maintenance ghraucomputation-
ally inexpensive truth maintenance algorithm. Delibenatin Soar is mediated
by preferences, which allow agents to bring knowledge to bearder to make
decisions. Soar recognizes conflicts (impasses) in sefektiowledge and auto-
matically creates subgoals (new state spaces) to resaviengpasses. Once an
agent comes to a decision that resolves an impasse, it sureshi@and general-
izes the reasoning during the impasse. This summary infismean be used by
an integrated explanation-based learning mechanism tooreatically create new
rules that chunk problem-solving results for future use.

The DIESEL teamwork architecture is implemented as a set of Soar nules,
ning as a separate mechanism on top of the underlying Solitexnture. The
complete DESEL engine is composed of approximately 100 Soar productidfis (I
THEN rules), of which 23 implement the recipe structure assbaiated mecha-
nisms, and 25 implement the basic teamwork capabilitiedyding team hierar-
chy, collaborative maintenance mechanisms, and basic comeations).

In DIESEL , maintenance behaviors (whether collaborative or indiaifare
triggered based on events (termination conditions), withregard to the behav-
ior (in Soar, operator) currently executing. Thus once tteg@mmmer writes a
maintenance operator for a predicaie¢he operator will be triggered to maintain
p regardless of which operator hasas a maintenance condition. This design
choice has the advantage that operators for maintainirdjqaries of interest can
be easily re-used within the agent code. However, the daddge is that this
leaves no room for flexible selection of maintenance opesatbhe same main-
tenance operators would be proposed, regardless of thatexecontext (current
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running operatorsBITE'M takes the inverse approach, as described below.

DIESEL has been applied in two separate virtual environments, @ndiffer-
ent tasks. It has been used in Soar agents for the GameBotsraneint [18],
an adversarial game environment that enables qualitadw®arison of different
control techniques. Figure 2.2 shows a screen-shot of Smartsin the Game-
Bots domain, running ESEL .

.. regmer:g__gl:‘:un F‘._:E‘t;r‘d__:_‘_r‘_ﬁl

a R S - ) R, B

Simd s cirn b 4 e e, o oTu

Figure 2.2:Soar agents in the GameBots environment, runninpIESeEL. Each
agent has limited field of view and range, and may move aboututn, grab
objects, etc.

2.5.2 BITE'M

BITE (Bar llan Teamwork Engine) is a behavior-based teamworkii@atures
for robots. Previous versions of it (without the mainterentechanisms) were
used in controlling Sony AIBO robots moving in formation [X&jgure 2.3). The
version we use here, call&TE'M (BITE with Maintenance), was extended with
maintenance capabilities as described above. It is impieedefor the player-
stage system, a de-facto standard API for controlling dfie types of physical
and simulated robots [8], rather than only AIBOs; code rugmimthe simulation
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Figure 2.3: Sony AIBO robots moving in formation, controlled by BITE .
Taken from [14, 15]

can be used with few modifications on the physical robots.uféid.4 shows
a view of BITE'M -controlled robots moving in formation, in the player-stag
simulator.

The use oBITE (as opposed to the newBITE’'M ) in formation-maintenance
tasks has brought up the need for the integration of a mantmechanism
within the architecture. Most formation-maintenance atpms rely on visual
tracking of a leading robot, by its followers, to maintainxefi distance and angle
to the leader (see, for instance [1]). BATE , which only allowed for collabo-
rative achievement goals, such maintenance was alwaysatbhec, within the
controlling behaviors. As a result, formation-mainter&im®BITE did not exploit
the automated teamwork mechanisms in the architectureleBlaing robot took
no part in maintaining its distance from its followers.

However, once the maintenance mechanism is introducediit&’'M , then
all of a sudden a range of novel possibilities emerge. Faam®, it is now
possible to write the formation maintenance task in term®o$able angle, and
distance maintenance behaviors. Moreover, it is now plessibhaveBITE'M
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File View Action

Figure 2.4:Robots running BITE'M in the player-stage API. The robots form
a diamond. The lines mark visual field of view. Boxes with filled bocks show
the colors perceived by each robot.

automatically have the leader communicate its positiomls bther actions, such
that its followers can track it more easily. Moreover, th@iementation irBITE
allows to easily see the difference between individual asithborative mainte-
nance.

Figure 2.5 shows the behavior graph, social behaviors, aidtemance be-
haviors inBITE’'M , for the formation-maintenance task. Figure 2.5(a) shiwes t
behavior structures when using the collaborative maimeaanechanism. Fig-
ure 2.5(b) shows the same task, but with individual mainteaa The upper-left
corner of Figure 2.5(a) explains the notation: Solid linedicate structural links
(decomposition and sequence constraints); dashed lidesite pointers to social
behaviors, to be triggered whene®diTE'M triggers automated coordination (see
[14] for details, which are outside the scope of this thesis)

The behavior-graph for the task is in fact quite small. Tteeethree top-level
teambehaviors: Select-leader, Walk and Search. Select-leader is the first
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(b) BITE'M with individual maintenance behaviors.

Figure 2.5:Collaborative and individual maintenance behaviors inBITE .

behavior, where a leader for the formation is selected blicaimn-specific code.
Then, the team of robots jointly seledtéalk to begin the movement. The joint
selection ofWalk is carried out automatically by an appropriate social bairav
(separated by a dashed box, in the figures). If one of the sdads to monitor
the leader, then the team will jointly terminate this bebawand selec&earch
to re-organize. As possible decompositions of each of ttem® behaviors, the
robots may individually select behaviors based on the@.rol

In Figure 2.5(b), maintenance of the leader in sight, anchteaance of dis-
tance and angle to the leader, are all done through individaatenance behav-
iors (sf Watch Leader, Keep Angle, Keep Distance in the figufiene fact that
these are individual maintenance behaviors is establistradturally: They are
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tied to theSlave behavior, which is executed individually, as a decompaositi
of Walk. Here, it is strictly up to the followers, executing thesdndédors, to
maintain the conditions of the formation.

In Figure 2.5(a) these maintenance behaviors are tied rib¢tmdividual fol-
lower behaviors, but to the team behawdlalk. Automatically, the maintenance
behaviors are treated as team behaviors, and their exedsitibus synchronized
(by the same mechanisms that synchronize execution of thdarebehaviors).
Their elevation to the status of collaborative maintendoeleaviors offers new
possibilities for maintenance, e.g., the use of commuioicdty the leader. These
increased options are the reason for the many additionaMi&is in Figure 2.5(a)
as compared to 2.5(b).

2.6 Evaluation

To evaluate the contribution offered by the introductioncoflaborative main-
tenance in DESEL andBITE'M , we conducted a number of experiments with
both architectures, each in its respective applicationrenment. Together, the
application of the mechanisms to a variety of domains pmwdidence for its
usefulness as a general architectural component.

The experiments were designed to answer a number of hymsthes first
set of experiments (Section 2.6.1) provides evidence thedactive maintenance
mechanism (which acts to preserve the value of the mainteneondition be-
fore it is falsified) is preferable to the use of reactive msges to the breaking
of the maintenance condition. A second set of experimerdsti{@ 2.6.2) then
considers the hypotheses that collaborative maintenanpeeferable, and leads
to improved results, compared to individual maintenaneer{eusing the same
mechanism). A final set of experiments (Section 2.6.3) destnates how team
reconfiguration occurs using the maintenance mechanidmthgtteam hierarchy,
rather than the behavior graph.

2.6.1 Individual Achievement vs. Maintenance

The first set of experiments focused on establishing the itapoe of a proactive
maintenance mechanism (even for individual executionpared to the reactive
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use of a sequence of achievement actions to correct the sélo®intenance
condition. These experiments were carried out witBEEEL .

We built a small two-agent team in the GameBots domain [18&llliexperi-
ments, we used the same recipe (Figure 2.1), with minor dsangeded for each
scenario discussed. The recipe consists of exploratiomenvement. During the
exploration phase (behaviekplore-decisio)) one of the two child behaviors can
be proposedelaborate-no-targein case there is no available target present, and
elaborate-targetin case there are one or more. In the first case, the agent will
tilt its pan-zoom camera, scan or rotate, and in the secose, @abehavior will
summarize target data, and propose all available optiexglore-decisiois ter-
mination condition is that a target has been selected. Regplgcthis isexplore-
movemerns precondition. In this case, a child behavior will be in ®of all
movement actions taken by the agent in order to reallocse#f tb a given target
location.

Our first experiment examinesIBsEL 's explicit support for maintenance
goals, using the idea of task-maintenance behaviors tretuéx in parallel to
the task-achievement behaviors. In this experiment, tvemesgare placed side by
side on one end of a long corridor, closed off by walls at boitise One agent is a
leader, the other a follower. The leader runs until reackinegwall and then runs
back. The follower’s task is to run after the leader. In thdividual achievement
case, the follower will look for the leader whenever it losgght of it. In the
individual maintenance case, the follower will continugusient itself such that
the leader is centered in its field of view (regardless of finection in which the
follower is running).

We are prohibiting any communications at this stage, siheddsk is purely
individual for now. The follower will scan until it sees thedder, and run to-
wards it. During each time tick, if the follower agent sees lading agent, an
internal event gee-leaderis fired and logged. Each configuration was run 10
times. In each run, the simulation’s duration was about twautes in real-time,
approximately 9000 decision-sense-act Soar cycles andsiitonds in Unreal
Tournament clock-time.

The results from this experiment are summarized in Table W& use two
measures: The first column measures the percentage of uaadged across the
ten trials) in which the leader was seen, i.e., the maintemaonditions was in-
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% Time leader in sight # Behavior switches
Achievement 50% 6
Maintenance 66% 4.1
one-tailed t-test 0.01 0.001

Table 2.1: Individual achievement (reactive maintenaco@)pared to individual
proactive maintenance.

deed maintained. The second column measures the numbenafibeswitches

taking place on average, in each run. A reduced number ofvimehawitches is

one desired outcome of using maintenance behaviors in@leatask execution.
This reduces thrashing and allows for greater use of comeSbar and similar
architectures. The three rows correspond to the resultth&achievement con-
figuration, the proactive maintenance configuration, andeatailed t-test of the
statistical significance of the results.

The results clearly demonstrate the need for a proactivater@ance mecha-
nism. In both measures, the agents using maintenance (edidually) have
come up significantly on top, compared to the achievemehytaonfiguration.

Figure 2.6 shows the same results, from a different persgedt shows the
event's occurrence during the ten simulation runs. In the@@gThe X-axis shows
the time. The Y-axis separates the ten trials: Each dot stimsvpresence of the
see-leader event in memory, at the give time, for the givieh ffhe figure shows
that in all the experiments conducted without maintenaatter a short period of
time, the follower lost the leader. This is due to the chamgdiiection of the
leading agent (back to the start location after reachingahk®) which occurred
during the follower’s movement. In addition, sometimes whige follower agent
locates the leader right away, it is only for a short periodiof. This is due to
the fact that the leader agent chose its target and begamgitmwards it, exiting
from the follower’s line of sight before the follower had aatite to react. This
forced the follower agent to switch behavior, and re-lodatéarget.

Figure 2.7 shows 10 additional trials, this time when an iekghaintenance
condition was put in place. Here, we added an individual-tasintenance con-
dition to the recipe of the follower, instructing it to kedyetleader in focus while
moving. The figure shows that now, the follower agent no lorigees track of

33



10
- CRBINIIIIDENENRNNIISININNDNDENNDNND
9 4
COMImBEIMRImIRInInINeIDOI
8 -
- e . 4
s
.| L
Z 6
% g4 L ]
g 51
= OO SRR ERNINN L]
2 4
X L4 g J W
w3
g4
2 -
- k. J
l 4
L J
0 T T T T 1
0 10 20 30 40 50
Time

Figure 2.6: see-leader event logged by the follower agent. No maintenance
conditions.

the leader, since it actively pans to track the leader. Theni example of how
task related goals can be set apart from maintenance rejatdd, adding new
flexibility to behavior-based architecture and clarity he tode: It was achieved
without changing thexplore-movemerdr move-to-targebehaviors, allowing to
keep them simple and compact.

2.6.2 Collaborative vs. Individual Maintenance

The results in the previous section show the importance after@ance during
behavior execution. However, one could point out that nonteark is really be-
ing tested in these scenarios since no communication odowiion takes place.
Thus perhaps the improvements we are seeing in transibomdnly carrying out
achievement actions, to using the maintenance mechanisrirated to the in-
dividual. In other words, is there really any benefit to dotleative maintenance,
compared to individual maintenance?

This time, we us@ITE’M to answer this question. We have created two ver-
sions of aBBITE'M behavior graph, implementing a diamond-shaped formaton f
four simulated robots. In the collaborative maintenanesive (Figure 2.5(a)) the
simulated robots use collaborative maintenance, whetebletider takes respon-

34



-
o

¢ event active

Experiment No
O = N W b~ 00O N © ©
L L L L L Il L L

Time

Figure 2.7:Maintenance of thesee-leader event by the follower.

sibility for maintaining the distance and angle to its fallers, and communicates
its movements so that they can calculate their own new paositiln the individual
maintenance version (Figure 2.5(b)), the followers usenteaance behaviors to
visually keep track of the leader’s position, but the leadarot responsible for
this distance.

We conducted multiple trials usingITE'M in both individual and collabo-
rative maintenance configurations. We set up five obstaaleses, marked A
through E. In course A the simulated robots moved straigtitalbong fence, par-
allel to the movement direction, separated the right-maisdvt from the leader. In
course B, the leader took a sharp turn that caused it to bedalidotim the view of
the rear follower (it was occluded by the leftmost robot). GeuC was a repeat
of course A, but here the fence was missing portions in regoiarvals (forming
a kind of dashed fence). These caused the rightmost robep&atedly lose sight
of the leader, and then catch up with it again. Course D catbidtsimple move-
ment forward with no obstacles. Course E consisted of a segrhent forward,
then a 90-degree turn to the left, another short segmenthamndca 90-degree turn
to the right (all of this with no obstacles).

Each course was repeated 5-10 times in each configuratitbak@mtive, in-
dividual). We measured the time to complete the course, lamd\verage error in
maintaining the formation. This error was calculated bynexeng the distance
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Figure 2.8:Results from the BITE experiments: Maximum time in courses A
and B indicates that the experiment had to be stopped for laclkof progress.

between the actual position of each simulated robot, angdséion it should
have ideally maintained given the position of the leader.

Figures 2.8 and 2.9 show the results from these experimbantsoth figures,
the dark column shows the results of using collaborativenteaance, and the
light column shows the results of using individual maintece The vertical lines
on the bars mark standard deviations. The figures show tladitéourses, the use
of collaborative maintenance leads to significantly imgresults (see below for
a discussion of courses A and B). All results were found to geiicant using a
one-tailed t-test, except for the difference in time in gaUE, where no significant
difference was found.

In courses A and B, the individual maintenance versions oftals& could
not complete the course, and so these runs had to be stoppedrtiless, we
measured the positional error until the point in which thrawdated robots were
stopped. This lead to the seemingly contradictory resuait th course B, the
positional error was lower with individual maintenancerthaith collaborative
maintenance. This was because course B consisted of a \ay tsinn in which
necessarily positional errors increase. Since the indalichaintenance version
were stuck before the sharp turn, their position error apgazesmaller.

We stress the difference between individual and collab@&anaintenance
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Figure 2.9:Results from the BITE experiments: Position Error.

goals using another experiment withe3EL . Here, we chose a square-shaped
corridor, in which the leader could run indefinitely. Withesy turn, the leader
could potentially be blocked from the view of the followendathus the agents
had many opportunities to lose each other. Using individoaintenance, the
leader would not be responsible for maintenance of themtist#o the follower,
and it would be up to the follower to carry out all actions resay to maintain the
distance. In collaborative maintenance, both leader altmfer share the burden
for maintaining the goals of the team.

To see this, we manually introduced a failure into the sderayove, where
the follower was physically blocked from moving forward. Whthe follower
agent proactively seeks to maintain the presence of sde#leaents, the leading
agent uses reactive maintenance, meaning it acts only wiadnasm event drops.
In this failure case, once the follower stopped tracking Idaeler, the leader’s
positive-maintenance is proposed (even while it was heatbnits designated
target), and the leader waits.

Figure 2.10 shows the results of such a case. The figure showiseoX-
axis the passage of time (in Unreal Tournament seconds).Yddés shows the
distance between the follower and leader. With individuaintenance, the dis-
tance between leader and follower continue to grow aftefai@e occurs. How-
ever, with team maintenance, distance between both agekepi throughout the
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Figure 2.10:Distance between leader and follower, in cases of individliand
team goal maintenance.

artificially-introduced failure.

2.6.3 Teamwork Maintenance

The previous sections have evaluated the use of maintematieecontext of task
behaviors. One novelty in the mechanism we introduced isitican be re-used
for maintaining the team hierarchy in face of catastrophitufes to individual

agents. We call this teamwork-maintenance, to contrast tasgk-maintenance
described in the previous sections.

In the Unreal Tournament domain, To demonstrate team-gerzamnice in
DIESEL, we divided four agents into two groups, each consistingletder and
a follower. We defined a single team-maintenance condihaach team, stating
that each agent should have a coordinator at any given monherach team,
the coordinator was initially set to be the leading agenttebim A, consisting
of botl and bot2, it was botl, and in team B, consisting of bot8 lzot4, it was
bot3. This was part of the team-hierarchy for each agent. Bxtins followed
the same recipe previously described, with the two leadelspendently leading
their respective followers in constant movement along treidor.

To show teamwork maintenance in action, we deliberatelgk®d any con-

38



5000 A
4000 + /\ / — bot4-1
3000 M — bot4-3

distance

0 50 100 150 200 250
time

Figure 2.11:Maintenance of team hierarchy: Distance between bot4 and b8t
bot1.

tact with bot3 and hid it during the first half of the experirhefAs a result, bot4,

changed its coordinator, and began following botl, by jajrteam A. After run-

ning half of the experiment in such a manner, we removed tbekiig on the

original coordinator, bot3, thus allowing bot4 to fall battkits original team,

team B. Figure 2.11 shows the distance between bot4 and bat bedween bot4
and bot3. The figure shows how in the distance between botda@Bdthe hidden

leader) was greater than the distance between bot4 andthetal{ernate leader).
The situation is reversed once bot3 is seen again, and batghes back to its

original leader.

Switching teams in this example is achieved by a team-maamee behavior
(operator, in Soar), which manipulates bot4’s team-hamarThe behavior works
by checking whether at any given time a coordinator is urirable. If so, then
the behavior finds a new team in which there is a team coowtiaad change the
organizational membership of the agent to be a part of theradam. Since this
is only a maintenance behavior, as opposed to a regular foties, @xception is
resolved, the maintenance behavior is terminated, andanegrder is restored.

Another evaluation of Teamwork Maintenance, was achieyeth® collabo-
ration with Elbit Systems, Ltd. on the Smart Entities praje€lbit built several
enhancements based on the MAK simulation, called VRF(Mifoeces), aiming
for better Simulation and Training applicationsIH3EL was adopted as a mech-
anism for simulating synthetic teams executing elaboratads, while reacting
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Figure 2.12:Maintenance of team hierarchy: Response to events.

Stop — execution | Elaborate — Next No — Threat | Back — to — mission
avrg 2.0055 (sec.) 4.018833333 (sec.) 12.06416667 (sec. 2.014 (sec.
stdv 0.021473239 0.000408248 0.002136976 0

Table 2.2:Maintenance of team hierarchy: Response to threat, avrg andtdv
over 10 runs with 6 agent teams.

to changes in the environment. Figure 2.12 shows an Hebcgyatrolling over
such a generated team. The team responds to the event bipgpif and fleeting
towards closely found hiding places. After the danger isaesd, the team can
regroup, however, this is not mandatory. Individual agemis decide to abort
the mission. In such cases, Teamwork maintenance is useden i update the
Team hierarchy and continue executing the mission. Onlyatients included
in the new formed group will be updated from then on in regarihher team
communication, allocation and synchronization. The o#dgents, will continue
executing the mission individually.
Table 2.2, summarizes the results gathered from 10 scemnasaluring which
an helicopter intercepted the team planned route, and tatered on. The first
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Teammate — loss | Team — hierarchy — update
avrg 2.03 (sec.) 4.0202 (sec.
stdv 0.032449961 0.043014

Table 2.3:Maintenance of team hierarchy: Response to Team loss, avrg dn
stdv over 10 runs with 6 agent teams.

column shows the time passing from the moment the helicapdsrinitially up-
dated on any agent input-link to the time the last agent stdmxecuting the
mission. The second column shows the time passing from ttial iorake in the
mission execution to the moment the whole team splits andemtw response.
The third column shows the time passing from the moment treaths removed
and until the whole team regroups. The fourth column showstithe passing
from the team regrouping to the moment the whole team restingemission
execution. The time frames shown in Table 2.2 have beenatetiebefore sev-
eral communication optimizations where implemented, yoi@e can be sub-
stantially reduced. In this scenario team maintenancead tygice, once in order
to decompose the team and once to regroup it. However, thaesignificant
difference. Without team maintenance, Leaving the teamldvoequire a time
consuming process of agreements between team membersyegrpwigh an un-
derlying team maintenance mechanism, this is already te&es of. However,
While leaving the team requires no agreement, joining stds] since it uses the
regular team-protocol and thus takes longer. From thesdtsewe can conclude
than, that straight forward team maintenance, can be usedtsoes instead of a
heavy resource team protocol. This is shown in Table 2.3.

Table 2.3, summarizes the results gathered from 10 scamnasaluring which
a teammate was shot down. The first column refers to the tirsgiq@gfrom the
moment the teammate death was initially updated on any ageut-link to the
time the last agent stopped executing the mission. The dexalomn refers to
the time passing from the initial brake in the mission executo the moment
the whole team updated the team hierarchy. As expected Bauing the team
requires no agreement, the results are similar to thosedfoumable 2.2, on the
corresponding event.
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2.7 Conclusions and Future Work

This section argued for the introduction of a general meisinaifor collaborative
goal maintenance in teamwork architectures. We presenied & mechanism,
and described its integration within two implemented assftures for teamwork:
DIESEL, an architecture built on top of the Soar cognitive architex[28]; and
BITE'M , an architecture for controlling teams of behavior-basdmbts. We em-
pirically demonstrated that the use of proactive mainteadaads to improved
performance compared to reliance on achievement actitstsyaed as a reactive
form of goal maintenance). We also showed that the use cdlomative main-
tenance, in which all team-members take responsibilityrfamtaining the team
goals, leads to improved results compared to individualnteaance. Finally,
we showed how the maintenance mechanism can be used to imaihaeam
structure. This allows the programmer to focus more cleamlyachievement and
maintenance aspects of the task, and to separate completelysue of how to
maintain the team-structure in face of catastrophic faguiFuture work includes
exploring a diverse set of maintenance protocols for taskwod teamwork.
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Chapter 3

An Integrated Development
Environment and Architecture for
Soar-Based Agents

3.1 Summary

It is well known how challenging is the task of coding compésents for virtual
environments. This difficulty in developing and maintamitcomplex agents has
been plaguing commercial applications of advanced agehntdogy in virtual
environments. In this chapter, we discuss development afnantercial-grade
integrated development environment (IDE) and agent achite for simulation
and training in a high-fidelity virtual environment. Specdily, we focus on two
key areas of contribution. First, we discuss the additicsroéxplicit recipe mech-
anism to Soar, allowing reflection. Second, we discuss tieldement and usage
of an IDE for building agents using our architecture; therapph we take is to
tightly-couple the IDE to the architecture. The result iscanpletedevelopment
and deployment environment for agents situated in a comgyeamic virtual
world.
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3.2 Introduction

It is well known how challenging is the task of coding compbments for vir-
tual environments. This has been a topic for research in rpapers including
[2, 33, 13, 6]. This difficulty in developing and maintainingmplex agents has
made adoption of cognitive architectures difficult in connone applications of
virtual environments. Thus many companies work with déférvariations of
state machines to generate behaviors [3].

In this chapteer, we discuss development of a commercalegdevelopment
environment and agent architecture for simulation anchitngiin a high-fidelity
virtual environment. We discuss architectural supportdoding of a complex
plan execution by a team of agents, in Soar, and discuss fieeetices in our
approach from previous approaches to using Soar in such.task

Specifically, we focus on two key areas of contribution. t-wge discuss the
addition of an explicit recipe mechanism to Soar, allowiefiection. This allows
a programmer to build Soar operators (units of behaviot)ahahighly reusable,
and can reason about their selection and de-selection. WV lsbw this mecha-
nism acts as a decision-kernel allowing multiple selecti@thanisms (simulat-
ing human social choices, domain knowledge, etc.) to aéxist on top of it. The
recipe mechanism generates possible alternatives: Theecmechanisms assign
preferences to these. Soar then decides.

Second, we discuss the development and usage of an inegieatelopment
environment (IDE) to build agents using our architecturee &pproach we take is
to tightly-couple the architecture to the development emment, so that bugs—
which in Soar can be notoriously difficult to find [30]—can Iberied out as they
are written.

We demonstrate these efforts ic@mpletadevelopment environment for Soar
agents, situated in a complex dynamic virtual world, useddalistic simulation
and training. We attempt to draw lessons learned, and ligihtiesign choices
which we feel were important from the perspective of an itidalsproject.

44



3.3 Background

Our work was done as part of Bar llan University’s collabaratwith Elbit Sys-
tems, Ltd. The goal is to createsmartsynthetic entity—an agent—which per-
forms in a variety of simulated scenarios. Agents shouldatpeautonomously,
behaving as realistically as possible. The agents will sob&lbit’s training and
simulation products.

The environments in which the agents are to function arellysaamplex
environments, containing up to entire cities, and inclgdaccurate placement of
objects. The initial focus of the project is towards the depment of individual
entities, possibly working in small groups. Figure 3.1 sk@am example screen-
shot from an application use-case.

Figure 3.1:Urban terrain
Both the architecture and IDE for the agents must be orieraedrts the
development of configurable entities, driven by capabsitpersonality and com-
plex plans. Such a view reinforces the need for a flexibleircture, able to cope
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with many parameters and configurations of large plans (osegbof recipes with
100 up to 1000 inner behavior nodes). The architecture nugiast several dis-
tinct cognitive mechanisms (emotions, focus of attentraamory, etc.) running
in parallel and interacting, in each and every virtual medealognitive entity.

We briefly introduce here the various components of our gechire, and the
rationale behind its design. The next sections will dise¢hesoci of the chapter
in depth.

One main difference between commercial and academic frankevior multi-
agent systems, is in the use of hybrid architectures. Whiteast academic work
it is sometimes possible—indeed, desired—to include a#l&of control using
a unified representation or mechanism, this is clearly nrottse when it comes
to large scale industrial applications. No single architexor technology in this
case is sufficient. Moreover, it is often critical to be aldertteract with existing
underlying components. This might come as a demand fromubk®mer who
ordered the project, or (sometimes) as a way to promote tgblenology available
within the company.

With respect to academic work, this view goes back to pastaret on agent
architectures, such as the ATLANTIS [7] architecture, vahi based on the ob-
servation that there are different rates of activity in tmei@nment, requiring
different technologies. In our work, we were inspired asl Wwelthe vast research
and conclusions drawn from the RoboCup simulation leagued@d]from past
simulation projects conducted in Soar such as the IFOR ¢r{88, 13].

Indeed, our industrial partners have developed a hybriditacture in which
many components that have to do with cognitive or mentalalttis are actually
outside of the main reasoning engine, built in Soar. Theiggighilosophy in
deciding whether something should be done in the Soar coempdras been to
leave (as much as possible) any and all mathematical cotgngaoutside of
Soar, including all path planning and motion control. Foareple, we rely on a
controller in charge of moving an agent on a specified patlth®ontroller can
be assigned the movement of teams of agents, and can usermliffeovement
configurations while trying to keep relations and anglesdfigetween it's mem-
bers. In making this choice, the project is setting itselrafrom other similar
projects, in which Soar was used to control entities at a nmicte detailed level
of control [33, 13, 27].
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We focus in this chapter on the Soar decision-making compioaad its as-
sociated IDE. Both of these, with the other components ofystem, are hooked
up to a VR-Forces [26] simulation environment, a high-figedimulator utilizing
DIS. It is used for large scale projects ranging air, groumdi maval training such
as TACORP [37].

Given the task of providing an agent development framewsekeral archi-
tectures for this type of application might come to mind: JAQR], SOAR [28],
UMPRS [23], JAM [11], etc. Soar [28] is among the few that hawowercial sup-
port, and yet is open-source, making it a clear favorablelicate for our project.

Soar uses globally-accessible working memory, and prasluctiles to test
and modify it. Efficient algorithms maintain the working mery in face of
changes to specific propositions. Soar operates in sevieagkep, one of which
is a decision phase in which all relevant knowledge is brotmbear, through an
XML layer, to make a selection of an operator (behavior) thidltthen carry out
deliberate mental (and sometimes physical) actions.

A key novelty in Soar is that it automatically recognizesiaitons in which
this decision-phases is stumped, either because no operai@ilable for selec-
tion (state no-change impagser because conflicting alternatives are proposed
(operator tie impasge When impasses are detected, a subgoal is automatically
created to resolve it. Results of this decision process cachbaked for fu-
ture reference, through Soar’s integrated learning céipaebi Over the years, the
impasse-mechanism was shown to be very general, in thatidentiependent
problem-solving strategies could be brought to bear faslvésg impasses [28].

Being a mixture between a reactive and a deliberative systeisusually
very easy to program rules (productions) in Soar, so thabd skequence will be
triggered upon certain conditions. However, building a ptax scenario involv-
ing multiple agents becomes somewhat of an overwhelming Resbugging just
seems to never end

Soar uses globally-accessible working memory. Each rutmisposed by
a left and right sides. Simplified, the left side of the rulensharge of testing
whether specific conditions hold in this working memory, \hihe right side is in
charge making changes to the working memory. Thus eachrrafeisystem can

1We note that similar motivations have lead in the past tordmmtions in other directions, e.g.,
teamwork [32].
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read, write, and modify the working memory, triggering asatling the proposal
of other rules, including itself. This means that each Soag@ammer must have
complete knowledge of all the rules, taking all previousti&n code into account
each time a new rule is added.

Another facet is that Soar does not differentiate betweencttange an op-
erator makes, and the actual state of the agent, and tiesahame by coding
conventions. Since Soar operates through states, thisstieaineach operator by
definition is tied to the state the agent is in. In other wordsye Soar program-
ming requires all agent behaviors to be re-programmed éaehat behavior is to
be applied in a slightly different state than initially ampated by the programmer.

One of the first architectural changes we aimed for was tocovee this re-
lation between states and operators. By doing so, we coule msé of generic
types, templates, and other byproducts such as the ublizat reflection. These
proved to be valuable programming tools.

3.4 Soaring Higher

The approach we take is to provide a higher level of programgnbuilt on Soar
foundations and taking advantage of the underlying frannkwbhe most impor-
tant component of this layer iscipes—behavior graphs—representing a template
(skeletal) plan of execution of hierarchical behaviors [32)]. The behavior graph

is an augmented connected graph tughe S, V,by) , whereB is a set of task-
achieving behaviors (as vertices), V' sets of directed edges between behaviors
(SNV =0),andb, € B abehavior in which execution begins.

Behaviors is defined ds € B :

1. Constant parameters, with respect to the program exaecstigpe (such as
b; timeout , probability etc..).

2. Dynamic parameters, with respectit@xecution scope (such as the event
that triggered); preconditions).

3. Maintenance conditions [19], with respecbi@xecution scope.

4. Teamwork conditions [19], with respectipexecution scope.
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5. Preconditions which enable its selection (the robot edecs between en-
abled behaviors).

6. Endconditions that determine when its execution mustdggpsd.
7. Application rules that determine whatshould do upon execution.

In [14] S sequential edges specify temporal order of execution chviels.
A sequential edge frory, to b, specifies thab; must executed before executing
b,. A path along sequential edges, i.e., a valid sequence @iviiais, is called an
execution chain V' is a set of verticatask-decompositioedges, which allow a
single higher-level behavior to be broken down into exexuthains containing
multiple lower-level behaviors. At any given moment, themigexecutes a com-
plete path root-to-leaf through the behavior graph. Setigleedges may form
circles, but vertical edges cannot. Thus behaviors cangmated by choice, but
cannot be their own ancestors.

Even using this representation, we faced several abnoitoatisns. For ex-
ample, if a leaf behavior has precondition equal to its aoacesendcondition it
might never be proposed, or worst, constantly be terminatechaturely. Solving
such a problem at an IDE level, contradicts the need for hehawncapsulation.
Another problematic aspect of such an architecture is thahg an execution
chain no alternatives are being considered. Switching foom execution chain
to the other (given that they both derive from the same pdrehavior), needs
ending the whole execution chain, a process which is both tonsuming, and
sometimes harms the overall reactiveness of the systens prablem emerges
even when using the Soar architecture as provided. We wilbdeal with pro-
posed solutions since they are out of this thesis’s scopaveMer, one specific
proposal involving a reactive recipe mechanism runningoprof the regular one,
can be viewed as a higher level selection mechanism, andglsirsilar to other
selection mechanism discussed later in detail.

The recipe mechanism is responsible for proposing operdtorselection.
Through reflection, it examines the current recipe datacira (graph), and pro-
poses all operators that are currently selectable, bas#ideanprecondition and
position within the recipe graph. It efficiently schedule fhroposal and retrac-
tion of generic behaviors given certain conditions. Thesealiors, are specified
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inside generic subtrees of plans, which in turn are gathieréatge abstract sets
of plans. When a Soar agent is loaded, it assembles its raciymdse at run-time
by recursively deepening, arranging and optimizing it.

Additional mechanisms are added to guide selection bettesgoroposed op-
erators. Examples to such mechanisms include probabibsthavior selection,
teamwork, social comparison theory [17], individual antladmorative condition
maintenance [19], etc. For example, since the recipe emabfection, one of
the mechanisms monitors other agents’ actions by the rmgaf the recipe onto
another inner Soar state and using translation of sensaay dais allows mod-
eling of another agent’s decision processes based on atieerwa form of plan
recognition. Another mechanism is in charge of teamwork lkeeeps the team
synchronized and roles allocated, by the use of commuoit§io].

With respect to the IDE, we made use of a new state-of-th&aitities such
as refactoring and testing of agent applications. Insté&ditding the IDE from
scratch, as is commonly done, we chose to utilize an exisbig thus taking
advantage of well-tested available technology. Our IDEbjgect-oriented, facili-
tating coding by the use of pre-made templates, re-usabilicomponents such
as plans and behaviors, instead of wizards and graphicaisreggprogramming.

In Soar, productions are proposed due to changes in WMEs (Bar&ing
memory). In a behavioral context, this means that each lhehean be triggered
by a change, both internal (inner state change) or extesasispry data), and
that each behavior can affect the overall conduction of yis¢esn. During early
phases of development we chose an approach similar to thad fa [32], by pro-
viding a middle layer between Soar inputs and operators.ddew as mentioned,
Soar’s productions can be triggered by internal events dis Whus, we chose
to broaden the common ground between behaviors by subsjittite transla-
tion layer with an event-based mechanism. All our behaveconditions and
endconditions are triggered by explicit predicates, wtsinal events that are
true. These events correspond to percepts, deduced orspeatéacts, and in-
ternal changes. They constitute explicit facts, integnelhssified by subject and
category (e.g., all audio-related events groups together)

Adding events to Soar allows our agent means of reflectioneglar Soar
agent is unaware of the actual change in the environmentdhdtto a specific
operator instantiation, thus could not refer to the causefoflowing a specific
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maintenance operator
compare operator
probability table
communication protocol
recipe operator
event

Comment Out

Uncomment Out

Figure 3.2:Soar integrated templates
sequence of actions. At most, it can reflect on the actiomaskb/es. Using the

event mechanism, however, allows the agent to consideitlgxabat changes
lead to each operator/behavior proposal or terminatiothe@greconditions and
endconditions are defined explicitly.

We found this approach critical when in need of communicetibetween
agents. The language by which our agents communicate iseart lnguage:
Entire subtrees of Soar working memory are being passed @fositn between
agents. The agents thus pass between them sets of evemdstétethe proposal
or retraction of behaviors. This allows allocation of rolasd synchronization of
the execution of behaviors. and

In our target environment, both recipe operators (task aachtenance) and
events can be programmed with the help of code templatesindtire coding
phase we discovered that most bugs result from WME misspetiinerrors in
structure reference. Figure 3.2 shows the interface bywaiagser can automat-
ically generate the appropriate operator or event codentS\ae generated and
categorized in different folders, classified by the inptist ttrigger them or by
the events that they relay on. Operators (behaviors) arergesd with parame-
ters, preconditions and endconditions, fully documentédds feature results in a
clean uniform code, and thus simplifies debugging a gredt dekitional sup-
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Figure 3.3:Soar Datamap view

port for communication protocols and probability tablesdperator proposals is
also provided.

The use of templates in Soar, goes back to the early IDE dewedat tools for
Soar agents. Our tool differs from those earlier works in thgrovides not only
basic support for Soar operator application and propodes iemplates, but an
extensive elaborated behavior structure supported byettipe mechanism, spe-
cialized for the architecture we use. The use of the templsdges much coding
for the programmer, since they already encapsulate muckhat the programmer
needs to consider.

The Soar datamap is a representation of the Soar memoryustwgenerated
through the execution of a Soar program, and can be infeyredebleft side and
right side of Soar production rules. Several tools are alséelin order to gener-
ate a Soar datamaps through static analysis of Soar prodactVe significantly
extended the initial Eclipse extension for datamap suppootvided by the Uni-
versity of Michigan and SoarTech, adding additional sewiand tools. Most of
our coding tools now rely on the datamap, enabling us to géaspecific insight-
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Figure 3.4:Auto complete with deep inspection
ful warnings, provide smart assistance, and auto completicode that takes the
structure of the memory in our architecture into account.

Aside from warnings and code assistance, Soar benefits remany Eclipse
plug-ins that are already present and developed within D& énvironment.
Among those are integrated documentation support, execafiSoar agents, and
integrated debugger. Support for both VSS and CVS codeereng systems can
be found as well, for large team projects.

We have also extended and enhanced the SoarJavaDebug@gér iw/ltis-
tributed with the current version of Soar, by the UniversifyMichigan. The
first customization, seen in Figure 3.5, utilizes a UML type&isualization, in or-
der to display the recipe at run time. At any point the actighgo the currently
executed behavior is presented along with optional beawiot chosen (colored
red). These red behaviors have matching preconditionsyéna not activated due
to hierarchical or situational constraints. This recipguailization is updated as
well at runtime, enabling the programmer to focus only onrtievant executed
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Soar Debugger in Java - soarl
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Figure 3.5:Soar Java Debugger, with additional Tree View and Recipe Vis-
alization
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subset of the recipe.

In addition, on the left-hand side of the debugger windowa igsee-folder
view of the working memory. The root of the tree can be set totEmy subset
of the agent knowledge (any Working Memory Element, WMES) sngpdated
at runtime. Since Soar already arranges WMEs in a tree likadgrit greatly
speeds up debugging to be able to inspect the agent knowbydgmply clicking
such folders.

3.5 Evaluation

Evaluation of the contributions described above is chgillesn The first contri-
bution involves the use of reflection in the recipe, whiclow8 clean separation
of the process by which the knowledge of the agent proposematives, and the
mechanisms that facilitate a decision among them. Duriegethaluation of our
system, we made use of a scenario in which a team of agentsars@sunications
to agree upon several mission points. They calculate raaesidering possible
threats along the way and travel from one location to therotMhile doing so
they collaboratively maintain several movement protoeoid react to changes in
the environment such as the appearance of new threats sthefleam members,
etc.. During the execution of the scenario, the agents ntove bne waypoint to
another, maintaining specified formations, and reorgathigse formations given
changes in the team hierarchy.

To provide some insight as to the performance of the designcempare
our system to previous systems that have utilized Soar askthgis. The most
well-known similar system is TacAir-Soar, a highly sucdabproject using Soar
as the basis for synthetic pilots, capable of running a waéety of missions
[33, 13]. Less complex—yet still successful—applicatiofisSoar included the
ISIS-97 and I1SIS-98 RoboCup teams [34].

Table 3.1 provides a comparison of key features, allowingai@gtive insight
into the complexity of these systems, compared to the sydisoussed in this
chapter. The columns report (left-to-right) on the overalmber of Soar rules
used in the system, the number of unique actions (outpaesirmount of unique
percepts (inputs), and the number of actual domain/tas&viets/operators.

Our system, at its current state of development, is of maderamplexity
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architecture | rules | actions | inputs | operators
TacAir-Soar| 5200 30 200 450
ISIS-97/98| 1000 7 50 40
Ours 650 25 200 100

Table 3.1:Architectural Complexity Evaluation

compared to efforts that have been reported in the litezaflaking the combined
inputs and outputs as the a basic measure of the complexite ¢dsk, would put
our system’s task on par with that of the TacAir-Soar sysimd, far ahead of the
challenge faced by RoboCup teams. However, looking at the auaflmperators,

we see that the knowledge of our agents, while still signifiilyamore complex

than that of the RoboCup agents, is still very much behind th#teoadvanced
TacAir Soar.

Based on this qualitative assessment, which puts our systerevghere in the
middle between the TacAir-Soar and the ISIS systems, ittexyesting to note
that our system uses significantly less rules thait other systems, to encode the
knowledge of the agents. While we use about 6.5 rules, ong®gefar supporting
each operator, TacAir-Soar uses 11.5 and RoboCup about 25eMedithat this
is due, at least in part, to the use of the recipe mechanisnmbotin previous
systems, the preconditions of operators tested not onlgppeopriateness of an
operator given the mental attitude of the agents with regpets environment and
goals, but also with respect to the position of the operatarmared to other task
operators. For instance, commonly operators would havestdar the activation
of their parents, before being proposed. The recipe mesimdieanly separates
the two.

On our system, operator rules only determine whether thertdated precon-
ditions of an operator have been satisfied. The rules progdke operator if its
preconditions are truegnd given its position within the behavior grapdre all
part of the recipe mechanism. We believe that this savesnéisant number of
rules.

It also saves significant programming effort: Since our afms do not re-
fer at any point to their execution point, changing the omre of a generic
action (or a generic subtree of hierarchical actions withnecipe) requires only
updating the configuration of the Soar coded recipe. In cois@a moving op-
erators around in previous systems, from one specific exxecpbint to another
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(one point in the recipe to the other) would require changelset made in all
branching children (all rules testing the occurrence ohsartoperator), since the
hierarchy is part of each sub-operator’s preconditionsdi#@hally, by previous
Soar conventions, operator source files were written inahthical file system,
which reflected the intended hierarchical decompositidiieving operators in
the recipe either caused files to move around, or worse \asfex a discrepancy
between the convention of the file-system and the positidheobperator in mem-
ory. Freeing Soar operators from their execution point alkwved us to place all
operator files in a single directory, making finding and maimng them much
easier.

Previous Soar architectures, have utilized a specific stiylgriting in Soar,
in which hierarchical decompositions are created in merbgrmelying on Soar’s
operator no-chang@mpasse to keep track of the active hierarchical decomposi-
tion. But the creation and maintenance of impasses can ba&sixpe The recipe
mechanism allows us efficient book-keeping of the currenbdgosition, with-
out using impasses (unless needed for other reasons).

To demonstrate the savings offered by using the recipe mérha Table
3.2 provides data gathered from the execution of severablatd Soar bench-
marks (bundled with the Soar architecture distribution),tile same hardware
and software configuration (Soar 8.6.2 kernel on the saméuped CPU 3.2
GHz 512MB ram). These standard problems consisted of theidfiaries and
Cannibals (MaC) problem, and the performance of 1000 randhmeatic calcu-
lations. We compare Soar’s performance in both, with thiesissnario, described
above.

Table 3.2 consists of four columns: The number of decisirles in Soar (in-
put to output phase) using an average run, the average timreadb decision-cycle
in milliseconds, the average size of Soar working memoryngttame, and the
number of changes to this memory. As shown, our architectureich faster than
the benchmarks—despite their simplicity relative to thektaur system faces.
Our decision-cycles are substantially faster mainly duthérecipe mechanism
(which avoids impasses) and the utilization of controllefeough new input is
constantly delivered to our agents, most of the time our tigadle, waiting for
the current operator/behavior execution, the proposakuof Ibehaviors or the ar-
rival of critical data. Such results are crucial for demoatstg the scalability of
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benchmark dc | msec/dec | WM (mean, changes)
MaC 200 0.155 (49.896,13651
Arithmetic | 41487 0.320 (983.589,879076
Ours | 31363 0.078 (3266.797,196263

Table 3.2:Runtime Evaluation

the system, for future scenarios (e.g., those simulatioyds).

We now turn to evaluation of the integrated developmentrenwents. As
one could expect, quantitative evaluation is difficult heidot only is the im-
pact of the changes difficult to measure directly, but thgaaudience—Soar
programmers—is very small. Nevertheless, we asked ouewcutrsers to pro-
vide qualitative feedback on the tool, and compare it to ioresty-published de-
velopment tools for Soar (such as Visual Soar, which is pge#tavith the Soar
distribution).

Our users varied in experience, and in responses. One nedea program-
mer has previously developed in Soar using emacs textrg@iithout any GUI
support for debugging), and later in Visual Soar. His ageess was that the use
of the Eclipse environment was a marked improvement ovard¥iSoar (which,
not surprisingly, was believed to be a significant improvetre/er emacs). He
reported that the use of templates was not a speed-savervéteran Soar pro-
grammer, he was used to writing code directly, without teatgd. On the other
hand, two relatively novice programmers now swear by thgEelenvironment,
and show strong preference to it over existing tools. Th@pmethat the tem-
plates are very useful, though they lose some of the usefsiloeer time. Based
on these qualitative reports, it is clear that in an indakproject, a strong IDE
such as Eclipse, is a valuable tool which provides many bsriefcomparison to
the alternatives.

3.6 Conclusion

In this chapter we discussed both the architecture and of@vent environment
for computed generated forces, based on an extended verfsgoar. On an ar-
chitectural level we proposed the addition of an expliaipe mechanism to Soar,
allowing reflection. This allows a programmer to build Sopexators (units of
behavior) that are highly reusable and effective. We pregd®w such a mech-
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anism could act as a decision-making kernel. Second, wesisd the develop-
ment and usage of an integrated development environmeg) tibuild agents
using our architecture. We attempted to draw lessons ldaared highlight de-

sign choices which we felt were important from the perspeatf an industrial

project. We believe those insights can contribute towardguture development
of computer-generated forces, in complex dynamic virtuadles.
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