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Abstract

A key challenge in using intelligent systems in comptisnamic, multi-agentenvironmentss the
attainmentof robustnessn face of uncertainty.In suchenvironmentghe combinatorialnatureof
state-space complexity inhibiggy designer’sability to anticipateall possiblestatesthat the agent
might find itself in. Therefore, agents will fail in such environments, as the desigmeotsupply
them with full information aboutthe correctresponseo take at any state. To overcomethese
failures, agentsmust display post-failure robustness, enablingthem to autonomouslydetect,
diagnose and recover from failures as they happenhgpeothesidss that throughagent-modeling
(the ability of an agentto model the intentions,knowledge,and actionsof other agentsin the
environment)an agentmay significantly increasadts robustnessn a multi-agentenvironment,by
allowing it to useothersin the environmentto evaluateand improve its own performanceWe
examinethis hypothesidn light of two real-world applicationsin which we improve robustness:
domain-independerttamwork,andtarget-recognitiorand identification systems We discussthe
relation betweenthe ability of an agent-modelingalgorithm to representuncertainty and the
applications, and highlight key lessons learned for real-world applications.

Introduction

A key challengein using intelligent systemsin real-world environmentsis the attainmentof
robustnessn face of uncertainty (Toyama and Hager 1997). The explosion of state-space
complexity completely inhibits the ability of any designer,humanor machine,to specify in
advancehe correctresponsen eachpossiblestate(Atkins etal. 1997). In addition,an agentin
such environments cannot completely and correctly gbegeenvironmentat all times. Examples
of such domainsinclude virtual environmentsfor training (Johnsonand Rickel 1997), combat
simulations (Tambe etl. 1995), and automatictargetrecognitionand identification (SPIE 1995).
Robust (fault-tolerant) agentsin such environmentsmust be endowedwith the capability to
autonomously compensate for the inherent uncertainty of such environments. Theg ahisto
autonomouslydetect,diagnoseand recoverfrom failure in sensorsand communicationsysing
inference to enhance the knowledge gained from sensors which have limited reliability.

Indeed, the difficulty of agent robustness has emergedkas lassonlearnedin our work
in real-world applications. In particular, for the past five yearshavebeendevelopingteamsof
pilot agents foDARPA'’s synthetictheaterof war (STOW) combatsimulationenvironment.This
is a real-world complex,dynamicsimulation,commerciallydevelopedor the military (Tambeet
al. 1995). Pilot teamsin this environmentface a rangeof uncertaintiesfrom unscriptedenemy
behaviors, to pilot agents encountering differing, inconsistent or incomplete vid¢hesvadrid, to
unexpectedpilot or helicopter failures, to unexpectedcommunicationfailures. Our first-hand
experiencehere has beenthat enabling the pilot teamsto perform multiple missionsover the
duration of a major simulation exercise requires a very high degree of robustness from participatin
agents and agent-teams.

To attack this problem, Alechniqueshaveattemptedo provide agentswith the capability
to demonstratgoost-failure robustness (Toyamaand Hager 1997), which allows the agentsto
autonomouslydetect,diagnose,and recoverfrom failures as they occur. Previousapproaches



(e.g., Doyle et al1986, Williams and Nayak 1996) haveattemptedo improve the robustnes®of
agentsperformanceby specifying constraintswhich essentiallyallow an agentto comparethe
executionof its taskto someideal, specifiedby the designerin the form of a self-model of the
agent, or monitoring conditions on the agentsperceptionsand actions.For instance,a common
techniquein roboticsis to recognizeandtrack objectsby their color, which is fast and relatively
reliable. The agerknows thatit haslost sight of the objectwhenthe color is no longerin view.
Or, as an example of model-based diagnosis, an agent may discover omgerhiscomponents
is faulty when the actions produced do not match the modeled ideal behavior.

While powerful in themselvestheseapproachegare gearedtowardsusein a single-agent
environmentand haveseverallimitations in multi-agentsettings.First, theseapproachedail to
take advantageof the opportunitiesexistingin multi-agentsettings,in thatthey do not allow the
agentto compensatéor its own sensorreadingsby utilizing knowledgeof other agents’beliefs
and/or behavior. For example, a driveraafar may infer the existenceof an obstaclein the road
from observinganothercar swerve.Or, a missile may recognizetargetswhich are only partially
viewed basedon their observedbehavior, rather than absolute visual identification. These
exampleshowever,rely on the ability to reasonaboutotheragents,ratherthan the exactvisual
scene.

Second, thesapproacheslo not considerthe effectsthat failuresin otheragentshaveon
the agent’'sown expectedoehavior.For example,flexible teamworkrequiresagentsto maintain
their coordinationin face of unexpectedailuresin teammatesBut this maintenancecan only be
carried out if the agents can detedtenteammatesre miscoordinatingGood teamworkrequires
the agent$o compensatéor distributedfailures, wherea numberof agentsmay all fail together,
and in different ways. Here again, the agentsmust reasonabout other agentsinvolvementin
executing the task.

Our hypothesis is that the key element which is lackingreviousapproachespreventing
them from robust performance, is the ability to reason at a higher level about other agents. We hay
thereforeextendedour agentswith agent-modelingcapabilities: The ability to model the beliefs,
intentions, and plans of other agents. We have developed several reactive agent-modeling
techniques (for different applications), called RESC (REal-@itgatedCommitmentsand RESL
(REal-timeSituatedLeast-commitments)yhich enablean agentto infer the plans and beliefs of
otheragentsfrom their observableactions. This capability enablesour agentsto improve their
robustnesdy allowing themto take knowledgeof other agentsinto account,compensatingor
someof the uncertaintiesn the environmentFor example,knowledgeof other agentsallows a
team-membeto evaluateits performancedetectfailures, diagnoseandrecoverby comparingits
own beliefs and plans to those of its teamme@eshknowledgecanalsobe usedto complement
an agent’s sensors alowing it to indirectly sensethe environmentthroughinferencebasedon
the behaviorof otheragents.For instance a group of vehiclesmay not lend itself to recognition
based on shape or color, but may be recognized hyattiieularformationsused, tactics,etc. We
will introducethe use of RESCand RESL in serviceof robustnesshrough two applications:
domain-independent teamwork, and automatic target recognition and identification (ATR ID).

In providing domain-independerttamworkwith post-failurerobustnesscapabilities,we
have been developing SAM (Socially Attentive Monitoring), a plan-executionmonitoring and
diagnosis technique (Kaminka and Tambe 1998). In SAM, ageer@gent-modelingo infer the
plansand beliefs of teammatesand comparetheseto their own plans. This allows agentsusing
SAM to detect failures and diagnose them in coordination by observations alone, and to recover.

In automatic target recognition, we have demonstrated preliminary use of RESdbiing
identificationof groupsof moving targetsbasednot on their individual visual characteristicshut
ratheron their group behavioras a team.The key ideahereis that the behavior of a group asa
whole, while stemmingfrom the individual agentscomposingit, can be recognizedand usedto
identify the individuals. Additionally, the use of an agent-modelingtechniquelends itself to
inferring the intentions of the targets in question, rather than just their identification.

Thesetwo applicationshighlight important lessonswhich we have learned from our
investigation of real-world environments. One obvious lesson was that agents in such
environmentswill sometimesfail. A secondlessonis that post-failure robustnessis greatly



facilitated by explicit reasoningabout the agents inhabiting the environment. But a more
generalized lesson that we took from this research is that achieving petiestancenay not be
so much a question @bmingup with an optimal technique ratherthana questionof comingup
with an optimal set of techniquebat complementeachother. SAM andthe previousapproaches
(condition monitoring, model-basedliagnosis),for instance,offer complementarycoverageof
failure-spaceyatherthan an overlappingone. Similarly, we hypothesizeATR-ID systemswill
benefit from incorporating agent-modeling methodology as part of the recognition process.

Motivating Application Domains and Examples

The motivationfor our work comesfrom our two applicationdomains,both of which involve
challengingrealistic environments,involving complexity, uncertainty,and multiple interacting
agents. One is the developmeifitsyntheticpilot agentteamsfor a DARPA’s STOW domain-- a
commercially-developed high-fidelity distributed battlefield simulagorironmentin which up to
thousandof agents(helicopterand aircraft pilots, tank commandersinfantry platoons,etc.) can
all engage in virtual battlefield exercis@sis real-world simulationincludesuncertaintiesuchas
unscripted behaviors of other agents, unreliable communicatiahsensors possiblyincomplete
task/mission specifications, etc. (Tambe et al. 1995). The other application doaraAui®matic
TargetRecognitionand Identification system(ATR-ID). The challengeis to observegroups of
moving vehicles and to recognizeand identify the types of targets(e.g., tanks, anti-aircraft
vehicles,etc.). Currently we are exploring this application within the context of a battlefield
simulation.

The robustnessissue in the first application domain (battlefield simulation) may be
illustrated by the following two exampled failure: Thefirst failure involved a scenariowherea
teamof threehelicopterpilot agentswasto fly to a specifiedlandmarkposition. Having reached
this position, one of the team memberswhoserole was that of a scout, was to fly forward
towards the enemy, verifying its position. The scout’s two teammatesdtatdkers) wereto land
andwait for its returnto the specifiedposition. All of the pilot agentswere explicitly provided
conditions to monitor for the landmark. However, doi@n unexpectegensorfailure, one of the
attackerdailed to sensethe landmarkmarking the waiting position. So while the other attacker
correctly landed, the failing attacker continued to fly forward withsttwut, following the original
plan which called for flying in formation! The failing attackerhad clearly seenthat the other
attackerhad landed,but it did not use this informationto infer the position of the landmark.
Furthermore the other attackerand the scoutdid not complainto the failing attackerabout its
failure. In a secondexample,a similar teamof threehelicopterswasto take off from the home
baseand headtowardstheir battle position. One of the agentsunexpectedlydid not receivethe
correctmissionspecification,so while two of the agentsbeganto fly out as planned,the failing
agentkept hovering in place at the starting position indefinitely. Again, none of the agents
complained about the unusual performance of the team.

We have collected dozens sifichfailure reportsin this applicationdomainduring the last
threeyears.While it is generallyeasyfor the humandesignerto correctthesefailures once they
occur, it is hard to anticipate them in advance. These failures despitesignificantdevelopment
and maintenance efforts. Given the complexity of the dynamic environpredicgtingall possible
statesandall possibleinteractionsis impossible.Furthermore thesefailures are not negligible.
Rather,they arevery obvious(to the humanobserver)catastrophidailures, for both individual
agentsandthe team.In the secondexampleabove, not only was the single agentstuck behind
unable to participate in the mission, but tmainingagentswere unableto carry out the mission
by themselves.

Furthermore, these failures are not due to a lack of domain expertisedasiaexperts
expectsome common sensehandling of such failures even in the most structured military
procedure. Indeed, by exercising social common sense, an agent maydstésdistat something
may be wrongSocialclues,suchas(in the examplesabove)noticing thatteammatesre leaving
while the agent is hovering in place, or that a team-member has landed while the team wias flying
formation, would have been sufficient to infer that something may be wrong.



Thesecharacteristicsinderlyingthe needfor robustnessre true of ATR-ID systemsas
well. Suchsystemdacethe requiremento incorporateadvancedalgorithmsthat identify targets
from imagesunderan extensivesetof operatingconditions. Theseconditionsmay spanseveral
categories,from target and sensor related parametersito sensinggeometry and interacting
environmentalconditions. The targetsmay belongto severalclasses. There may be several
variants of the same target, as well as the sensor. arbe externaldamageo the target. The
sensors themselves may operate with varying degrees of squint, depression, resolution, frequenc
noise levels and anomalies, single or miolik. The sensinggeometryitself may include varying
6 degreef freedomposesof target,squintand depressionThe backgroundmnay have varying
levels of brightness, texture amdriousmaterials.In addition,environmentatonditions,suchas
obscurationand layover, camouflage revetment,may renderthe searchspacecombinatorically
explosive. The availability of this data for some sensors that are capable of opsagiamgl night
and for all weather conditions further increases the dimensionality of the problem space.

An ATR-ID systemmay have to continueto operatein the context of this large
dimensionality, and make inferences on several hypotheses abaséritigesof the targets,even
when parts othe informationis unavailableor is intermittently available,throughuncontrollable
circumstancedt is very importantthat the systemcorrectly classify the targets,for exampleto
avoid targetingfriendly or neutral entities,and so it must overcomeany failure of the visual
recognition algorithms it employ€urrentvisual recognitionalgorithmsmay cometo animpasse
under certain conditions, anshderstandinghe behaviorof the group of targetsasa whole (i.e.,
agent-group modeling) may contribute additional important information for the recognition task.

Agent Modeling fa Robust Teamwak

Agent modelingis animportantproblemthat dealswith methodsallowing an agentto represent
knowledge about othexgents,andto effectively reasonaboutthem. Planrecognition(Kautz and
Allen 1986) is one aspectof this problem. We have been developing severalagent-modeling
techniques, based on the reactive-plan-recognition paradigm, which rmadalio operatein real-
time given the real-world environments involved in our application domains.

A commonthreadin our modelingtechniquess that they utilize plansin an “analysis by
synthesis” process (Anderson et al. 19@@gctively runningthe plansin reverse”in serviceof
plan-recognition.Besides eliminating the need for specializedoff-line pre-processingas is
commonin other plan-recognitionwork, e.g., (KautzandAllen 1986, Huberand Durfee 1996),
this enables uniform representation of the agent’s own plans, beliefs, etc. and thoseanfelee
agents.As will be explainedin later sections,this uniformity is critical for failure detection
applications.

Execute Mission
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Fly Flight Plan Wait at Point
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* -"1:_'_.-‘1_‘»..‘_._.:--.- """ --->
A > N A L. _>
Nap of the Earth Contour Low-Level

Figure 1. An example operator hierarchy.



Our agents’ design is based on reactive p{apsrators)Firby 1987, Newell 1990), which form
a decompositiorhierarchythat controlseachagent.Figure 1 presentsa small portion of sucha
hierarchy. Each operatan the hierarchyhaspreconditiongor selectingit, applicationconditions
to apply it, and terminationconditions.The designof the hierarchical plans usesthe STEAM
framework (Tambe 1997) for maintaining an explicit model of teamwork. Following this
framework,operatorsmay be team operators(that explicitly representhe joint activities of the
team) or individual (specific to one agent). In Figlirdooxedoperatorsare teamoperatorswhile
other operators are individual. The filled arrows signify the operator hieratctgntlyin control,
while dottedarrowspoint to alternativeoperatorsvhich may be used.In the figure, the agentis
currently executing the execute-mission team operator whichhigest-leveteamoperator,and
haschosen(jointly with its team)to executethe fly-flight-plan operator for flying with the team
through the different mission-specified locations.

Following the conceptof uniform representationpur agentmodeling algorithms(RESC
and RESL, explained below) both genermaperatorhierarchieso explainthe observedactionsof
otheragents.The operatorhierarchiesare inferred, of course,but are otherwiseidentical to the

operatorhierarchy that is actually in control of the agent doing the modeling. Thus, the
recognizing agent has uniform access to its own “in-conkiefarchyandthe inferred hierarchies
of other agents.

A key problemthat hauntsplan-recognitionsystemis ambiguity, i.e., as an abductive
process,there could potentially be severalplansthat matchthe observations(Kautz and Allen
1986). The two techniqueave will show presentwo different solutionsto this problem, which
make them appropriate for different applications.

RESC: REal-time Situated Commitments

Our initial work in agentmodelingresultedin the developmentof a reactive plan recognition
algorithm called RESC. RES@asi initially targetedfor opponent-modelingpplicationsin which
the agentdoing the modeling was to respondin real-time to its opponent’s plans--real-time
adversarialplanning. RESC was therefore designedwith the key feature of ensuringit had
committedto a single worst-casanterpretationof the opponent’sbehavior,allowing the agentto
respond to the worst possible threat first. In other words, given senatetinginterpretationof
the observations, RESC will commit to thee deemedo representhe biggestthreat,ratherthan
most likely explanation. RES®@as describedn detail elsewhergTambeand Rosenbloonil995)
and will therefore only be described here summarily.

To correctly provide team-modeling(as opposedto single agent-modeling)capabilities,
RESC was extended in (Tamb896)to RESCteamyhich followed the basicRESCframework
as far as early commitmentsto recognizedplans, but greatly enhancedthe capabilities of
recognizing team-plans -- plans that are being executéebbysjointly, ratherthanby a group of
individuals. This was done by allowing RESCteamto reasonabout the role-constraints.In
teamwork, agentare constrainedy eachother’srole -- this is part of coordination. RESCteam
attempted to use thesenstraintan understandingvhat the teamis jointly attemptingto achieve.
For example, in air-combat simulation, RESCteam allows recognizing a manewidch agents
move to the left and right, resp. as a pincer maneuver.

The recognitionworks by using the actions specified by operatorsas expectationsfor
observableactionsof the modeledagents. For example,the NOE operatorsetsthe speedand
altitudeto that of a typical helicopternap-of-the-eartlilight: very low altitude aboveground (6-8
meters), and relatively slow speed.RESC uses the operator’s specified actions to create
expectations -- so a helicopter being observed to fly at the appropriate altitugjgeandotentially
“matches’the NOE operator.In otherwords, a possibleinterpretationof that helicopterschosen
plan is the NOE operator. Successfulmatchespropagateup and down the inferred operator
hierarchy to mark a single path (root-to-leaf) which is the chosen interpretationotfstievations.

'There is a slight difference in terms of usage. Although the plans are completely uniform in REBL.-&nferred
hierarchy may contain multiple hypothesis, while the hierarchy in control of an agent is never ambiguous.



In caseof ambiguityin the propagation(for example,two parentsof a matchingleaf), domain-
specific information determines whidhterpretationsare more significantand shouldthereforebe
preferred. In figure 2 below, the left hierarchy is the hierarchy actuadigntrol of the agent.The
right one is inferred by RES(, to be currently executed by anotheam (containingone or more
agents).

Agent's Higarchy Other's (Inferred) Hierarchy
Execute Missio|1 Execute Missi*
Y Y
Fly Flight Plan Fly Flight Plan
Y v
Fly Route Fly Route
Y Y
Travelling Travelling
Y Y
Nap of the Earth Low-Level

Figure 2. Two example hierarchies in the agent’'s memory

In this case,the recognizingagentinfers that the other agentis executingthe execute-mission
operator,in serviceof which it executedly-flight-plan, etc. The observationdn this casewere
matched against the leaf operator (low-level), and the successful match was propagated up.

RESC in Service of Teamwork

Teamwork (collaboration) is ubiquitous in multi-agent environments. It is charactbgizedroup
of coordinating agents who are working together towards a joint Beakntly,severalpromising
models of teamwork have been suggested (Jennings 1995, Ta®beavhich attemptto provide
domain-independent teamwork capabiliti€his work hasbeenat leastpartially motivatedby the
constantneedto patch ad-hocdomain-dependentoordinationplans and replanningcapabilities,
andin that regard, can be viewed as an interestingattemptat a mix of pre-andpost-failure
robustness, i.e., as techniques for preventing failuresardinationand collaboration,and team-
replanningcapabilitiesupon detectionof failure. To carry out this goal, teamworkmodels often
requirethe establishmenbf “common grounds”, a mutual belief sharedby all membersof the
team.

While teamwork models have generally been successfulat improving robustnessof
coordinationplansby preventingthem from happening failures may still occur. In particular,
teamwork models often rely of the establishmenbf mutual belief to make sure the team is
coordinated. Yet mutual beliefay be difficult to achievein practice(Halpernand Moses1990),
whereit is often achievedvia communication(which can get blurred or even lost in realistic
settings), or via common objedtsthe externalenvironmenthat are assumedo be sensedy all
agents(a risky assumptionat times, since sensorsmay fail). Indeed, the exampleswe have
discussed in the previous section demonstrate that teamwork may breakutevoomplex,real-
world settings.



To addressheserobustnessssues,we havedevelopeda techniquecalled SAM (Socially
Attentive Monitoring) which relieson agentmodelingto facilitate post-failure,observation-based
robustnesgapabilitiesfor agentsin social settingsin general,and teamsin particular. SAM is
describedn detail elsewhergdKaminkaand Tambe1998)andwill only be introducedhereasan
application of agent-modeling for robustness.

Agent Modeling for Failure Detection. SAM is composedf threeprocesses(i) a failure
detectionprocesswhich involves comparisonwith peers,in particularteammatesto detectthe
possibility of failure, (ii) a diagnosisprocesgo confirm the detectedrailure and perform detailed
diagnosis, and (iii) a recovery proce$be key ideain the failure detectionprocesds that agents
candetectfailuresin their own or their peer'sbehaviorby noting differencesbetweentheir own
state(wherean agent’'sstatemay includeits beliefs, goals,behaviors.etc.) and thoseof others.
This process therefore relies knowledgeof the otheragents’state,and on a representatioithat
supportscomparisonbetweenthe agent’'sown state and those of others (as they are being
modeled). This knowledge cain, practice,be acquiredthrougheither communication®or agent-
modeling techniques which rely on observations.

In many realistic domains, continuouscommunicationincurs significant cost, both in
overhead and risk. For example,auar battlefield simulationdomain,the costof communications
is very high, asthe agentsoperatein a hostile environmentand exposethemselvedo risks by
communicatingwith eachother.In contrastthe costof planrecognitionis relatively low, being
mostly a computationalcost rather than a survival risk. In addition, in a team context, plan
recognition is often quite reliable due to assumptibascan be madeaboutthe behaviorof other
agents,since they are team members.Our estimatesof reliability and the cost make plan
recognition an attractive choice for acquiring knowledge of others, and wehasenRESCteam
as it was readily available and fit the uniform representation requirement.

Using information supplied by RESCteam, SAM compares the agmgesatorhierarchies
by performinga top-down comparisonof the operatorsin equal depthsof the hierarchy. For
instance, in figure 2, the difference that would be deteastbdtweenthe two leaf nodes,sinceall
operatorsabovethemareidentical. Any suchdifferenceindicatesa possiblefailure, if teammates
were supposed to be executing similar operators in the first place.

Social Diagnosis While SAM’s detection process indicates possibilities of failures, its

diagnosis process verifies the failure and generategg@anationfor it utilizing socialknowledge
sources(other agentsand the explicit teamworkmodel). Thesesourcesdeterminethe expected
similarity betweenthe agentsinvolved, and thus determinewhether, and to what degree,the

difference in operators is truly an indicatiohfailure. In particular,differencescanbe detectechat

the team level (thenonitoring agentandits teammatesre not executingthe sameteamoperator),
or individual level. The extentof the diagnosisand recoverydependson the type of difference
detected.

In the case of team-operatordifferences, SAM’s failure diagnosisis driven by the
teamwork model. The key idea in SAM is basedthe observatiornthat teamworkmodelsspecify
how a team should work in general. Thus, tracing back through such a model can help confirm an
diagnoseteam failures. In our implementation,the agentsutilize one such explicit model of
teamwork,STEAM (Tambe1997), for their collaborativeexecutionof teamoperators.STEAM
attempts to ensurhat teamoperatorsare establishegointly by the teamvia attainmentof mutual
belief in their preconditions, and terminated jointly by attaining mutual beliekiteam-operator’s
terminationconditions.In theory,teamoperatoranustthereforealways be identical for all team
membersHowever, as discussedefore,establishingnutual belief in practicemay be difficult.
Furthermore, for security or efficiency, team members sometimes deliberately reduce
communication,and inadvertently contribute to such team-operatodifferences. For instance,
agents may assume ttaat externalobjectin teammembers'visual range(suchas a landmark)is
visible to all, and may not communicate about it.

Given STEAM'’s guaranteeshat the team operatormust always be identical, any team-
operator differences detected by SAM therefore imply not oplyssibility but a certainty of team



coordinationfailure. Having establishedhis certaintyin the failure, SAM’s team-leveldiagnosis
next attemptsto identify the exactdifferencesbetweenits own beliefs and its teammatesbeliefs
(again, provided by RESCteam) that have led tteeexecutedifferentteamoperators--thisaspect
of diagnosis is key for recovery, angioceedsasfollows. First, given a differencebetweenthe
monitoring agent’'g’1 team operator and ttetherteam-membersT2 teamoperator,SAM infers
that the entire team was initially executing T1 (since no differenceswere detectedearlier).

However, now teammatehiavebegunexecutingT 2°. Therefore,SAM infers that the teammates
believe thabne or more of the disjunctive preconditionsnecessaryor selectionand executionof
T2 were satisfied.Furthermore,SAM infers that teammateselieve that one or more of the
disjunctiveterminationconditionsof T1 havebeenachieved.Typically, the intersectionbetween
thesetwo setsof possiblebeliefs determineghe actualsetof beliefsthat the teammate$old that

aredifferent at this point. In addition, the teamworkmodelguaranteeSAM that this is the only
real difference that has led to the teammates’ execU#n@®f coursethis intersectionideacanbe
applied to both team and individual operator differences, but it is of partimpartancefor team-
level failures given the guarantees provided by the teamwork model.

In the exampleof the agent’sfailure to detecta key landmark,SAM infers that the other
agentsare carrying out the wait-at-point operator (one attacker lands, while the scout goes
forward). Once this discrepancy is noteddth executingfly-flight-plan, they are executingwait-
at-point”), SAM determines thaincethe otheragentshaveterminated‘fly-flight-plan” they have
eithermetwith an enemy,or reachedhe landmark.From their currentchoice of “wait-at-point”
operator(whose preconditionsinclude reachingthe landmark),SAM infers that the teammates
believe that they haveindeedreachedthe landmark. Thus, given the guaranteesof teamwork
models,the differencein teamoperatorss elaboratedy the diagnosisprocessto infer specific
differences in team members’ beliefs.

Recovery. Recoveryis greatly facilitated by better diagnosis. Currently, SAM’s recovery
assumeshat the agent’sperceptionis incomplete but not inconsistent.For example,an agent’s
sensors may fail to detect the landmark (a “don’t know” respohsgyyould not erroneouslysay
it is there when it isn’t. Thus, SAM’s diagnosis that teammlade®cometo believein something
which the monitoring agentdoesnot know about(or vice versa)enableshe monitoringagentto

recoverby adoptingthis belief (or in the reversecase,by letting othersknow aboutthis belief).

The above assumption is made only in the recovery stagm, tha detectionor diagnosisstages,
and removing it is a topic for future work.

In the example of thé&ilure to detectthe landmark,oncethe agentdiagnoseghe problem
that the other agents have detected the landmark (making the “fly-flight-plan” achieveddyvers
completely by adopting the other agents’ belief. This adoption of belief makes the preconditions for
its own “wait-at-point” operator trugndit re-establishemutual belief with the team,completely
resolving the problem.

We have conducteda thorough evaluation of SAM, which is describedin detail in
(Kaminka and Tambe 1998). We examined SAM'’s performance on all possible permutations of the
failure involving the landmark— allowing a single agentrunning SAM to play either scout or
attacker, and looking at &l failure combinationghe threehelicopters— 16 experimentsn all, of
which 14 contained at leaghefailure. SAM was ableto successfullyresolvea large portion (11
out of the 14) of failures which cannio¢ capturedat all using previoustechniquesin fact, SAM
was able to detect,diagnose,and recoverfrom failures in other agents,which other technique
cannot resolve even in theory. The agent modeling capabikgsentiain providing the basisfor
this type of diagnosis. Without the ability to reason about the knowledge thatgémspossess,
the agent cannot evaluate its performance by social means. It cannot detect the failucaeod
diagnose it.

> The case where the team did not switch but the monitoring agental&isossible,but is not describecherefor
brevity
*Empty intersection cases are a topic for future work.



Agent Modeling fa Improved ATR-ID Robustness

The ATR-ID task is to recognize and classify target baseitheir observedcharacteristics--shape,
color, appearanceand other elementsof the visual scene .Generally,existing approachego this
problemuse techniquesrom computervision, image processingmodel-basedecognitionand
others to attempt to analyze the visual scene. However, key elemémeobservedsceneremain
unutilized. If we know the targets are agents acting in the environment, wseagentmodeling
techniquedo helpin the identificationtask. Different targets,dependingon their intendedtasks,

will display different behaviors,and so the tasks may be inferred from observation.Thus in
addition to matchinga physical model to the observationsto recognizetargets, we propose
matching a high-level intentional model -- if a target behaves as if it is a tank, it is likely to be one.

Our specific preliminary applicationinvolved recognizinggroupsof unidentified moving
vehiclesbasedon their speed,formation and other behavioralattributes.No visual information
other than their location and movemenknown. Here, eventhoughthereis still a needfor real-
time recognition, there is also critical need for explicit reasoning about the ambiguity in
recognition.An agent-modelingsystemin service of an ATR-ID systemmust not return one
interpretationif others exist as well, especiallywhen trying to identify targets which could
potentially be friendly or neutralt shouldinsteadreturnall matchingsolutions,possiblyordered
by likelihood, with a measure abnfidencein each.This information canthenbe combinedwith
other evidence, such as a visual recognition component. Also, unlike the adversarial-planning cas
thereis often time to considerthe actionto be takenbasedon the recognizedtargets,and more
information about possible interpretationsigeful. Therefore,an ATR-ID applicationrequiresan
agent modeling algorithrim which the commitmentdo interpretationsare doneon a lazy basis--
only when absolutely necessary.

RESCteam’squick commitmentto an interpretation,so vital for real-time adversarial-
planning applications, proves too quick in this respect. Rather than reporting to the ATR-ID systenr
that the recognitionresultis ambiguous, RESCteamcomesback with its choseninterpretation,
without providing the recognizing agent complete information atheutncertaintyinvolved. This
disallows the ambiguity to be cleared over a period of time by collecting more observations or othe
evidence.

RESL: REal-time Situated Least-commitments

To address this problem, we have been developing RRE&I-time SituatedLeast-commitment).
RESL allows multiple possiblematchinginterpretationdo be reasonediboutat once,in parallel.

The modeling agenttherefore has accessto all possible interpretationsof the other agents’
observabldehaviors,and can reasonexplicitly aboutthe relation betweenthe possibilitiesand

other source of evidence (for example, communications, visual-based recognition algorithms, etc.

In RESL's implementation,as in RESCteam,each hypotheseds a path through the
operatorhierarchy usedto model the other agent. The difference is that while RESC and
RESCteandecidedlymaintainonly a single path active at one time (thus committing to a single
interpretation), RESL maintains all matching paths at the same tiraddition, RESL attemptsto
go from plan-recognitionto belief ascription.When an operatormatches,RESL infers that the
preconditionsnecessaryor the operatormust be believed by the modeledagent. And when
operator stops matching, RESL infers that the operator’s termination conditions are lsli¢ved
modeled agent.

RESL works by first expandingthe complete operatorhierarchy for the agentsbeing
modeled,initializing all possibleoperatorsto a “non-matching” state. The modeled operator’s
preconditionsare all flagged as non-matching,as are all terminationconditions. All operator’s
actionaresetto be usedas expectationson behavior. This processis describedin Algorithm 1
(Init) below.

Init ( modeled agent )
{

current hierarchy <- NIL



for each operator in the hierarchy for modeling others:

1. Add operator to current hierarchy

2. Initialize operator's ©preconditions as a set of
possible beliefs associated with the agent

3. Initialize operator's termination conditions as a set
of possible beliefs associated with the agent

4. Initialize operator's actions as a set of expected
observations associated with the agent

return current hierarchy as the plan recognition network

Algorithm 1. Init operator-hierarchy for modeling by RESL.

Observationsof other agentsare continuously matched against the actions expectedby the
operators. Operators whose expectatimaschobservationsare taggedas “matching”, andthese
flags are propagated along thierarchy,so that completepathsthroughthe hierarchyare flagged
as matching or not. Thegathsspecify the possiblematchinginterpretationf the observations.
In addition, preconditionand terminationconditionsare flagged as true or not, signifying the
inferred appropriatebelief by the modeledagents. This processis describedin Algorithm 2
(RESL) below.

RESL ( plan recognition network, modeled agent )

{

get observations about agent

// primitive matching

for each operator that has a set of expected observations:
1. attempt to match observations to expectations

2. If succeed, flag operator as matching successfully

3. If fail, flag operator as failing to match

// propagate matching

for each operator that is flagged as matching
successfully,

e flag its parents as matching successfully

for each operator whose children (all of them) are flagged
as failing to match,

e flag it as failing to match

// preconditions

for each operator that is flagged as matching

successfully,

e flag its associated set of preconditions as possibly
true (the agent possibly believes this set of
preconditions)

// termination conditions
for each operator that has just stopped matching
successfully,
e flag its associated set of termination conditions as
possibly true
}

Algorithm 2. RESL’s main loop, matching observation and making inferences.

For example supposea group of vehiclesis moving in a particularformation, following a tactic
which can be attributedto either opponenttanks or friendly anti-aircraftvehicles. RESL may
suggest these two hypotheses, rather than committing to one (as RESCteanamapitd¥enting



it to the ATR-ID system. This would potentiallyallow the ATR-ID to combinethis information
with other source of evidence before committing to an action.

We have performegreliminary experimentsn which a vehiclewas identified basedon it
speedalone. The vehicle was traveling at certain speed,but its identity was unknown. RESL
generated paths matching the operaitothe hierarchy(Figure 3). Thesepathsenableus to infer
that the vehicleis eitheratank or an anti-aircraftvehicles,since thoseare the preconditionsfor
selections of the defend and attack operators. Normally,istezenceregardingtargetIiD would
be passed on to the ATR-ID system, which can then contiimeformation (with the associated
uncertainty) with other sources of evidence.

Vehicles's (inferred) Hierarchies

Execute Mission

Defend Attack
Tactical March Spread
March

Figure 3. RESL-Inferred multiple hypotheses.

Now, as the vehicles slowed down or sped up, the recognized plans were disambiguately, and
a single path was left matching. This demonstrateshe utility of this approach,complementing
other ATR-ID methods, such as model-based recognition and others.

Discussion andLessonlLearned

Lesson 1.The need to face up to robustness as an issue in itself hadibegssedeforein the
context of large-scale, real-world applicationg®f(ToyamaandHager1997). However,it does
not rise in smaller-scalesimplistic domains.Our experiencewith both applicationshas proven
again and again that agentsin large-scaledomainswill fail. In addressingthis issue, Al
researchers must investigate applications in such domains.

Lesson 2.0ne obvioudessonwas that post-failurerobustnessn multi-agentsettingsis greatly
facilitated by explicit reasoningaboutthe agentsinhabitingthe environment.Obviously, none of
the applicationsdescribed(SAM, and intentional recognitionin ATR-ID) would be possible
without an agent-modeling capability.

Lesson 3. Our experiencewith this issuewas that the agent-modelingalgorithm needsto be
matched to the application that uses it. For example, RESCteam wdwddoreloudor usein the
ATR-ID system,sinceit is overly zealousin ruling out matching hypothesesIn general,an
approachsuch as RESL, supporting uncertainty and multiple hypothesisis beneficial in
applications that have other sources of evidence.

Lesson 4. A moregeneralizedessonthat we took from this researchis that achievingrobust
performance may not be so much a question of coming up witptanal technique ratherthana
guestion of coming up with an optineat of techniques, that complement each other. SAM and the
previous approaches to agent robustness, such as condition monitormgdeiebasedliagnosis
offer complementangcoverageof failure-spaceratherthan overlappingone. In particular, SAM



candiagnosefailuresthat the otherapproachegan’t, and vice-versa.Similarly, we hypothesize
ATR-ID systemswill benefit from incorporatingagent-modelingmethodologyas part of the
recognitionprocess.The information it providescan be usedto complement,not replace,the
information received from the visual recognition algorithms regularly used in such tasks.

Related Work

Thereis generallylittte work on robustnesgeportedon in the literature. Toyamaand Hager
(1997) discuss post-failumbustnessn general,and provide a vision architecturethat combines
low-resolution/wide-coverageand high-resolution/low-coveragdechniquesfor face tracking.
Atkins et al. (1997) attack a similar problem of detecting states for which thedagemtot havea
plan ready.They offer a classificationof thesestates,and provide planningalgorithmsthat build
tests for these states. However, their approach congidirshe individual agent,and so hasthe
same weaknesses as model-based and condition-monitoring approaches. Our workagensing
and agent-team- modeling in service of robustness is thus novel.

SAM is related to work omulti-agentcoordinationand teamwork,althoughit generalizes
to also detectfailures in executionof individual operators,which are outside the scope of
coordination.Particularly relevant are observation-basedhethods,which use plan recognition
rather than communications fooordination.Huber and Durfee (1996) do not assumean explicit
modelof teamwork,but ratherview collaborationas emergenfrom opportunisticagents,which
coordinate with others when it suits their individual goals. These agents do ndhéguarantees
of maximal social similarity at the team level, and while they possibly will find the detected
differencesuseful, they cannotbe certainof failures, nor facilitate teamrecovery(sincethe other
agent may simply have left the team opportunistically).

RESCandRESL areof courserelatedto otherwork in plan recognitionin general,and
reactiveplan recognitionin particular.Specifically, Rao (Rao94) presentsa similar algorithm to
that of RESL. However,the focustherewas on task-independerdgentmodeling, while we are
looking at the relation between a specific algorithm (RESRBEC)and the applicationswhich it
serves. In addition, Rao’s work does not extend to the belief ascription via inference of
preconditions that we have utilized in both RESC and RESL.

Summary and Future Work

We have presented two applications of agent-modeling in significantly improving the roba$tness
agents in large-scale, complex, dynamic environments, involving multiple aGeetapplication,
SAM, uses the RESCteaagentmodelingalgorithmin improving the robustnes®f agentteams,
allowing team-members to detextd diagnosedailures basedon observationf their teammates.
The other application,and ATR-ID system, utilizes the RESL algorithm, with its support for
pursuingmultiple hypothesesto providetargetrecognitionand identification basedon behavior
and high-level intentional models.

We hope to continuethis line of researchfurther by examining in greater detail the
relationship between the agent-modeling algoritind the applicationwhich it benefits.Given an
application, we would like to be abie predictthe characteristicef the agentmodelingalgorithm
that is required to supply the information, and vice-versa. In additigniniportantto understand
how to combinethe more statisticalnatureof otherevidencewith the symbolic natureinherentto
plan-recognition and agent-modeling algorithms.

We arealsointerestedn continuingour developmenif agentmodeling techniquesand
their integration with other Al techniques. Fetample both RESCteanand RESL currently use
a static description of the plans. Making them adaptive, utilizing adapsattbiearningtechnique,
will not only havesignificantimprovementn reductionof failuresin recognition(as otheragents
may use aifferent setof plans),but alsoraisesinterestingquestiongegardingthe effectsof the
learning on the application which uses the modeled information.
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