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Abstract
This paper surveys research in robotics in the AAMAS (Au-
tonomous Agents and Multi-Agent Systems) community. It
argues that the autonomous agents community can, and has,
impact on robotics. Moreover, it argues that agents re-
searchers should proactively seek to impact the robotics com-
munity, to prevent independent re-discovery of known results,
and to benefit autonomous agents science. To support these
claims, I provide evidence from my own research into multi-
robot teams, and from others’. This paper is a short version
of a more detailed survey (Kaminka 2012).

Rise of the Machines
Today, there is a resurgent interest and recognition of the
importance of robotics research framed within areas of re-
search familiar to autonomous agents and multi-agent sys-
tems researchers. The AAMAS community is investing ef-
forts to encourage robotics research within itself. An an-
nual robotics special-track, an associated robotics workshop
(ARMS: Autonomous Robots and Multirobot Systems), and a
series of exciting AAMAS-sponsored plenary speakers and
awards over a number of years are drawing roboticists in.
There are fruitful interactions with the other communities
within AAMAS, such as virtual agents , game theory, and
machine learning. Robots are being used both to inspire AA-
MAS research as well as to conduct it.

I posit that this growing success is due not only to the nur-
turing efforts of the AAMAS community, but mainly to the
increasing recognition of an important, deeper, truth: Robots
are Agents. In other words, it is scientifically useful to think
of robots as agents.

Research in agents raises challenges in integrated capabil-
ities for intelligence, such as planning and execution, learn-
ing exploration and exploitation, strategic decision making
in multi-agent settings, and more. It requires us to consider
deeply and critically what we mean by calling a system “au-
tonomous”. It raises challenges in the software architectures
needed for such capabilities.

Many roboticists share these challenges. Robotics, by na-
ture of the research, requires its practitioners to evaluate not
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only a component, but also its use within the system. More-
over, many roboticists are increasingly setting their goals
higher than what we in AI (sometimes arrogantly) refer to as
“low level control”. The stability of platforms have made it
possible for roboticists to examine complex tasks, in which
there is need for intelligence and knowledge, and for con-
sidering multiple robots. Agenticists have a wide variety of
tools and techniques which can be brought to bear in facing
both single- and multiple- robot challenges.

And similarly, agenticists increasingly realize that it is
useful for them to think of robots as agent exemplars. To
agents researchers, working with real robots (made of plas-
tic, metal, electronics, and the sweat of graduate students)
brings out important challenges to our current theory and
practice. Robots make us fail in interesting ways, and
give opportunity for gaining insights otherwise unattainable.
They extend the system perspective to go beyond the con-
ceptual perception and actuation to consider sensors and
motors (with their uncertainties, faults, and latencies), im-
perfect communications, and multiple bodies (each with its
two- or three- dimensional geometry). Roboticists know
much about these challenges, and can greatly influence in-
tellectual development within agents.

To support my argument, I report from the trenches of on-
going robotics work within the AAMAS community, high-
lighting success stories in which robotics research benefited
from AAMAS research, and vice versa. I therefore admit
in advance to a bias towards work appearing in AAMAS
conferences and journals. This bias is intended to highlight
robotics in the context of research areas appearing in AA-
MAS. However, the unfortunate result of this bias is that
ground-breaking work in AI and robotics appearing else-
where (e.g., Thrun, Burgard and Fox’s game-changing work
on probabilistic robotics (Thrun, Burgard, and Fox 2005))
will not receive proper treatment here. This, despite such
work being excellent evidence for the generality of my argu-
ment as to the usefulness of AI to robotics, and vice versa.

Building Architectures
Robotics research today must address increasingly complex
missions that the robots should carry out. Previously the
problem of controlling a robot could be addressed by a care-
fully designed controllers. Relatively basic (and very useful)
tasks such as finding a path, avoiding obstacles, and navi-
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gating to a goal location, are now mature areas of research.
Instead, robots are now expected to go beyond reaching a
goal, to carrying out missions in which there are multiple
(changing) goals, and multiple tasks, that should be carried
out (sometimes concurrently, sometimes in sequence). Such
complex missions require planning, managing resources,
and in particular making decisions.

Well, this is something that AI researchers know about.
Beginning with Gat’s ATLANTIS architecture (Gat 1992), AI
researchers have begun to integrate planners into the robot’s
control architecture. Following ATLANTIS three-tier de-
sign, a standard approach was to integrate a high-level plan-
ner together with controllers, mediated by an executive mod-
ule whose role is to issue plan-requests, schedule and mon-
itor the controller’s successful execution. The key idea in
such hierarchical layering is that tasks are planning prob-
lems, to be solved by a planner operating in discrete atomic
steps. An executive module works at a different, finer, reso-
lution to carry out the task. Guided by the plan, it translates
its discrete steps into controller instantiations.

Around the same time, agents researchers have begun to
advocate the idea that agents are not just planners (Pollack
1990). Rather, agents should reason about plans: generating
them, adapting them, and contrasting them, to make deci-
sions about carrying them out in service of various goals.
Agents researchers developing robots with integrated capa-
bilities have focused on integrating planning and execution
(sometimes also with learning) in a way that reflects such
reasoning about plans. Here, execution and planning work at
the same temporal and task resolution. The approach, called
plan-based control by Beetz et al. (Beetz et al. 2001), relies
on utilizing a plan representation as a central, first-class ob-
ject, which is reasoned about, generated, adapted, revised,
and managed through the life-time of the robot. Planners
are used not only to generate plans (and re-plan), but also
to provide predictions (including of resource use and exe-
cution time). Separate processes estimate the state of the
robot and the world, address perception (symbol ground-
ing, sensor fusion, etc.), and make decisions as to alterna-
tive courses of action. Independently, roboticists have be-
gun to consider similar notions, building on the hierarchi-
cal layering of planning and execution modules, in a way
that allowed learning or considering which plans to execute,
( (Haigh and Veloso 1997; Simmons et al. 1997; Beetz 2001;
Thrun et al. 2000).

Thus the need to reconsider the design of the agent ar-
chitecture was lead both by theorists, as well as robotics re-
searchers working in the context of agents research. The
challenge of how to integrate different capabilities was met,
within the agents community, with an already-existing body
of knowledge, and significant fascination with general agent
architectures: with how, in general, agents should be built.
Over the years, research into agent architectures that work
across a wide variety of agent types and environments (in-
cluding robots in various applications) has resulted in greater
understanding of the architecture components and their op-
eration. Some specific areas of research—still continuing
today—are discussed below.

Beliefs, Desires, Intentions and Other Mental Attitudes
First, it is by now understood that an agent operating in a
dynamic environment (the settings for many robot applica-
tions) must manage the planning process. It must decide
when to plan and when to avoid re-planning (as it is com-
putationally infeasible to re-plan with every change). To
do this, the construction of the agents must allow for ex-
plicit representation of beliefs, goals, and plans (whether
pre-planned or dynamically generated). These will be re-
vised, manipulated, contrasted, and reasoned about by the
agents’ action selection and perception processes. In other
words, beliefs, goals, and plans are all first-class objects.

To a large degree, the huge literature on mental attitudes
of agents, and in particular on BDI (Belief, Desire, Inten-
tion) theories and architectures (Rao and Georgeff 1995;
Sardiña and Padgham 2011) is a response to this chal-
lenge. Recent years are seeing, side by side, developments
in both the theory and practice of plan representations that
are amenable to both planning and execution. A variety of
academic and commercial BDI implementations exists, such
as PRS (Lee et al. 1994), RPL (Beetz 2001), RAPs (Earl and
Firby 1997), and CogniTAO (CogniTeam, Ltd. 2009)).

First-Class Plan Representations. In addition to these
BDI languages that have been used in robots, there have
been of course many plan representations (and sometimes
programming languages) that have been tried and tested in
robots, but that offer first-class status only to the plan, rather
than also beliefs and goals. Nevertheless, they are useful in
constructing robots that employ plan-based control. These
include finite-state representations (Tousignant, Wyk, and
Gini 2011; Lötzsch, Risler, and Jüngel 2006), Petri-Net rep-
resentations (Ziparo et al. 2010), and temporal planning and
scheduling languages (e.g., T-REX (Py, Rajan, and McGann
2010), which allows for multiple-resolution scheduling of
tasks).

No single plan representation has emerged thus far as a
clear de-facto standard, and in fact the comparison of these
representations remains an open challenge. Many of the BDI
languages have been developed to address reported failings
in finite-state machine representations (such as their lack of
a factored state and limited reactivity), but a clear theoretical
contrast is still lacking.

Teams of Robots
Perhaps the area in which agents research has had the most
impact on robotics research is in multi-robot systems. This
is due to the principled domain-independent handling of the
combinatorial complexity of multi-robot tasks. If multiple
robots are to be coordinated in some fashion, the task of
making decisions for them is more difficult than that of mak-
ing decisions for a single robot, since in addition to the indi-
vidual decisions, one must worry about the combinations of
selected actions.

Most multi-robot research to date, within the robotics
community, focuses on a single task at a time. Some ex-
amples of such canonical tasks include formation mainte-
nance (Balch and Arkin 1998; Fredslund and Mataric 2002;



Inalhan, Busse, and How 2000; Kaminka, Schechter-Glick,
and Sadov 2008), multi-robot coverage (Rekleitis et al.
2004; Zheng et al. 2005; Rekleitis, Dudek, and Milios 2001;
Batalin and Sukhatme 2002; Butler, Rizzi, and Hollis 2000;
Agmon, Hazon, and Kaminka 2008), foraging (Goldberg
and Matarić 2001; Rybski et al. 1998; Rosenfeld et al. 2008;
Zuluaga and Vaughan 2005; Schneider-Fontan and Matarić
1996; Jager and Nebel 2002; Ostergaard, Sukhatme, and
Matarić 2001; Kaminka, Erusalimchik, and Kraus 2010),
and patrolling or surveillance (Elmaliach, Shiloni, and
Kaminka 2008; Agmon et al. 2008; Jensen et al. 2011; Basil-
ico, Gatti, and Amigoni 2009; Smith, Schwager, and Rus
2011; Agmon, Urieli, and Stone 2011; Marino et al. 2009;
Delle Fave et al. 2009). Many of these are approached from
the perspective of a distributed control problem. In other
words, a controller is devised such that when it is operat-
ing in each individual robot, the total sum behavior is as
required. Such controllers are built a new for each task.
But as future robot applications grow in complexity, such
controllers would need to take into account allocating and
scheduling the execution of multiple tasks, taking place con-
currently or in sequence. For instance, urban search and res-
cue (Murphy et al. 2008) applications require elements of
both coverage and foraging, and introduces additional novel
tasks.

A key insight gained in the AAMAS field in the last 15
years is that in fact, multi-agent tasks can be decomposed—
conceptually, as well as technically—into two components.
The first, called taskwork, includes domain-dependent indi-
vidual capabilities. The second, called teamwork in teams,
and socialwork in general, includes the capabilities for col-
laboration (in teams), or maintaining other social relations.
This socialwork component includes social choice mecha-
nisms. For instance, protocols for allocating tasks to differ-
ent team-members (e.g., by bidding), or protocols for reach-
ing joint decisions (e.g., by voting). The combination of
taskwork and socialwork creates a working multi-agent sys-
tem for a given domain.

This insight has manifested itself in several different ways
in robotics research. I will briefly discuss some of these
areas of cross-fertilization between agents and robotics re-
search, and then dive in detail into one specific area (team-
work).

Market-Based Task Allocation. In terms of impact on
robotics, the use of market-based methods for allocating
tasks to robots enjoys widespread popularity. It is now be-
ing adopted and investigated by roboticists outside of the
AAMAS community, certainly a positive sign. Starting with
Dias and Stentz’s work (Dias and Stentz 2000) on the use of
market-mechanisms for coordinating robots in exploration
and mapping tasks, there has been much work in t his area,
addressing challenges that are raised when working with
robots (see, for example, (Lin and Zheng 2005; Gerkey and
Mataric 2002; Zlot and Stentz 2006; Lagoudakis et al. 2004;
Vig and Adams 2006; Köse et al. 2003; Michael et al. 2008;
Tang and Parker 2007; Lagoudakis et al. 2005; Bererton,
Gordon, and Thrun 2003)). Dias et al. (Dias et al. 2006)

provides a comprehensive survey, and Xu et al. (Xu et al.
2006) provides a comparison with other methods

Reaching Joint Decisions in Teamwork. More generally,
AAMAS researchers have long discovered that teamwork
involves more than task allocation. It also involves agree-
ment on a common goal, agreement on a plan to reach the
common goal, assisting teammates as necessary, etc.

Teamwork has been investigated within the multi-agent
systems community for many years (Grosz and Kraus 1996;
Cohen and Levesque 1991) have published a series of arti-
cles on teamwork, using logic to model and prescribe team-
work. Among other issues, these models describe the con-
ditions under which an agent must inform its teammates of
its own private beliefs, thus effectively maintaining synchro-
nization in the team as to specific propositions.

The key benefit of this approach is that much of such
teamwork can be algorithmitized. It can be described by a
set of behavioral rules, which, if followed, would cause the
agent to act appropriately in the context of a team, regardless
of the task it was assigned, or the application domain.

Unfortunately, in general, I think it is safe to say that
roboticists took little notice of these theoretical frame-
works, as groundbreaking as they were. However, several
autonomous agent researchers picked up on these logical
frameworks, and begun investigations of how the frame-
works might be applied in practice. One of the unique fea-
tures of the AAMAS conference is that it is a rare forum in
which both researchers of virtual humans (virtual agents),
and roboticists can meet to exchange ideas. The demon-
stration of automated teamwork in software agents brought
teamwork models close enough to robotics to get some at-
tention from that community.

To illustrate the contribution of teamwork—as understood
in state-of-the-art AAMAS—to robotics, I will describe
my groups’ utilization of teamwork software as part of an
technology-transfer project, intended to implement a canon-
ical multi-robot task—formation maintenance—familiar to
many roboticists. Given the space constraints, I settle here
for a relatively high-level description; details are in (Traub
2011).

In formation maintenance, robots must move in unison
along a given path, while maintaining a given geomet-
ric shape. Various formation maintenance methods have
been investigated (e.g., (Balch and Arkin 1998; Desai 2002;
Fredslund and Mataric 2002; Balch and Hybinette 2000;
Desai, Ostrowski, and Kumar 2001; Carpin and Parker 2002;
Inalhan, Busse, and How 2000; Tabuada, Pappas, and Lima
2005; Kaminka, Schechter-Glick, and Sadov 2008; Elmali-
ach and Kaminka 2008)). All of these schemes are dis-
tributed; all require each robot to run a local control process,
which executes the controller that fits the role of the robot.
For instance, a left-following robot in a equilateral triangle
formation would keep the leader in a fixed distance (match-
ing the distance kept by the right-following robot), such that
the leader robot is at bearing 30 degrees to the right. A right-
following robot would do the same, but its controller would
maintain the leader at a bearing of 330 degrees (i.e., 30 de-



(a) Triangular AIBO for-
mation, in (Elmaliach and
Kaminka 2008; Kaminka
and Frenkel 2005).

(b) Diamond AIBO formation,
in (Kaminka, Schechter-Glick,
and Sadov 2008).

(c) Column Shrimps-III for-
mation, in (Traub 2011).

(d) Triangular Shrimps-III for-
mation, in (Traub 2011).

Figure 1: Robots moving in formation.

grees to the left). Figure 1 shows a number of formations,
the basis for the work in (Kaminka and Frenkel 2005; 2007;
Elmaliach and Kaminka 2008; Kaminka, Schechter-Glick,
and Sadov 2008; Traub 2011).

The various control schemes differ in the type of op-
erating conditions they assume, as well as in the type
of performance they provide. For instance, some control
schemes (called SBC for Separation-Bearing Control) re-
quire each follower robot to be able to identify the dis-
tance and angle to a leader robot in the formation (Fredslund
and Mataric 2002), based on sensor readings. In contrast,
communication-based formation maintenance can be used
to eliminate the need for perception, by relying on dead-
reckoning and communications from the leader robots (El-
maliach and Kaminka 2008). Others still use more robust
schemes that allow robots to switch which robots are to be
followed (Desai, Ostrowski, and Kumar 2001).

The goal of the project was to create a robust controller,
by tying these different control schemes together, switch-
ing between them as necessary. This creates a formation-
maintenance scheme that is robust to intermittent perception
and communications failures, as long as they do not coin-
cide. The key is to switch between the different schemes,
based on availability of the perception and communication
processes.

Now suppose we adopt a standard robotics approach to
this problem. This would entail writing a switching con-
troller which switches between the different modes. Each
such switching controller would operate on a different robot,
and thus we immediately face a challenge: We need to make
sure that when one robot switches, the others do as well
(since mixing up formation maintenance schemes is not, in
general, likely to work well). This means that we need to
add code that manages communications between robots, so
that when one robot finds it necessary to switch, it automat-

ically lets the other ones know, and awaits confirmation of
their switching, too. Of course, the conditions underwhich
a robot may want to switch are not necessary those that an-
other robot senses, and so we also need code for them to
negotiate and agree as to which control scheme the team
should use. Now we just need to get all of this working
for more than two robots, and more than two schemes, and
across potential communication errors. And all of this still
not taking into account issues such as changing roles in the
formations, etc. Just a simple matter of programming, as the
expression goes.

Agent researchers have long recognized that the chal-
lenges above are general. Teamwork architectures offer a
general solution to cases where agents must decide on (1)
when to communicate (and to some degree, what to commu-
nicate about), (2) how to come to a joint agreement (in this
case, which mode mode should be used by the robots), and
(3) how to allocate (and reallocate) tasks to different robots.
The needs for such decisions comes up again and again.

Thus my research group used a teamwork architecture
to manage the joint switching of controllers, and alloca-
tion of roles and tasks. We utilized the CogniTAO (Cog-
niTeam, Ltd. 2009) commercial teamwork architecture to
integrate together robust SBC (Kaminka, Schechter-Glick,
and Sadov 2008) and communication-based formation-
maintenance controllers (Elmaliach and Kaminka 2008).
The details of the integration are well beyond the scope of
this article, but the lessons are not.

Traub (Traub 2011) has carried out an analysis of the ben-
efits of using a teamwork architecture, by using a standard
software engineering model (CoCoMo) (Boehm 1981)) to
measure its impact in automating the coordination processes
described above, contrasting it with conservative and opti-
mistic estimates of the size of the project given a standard
robotics approach. The results show 50% to 68% savings
in programming effort within the project, which of course
translate into significant savings in both development time
and number of programmers. These numbers are compati-
ble with earlier reported results (Tambe 1997) (in fact, they
are more conservative). Teamwork in robots is a success
story for AAMAS research, with measurable effects.

A Call to Arms
My argument in this article is that AAMAS has a lot to of-
fer robotics, and also a lot to benefit from robotics; that as
a field of science goes, working with robots is a useful en-
deavor. To show this, I have reported from the trenches of
on-going work in two specific ares of contribution, where
past contributions and on-going work are showing signifi-
cant promise, both in robotics as well as in AAMAS. But
there’s quite a bit more; I’ve described the tip of the iceberg,
hoping to convince you, the reader, to look at the iceberg un-
derneath. There’s a lot going on: In swarms, traffic control,
surveillance, learning, and much more.

Indeed, this article is also intended to be a call to arms,
to invest in robot-based research. The drop in robot prices
and consequent rise of the machines make robot-based arti-
ficial intelligence research in general, and AAMAS research
in particular, both compelling and practical. One no longer



needs to have an in-house mechanical and electronics shop
to successfully conduct research involving robots. Stable
platforms are now cheaply available, and their commercial
maintenance makes maintaining a robot lab a feasible effort.
As for venues for meeting other like-minded researchers,
the appropriately named, ARMS (Autonomous Robots and
Multirobot Systems) workshop works hand-in-hand with the
AAMAS conference to promote robotics research within the
AAMAS community. This is a good place to start, even if
your paper is yet not quite up to AAMAS rigorous standards.
Similar workshops take place on occasion with other AI con-
ferences, including AAAI.

There is a great opportunity for AI and Agent researchers
to begin exploring essentially philosophical ideas in real-
world robots. The potential impact that we can have on
the scientific community, and on the exploding commercial
world of robotics, is huge. The alternative—letting roboti-
cists re-discover and re-invent decades of our work—is un-
forgivable.
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