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ABSTRACT
Almost all robots are autistic; very few humans are. Out of the box,
robots generally do not behave correctly in social settings (involv-
ing humans, or other agents). Most researchers treat this challenge
behaviorally, by superficially tacking task- and domain- specific
social behavior onto functioning individual robots. These rules are
built once, and applied once. In contrast, I posit that we can build
better socially-capable robots by relying on general social intelli-
gence building blocks, built into the brains of robots, rather than
grafted on per mission:built once, applied everywhere. I chal-
lenge the autonomous agents community to synthesize the compu-
tational building blocks underlying social intelligence, and to apply
them in concrete robot and agent systems. I argue that our field is
in a unique position to do this, in that our community intersects
with computer science, behavioral and social sciences, robotics,
and neuro-science. Thus we can bring to bear a breadth of knowl-
edge and understanding which cannot be matched in other related
fields. To lend credibility for our ability to carry out this challenge,
I will demonstrate that we have carried out similar tasks in the past
(though at a smaller scale). I conclude with a sample of some open
questions for research, raised by this challenge.
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1. ROBOT AUTISM AND ITS IMPACT
Robots and other synthetic agents (e.g., virtual humans) are gen-

erally autistic. Out of the box, before a significant programming
effort is spent, they are unable to behave correctly in social set-
tings, involving other agents, robots, or humans. And yet in a sense,
making agents or robots behave correctly towards others (whether
synthetic or human) is at the core of multi-agent and multi-robot
systems research.

Most robotics researchers treat this challengebehaviorally, by
superficially tacking task-specific social behavior onto functioning
individual robots. The behavioral approach focuses on adding ad-
hoc communication and coordination rules that will cover social
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behavior for the task at hand. Essentially, this entails narrowing the
scope of the interactions, and spending very significant and expen-
sive programming efforts, until the robots dowell enough, in terms
of their social behavior, at the task at hand. The analogy is to treat-
ment of high-functioning autism by behavioral therapy, whereby
the patient (in our case, the robot) is given rules to follow blindly
to improve social functioning, without real internalization of their
rationale. Examples abound in multi-robot systems. Roboticists
typically address canonical tasks—one at a time—and general tech-
niques emerge of studying those. But this methodology encourages
this behavioral approach, where the interactions between robots are
highly optimized for each specific task. The social behavior rules
thus designed are built per-task, and are applicable only to the task.

In contrast, I posit that we can build socially-capable robots by
developing general individual social intelligence building blocks,
to be built into the brains of robots, rather than grafted on per mis-
sion: built once, applied everywhere. These building blocks, prop-
erly wired, would then cause the robots to behave socially, regard-
less of the task they are carrying out. The analogy to is to normal
human minds: If we build our robots such that they posses even
a subset of adult human social mechanisms (e.g., theory of mind,
communications, collaboration, etc.), we would have robots that
correctly function socially across a wide variety of tasks.

The advantages to such an approach would be significant, both
to the science as well as to the engineering of social autonomous
agents (and in particular robots). An understanding of hypothe-
sized general social intelligence building blocks, would directly im-
pact the directions the autonomous agents and multi-agent systems
(AAMAS) community takes (focusing on general mechanisms and
their parameterization, rather than a fragmented set of specialized
problems and solutions). General social intelligence, essentially
out-of-the-box, would very significantly reduce the prohibitive pro-
gramming efforts currently associated with the design and deploy-
ment of commercial multi-robot systems. And it even carries the
potential for impacting other fields, such as anthropology, cognitive
science, and social (neuro-) science, on computational grounds.

I therefore challenge the autonomous agents and multi-agent sys-
tems community to synthesize the computational building blocks
underlying social intelligence, to explore theories of social intelli-
gence, and to validate them empirically in concrete robot and agent
systems. I argue that our field is in a unique position to do this,
in that our community intersects with computer science, behavioral
and social sciences, robotics, and neuro-science. Thus we can bring
to bear a breadth of knowledge and understanding which cannot be
matched in other related fields.

To lend credibility for our ability to carry out this challenge, and
to the benefits of succeeding at it, I will demonstrate that we have
carried out at least one similar task in the past (though at a smaller



scale). In particular, I will briefly discuss previous AAMAS work
in teamwork, which bears many similarities to the challenge at
hand. Our success in investigating teamwork should inspire us to
take on the larger-scale challenge presented here.

To start us off, I present in this paper an abstract hypothesis
that general social intelligence can be modeled from four inter-
connected component processes: (1) recognizing other agents; (2)
understanding their internal state; (3) measuring differences and
similarities to the other agents; and (4) acting on the differences
and similarities found. I conclude with a short sample list of open
questions raised by this hypothesis.

2. GENERAL MECHANISMS FOR SO-
CIAL INTELLIGENCE

Researchers in artificial intelligence, cognitive science, au-
tonomous agents, and multi-agent systems have been investigating
components of social cognition for many years. A very partial list
includes: recognizing intentionality in action (e.g., [21, 26, 4]), im-
itation [38, 3], theory of mind [39, 15, 35, 16, 37, 2], intent or plan
recognition (e.g., [33, 7, 44, 30, 17, 1]), planning and execution in
teams (e.g., [19, 27, 28, 9, 18, 42, 46, 40, 32]), observation-based
coordination (e.g., [11, 25]), reasoning about conventions, com-
mitments, norms, institutions, and organizations (e.g., [27, 24, 22,
23]), and many more.

However, with the exception of early theoretical work [6], we
have for the most part avoided integrating these components to cre-
ate a comprehensive picture of social intelligence. We (very) par-
tially understand some of the components; we do not at all have a
good picture of the system. This is the crux of the challenge.

To motivate researchers to address this challenge, I make the
following hypothesis, in hopes that many researchers will rush to
prove it insufficiently accurate. I hypothesize thatsocial intelli-
gence is composed of the following component processes, that in-
teract to generate social behavior:

Recognizing Other Agents.One process identifies other agents in
the environment (recognizing their existence as agents, rather than
inanimate objects). Some cognitive scientists (e.g., [16, 21, 26, 2])
argue that humans employ perception inference rules to determine
whether something is an agent (e.g., agents have self-propulsion
and demonstrate goal-directedness; gaze also seems to be an in-
dicator). Computational models can be built to allow a robot to
distinguish agents from inanimate objects (this, as it turns out, is
not only beneficial from an evolutionary perspective, but also com-
putationally eases many robotic tasks, such as localizing).

Fundamental Mechanisms for Understanding Others.Once a
robot recognizes that another agent is present, it can begin to predict
its actions and intents (from an evolutionary perspective, a prudent
step). There are two fundamental ways to gather information about
the other: from communications, and by inference from observa-
tions. Most literature in our field focuses on the use of communi-
cations. This requires the other robot to cooperate in exchanging
messages (or at least, in sending them).

The other method relies on observations. In AI, we typically
refer to this asplan recognition. Almost all works in this area uti-
lize a plan library to carry out the recognition, where the plan li-
brary is either learned, or manually constructed by the developer.
But in 1995, agents researchers Tambe and Rosenbloom [44] have
presented a method for agents in a simulated world to understand
the observed actions of others—by explaining the observations in
terms of the observer’s own action repertoire. So instead of a
specially-constructed recognition library, the agent would use its
own planning knowledge to explain observed actions. They argued

that from a computational standpoint, it was a cheap way for an
agent to understand what others were doing.

Independently—and later—mirror neurons were found in pri-
mate (later, human) brains [41] that did exactly this: The neurons
would fire when the primate was taking a specific action, or when it
saw someone else take the same action; in other words, the neurons
signified understanding others’ actions using the observer’s own
knowledge of executing the actions.

I join others (e.g., [15]) in hypothesizing that this is a fundamen-
tal strategy to understanding others, i.e., to the capacity for theory-
of-mind in agents. Moreover, I argue that this process occurs at
various levels (simple actions to plans to goals and intentions). The
robot recognizes the actions and intents of others in its own terms.
It can thus represent others using the same data structures as it uses
to represent its own executing control processes. Just as it knows
its own actions, it knows those of the others; just as it knows its
owns goals, it can infer the goals of others.

Comparing Myself to Others. A significant benefit of having a
robot use the same knowledge base to describe its own actions,
plans, and goals, as it does those of others, is that this facilitates
comparison. By a process of continuous comparison of its own
control structures and state to those of its peers, it can identify
diverging decisions and status. This can indicate failures, if we
have expectations that the robots have identical actions (or plans,
or goals), as in teamwork [43, 31], or it can be used as a source
of information on what actions (or plans, or goals) the observing
robot should adapt (e.g., in imitation [14, 38, 3], or crowds [13]).
The process is reminiscent of Social Comparison Theory [12], a
social psychology theory.

Note that I mean comparison in the broad sense that includes
measurement of generalized distance between states, not just equal-
ity testing. I also note that comparison does not imply any coop-
eration from the other side, nor does it exclude it. For example, in
predatory settings, the predator might compare its own position and
heading to those of its prey, without the prey’s knowledge. Or in
other words, the predator may take the distance between itself and
the prey into account in deciding on its own next action.

Acting on the Generalized Distance to Others.Finally, the robot
can act on the results of the comparison, the distance measurement.
Given a complex state, some attributes may be similar (close), oth-
ers may be different (far). Either can trigger actions.

Some can be in form of avoidance and negation, e.g., in avoiding
collisions, or making a decision to take on a task that has not yet
been allocated to a team-member (i.e., which involvesavoidingto
take on a task that has been taken by another). Others can be in the
form of actions that minimize the differences between the robot and
the object of comparison, as in mimicry or imitation [36], or in con-
tagion processes [14, 45]. For instance, in teamwork literature [9,
19, 28, 43] agents take proactive steps to maintain agreement on
joint goals and plans for execution by the team.

I stress that the process of acting on the differences and sim-
ilarities may take place at different levels, from mimicry of ac-
tions, through imitation and internalization of plans (learning from
demonstration [3]), to adopting the goals of another robot, poten-
tially planning and executing a novel plan for this goal.

3. TEAMWORK: EVIDENCE THAT THIS
CHALLENGE IS FEASIBLE

The challenge I am posing is a significant one. I therefore want to
provide evidence that it can be tackled successfully by the AAMAS
community. To do this, I will refer to a similar line of research,



though on smaller scale, that was successfully addressed by the
AAMAS community in years past.

The argument I laid for why we should determine general so-
cial intelligence mechanism borrows from a similar argument made
in the mid-1980’s by AI and AAMAS researchers arguing for a
general theory of teamwork, and by later arguments, on practical
grounds, for the use of general teamwork software architectures to
support construction of robust multi-agent systems. I briefly trace
these investigations below.

In the mid-1980’s, AI and AAMAS researchers inspired by stud-
ies of human teamwork (see [5] for a summary) have argued that
teamwork should be treated as a domain of study, and that it can
be formally described. Perhaps the first researchers to do this
were Gross and Sidner[19], who proposed a formal method called
SharedPlans for agents to reason about teams, and about their team-
mates (the SharedPlans model was later extended and improved in
Grosz and Kraus [18]). Cohen and Levesque proposed the Joint In-
tentions Framework [9], an alternative model for proscribing team-
mate behavior. The Australian AI institute conducted additional
influential theoretical investigations at the time [34].

This theoretical work was picked up and inspired researchers
who have been becoming increasingly frustrated with the brittle-
ness of distributed multi-agent systems, for industrial tasks [27, 28]
and virtual training environments [43]. Essentially independently
from each other, both Jennings and Tambe made arguments strik-
ingly similar to the arguments I made above: That it is impractical,
if not impossible, to continuously patch distributed multi-agent sys-
tems with more and more task-specific coordination rules. That
instead, general teamwork mechanisms can and should be built
for automating the collaborative interactions between the agents,
in whatever domain of application the agents are used. Jennings
proposed the GRATE* system to do this, extending the Joint Inten-
tions Frameworks to cover commitments to joint plans, in addition
to joint goals. Tambe proposed STEAM (a Shell for Teamwork),
which went further in that it also possessed mechanisms for hier-
archical teams and hierarchical tasks, decision-theoretic protocols
for exchanging messages, and more. STEAM was inspired by both
Joint Intentions as well as SharedPlans.

These initial investigations as to the practical benefits of using
general teamwork mechanisms led to a series of improvements and
applications, resulting in further practical impact (e.g., [40, 47, 10,
42, 29, 20, 32]), and theoretical extensions (some of which led to
today’s distributed POMDP investigations). Today, there exist even
commercial software products that are built around the idea of au-
tomated general teamwork [8]. Of course, research in teamwork
is continuing. And yet it is clear already that the idea of general
teamwork proved very effective, both for AAMAS science as well
as for its applications.

I emphasize that this brief review of the literature is meant only
to argue for the possibility of success, and for the significance of
impact, of the endeavor I am challenging the community to take.

4. LET’S GO!
I outlined an abstract hypothesis as to the key components of

general social intelligence. But to make the challenge concrete,
it would make sense to propose a specific set of milestones whose
achievement would signify progress; or lacking specific milestones,
at least a set of open problems. Also, just as teamwork research
progressed by an interplay between theoretical progress and its ap-
plication to concrete applications, so would research into general
social intelligence mechanisms flourish in the presence of both con-
crete theories and concrete applications.

Two immediate—yet broad—directions for research are raised
by the hypothesis above. One takes acomponent view, seeking to
fill-in the details of each component above with hard-core computer
science; to provide computational models and algorithms. The
other takes asystem view, seeking to argue for—or against—these
components, and for—or against—specific ways in which they in-
teract. The two directions are tied together, and impact each other.

There are of course many open questions, whose answers would
shed light on the hypothesis above, both at the system view and
component view. I cannot hope to list them all, yet I can point out
a few candidates for immediate research:

• Can we show that good teamwork, whether described in
logic [18] or in algorithms [43, 42, 32], is a special case of
the abstract system described above, i.e., four components
(specific instances) and specific interactions between them?

• Can we model and simulate additional types of group ac-
tivities, known in social sciences, such as crowds [13], or
treatment groups [20]?

• What is the role of learning, and how it is to be integrated
in each component, and at the system level? Learning per-
meates social reasoning in humans, in many different ways;
are there any specific forms that are better or worse for social
reasoning in robots?

• Some specific instances (such as for imitation) look almost
like planning: We are given an initial state (our own), and a
goal state (that of the other agent), and the task is to deter-
mine actions to take us from the initial state to the goal state.
Is this a special case of AI planning, applied to a domain that
concerns social state? What are the operators, in this case?
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