A Fly on the Wall: Monitoring Agent Organizations by Eavesdropping

Gal A. Kaminka and David V. Pynadath and Milind Tambe
Information Sciences Institute
University of Southern California
{galk, pynadath, tambe} @isi.edu

Abstract

The increasing ubiquity of complex agent organizations has
led to an increasing need for the on-line monitoring of such
organizations. However, in many domains (e.g., those with
information agents), we cannot observe the agents’ actions.
In addition, we rarely have the ability to change the agents
themselves to force them to communicate their state to us.
Fortunately, we can often eavesdrop on messages commu-
nicated by the agents as part of their natural coordination.
This paper presents an approach for on-line monitoring of or-
ganizations using messages as observations. This approach
includes the following key novel ideas: (i) a linear time prob-
abilistic plan-recognition algorithm, particularly well-suited
for processing communications in agent organizations; (ii) a
technique for modeling the agent organization as a single co-
herent entity—trading expressivity for scalability; and (iii)
an approach to exploiting general knowledge of teamwork
to predict organizational responses during normal and fail-
ing execution, to reduce monitoring uncertainty. We present
an empirical evaluation of these ideas in the context of moni-
toring a complex, multi-agent system.

1 Introduction

With the growth of applications involving multi-agent orga-
nizations, there is now an increasing interest in monitoring
agent organizations by listening in on agent communications
(Ndumu et al. 1999). Communication-based monitoring is
important for several reasons. First, such monitoring is non-
intrusive, not requiring agents to change to existing com-
munications or other behaviors. Second, it is often difficult
to directly observe a distributed set of heterogeneous agents
(particularly software agents), so listening in on their com-
munications is the main cost-effective monitoring technique
available. Third, the growth of agent development and inte-
gration architectures (Ndumu et al. 1999), which standard-
ize at least some aspects of agent communication, provide
increasing opportunities for such monitoring. Such monitor-
ing is useful in many multi-agent applications, e.g., (Horling
et al. 1999).

Our work focuses on agent teams, where agents ask each
other to jointly execute or terminate executing team plans.
By listening in on such messages, the system must answer
queries about the monitored organizations’ current and fu-
ture states. These queries may be about any unit of the orga-
nization, from the high-level team, through sub-teams, to the

Copyright © 2000, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

individuals. For instance, a query may check what plan(s)
the high-level team is currently executing, to check if it is
making adequate progress. Another query may check the
future likelihood that a subteam will fail in fulfilling their
role — to take remedial actions if this likelihood is high.

There are unfortunately several difficulties in accomplish-
ing this goal. First, team members cannot in practice con-
tinuously communicate about all their on-going plans and
actions (Grosz & Kraus 1996). Such communication re-
sults in significant uncertainty in inferring the teams’ on-
going plans. Second, communications sometimes occur in
small subteams, and yet the monitoring system must infer
the state of the entire team and other subteams. Third, agents
in teams may unexpectedly fail, which increases the uncer-
tainty and requires that the system predict how a team re-
sponds to agent failure. An important final constraint is that
the monitoring must occur on-line, i.e., the inference proce-
dures must be efficient.

We have developed a system, called Eavesdropper, which
addresses the above difficulties. Eavesdropper uses multi-
agent plan recognition to monitor agent organizations based
on their routine communications. While previous work in
multi-agent plan-recognition has either focused on exploit-
ing explicit teamwork reasoning, e.g., (Tambe 1996), or ex-
plicitly reasoning about uncertainty when recognizing multi-
agent plans, e.g., (Intille & Bobick 1999), a key novelty in
Eavesdropper is that it effectively blends these two threads
together.

Eavesdropper combines the following novel techniques:
First, it uses an efficient, linear time probabilistic plan-
recognition algorithm, particularly well-suited for process-
ing communications in agent organizations. Second, rather
than modeling each individual agent separately, it models
the agent organization as a single coherent entity — sacri-
ficing some expressivity for efficiency and scalability. Fi-
nally, by exploiting general knowledge of teamwork, it can
effectively predict (and hence effectively monitor) organiza-
tional responses during normal execution, as well as during
a general class of failures. We have implemented this ap-
proach, and we present an evaluation of it in the context of
monitoring a complex, multi-agent system.

2 Domainsand M otivations

Concretely, Eavesdropper has been applied to teams of het-
erogeneous, distributed software agents, consisting of 10 to
20 team members. These teams are developed using the

TASK EORCE EVACUATE [TAK FORCE]
PROCESS NEXECUTE ..o ™
SAFETYINFO o gyt ROUTE | oroERS MISSION
OBTAINER TEAM PLANNER] (TascForcE] ATASK FORCE]
/ v \
/\ % ++* FLY-FLIGHT LANDING
“{ BUAN - 4 ZONE
ESCORT TRANSPORT 7itascForcg) 7 MANEUVERS
[TASK FORCE]
SN
FLY-CONTROL
ROUTE.... ESCORT ~ TRANSPORT
ESCORT ESCORT TRANSPORT [TASK FORCE] OEPsSco OPERATIONS
LEAD FOLLOW ~ DIVISON1 (b[) ORTl [TRANSPORT]

Figure 1: Portions of the team-hierarchy (a) and plan-
hierarchy (b) used in our domain. Dotted line show temporal
transitions.

Teamcore multi-agent integration architecture (Pynadath et
al. 1999). As mentioned earlier, there is an increasing inter-
est in such architectures to enable the growing numbers of
heterogeneous software agents and smart hardware devices
to work together to address large-scale problems (Huhns &
Singh 1998). Teamcore accomplishes this integration via a
distributed team of communicating proxies.

Each Teamcore proxy represents a single domain agent.
The Teamcore proxies jointly execute a team-oriented pro-
gram. This program consists of a set of hierarchical team
plans, with assigned roles for teams and subteams. As an ex-
ample, Figure 1-a shows a part of the team/subteam hierar-
chy used in the evacuation-domain (described below). Here,
for instance, TRANSPORT is a subteam of Task-Force. Fig-
ure 1-b shows an abbreviated team-oriented plan-hierarchy
for the same domain. High-level team plans, such as EvAC-
UATE, typically decompose into other team plans, such as
PROCESS-ORDERS, and, ultimately, into leaf-level plans
that are executed by individuals. There are teams assigned
to execute the plans, e.g., Task Force team jointly executes
EVACUATE. To execute the team-oriented program, each
proxy works with an in-built domain-independent teamwork
model, called Steam (Tambe 1997). Steam allows the agents
to automatically coordinate using selective communications.

Humans and agents must monitor the resulting team,
querying about the present and future likely states of
the entire team, its subteams and individuals—to monitor
progress, compute likelihoods of failure, etc. Eavesdrop-
per non-intrusively performs such monitoring, listening in
on agent communications remotely (over the Internet) and
inferring the state of the team. This is a challenging task
because: (i) only some agents communicate, and only about
some plans; and (ii) agents may occasionally fail, but Eaves-
dropper cannot observe these failures. Thus Eavesdropper
faces significant uncertainty in its monitoring.

We have applied the Teamcore framework to the prob-
lem of rehearsing the evacuation of civilians from a threat-
ened location. An integrated system must enable a human
commander to interactively provide locations of the stranded
civilians, safe areas for evacuation and other key points.
Simulated helicopters fly a coordinated mission to evacuate
the civilians. The integrated system must itself plan routes
to avoid known obstacles, dynamically obtain information
about enemy threats, and change routes when needed.

The application integrates a set of diverse agents: Quick-

set (Multi-modal command input agents, OGI), Route plan-
ner (Path planner for aircraft, CMU), Ariadne (Database en-
gine for dynamic threats, USC/ISI), and 8 Helicopter pilots
(Pilot agents for simulated helicopters , USC/ISI). The sys-
tem has 11 corresponding Teamcore proxies, which execute
a team-oriented program consisting of 40 team plans. The
teamcores exchange about 100 messages, while also com-
municating with the domain agents.

3 Plan Recognition of Individual Agents

In domains such as those mentioned previously, we can per-
form some prediction of runtime execution by reasoning in-
dividually about each of the team members using a plan hi-
erarchy. We also have access to certain coordination mes-
sages sent by each agent indicating certain mileposts in plan
execution (usually initiation or termination). This section
presents a mechanism that uses only the messages sent by a
single team member for recognizing its plans.

For instance, if we observe a message about the initia-
tion of FLY-FLIGHT-PLAN, then we know from Figure 1
that PROCESS-ORDERS cannot be a possible future state of
the agent. Both FLY-FLIGHT-PLAN and LANDING-ZONE-
MANEUVERS are possible future states, but the recognition
system has no basis for differentiating between the two. We
address this ambiguity through a probabilistic model that
supports quantitative evaluation of the hypotheses. We use
a time series of state variables, where, at each point of time,
the agent’s state is the set of plans it is currently executing.
We represent these plans by a set of boolean random vari-
ables, {X;}, where each variable X; is true if and only if
plan X is active at time ¢.

We can represent our beliefs about the agent’s actual state
at time ¢ as a probability distribution over all variables { X, }.
We begin with a certain belief that the agent is executing
its top-level plan at time 0. We can propagate this belief
throughout the hierarchy using the method described in Sec-
tion 3.1 to simulate plan execution with the passage of time.
When we observe messages, we can incorporate the evi-
dence into our beliefs according to the method described in
Section 3.2.

3.1 Belief Update When No Message Is Observed

If we do not observe communication, then we roll the model
forward to the next time slice. For each plan that the agent
could be executing, we must compute how likely it is that
the agent will complete execution and go on to its next plan.
For simplicity, we treat the duration of a leaf plan, X, as an
exponential random variable, where the probability of the
plan lasting more than 7 time units decays exponentially as
e~*x7_ The parameter Ax then corresponds to 1/(average
duration of X). Given this model of plan duration, the prob-
ability of the plan’s completion between times ¢ and ¢ + 1 is
simply Pr(done(X,)| X;) = 1 — e~ *x.

Once we use the exponential model to compute the prob-
ability of plan termination, we then need to determine which
plan the agent will execute next. We examine all of the
possible successors and compute the probability of taking
the corresponding transition, conditioned on the fact that
no message was sent. For each plan, X, we record the

probability of entering each successor, Y, given that X has
just completed: 7, = Pr(Y41|X;, done(X,¢)). We also
record the probability of seeing a message given the tran-
sition, pz, = Pr(msg,|Xy,Y;41). In both cases, we make
a Markovian assumption that the plan history before time ¢
does not affect the probabilities. We can potentially obtain
the three sets of parameters, A, y, and 7, from domain ex-
perts or from frequency counts over previous executions. We
can now combine these values to get the desired conditional
probability:
Pr(Y;41| X, done(X,t), ~msg,)
(11— /‘zy)ﬂ'zy _ (1-— /‘zy)ﬂzy 1)
Pr(_'rnggthta done(X, t)) Nx

The normalizing denominator, nx, is simply the sum of the
numerator over all possible successors, Y. We can precom-
pute these sums offline. If all possible transitions require a
message, then nx will be zero. In this case, the agent cannot
have begun execution of any successor, even though it has
completed execution of X. We use a blocked state associ-
ated with each plan to indicate this contingency.

If a particular transition indicates the termination of the
entire execution path, then the probability of the transition
corresponds to the probability that the parent plan has com-
pleted. We compute the probability of transitions out of the
parent plan as of the child, except with this new completion
probability replacing the exponential distribution.

If the plan has children, then we must also distribute the
incoming probability among them. Since we assume that all
plans take at least a single time step to complete, we con-
sider only the first children. In Figure 1, upon first entering
the top-level plan EVACUATE, the only possible child plan
that can be active at time 0 is PROCESS-ORDERS. We com-
pute the probability over multiple first children by dividing
the probability incoming to the parent among them. If any of
these children have child plans of their own, this new incom-
ing probability is distributed in turn, using the same method.
Algorithm 1 presents the pseudo-code for the overall propa-
gation computations, calling the PROPAGATE-DOWN func-
tion for this downward update.

Algorithm 1 PROPAGATE-FORWARD(beliefs b, plans M)

for all plans X € M do
be+1(X, —block) += b, (X, ~block)e ™ **
if nx = 0 then {Message required}
be+1(X,block) < b;(X,—block) (1 —e~*X)+ b; (X ,block)
else {Message not required}
for all plans Y that succeed X do
p (X, ~block)(1 — e X) (1 — oy)y /1
if Y =done then
bs+1(parent(X), block) += p
else {Y isasibling plan}
bH.l(Y, ﬁblOCk) +=p
PROPAGATE-DOWN(Y, p, b, M)

3.2 Belief Update with Observed Message

While observing team communication, we can expect to see
messages sent by an individual member that identify either

plan initiation or termination. Suppose we have observed
a message, msg, that corresponds to initiation. Then, if
only one plan, X, is consistent with msg, then we know,
with certainty, that the agent is executing X, regardless
of whatever evidence we have previously observed, i.e.,
Pr(X;|msg,, evid;_1) = 1. If multiple plans are consistent
with msg, we distribute the unit probability over each plan,
weighted by any prior belief in seeing the given message.

If we observe a message indicating the termination of X,
then we know that the agent was executing X in the previous
time step but that it has moved on to some successor. Thus,
for each state, Y, that can follow X, we set our belief of
Y to be proportional to a transition probability, similar to
those in Section 3.1, except that we are now conditioning on
observing a message. Algorithm 2 presents the pseudo-code
for the complete procedure for incorporating observational
evidence.

Algorithm 2 INCORPORATE-EVIDENCE(mSsg m, beliefs b,
plans M)

for all plans X € M consistent with m do
if m is an initiation message then
b’ (X, —block) «+ b:(X, —block)
else {m is a termination message}
for all plans Y € M that succeed X do
b (Y, —block) < b:(X, block) przy ey /(1 — nx)
normalize distribution &’
for all plans X € M withd’ > 0 do
b:+1(X, —block) < b’(X, —block)
b:+1(parent(X), =block) += &' (X, ~block)
PROPAGATE-DOWN(X, b’ (X, —block), b, M)

3.3 Individual Agent Recognition Complexity

The pseudo-code of Algorithms 1-2 demonstrates that both
types of belief updates have a time and space complexity
linear in the number of plans and transitions in M. We gain
this efficiency from two sources. First, the assumption of a
memoryless exponential distribution over plan duration al-
lows our propagation algorithm to reason forward to time
t + 1 based on only our beliefs at time ¢, without regard
for previous history. Second, we make another Markovian
assumption that the probability of observing a message de-
pends only on a relevant plan being active and is independent
of the past history. With that assumption, we can incorporate
evidence, again, based on only our beliefs at time .

4 Exploiting Teamwork Knowledge

The previous section has presented an efficient method
for probabilistic recognition of an individual agent’s state.
A naive extension of this approach to multi-agent plan-
recognition is to use an array of such individual models,
where each one of them gets updated as observations come
in. Queries about the state of a team are then answered by
looking at the state of the members which make up the team.

This approach proves insufficient when monitoring a team
via its communications. A key difficulty lies in the scarcity
of observations: Realistically, agents communicate only in
particular circumstances. Furthermore, often not all the

agents communicate—sometimes a single message from
one agent is intended to change the state of all its listen-
ers (for instance, a plan termination message). This results
in uncertainty about the state of agents and subteams which
do not communicate, or communicate rarely, since no obser-
vations are available about them.

This section reports on several novel techniques intended
to improve recognition accuracy in limited-observations set-
tings. The techniques builds on using team and teamwork
knowledge as the basis for disambiguating the recognition
hypotheses.

4.1 YOYO*: Efficient Team Coherence

A key difference between monitoring a team and moni-
toring a group of individuals is that we expect the team
to work together: Team-member are ideally in agreement
about their joint goals and plans. This phenomena holds at
different levels in the team—agents in an atomic subteam
work together on the plans selected for the subteam, sub-
teams work together with sibling subteams, etc. It is called
Team-coherence (Kaminka & Tambe 1999).

As coherence is important in teams, we can use it as a
heuristic, preferring recognition hypotheses in which team-
members are in the same state over hypotheses in which
they are in different states. This is a very strong constraint,
since there is in general only a linear number (in the size of
the plan-hierarchy) of coherent hypotheses, but an exponen-
tial number of incoherent hypotheses. For example, when
a TERMINATE-PLAN message is overheard, the recognition
system could assume that the team-members have received
the message, and terminated the plan jointly with the sender.
Here, the system is preferring a hypothesis in which the team
remains coherent (synchronized) over hypotheses in which
team is incoherent.

We present here the YOYO™* algorithm (Algorithm 3), an
efficient technique for reasoning about coherent hypotheses.
YOYO™ relies on a single plan-hierarchy that is fully ex-
panded for all subteams, and an algorithm which climbs up
the team- and plan-hierarchies to then go down subtrees and
re-align prior knowledge such that it is consistent with the
new observation. This technique trades expressivity for effi-
ciency (see Section 5).

Algorithm 3 YOYO*(plan-hierarchy M, team-hierarchy H)
1: Loop forever:
2: if messages rec’d-new plan S team 7', then

3: Incorporate-Evidence(T, S)

4: tmp<«T

5. whiletmp is not the root team in H do

6: find in M lowest common ancestor A of S joint to
tmp and its sibling teams

7 for each child transition of A whose team#T do

8: ScALE(the subtree roots at the child), so its state

probabilities sum up to the new probability of A
9: tmp < parentof (tmp)
10: else

11: PROPAGATE-FORWARD in M

The key idea in YOYO* is that once a step up is taken in

the team- and plan-hierarchies, it is followed by a traversal
of the subtrees below the new root node such that all the
evidence below the node is made coherent. This is done
by the SCALE procedure, which re-distributes the new state
probability of a parent among its children, such that each
child gets scaled based on its relative weight in the parent.
The end result is that the state probabilities of the children
are made to sum up to the state probability of the parent. The
process is recursive, but never re-visits a subtree.

YOYO™ also requires minor modifications to propagate-
forward (Algorithm 1) and incorporate-evidence (Algorithm
2). Incorporate must now take a team T into account when
incorporating evidence: Only transitions that T is allowed
to take may be followed. Propagate must address teams as
well: Given some total outgoing probability (either to a sib-
ling or child transition), if the outgoing transitions are to be
taken by different teams (such as the TRANSPORT and ES-
CORT teams), the same total probability would be used for
each transition, instead of splitting the outgoing probability
between the transitions.

For example, suppose that the entire team is known to be
executing FLY-FLIGHT-PLAN. Now, a message exchange is
observed among the members of the TRANSPORT team,
indicating that it has begun execution of TRANSPORT-
Ops. First, the new evidence is incorporated for the trans-
port team. Among other changes, the probability of the
plan LANDING-ZONE-MANEUVERS (LZM) goes up sig-
nificantly. Then, YOYO* begins climbing up and down the
team- and plan-hierarchies: It first finds the lowest common
ancestor of TRANSPORT-OPS that is shared by the TRANS-
PORT team and its sibling. This is the LZM plan. It has
one child that is to be taken by the ESCORT team (different
than TRANSPORT), and so the subtree pointed to by this
child transition is scaled up—which means that the probabili-
ties indicating that the ESCORT team is executing ESCORT-
OPs goes up, based on evidence from the TRANSPORT
team. The process then continues to EXECUTE-MISSION,
etc. Section 5 provides an in-depth evaluation.

4.2 Predicting Organization Responses

We explore here an independent technique for improving
recognition success. The technique predicts when commu-
nications will take place during task execution. In addition,
it predicts the likelihood of failure states, given the current
state of the team, and the fault models the team uses in tak-
ing corrective actions.

The team’s communication decisions determine at what
points during the execution of the task the team will com-
municate, either establishing or terminating a plan. In many
cases, a correct prediction that a transition will not be taken
without a message being observed can completely rule out
all but one hypotheses. For instance, if an establishment
message is expected as agents take the transition from FLY-
FLIGHT-PLAN to LZM (Figure 1), then the plan-recognition
system, while not observing such a message, can eliminate
(or at least rank much lower) the possibility that the team is
executing the latter.

The knowledge required for such organization responses
predictions can be acquired by learning, and/or by projecting

the state of the team into the future, using a teamwork model
to determine how the team will respond given its (future)
state. We have discovered that simple rote-learning was suf-
ficient in many cases to build a very effective model of the
communication policy of an organization. However, such
an approach is limited when it learning failure probabilities,
and failures happen infrequently.

A different approach altogether is to dynamically gener-
ate predictions of the responses based on the known state
of the team, and a teamwork model which is used to simu-
late the responses of the team given likely future states. A
domain-dependent teamwork model, such as STEAM, can
be re-used here for monitoring purposes. Such a model is
usually used to generate decisions on when and how to com-
municate, or how the coordination relationships required by
the designer are maintained. However, it can also be used in
simulation: Future states and transitions are fed in as if they
are the current state, and the teamwork model’s decisions are
used to predict the responses taken by the monitored team.
This approach is dynamic and allows us to incorporate the
state of team-members at run time, however it provides ap-
proximate results, due to the uncertainty in the simulation.

Dealing with failures: Eavesdropper uses the above
mechanism to utilize known coordination relationships
among the agent and the agent’s known state to predict the
failure probabilities of plans. For instance, if a plan requires
that at least one agents in a subteam participate, Eavesdrop-
per is able to dynamically compute the probability that the
plan will fail based on the individual failure probabilities.
Eavesdropper can also simulate the passage of time in the
system, to detect delayed, failed, or out-of-order messages.

5 Resultsand Evaluation

Eavesdropper is a fully implemented system, which we have
been using in actual runs of the system over the internet. The
first part of our evaluation tests the contribution of the dif-
ferent techniques in Eavesdropper to recognizing the correct
state of the agents and teams. Figure 2 compares the average
accuracy for a sample of our actual runs, where accuracy is
measured as picking the correct hypothesis as the most likely
hypothesis. The runs are marked 'A’, ’B’, ’C’ and "D’ (X-
axis). The average accuracy is given in the 0-1 range.

The average accuracy when using the individual models
with no coherence (Section 3) is presented in the leftmost
bar in each group (Figure 2), and is clearly very low. The
next bar presents the expected average recognition accuracy
if only coherence is used to rule out hypotheses (Section
4.1), and then an arbitrary selection is made among the re-
maining hypotheses. Coherence is clearly an effective con-
straint, as it brings the accuracy up by almost 15% with-
out using any probabilistic reasoning. The next bar to the
right (Coherent, Temporal) presents the results of combining
both coherence and the probabilistic reasoning capabilities,
including the model of plan durations and the known fail-
ure probabilities (Sections 3 and 4.1). This approach offers
a significant boost in accuracy, when compared to the ap-
proach relying on either information alone. The remaining
bar presents the average accuracy in each run using coher-
ence, the duration and failure probabilities, as well as the

°
<

°
&
T

ENon-
1 Coherent

°
T

13
T

B Coherent

Average Accuracy
&
I

O Coherent,
Temporal

02 {— DOCoherent,
Temporal,
- Comm
+ + + —

Figure 2: Average accuracy in sample runs.

o
T

°

°

35
230 ~
5 o
et «
~— 25 ~ ——Coherent,
w A Temporal
I+ 20 ~ ,Comm
[} s
= A~ Coherent
= e -= Coherent,
E 15 e Temporal
2 ,,A" p
g 10 e g
§ o~ ennas” - Coherent
< 5 A - g
0 +rererererer RS ma s e
Y~ 3Z3 38388883
Observed M essage Exchanges

Figure 3: Accumulative number of errors in run ’D’.

team communication model, which predicts when commu-
nications will occur (Sections 3-4). The results demonstrate
that while a model of plan duration, and plan-failures, can
certainly improve the accuracy of the recognition, a signifi-
cant boost in accuracy is achieved through the ability to pre-
dict at what point during task execution communication will
occur. In many cases, it was able to rule out all hypotheses
but one or two. The accuracy results within each run were
analyzed using ANOVA and found to be statistically signif-
icant with confidence greater than 99.999999%.

Figure 3 shows the system in action in a particular run
(D above). The figure presents the accumulative number
of errors as time goes by during the run, where an error
is defined as a failure to choose the correct hypothesis is
the most likely one (i.e., the most likely hypothesis does
not reflect the true state of the agent/team). Each message
exchange corresponds to one to a dozen messages commu-
nicated by the agents, establishing or terminating a plan.
The line marked Coherent shows the accumulative num-
ber of errors if only coherence is used to select the correct
hypothesis—most such choices turn out to be erroneous since
a random choice is made among the competing hypotheses.
The line marked Coherent, Temporal shows the results for
the same run using both coherence and the plan-durations
model to choose the most likely hypothesis. This approach
is much more successful, as evident by the slower rise in the
number of accumulative errors. Finally, the remaining line
displays the results of using coherence, the plan-duration
model, and the model predicting communications. This re-
sults in slightly less than half the accumulative errors of the
coherent-temporal approach.

The second part of evaluating Eavesdropper examines a

key trade-off between the expressivity and efficiency in-
volved in the plan-recognition techniques we have pre-
sented. From the accuracy discussion above, it is clear that
coherence is a useful heuristic. YOYO™* takes an extreme
approach to using it, strictly ruling out reasoning about in-
coherences. It is impossible for YOYO¥, for instance, to
represent an incoherence in which two subteams, in ser-
vice of a common team, are in disagreement about what the
plan is executed by the common team. It is also difficult
to explicitly represent hypotheses associated with commu-
nication losses and delays, which also cause incoherence.
YOYO* is still able to detect many incoherences—it would
fail to find the states referred to in the messages and an-
nounce failure—but is not be able to represent hypotheses ex-
plaining the incoherences, and it is not guaranteed to detect
all potential failures. An approach in which each individual
is represented separately allows for such representation, and
in this respect is more expressive.

On the other hand, YOYO* offers great computational
advantages when compared to the individual representation
approach. YOYO* requires a single, fully-expanded, task-
model to represent the entire team. This model is a union of
all the individual agent task-models. In the worst case, every
agent carries out a completely different plan. In this case,
YOYO* will be as inefficient as the individual recognition
approach, requiring as much space. However, a more typi-
cal case is where agents to share many plans and transitions,
because they carry them out jointly. In this case, YOYO*
offers significant savings. The best case is when a homoge-
neous team is jointly executing all tasks, with no subteams
or individual roles. Then the reduction in space complex-
ity is from N models to 1. In our application domains the
space savings are about 86%: 66 plan-nodes were used in
YOYO*, 496 nodes were used in individual models, with
proportional time savings.

The reduction in the space requirements leads to appro-
priate reduction in computation time as well. Probabilities
are propagated once for the entire team, and do not need to
be propagated repeatedly for each individual. Furthermore,
YOYO™* represents only a linear number of hypotheses (in
the size of the plan-hierarchy), because it rules out most
incoherent hypotheses. The individual-models approach,
however, represents (implicitly) an exponential number of
hypotheses. Therefore, tasks that require enumeration of
hypotheses will have exponential running times when using
individual models.

6 Redated Work

Like Eavesdropper, previous work by Tambe (Tambe 1996)
also focuses on explicitly using team intentions for inferring
team plans from observations. However, Eavesdropper uses
a more advanced teamwork model (e.g., it can predict fail-
ures based on coordination constraints), and also explicitly
reasons about uncertainty, allowing it to answer queries re-
lated to the likelihood of team plans.

The general probabilistic plan-recognition approach of
(Charniak & Goldman 1993) could explicitly reason about
uncertainty in multi-agent systems. However, the poten-
tially unbounded number of observed communication in the

target domains would render the approach impractical for
online recognition. Work such as (Devaney & Ram 1998;
Intille & Bobick 1999) focuses on explicitly addressing un-
certainty in plan recognition in multi-agent contexts, but
does not exploit explicit notions of teamwork. For instance,
(Devaney & Ram 1998) uses pattern matching to recog-
nize tactics in military operations. Similarly, (Intille & Bo-
bick 1999) relies entirely on coordination constraints among
agents to recognize team tactics. However, teamwork is
more than just simultaneous coordinated activity. Thus, a
purely coordination-based approach is likely to face difficul-
ties in general, as acknowledged in (Intille & Bobick 1999):
For instance, if ateam member were to suddenly fail. In con-
trast, Eavesdropper can predict role replacement and con-
tinue with its monitoring. Eavesdropper can also monitor a
team using limited observations.

7 Summary and Future Work

We have presented a system for monitoring organizations
via their communications. Key novelties include: An effi-
cient probabilistic algorithm for plan-recognition; YOYO¥*,
an approach for efficient recognition of coherent hypotheses;
and the use of organization responses predictions to alleviate
uncertainty. We provided an in-depth empirical evaluation
of these techniques, carefully showing the contribution of
each to the overall recognition success. Eavesdropper gains
its efficiency at the cost of several assumptions about the
nature of the domain. We are currently exploring ways to
relax these assumptions without incurring significant com-
putational costs.

References

Charniak, E., and Goldman, R. P. 1993. A Bayesian model of
plan recognition. Artificial Intelligence 64(1):53—-79.

Devaney, M., and Ram, A. 1998. Needles in a haystack: Plan
recognition in large spatial domains involving multiple agents. In
Proceedings of the National Conference on Artificial Intelligence,
942-947.

Grosz, B. J., and Kraus, S. 1996. Collaborative plans for complex
group actions. Artificial Intelligence 86:269—358.

Horling, B.; Lesser, V. R.; Vincent, R.; Bazzan, A.; and Xuan, P.
1999. Diagnosis as an integral part of multi-agent adaptability.
Technical Report CMPSCI Technical Report 1999-03, University
of Massachusetts/Amherst.

Huhns, M. N., and Singh, M. P. 1998. All agents are not created
equal. IEEE Internet Computing 2:94—96.

Intille, S. S., and Bobick, A. F. 1999. A framework for recog-
nizing multi-agent action from visual evidence. In Proceedings
of the National Conference on Artificial Intelligence, 518-525.
AAAI Press.

Kaminka, G. A., and Tambe, M. 1999. I’'m OK, You’re OK,
We’re OK: Experiments in distributed and centralized social
monitoring and diagnosis. In Proceedings of the International
Conference on Autonomous Agents. Seattle, WA: ACM Press.
Ndumu, D. T.; Nwana, H. S.; Lee, L. C.; and Collis, J. C.
1999. Visualizing and debugging distributed multi-agent systems.
In Proceedings of the International Conference on Autonomous
Agents. ACM Press.

Pynadath, D. V.; Tambe, M.; Chauvat, N.; and Cavedon, L.
1999. Toward team-oriented programming. In Proceedings of the

Agents, Theories, Architectures and Languages (ATAL’99) Work-
shop (to be published in Springer Verlag "Intelligent Agents V"),
77-91.

Tambe, M. 1996. Tracking dynamic team activity. In Proceedings
of the National Conference on Artificial Intelligence (AAAI).
Tambe, M. 1997. Towards flexible teamwork. Journal of Artificial
Intelligence Research (JAIR) 7:83—124.

